Preface

Statistical manifolds are geometric abstractions used to model
information, their field of study belonging to Information Geometry,
a relatively recent branch of mathematics, that uses tools of differ-
ential geometry to study statistical inference, information loss, and
estimation.

This field started with the differential geometric study of the man-
ifold of probability density functions. For instance, the set of normal
distributions
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with (u,0) € R x (0,400), can be considered as a two-dimensional
surface. This can be endowed with a Riemannian metric, which mea-
sures the amount of information between the distributions. One of
these possibilities is to consider the Fisher information metric. In
this case, the distribution family p(z;u, o) becomes a space of con-
stant negative curvature. Therefore, any normal distribution can be
visualized as a point in the Poincaré upper-half plane.

In a similar way, we shall consider other parametric model fami-
lies of probability densities that can be organized as a differentiable
manifold embedded in the ambient space of all density functions.
Every point on this manifold is a density function, and any curve
corresponds to a one-parameter subfamily of density functions. The
distance between two points (i.e., distributions), which is measured
by the Fisher metric, was introduced almost simultaneously by C.
R. Rao and H. Jeffreys in the mid-1940s. The role of differential ge-
ometry in statistics was first emphasized by Efron in 1975, when he
introduced the concept of statistical curvature. Later Amari used the
tools of differential geometry to develop this idea into an elegant rep-
resentation of Fisher’s theory of information loss.
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A fundamental role in characterizing statistical manifolds is played
by two geometric quantities, called dual connections, which describe
the derivation with respect to vector fields and are interrelated in a
duality relation involving the Fisher metric. The use of dual connec-
tions leads to several other dual elements, such as volume elements,
Hessians, Laplacians, second fundamental forms, mean curvature vec-
tor fields, and Riemannian curvatures. The study of dual elements
and the relations between them constitute the main direction of de-
velopment in the study of statistical manifolds.

Even if sometimes we use computations in local coordinates, the
relationships between these geometric quantities are invariant with
respect to the selection of any particular coordinate system. There-
fore, the study of statistical manifolds provides techniques to investi-
gate the intrinsical properties of statistical models rather than their
parametric representations. This invariance feature made statistical
manifolds useful in the study of information geometry.

We shall discuss briefly the relation of this book with other pre-
viously published books on the same or closely related topic.

One of the well-known textbooks in the field is written by two of
the information geometry founders, Amari and Nagaoka [8], which
was published first time in Japan in 1993, and then translated into
English in 2000. This book presents a concise introduction to the
mathematical foundation of information geometry and contains an
overview of other related areas of interest and applications. Our book
intersects with Amari’s book over its first three chapters, i.e. where
it deals with geometric structures of statistical models and dual con-
nections. However, the present text goes in much more differential
geometric detail, studying also other new topics such as relative cur-
vature tensors, generalized shape operators, dual mean curvature vec-
tors, and entropy maximizing distributions. However, our textbook
does not deal with any applications in the field of statistic infer-
ence, testing, or estimation. It contains only the analysis of statistical
manifolds and statistical models. The question of how the new con-
cepts introduced here apply to other fields of statistics is still under
analysis.

Another book of great inspiration for us is the book of Kass and
Vos [49], published in 1997. Even if this book deals mainly with the
geometrical foundations of asymptotic inference and information loss,
it does also contain important material regarding statistical manifolds



Preface vil

and their geometry. This challenge is developed more geometrically
in the present book than in the former.

Overview

This book is devoted to a specialized area, including Informational
Geometry. This is a field that is increasingly attracting the interest of
researchers from many different areas of science, including mathemat-
ics, statistics, geometry, computer science, signal processing, physics,
and neuroscience. It is the authors’ hope that the present book will
be a valuable reference for researchers and graduate students in one
of the aforementioned fields.

The book is structured into two distinct parts. The first one is an
accessible introduction to the theory of statistical models, while the
second part is devoted to an abstract approach of statistical mani-
folds.

Part 1

The first part contains six chapters and relies on the understanding
of the differential geometry of probability density functions viewed
as surfaces.

The first two chapters present important density functions, which
will offer tractable examples for later discussions in the book. The
remaining four chapters devote to the geometry of entropy, which is
a fundamental notion in informational geometry. The readers without
a strong background in differential geometry can still follow. This part
itself can be read alone as an introduction to information geometry.

Chapter 1 introduces the notion of statistical model, which is a
space of density functions, and provides the exponential and mixture
families as distinguished examples. The Fisher information is defined
together with two dual connections of central importance to the the-
ory. The skewness tensor is also defined and computed in certain
particular cases.

Chapter 2 contains a few important examples of statistical models
for which the Fisher metric and geodesics are worked out explicitly.
This includes the case of normal and lognormal distributions, and
also the gamma and beta distribution families.

Chapter 3 deals with an introduction to entropy on statistical
manifolds and its basic properties. It contains definitions and
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examples, an analysis of maxima and minima of entropy, its upper
and lower bounds, Boltzmann—Gibbs submanifolds, and the adiabatic
flow.

Chapter 4 is dedicated to the Kullback-Leibler divergence (or rel-
ative entropy), which provides a way to measure the relative entropy
between two distributions. The chapter contains explicit computa-
tions and fundamental properties regarding the first and second vari-
ations of the cross entropy, its relation with the Fisher information
matrix and some variational properties involving Kullback—Leibler
divergence.

Chapter 5 defines and studies the concept of informational en-
ergy on statistical models, which is a concept analogous to kinetic
energy from physics. The first and second variations are studied and
uncertainty relations and some thermodynamics laws are presented.

Chapter 6 discusses the significance of maximum entropy distri-
butions in the case when the first N moments are given. A distin-
guished role is played by the case when N = 1 and N = 2, cases when
some explicit computations can be performed. A definition and brief
discussion of Maxwell-Boltzmann distributions is also made.

Part 11

The second part is dedicated to a detailed study of statistical man-
ifolds and contains seven chapters. This part is an abstractization
of the results contained in Part I. Instead of statistical models, one
considers here differentiable manifolds, and instead of the Fisher in-
formation metric, one takes a Riemannian metric. Thus, we are able
to carry the ideas from the theory of statistical models over to Rie-
mannian manifolds endowed with a dualistic structure defined by a
pair of torsion-less dual connections.

Chapter 7 contains an introduction to the theory of differentiable
manifolds, a central role being played by the Riemannian manifolds.
The reader accustomed with the basics of differential geometry may
skip to the next chapter. The role of this chapter is to accommodate
the novice reader with the language and objects of differential geom-
etry, which will be further developed throughout the later chapters.

A formulation of the dualistic structure is given in Chap. 8. This
chapter defines and studies general properties of dual connections,
relative torsion tensors and curvatures, a-connections, the skewness
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and difference tensors. It also contains an equivalent construction of
statistical manifolds starting from a skewness tensor.

Chapter 9 describes how to associate a volume element with a
given connection and discusses the properties of dual volume ele-
ments, which are associated with a pair of dual connections. The
properties of a-volume elements are provided with the emphasis on
the relation with the Lie derivative and vector field divergence. An
explicit computation is done for the distinguished examples of ex-
ponential and mixture cases. A special section is devoted to the
study of equiaffine connections, i.e. connections which admit a pa-
rallel n-volume form. The relation with the statistical manifolds of
constant curvature is also emphasized.

Chapter 10 deals with a description of construction and properties
of dual Laplacians, which are Laplacians defined with respect to a
pair of dual connections. An a-Laplacian is also defined and studied.
The relation with the dual volume elements is also emphasized. The
last part of the chapter deals with trace of the metric tensor and its
relation to Laplacians.

The construction of statistical manifolds starting from contrast
functions is described in Chap. 11. The construction of a dualistic
structure (Riemannian metric and dual connections) starting from a
contrast function is due to Eguchi [38, 39, 41]. Contrast functions
are also known in the literature under the name of divergences, a
denomination we have tried to avoid here as much as we could.!

Chapter 12 presents a few classical examples of contrast func-
tions, such as Bregman, Chernoff, Jefferey, Kagan, Kullback—Leibler,
Hellinger, and f-divergence, and their values on a couple of examples
of statistical models.

The study of statistical submanifolds, which are subsets of statis-
tical manifolds with a similar induced structure, is done in Chap. 13.
Many classical notions, such as second fundamental forms, shape op-
erator, mean curvature vector, and Gauss—Codazzi equations, are pre-
sented here from the dualistic point of view. We put our emphasis
on the relation between dual objects; for instance, we find a relation
between the divergences of dual mean curvature vector fields and the
inner product of these vector fields.

! A divergence in differential geometry usually refers to an operator acting on
vector fields.
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The present book follows the line started by Fisher and Efron
and continued by Eguchi, Amari, Kaas, and Vos. The novelty of this
work, besides presentation, can be found in Chaps. 5, 6, 9, and 13.
The book might be of interest not only to differential geometers but
also to statisticians and probabilists.

Each chapter ends with a section of proposed problems. Even if
many of the problems are left as exercises from the text, there are
a number of problems, aiming to deepen the reader’s knowledge and
skills.

It was our endeavor to make the index as complete as possible,
containing all important concepts introduced in definitions. We also
provide a list of usual notations of this book. It is worthy noting that
for the sake of simplicity and readability, we employed the Einstain
summation convention, i.e., whenever an index appears in an expres-
sion once upstairs and once downstairs, the summation is implied.

The near flowchart will help the reader navigate through the book
content more easily.

Software

The book comes with a software companion, which is an Informa-
tion Geometry calculator. The software is written in C'# and runs
on any PC computer (not a Mac) endowed with .NET Framework. It
computes several useful information geometry measures for the most
used probability distributions, including entropy, informational en-
ergy, cross entropy, Kullback—Leibler divergence, Hellinger distance,
and Chernoff information of order «. The user instructions are in-
cluded in Appendix A. Please visit http://extras.springer.com
to download the software.

Bibliographical Remarks

Our presentation of differential geometry of manifolds, which forms
the scene where the information geometry objects exist, is close in
simplicity to the one of Millman and Parker [58]. However, a more
advanced and exhaustive study of differential geometry can be found
in Kobayashi and Nomizu [50], Spivak [78], Helgason [44], or Auslan-
der and MacKenzie [9]. For the basics theory of probability distribu-
tions the reader can consult almost any textbook of probability and
statistics, for instance Wackerly et al. [85].
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The remaining parts of the book are based on fundamental ideas
inspired from the expository books of Amari and Nagaoka [8] and
Kass and Vos [49]. Another important source of information for the
reader is the textbook of Murrey and Rice [60]. While the aforemen-
tioned references deal with a big deal of statistical inference, our book
contains mainly a pure geometrical approach.

One of the notions playing a central role throughout the theory
is the Fisher information, which forms a Riemannian metric on the
space of probability distributions. This notion was first introduced
almost simultaneously by Rao [70] and Jeffreys [46] in the mid-1940s,
and continued to be studied by many researchers such as Akin [3],
Atkinson and Mitchell [4], James [45], Oller [63], and Oller et al.
(64, 65].

The role played by differential geometry in statistics was not fully
acknowledged until 1975 when Efron [37] first introduced the concept
of statistical curvature for one-parameter models and emphasized its
importance in the theory of statistical estimation. Efron pointed out
how any regular parametric family could be approximated locally by
a curved exponential family and that the curvature of these models
measures their departure from exponentiality. It turned out that this
concept was intimately related to Fisher’s theory of information loss.
Efron’s formal theory did not use all the bells and whistles of dif-
ferential geometry. The first step to an elegant geometric theory was
done by Dawid [33], who introduced a connection on the space of all
positive probability distributions and showed that Efron’s statistical
curvature is induced by this connection.

The use of differential geometry in its elegant splendor for the
elaboration of previous ideas was systematically achieved by Amari
[6] and [7], who studied the informational geometric properties of a
manifold with a Fisher metric on it. This is the reason why sometimes
this is also called the Fisher—Efron—Amari theory.

The concept of dual connections and the theory of dually flat
spaces as well as the a-connections were first introduced in 1982
by Nagaoka and Amari [61] and developed later in a monograph by
Amari [5]. These concepts were proved extremely useful in the study
of informational geometry, which investigates the differential geomet-
ric structure of the manifold of probability density functions. It is wor-
thy to note the independent work of Chentsov [26] on a-connections
done from a different perspective.

Entropy, from its probabilistic definition, is a measure of uncer-
tainty of a random variable. The maximum-entropy approach was
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introduced by the work of Shannon [73]. However, the entropy mawi-
mization principle was properly introduced by Akaike [2] in the mid-
1970s, as a theoretical basis for model selection. Since then it has been
used in order to choose the least “biased” distribution with respect to
the unknown information. The included chapter regarding maximum
entropy with moments constraints is inspired by Mead [57].

The entropy of a continuous distribution is not always positive.
In order to overcome this flaw one can use the relative entropy of two
distributions p and ¢. This concept was originally introduced by S.
Kullback and R. Leibler in 1951, see [51, 52]. This is also referred in
the literature under the names of divergence, information divergence,
information gain, relative entropy, or Kullback-Leibler divergence.
The Kullback—Leibler divergence models the information between a
true distribution p and a model distribution ¢; the reader can consult
the book of Burnham and Anderson [21] for details.

In practice, the density function p of a random variable is un-
known. The problem is the one of drawing inferences about the den-
sity p on the basis of N concrete realizations of the random variable.
Then we can look for the density p as an element of a certain re-
stricted class of distributions, instead of all possible distributions.
One way in which this restricted class can be constructed is to con-
sider the distributions having the same mean as the sample mean
and the variance equal to the variance of the sample. Then, we need
to choose the distribution that satisfies these constraints and is the
most ignorant with respect to the other moments. This is realized for
the distribution with the maximum entropy. The theorems regarding
maximum entropy distributions subject to different constraints are
inspired from Rao [71]. They treat the case of the normal distribu-
tion, as the distribution on R with the first two moments given, the
exponential distribution, as the distribution on [0, c0) with the given
mean, as well as the case of Maxwell-Boltzman distribution. The case
of the maximum entropy distribution with the first n given moments
is inspired from Mead and Papanicolaou [57]. The novelty brought
by this chapter is the existence of maximum entropy distributions in
the case when the sample space is a finite interval. The book also
introduces the curves of largest entropy, whose relevance in actual
physical situations is worth examining.

The second part of the book deals with statistical manifolds,
which are geometrical abstractions of statistical models. Lauritzen
[54] defined statistical manifolds as Riemannian manifolds endowed
with a pair of torsion-free dual connections. He also introduced an
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equivalent way of constructing statistical manifolds, starting from a
skewness tensor. A presentation of statistical structure in the lan-
guage of affine connections can be found in Simon [76].

The geometry of a statistical model can be also induced by con-
trast functions. The dualistic structure of contrast functions was de-
veloped by Eguchi [38, 39, 41], who has shown that a contrast func-
tion induces a Riemannian metric by its second order derivatives,
and a pair of dual connections by its third order derivatives. Further
information on contrast geometry can be found in Pfanzagl [69]. A
generalization of the geometry induced by the contrast functions is
the yoke geometry, introduced by Barndorff-Nilsen [11-13] and de-
veloped by Bleesid [18, 19].
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