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A Lagrangian–Lagrangian Framework
for the Simulation of Rigid and Deformable
Bodies in Fluid

Arman Pazouki, Radu Serban and Dan Negrut

Abstract We present a Lagrangian–Lagrangian approach for the simulation of fully
resolved Fluid Solid/Structure Interaction (FSI) problems. In the proposed approach,
the method of Smoothed Particle Hydrodynamics (SPH) is used to simulate the fluid
dynamics in a Lagrangian framework. The solid phase is a general multibody dynam-
ics system composed of a collection of interacting rigid and deformable objects.
While the motion of arbitrarily shaped rigid objects is approached in a classical
3D rigid body dynamics framework, the Absolute Nodal Coordinate Formulation
(ANCF) is used to model the deformable components, thus enabling the investiga-
tion of compliant elements that experience large deformations with entangling and
self-contact. The dynamics of the two phases, fluid and solid, are coupled with the
help of Lagrangian markers, referred to as Boundary Condition Enforcing (BCE)
markers which are used to impose no-slip and impenetrability conditions. Such BCE
markers are associated both with the solid suspended particles and with any confin-
ing boundary walls and are distributed in a narrow layer on and below the surface of
solid objects. The ensuing fluid–solid interaction forces are mapped into generalized
forces on the rigid and flexible bodies and subsequently used to update the dynamics
of the solid objects according to rigid body motion or ANCF method. The robust-
ness and performance of the simulation algorithm is demonstrated through several
numerical simulation studies.
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2.1 Introduction

Engineers commonly rely on prototypes and physical testingwhen performing design
and analysis tasks. Unfortunately, such work can be expensive and time consuming.
Because computational hardware continues to advance in terms of both process-
ing speed and memory size, a trend is growing in which computer simulation is
used to augment and, in some cases, replace large amounts of experimental work.
With increasing computational power, engineers are able to perform faster, larger,
and more accurate simulations. Computer simulation has several advantages over
physical experiments. Through simulation, engineers may study a range of para-
meter values that would prove too costly or too dangerous to study experimentally.
Moreover, computer simulation can produce representative data that experimental
measurements could never achieve. Experimental insights are limited by the posi-
tion, fidelity, and number of sensors, whereas a simulation inherently tracks the state
of every component of the system. For example, simulation can generate, in a non-
intrusive fashion, the set of forces acting between all the individual bodies in a flow
of suspension.

Current simulation capabilities are sometimes inadequate to capture phenomena
of interest. This problem is especially evident when simulating the dynamics of
Fluid–Solid Interaction (FSI) systems, which may contain tens of thousands of rigid
and deformable bodies that interact directly or through the fluid media. The ability
to solve such large problems will require significant improvements in terms of both
algorithms and implementation.

To alleviate computational limitations, numerical simulation approaches devised
for the general category of FSI problems usually suppress some physics depending on
the specific application. For instance, several approaches have been proposed to study
characteristics of the flow of particle suspension. These include Eulerian–Eulerian
(EE) approaches, where the solid phase is considered as a continuum [14, 16, 46];
Lagrangian particle tracking, also knownasLagrangianNumerical Simulation (LNS)
approaches, which either consider a one-way coupling of fluid and solid phase, or
else introduce a collective momentum exchange term to the fluid equation [2, 30];
Eulerian–Lagrangian (EL) approaches, where the Lagrangian solid phase moves
with/within the Eulerian grid used for fluid simulation [17, 21, 25]; and Lagrangian–
Lagrangian (LL) approaches, where both phases are modeled within a Lagrangian
framework [36, 38, 39]. As in EEmethodologies, LNS approaches rely on empirical
forms of hydrodynamic fluid–solid forces, determined mostly for dilute conditions
where the particle-particle interaction is neglected.

Similar approaches are also applied to the fluid-structure interaction. In this docu-
ment, the focus is primarily on the LL approaches, particularly those geared towards
large deformation favored by the multibody dynamics community (some studies on
problems involving small structural deformation using a Lagrangian representation
of fluid flow are provided in [1, 4, 28]).

The body of work on FSI problems using Lagrangian fluid representation and
large structural deformation is very limited. Schörgenhumer et al. [42] presented



2 A Lagrangian–Lagrangian Framework for the Simulation 35

a co-simulation approach for the FSI problems. In their approach, they used a
heuristic force field for the coupling of the fluid and flexible objects, modeled via
Smoothed Particle Hydrodynamics (SPH) and Absolute Nodal Coordinate formula-
tion (ANCF), respectively. The suggested force field, which involves some heuristic
parameters to enforce the fluid–solid coupling, cannot approximate the FSI inter-
action at a resolution finer than that of the fluid discretization. In this sense, it is
equivalent to all other approaches proposed for the implementation of wall boundary
condition with the caveats that: (1) the procedure of finding the minimum distance
between fluid markers and solid surfaces can be prohibitively tedious, particularly
for complex shapes; and (2) the wrong choice of heuristic parameters at a certain flow
condition can result in either an inexact coupling or a stiff force model which can
lead to numerical instability. Additionally, little, if any, is said about the performance
of the co-simulation approach. Similarly, Hu et al. [22] approached the FSI problem
using SPH and ANCF; however, they implemented the method of moving boundary
to couple the fluid dynamics to solid objects.

This contribution is a further development to FSI simulation approaches presented
in [22, 38, 39, 42] and also includes a moving boundary approach for two-way
fluid–solid coupling implemented through the use of so-called Boundary Condition
Enforcing (BCE) markers. Neither Schörgenhumer et al. [42] nor Hu et al. [22]
addressed the solid–solid interaction required for many-body FSI problems. In the
present work, support for many-body FSI problems, such as those encountered in
suspension and polymer flow, is provided by incorporating a lubrication force model.
In addition, we have continued our previous validation efforts by benchmarking
the dynamics of flexible bodies against that of rigid objects, a study which links
the validation of flexible bodies to that of rigid bodies presented in [39]. Finally,
we provide a high performance implementation that leverages parallel computing
on Graphical Processing Unit (GPU) cards. A complete scaling and time analysis
performed herein demonstrate a typical ten-fold speedup compared to the results
provided in [22] for problems of comparable size.

The remainder of this document is organized as follows. The various algorithmic
components of the proposed simulation framework are discussed in Sect. 2.2, with
details on their high performance computing implementation provided in Sect. 2.3.
We provide simulation results in Sect. 2.4, including validation and parametric stud-
ies, and conclude with some final remarks in Sect. 2.5.

2.2 Simulation Methodology

The simulation framework developed herein relies on: (i) SPH for the simulation of
fluid flow, (ii) Newton–Euler 3D rigid body equations of motion, and (iii) ANCF to
capture the dynamics of deformable objects. The remainder of this section describes
in more details each of these algorithmic components, including a discussion on the
formulation adopted for fluid–solid interaction through BCE markers in Sect. 2.2.4
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and themethodologyused for short range solid–solid interaction through a lubrication
force model in Sect. 2.2.5.

2.2.1 The Smoothed Particle Hydrodynamics Method

SPH Liu and Liu [29], Monaghan [31, 34] is a Lagrangian method that probes
the fluid domain at a set of moving markers. Each marker has an associated kernel
functionW (r, h) defined over a support domain S(h), where r is the distance from the
SPH marker and h is a characteristic length that defines the kernel smoothness. The
kernel function should converge to the Dirac delta function as the size of the support
domain tends to zero: lim

h→0
W (r, h) = δ(r), be symmetric: W (r, h) = W (−r, h),

and normal:
∫

S W (r, h)dV = 1, where dV denote the differential volume. Based
on the aforementioned properties, an SPH spatial discretization results in a second
order numerical method. Kernel functions must satisfy additional properties [29];
most importantly, they should be positive and monotonically decreasing functions
of r. In addition, for computational efficiency, it is advantageous to only consider
kernel functions with compact support. A typical kernel function, used throughout
this work, is the standard cubic spline kernel, defined as:

W (q, h) = 1

4πh3 ×

⎧
⎪⎨

⎪⎩

(2 − q)3 − 4(1 − q)3, 0 ≤ q < 1

(2 − q)3, 1 ≤ q < 2,

0, q ≥ 2

(2.1)

where q = |r| /h. In general, the radius of the support domain, κh (see Fig. 2.1),
is proportional to the characteristic length h, with κ = 2 for the kernel function of
Eq. (2.1).

With ρ and μ denoting the fluid density and viscosity, v and p the flow velocity
and pressure, andm the mass associated with an SPHmarker, the continuity equation

dρ

dt
= −ρ∇·v, (2.2)

and the momentum equation

dv
dt

= − 1

ρ
∇ p + μ

ρ
∇2v + f, (2.3)

are discretized within the SPH framework as [35]:

dρa

dt
= ρa

∑

b

mb

ρb
(va − vb) ·∇a Wab, (2.4)
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Fig. 2.1 Illustration of the
kernel, W , and support
domain, S. SPH markers
are shown as black dots. For
2D problems the support
domain is a circle, while for
3D problems it is a sphere

and

dva

dt
= −

∑

b

mb

((
pa

ρa
2 + pb

ρb
2

)

∇a Wab + Πab

)

+ fa . (2.5)

In Eq. (2.5), indices a and b denote the SPH markers, as shown in Fig. 2.1, and

Πab = − (μa + μb)rab·∇a Wab

ρ̄2
ab(r

2
ab + εh̄2

ab)
vab (2.6)

imposes the viscous force based on the discretization of the ∇2 operator, where ε

is a regularization coefficient. Here ∇a indicates the gradient with respect to ra , i.e.
∂/∂ra . Quantities with an over-bar are the average of the corresponding quantities for
markers a and b. Summations in the above equations are over all markers within the
support domain of marker a. We have evaluated several definitions for the viscosity,
as well as different discretizations of ∇2 [34, 35] in conjunction with simulation
of transient Poiseuille flow and concluded that Πab of Eq. (2.6) leads to the most
accurate results for the widest range of Reynolds numbers. It is also worth noting
that Eq. (2.6) makes use of the physical fluid viscosity, unlike the use of tuning
parameters in artificial viscosity formulations [34].

The pressure p is evaluated using an equation of state [34]:

p = c2s ρ0
γ

{(
ρ

ρ0

)γ

− 1

}

, (2.7)

where ρ0 is the fluid reference density, γ is a parameter controlling the stiffness
of the pressure-density relationship, and cs is the speed of sound. In the weakly
compressible SPH method, cs is adjusted based on the maximum speed of the flow,
Vmax, to keep the flow compressibility below any arbitrary value. We chose γ = 7
and cs = 10 · Vmax, which allows 1 % flow compressibility [34]. The fluid flow
Eqs. (2.4) and (2.5) are solved in conjunction with the kinematic equation

dra

dt
= va (2.8)
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to update the positions of all SPH markers.
Compared to Eq. (2.4), which evaluates the time derivative of the density, the

original SPH summation formula calculates the density according to

ρa =
∑

b

mbWab. (2.9)

Equation (2.4) was preferred to Eq. (2.9) since it produced a smooth density field
and worked well for markers close to the boundaries, namely free surfaces, solid
interfaces, and wall boundaries. However, Eq. (2.4) does not guarantee consistency
between density at a marker and the associated mass and volume [6, 33, 35]. On
the other hand, using Eq. (2.9) has problems of its own, in particular large varia-
tions in the density field, especially close to the boundary. One of the approaches
suggested to resolve this issue is to combine the two methods in a so-called “den-
sity re-initialization technique” [9] in which Eq. (2.4) is enforced at each time step
while Eq. (2.9) is used to correct any mass-density inconsistencies every n time
steps. The results reported herein were obtained with n = 10. The Moving Least
Squares method or a normalized version of Eq. (2.9) are alternative solutions to the
aforementioned issues [9, 11].

Finally, to prevent extensive overlap of marker support domains and enhance
incompressibility of the flow, we employ the extended SPH approach (XSPH) as
described in [32]. TheXSPHcorrection takes into account the velocity of neighboring
markers through a mean velocity evaluated within the support of a nominal marker
a as

〈va〉 = va + 
va, (2.10)

where


va = ζ
∑

b

mb

ρ̄ab
(vb − va)Wab (2.11)

and 0 ≤ ζ ≤ 1 adjusts the contribution of velocities of neighboring markers. All
simulations presented in thisworkwere obtainedwith ζ = 0.5. Themodified velocity
calculated from Eq. (2.10) replaces the original velocity in the density and position
update equations, but not in the momentum equation [9].

2.2.2 Rigid Body Dynamics

The dynamics of rigid bodies is fully characterized by the Newton–Euler equations
of motion (EOM), see for instance [18]. For each body i = 1, 2, . . . , nb present in
the system, we have:
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dVi

dt
= Fi

Mi
, (2.12)

dXi

dt
= Vi , (2.13)

dω′
i

dt
= J′

i
−1

(
T′

i − ω̃′
i J

′
iω

′
i

)
, (2.14)

dqi

dt
= 1

2
GT

i ω′
i , (2.15)

and

qT
i qi − 1 = 0, (2.16)

where Fi and T′
i represent the external forces and torques acting on body i , including

fluid–solid interaction forces obtained as described in Sect. 2.2.4. The quantities
Xi ∈ R

3 and qi ∈ R
4 denote the position vector and rotation quaternion, while Vi ,

ω′
i ∈ R

3 represent the linear and angular body velocities. The mass and moment of
inertia are denoted by Mi and J′

i , respectively. Quantities with a prime symbol are

represented in the rigid body local reference frame. Given a = [
ax , ay, az

]T ∈ R
3

and q = [
qx , qy, qz, qw

]T ∈ R
4, the auxiliary matrices ã and G are defined as:

ã =
⎡

⎣
0 −az ay

az 0 −ax

−ay ax 0

⎤

⎦ and G =
⎡

⎣
−qy qx qw −qz

−qz −qw qx qy

−qw qz −qy qx

⎤

⎦ . (2.17)

2.2.3 Flexible Body Dynamics

For the simulation of flexible solid bodies suspended in the fluid, we adopt the
ANCF formulation [44] which allows for large deformations and large rigid body
rotations. While extension to other elastic elements is straightforward, in the cur-
rent Chrono::Fluid implementation we only support gradient deficient ANCF beam
elements which are used to model slender flexible bodies composed of ne adjacent
ANCF beam elements. In this approach, wemodel the flexible bodies using a number
nn = ne + 1 of equally-spaced node beam elements, each represented by 6 coordi-
nates, e j = [rT

j , rT
j,x ]T , j = 0, 1, . . . , ne, representing the three components of the

global position vector of the node and the three components of the position vector
gradient. This is therefore equivalent to a model using ne ANCF beam elements
with 6 × nn continuity constraints, but is more efficient in that it uses a minimal set
of coordinates. We note that formulations using gradient deficient ANCF beam ele-
ments display no shear locking problems [15, 43, 45] and, due to the reduced number
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of nodal coordinates, are more efficient than fully parameterized ANCF elements.
However, gradient deficient ANCF beam elements cannot describe a rotation about
its axis and therefore cannot model torsional effects.

Consider first a single ANCF beam element of length �. The global position
vector of an arbitrary point on the beam centerline, specified through its element
spatial coordinate 0 ≤ x ≤ �, is then obtained as

r(x, e) = S(x)e, (2.18)

where e = [eT
l , eT

r ]T ∈ R
12 is the vector of element nodal coordinates. With I being

the 3×3 identity matrix, the 3×12 shape function matrix S = [S1I S2I S3I S4I]
is defined using the shape functions [44]

S1 = 1 − 3ξ2 + 2ξ3

S2 = �
(
ξ − 2ξ2 + ξ3

)

S3 = 3ξ2 − 2ξ3

S4 = �
(−ξ2 + ξ3

)
,

(2.19)

where ξ = x/� ∈ [0, 1].
The element EOM are then written as

Më + Qe = Qa, (2.20)

whereQe andQa are the generalized element elastic and applied forces, respectively,
and M ∈ R

12×12 is the symmetric consistent element mass matrix defined as

M =
∫

�

ρs AST S dx . (2.21)

The generalized element elastic forces are obtained from the strain energy expres-
sion [44] as

Qe =
∫

�

E Aε11

(
∂ε11

∂e

)T

dx +
∫

�

E Iκ

(
∂κ

∂e

)T

dx, (2.22)

where ε11 = (
rT

x rx − 1
)
/2 is the axial strain and κ = ‖rx × rxx‖/‖rx‖3 is the

magnitude of the curvature vector. The required derivatives of the position vector
r can be easily obtained from Eq. (2.18) in terms of the derivatives of the shape
functions as rx (x, e) = Sx (x)e and rxx (x, e) = Sxx (x)e.

External applied forces, in particular the forces due to the interaction with the
fluid (see Sect. 2.2.4), are included as concentrated forces at a BCE marker. The
corresponding generalized forces are obtained from the expression of the virtual
work as
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Qa = ST (xa)F, (2.23)

where F is the external point force and the shape function matrix is evaluated at the
projection onto the element’s centerline of the force application point. If considered,
the generalized gravitational force can be computed as

Qg =
∫

�

ρs AST g dx . (2.24)

In the above expressions, ρs represents the element mass density, A is the cross
section area, E is the modulus of elasticity, and I is the second moment of area.

The EOM for a slender flexible body composed of ne ANCF beam elements
are obtained by assembling the elemental EOMs of Eq. (2.20) and taking into
consideration that adjacent beam elements share 6 nodal coordinates. Let ê =
[eT

0 , eT
1 , . . . eT

ne
]T be the set of independent nodal coordinates; then the nodal coor-

dinates for the j th element can be written using the mapping

[
el

er

]

j
= B j ê, with B j =

[
0 0 . . . I3 0 . . . 0
0 0 . . . 0 I3 . . . 0

]

(2.25)

and the assembled EOMs are obtained, from the principle of virtual work, as follows.
Denoting by M j be the element mass matrix of Eq. (2.21) for the j th ANCF beam
element, it can be written in block form as

M j =
[

M j,ll M j,lr

M j,rl M j,rr

]

, (2.26)

whereM j,lr = MT
j,rl and all sub-blocks have dimension 6×6. Here, l denotes the left

end of the beam element, i.e., the node characterized by the nodal coordinates e j−1,
while r corresponds to the node with coordinates e j . With a similar decomposition
of a generalized element force into

Q j =
[

Q j,l

Q j,r

]

(2.27)

we obtain

M̂¨̂e = Q̂a − Q̂e (2.28)
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where

M̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M1,ll M1,lr
M1,rl M1,rr + M2,ll M2,lr

M2,rl M2,rr + M3,ll
. . .

Mne,rr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.29)

Q̂a − Q̂e =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑
Qa

1,l∑
Qa

1,r + ∑
Qa

2,l∑
Qa

2,r + ∑
Qa

3,l
...∑

Qa
ne,r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Qe
1,l

Qe
1,r + Qe

2,l
Qe

2,r + Qe
3,l

...

Qe
ne,r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.30)

Finally, we note that inclusion of additional constraints (e.g., anchoring the beam
at one end to obtain a flexible cantilever or fixing its position only to obtain a flexible
pendulum) can be done either by formulating the EOMas differential-algebraic equa-
tions or by deriving an underlying ODE after explicitly eliminating the correspond-
ing constrained nodal coordinates. The latter approach was used in all simulations
involving flexible cantilevers that are discussed in Sect. 2.4.

2.2.4 Fluid–Solid Interaction

The two-way fluid–solid coupling was implemented based on a methodology
described in [38]. The state update of any SPH marker relies on the properties of
its neighbors and resolves shear as well as normal inter-marker forces. For the SPH
markers close to solid surfaces, the SPH summations presented in Eqs. (2.4), (2.5),
(2.9), and (2.11) capture the contribution of fluid markers. The contribution of solid
objects is calculated using BCE markers placed on and close to the solid surface as
shown in Fig. 2.2. In the case of flexible beams, the BCEmarkers are placed on “rigid
disks” that are uniformly-spaced along the beam’s axis and whose normals always
coincide with the local tangent to the beam’s axis. In all cases, the BCE marker loca-
tions are initialized so that the distance between two neighboring BCE markers is
approximately equal to the initial distance between two SPH markers; in particular,
this is also the distance between two adjacent disks of BCE markers in Fig. 2.2b.

The velocity of a BCEmarker is obtained from the rigid/deformable body motion
of the solid and as such ensures the no-slip condition on the solid surface. Including
the BCE markers in the SPH summation Eqs. (2.4) and (2.5) thus enforces the solid-
to-fluid coupling. On the other hand, fluid-to-solid coupling is realized by applying
the quantity in the right-hand side of Eq. (2.5), evaluated at each BCE marker, as an
external force on the corresponding rigid or deformable solid body using Eqs. (2.12)
and (2.23), respectively.
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Fig. 2.2 Fluid–solid interaction using BCE markers attached to a body: (a) rigid body; (b) flexible
beam. BCE and fluid markers are represented by black and white circles, respectively. The BCE
markers positioned in the interior of the body should be placed to a depth no larger than the size of
the compact support S of the kernel W

2.2.5 Short Range Interaction

Dry friction models typically used to characterize the dynamics of granular materials
[3, 23, 24] do not resolve the impact of solid surfaces in hydrodynamics media. In
practice, it is unfeasible to resolve the short-range, high-intensity impact forces in
wet media due to the computational limits on space and time resolution. In real-
ity, particle boundaries are not smooth and physical contact can happen [20]. By
assuming smooth surfaces, Davis et al. followed the Hertz contact theory of linear
elasticity to calculate the pressure at the interface of two approaching elastic spheres
in close proximity [10]. Their calculation showed that particles do not rebound at
small Stokes number, St = (2/9)(ρs/ρ)Rep , where ρs and Rep are the solid particle
density and particle Reynolds number, respectively. The minimum St for a rebound
after the hydroelastic impact depends on the spheres’ rigidity. For rigid spheres,
rebound happens at St > 10. An alternative approach to calculate the singular forces
at contact relies on lubrication theory [13]. Ladd [26] proposed a normal lubrication
force between two spheres that increases rapidly as the distance between particles
approaches zero and therefore prevents the actual touching of the spheres:

Flub
i j = min

{

−6πμa2
i j

(
1

s
− 1


c

)

, 0

}

· vni j , where
1

ai j
= 1

ai
+ 1

a j
. (2.31)

Here, ai and a j are the sphere radii, vni j is the normal component of the relative
velocity, and s is the distance between surfaces. For s > 
c,Flub

i j = 0 and the spheres
are subject only to hydrodynamic forces. Ladd and Verberg [27] demonstrated good
agreement of the proposed lubrication force with Brenner’s exact solution [7].

Equation (2.31) provides a simplistic model for the estimation of the lubri-
cation force in normal direction. Generalization of this model to non-spherical
objects requires the calculation of the minimum distance and curvature of the
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contact surfaces. By adopting the approach proposed in [12] for lubrication force
in lattice Boltzmann method, we calculate the partial lubrication force by modifying
Eq. (2.31) as

Flub
i j =

∑

k

fk
i j , with fk

i j = min

{

−3

2
πμh2

(
1

s∗ − 1


c

)

, 0

}

· v∗
ni j

, (2.32)

where s∗ and v∗
ni j

denote the markers relative distance and velocity, respectively, and
the summation is over all interacting markers of two solid objects.

2.3 GPU-Based Implementation

Chrono::Fluid [8], an open-source simulation framework for fluid–solid interaction,
relies on a second order explicit Runge-Kutta method [5] for time integration of fluid,
rigid, and flexible bodies, and a parallel implementation of the spatial subdivision
method on the GPU for construction of the markers neighbor lists. In what follows,
the computation kernels and their implementations are described with more details.

At the beginning of each time step, a neighbor list is assembled to indicate the set
of markers that fall within the kernel support of each marker; if N markers are used
in the simulation, N lists are generated. The force components appearing on the right
hand side of Eqs. (2.4), (2.5), and (2.31) are subsequently computed based on these
neighbor lists. Two different functions are called to capture the interaction between
markers according to their types; i.e., fluid or solid, via SPH or the short range
interaction model described in Sect. 2.2.5. In the second stage, the state of the fluid
markers, including position, velocity, and density, is updated based on Eqs. (2.4),
(2.5), and (2.8). The state of each rigid body is updated according to Eqs. (2.12)
through (2.15). This is followed by time integration of deformable body motion
according to Eq. (2.28). Since a rigid wall boundary is a particular instance of a rigid
body (with zero or other predefined velocity), it requires no special treatment.

Stable integration of the SPH fluid equations requires step-sizes which are also
appropriate for propagating the dynamics of any rigid solids in the FSI system. How-
ever, integration of the dynamics of deformable bodies, especially as their stiffness
increases, may require smaller time steps. To accommodate this requirement, while
minimizing any adverse effects on the overall simulation efficiency, we have imple-
mented a simple dual-rate integration scheme using intermediate steps for the inte-
gration of the flexible dynamics EOMs (typically 
tS P H /
tANC F = 10, although
stiffer problems may require ratios of up to 50). We note that typical FSI simulation
models involve a number of SPH markers many orders of magnitude larger than that
of ANCF nodal coordinates required for the flexible bodies. As such, the execution
time required for integration of the flexible body dynamics is a negligible fraction of
the computation time for propagating the SPH equations and therefore the dual-rate
integration scheme has no effect on the net overall simulation efficiency.
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The above algorithm was implemented to execute in parallel on GPU cards using
CUDA [37]. The hardware used to run the simulations that produced the results
reported in this contribution, NVIDIAKepler K20X, has 2688 parallel scalar proces-
sors.At each time step, five different tasks are executed on theGPU to (1) calculate the
inter-marker forces, (2) carry out fluid time integration, (3) carry out rigid body time
integration, (4) carry out deformable body time integration, and (5) enforce bound-
ary conditions. The lists of neighbors needed to evaluate the inter-marker forces are
generated via a proximity computation algorithm based on a decomposition of the
computation domain into cubic bins. The side length of each bin is roughly equal to
the size of the support domain of an SPH marker. A hash table is used to sort the
markers according to their location in the domain. Based on the sorted hash table,
each marker accesses the list of markers intersecting its own and neighboring bins to
calculate the forcing terms. The proximity computation algorithm uses the parallel
sorting and scan algorithms provided by the Thrust library [19].

To improve the code vectorization through coalesced memory access and use
of fast memory (L1/L2 cache, shared memory, and registers), each computation
task was implemented as a sequence of light-weight GPU kernels. For instance,
different computation kernels are implemented to update the attributes of the solid
bodies, including force, moment, rotation, translation, linear and angular velocity,
and location of the BCE markers. A similar coding style was maintained for the
density re-initialization, boundary condition implementation, and mapping of the
markers’ data on an Eulerian grid for post processing.

2.4 Results and Discussion

The robustness and accuracy of the fluid flow and coupled fluid-rigid body simulation
was demonstrated in previous work. See [39] for a comprehensive set of validation
studies of rigid particle migration and suspension distribution in pipe flow. Herein,
we focus on recent extensions to Chrono::Fluid to support fluid-deformable body
interaction and present additional numerical experiments to validate the flexible
body simulation algorithm , as well as several simulation-based studies involving
coupling of fluid flow and deformable bodies.

The simulations presented in this section involve relatively soft beams (with a
modulus of elasticity E ≤ 20 MPa) that are either unconstrained or else anchored
at one end. Since computational efficiency of the FSI code is directly related to the
number of nodal coordinates used to model the flexible beams, we first conducted a
parametric study to identify the minimum number of ANCF beam elements required
to accurately capture the dynamics of interest in the subsequent experiments. In this
set of experiments, we considered a cantilever of length L = 1 m and diameter d =
0.04 mwith density ρs = 7,200 kg/m3 andmodulus of elasticity E = 20Mpa under
gravity (g = −9.81 m/s2) in vacuum or immersed in fluid of various viscosities.
Simulation results using different number of ANCF beam elements (ne = 2, 3, 4, 5)
showed acceptable convergence at all discretizations and virtually identical results
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Fig. 2.3 Time snapshots of
a flexible cantilever moving
under the action of gravity (in
vacuum). The darker colors
denote earlier stages of the
motion

for ne ≥ 4. Figure 2.3 shows a few time snapshots from a dynamic simulation of a
cantilever modeled with ne = 4 ANCF beam elements, the value which was selected
for all subsequent simulations.

2.4.1 Floating Beam in Poiseuille Flow

Ongoing work is aimed at validating the fluid-deformable solid interaction code
against experimental and analytical results [40]. Here we present a comparison
against the already validated fluid-rigid solid simulation code. For this purpose we
conducted a series of numerical experiments involving short stiff deformable beams
and equivalent rigid cylinders free floating in channel Poiseuille flow.

The validation test was performed using a straight beam with L = 0.2 m,
ρs = 7,200 kg/m3, E = 20 MPa, d = 0.04 m and a rigid cylinder with the same
density and geometry. The beam and rigid cylinder were subjected to an accelerating
channel flow aligned with the global x axis with final steady state Reynolds number
Rec = ρVavew/μ = 100, where ρ = 1,000 kg/m3, μ = 1 N s/m2, average velocity
Vave = 0.2 m/s, and channel width w = 1 m. The beam and cylinder were initially
perpendicular to the flow and rotated in the yz plane. Comparisons of the resulting
beam orientation angles, relative to the global x , y, and z axes, and of the time evo-
lution of the velocity in the x direction of the beam center velocity are presented
in Fig. 2.4. The results show good agreement with differences due to the inability
of the gradient deficient ANCF beam element model to capture rotation about the
beam’s axis.
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Fig. 2.4 Comparison of the dynamics of a rigid cylinder and of a corresponding stiff deformable
beam under accelerating channel flow: (a) beam orientation; (b) center velocity

Fig. 2.5 Motion of a cantilever beam in fluid of different viscosities: (a) tip displacement in x
direction; (b) tip displacement in z direction

2.4.2 Flexible Cantilever Immersed in Fluid: Effect of Viscosity

Through a parametric study of the motion of a cantilever moving under the action
of gravity in viscous fluid, we investigated the effect of viscosity on the motion of
the beam’s tip. As shown in Fig. 2.5, the beam motion switches from oscillatory to
critically damped motion as the viscosity increases. For the beam parameters used
in this study, namely L = 1 m, d = 0.04 m, ρs = 7,200 kg/m3, and E = 20 MPa,
the switch between the two behaviors is observed to occur around μ � 10 N s/m2.
It was also noticed that viscosity has little effect on the trajectory of the beam tip
(plots are not provided). Nevertheless, compared to the case of a cantilever moving
in vacuum, when immersed in fluid, the tip moves on a much shorter path. This
deviation, i.e. having the same trajectory regardless of the fluid viscosity, which is
different from that of a cantilever in vacuum, is most probably due to the pressure
drag which is added to the viscous drag considered herein.
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Fig. 2.6 Arrays of flexible cantilever beams in laminar channel flow. The beams, laid out in an
uniform grid, are anchored at an angle of 30◦ in the direction of the flow

Fig. 2.7 Motion of a cantilever beam of different elasticity modulus in laminar channel flow: (a)
tip displacement in x direction; (b) tip displacement in z direction

2.4.3 Impulsively Started Motion of Cantilevers in Channel Flow:
Effect of Elasticity

Vibration behavior of flexible beams in viscous fluid was studied by considering an
array of cantilevers in channel flow. Unlike the test described in Sect. 2.4.2, here the
flexible cantilevers are initially at rest when they are hit by a laminar channel flow.
This model can be used to study the effect of horizontal waves on beams submerged
in a fluid.

The array of flexible cantilevers is laid out in the xy plane, with (
x,
y) =
(1.2, 0.4) m, as shown in Fig. 2.6, thus allowing interaction of the beams through
the flow. Each beam is anchored in the xz plane with an angle of 30◦ with respect to
the y axis. The fluid, with density ρ = 1,000 kg/m3 and viscosity μ = 1 N s/m2,
flows in the x direction between two planes spaced by H = 1 m vertically.

Figure 2.7 shows the tip deformation of one cantilever beam for different modulus
of elasticity in the range E ∈ (0.25, 20) MPa. All other beam parameters were kept
fixed at L = 0.7 m, d = 0.04 m, and ρs = 7,200 kg/m3.
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Fig. 2.8 FSI problems considered for scalability analysis: (a) flow of a dense suspension of rigid
particles through a step pipe; for clarity, the left half of the image shows the rigid particles only,
while the right half shows both rigid particles and SPHmarkers at the pipe mid-section; (b) channel
flow over an array of flexible cantilever beams; for visualization purposes only, marker sizes are
artificially changed

Fig. 2.9 Scaling analysis of Chrono::Fluid for fluid-rigid body interaction problems: (a) simulation
time versus number of rigid bodies for a total number of 3 × 106 markers; (b) simulation time as
a function of combined problem size

2.4.4 Scalability Analysis

Scalability of Chrono::Fluid was investigated through simulations of multi-
component problems including the flow of flexible and rigid objects in flow, samples
of which are provided in Fig. 2.8.

As shown in Fig. 2.9a, an increase in the number of rigid bodies present in the
systemonlymarginally affects the total simulation time. This is due to the fact that the
number of BCE markers associated with solid bodies is only a very small fraction of
the number of SPHdiscretizationmarkers, the latter dictating to a very large extent the
required computation time. We must however mention that, as the concentration of
solid objects increases, smaller time steps are required since the probability of short-
range, high-frequency interactions increases. The same conclusion can be reached
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Fig. 2.10 Scaling analysis
of Chrono::Fluid for fluid-
flexible body interaction
problems: simulation time
versus number of flexible
bodies for a total number of
1.5 × 106 markers

from the results presented in Fig. 2.9b which shows linear growth of the simulation
timewith the size of the fluid-rigid bodymixture problem (i.e., the combined number
of SPH markers and rigid bodies).

On the other hand, as seen in Fig. 2.10, we observe only linear scalability when
rigid bodies are replaced by flexible beams. This is only a consequence of the current
Chrono::Fluid implementation in which the dynamics update for flexible bodies is
carried out on the CPU, thus dominating the simulation time as the problem size
increases. We expect this will be rectified once this stage of the simulation is also
moved to the GPU.

2.5 Conclusions and Future Work

We describe a Lagrangian–Lagrangian approach for the direct numerical simulation
of two-way coupled fluid–solid interaction. Building up on previous work [39], the
simulation framework Chrono::Fluid was extended beyond fluid-rigid interaction
to include deformable solids. For simulations of solid bodies immersed in fluid,
the proposed method employs a lubrication force model for incorporating solid–
solid interaction and, in the case of deformable bodies, self-contact. We describe
simulation results for free-floating flexible beams in Poiseuille flow and channel
flow over a grid of flexible cantilevers, and provide parametric studies of the effect of
fluid viscosity andmaterial elasticity. These results suggest that the adopted approach
has good predictive capabilities and is able to capture the dynamics of the systems
under consideration.Moreover, the Lagrangian–Lagrangian formulation is amenable
to efficient implementation on GPU cards as indicated by the scalability studies
presented herein.

Current effort is aimed at providing a GPU-only implementation, by also paral-
lelizing the flexible body dynamics calculations and updates, with ongoing work
focused on additional validation studies using both analytical and experimental
data. In addition, we plan on extending the formulation to support 2D and fully-
3D deformable solids modeled with ANCF.
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Finally, we note that additional examples of Chrono::Fluid simulations can be
found at [41]
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