Chapter 2

Explicit Examples

This chapter presents a few examples of usual statistical models
(normal, lognormal, beta, gamma, Bernoulli, and geometric) for which
we provide the Fisher metric explicitly and, if possible, the geodesics
and a-autoparallel curves. Some Fisher metrics will involve the use
of non-elementary functions, such as the digamma and trigamma
functions.

A distinguished role is dedicated to the normal distribution, which
is associated with a manifold of negative constant curvature (hyper-
bolic space) and to the multinomial geometry, which corresponds to
a space with positive constant curvature (spherical space).

2.1 The Normal Distribution

In this section we shall determine the geodesics with respect to the
Fisher information metric of a family of normal distributions. Given
two distributions of the same family, the geodesics are curves of min-
imum information joining the distributions. We shall see that such a
curve always exists between any two distributions on a normal family.
This is equivalent with the possibility of deforming one distribution
into the other by keeping the change of information to a minimum.

2.1.1 The Fisher Metric

Recall the formula for the density of a normal family
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52 Chapter 2. Explicit Examples

with parameters (¢1,€2) = (u, o) € Rx (0, 00). Using Proposition 1.6.3
we obtain the following components for the Fisher—Riemann metric.

Proposition 2.1.1 The Fisher information matrixz for the normal

distribution is given by
1
== 0
9ij = (%2 2 > . (2.1.1)

o2

For the computation details see Problem 2.1. It is worth noting that
the metric does not depend on p, i.e., it is translation invariant. This
metric is also very similar to the upper-half plane metric.

2.1.2 The Geodesics

A straightforward computation shows that the nonzero Christoffel
symbols of first and second kind are:

1 1 2
Mig=—=, Tho1=——=, Tans=——
) 0.37 ) 0_37 ) 0.3

0o -1 = 0
L — < 1 0)7 T2 — <2U 1),
Yo\ 0 RN U

Consequently, the geodesics equations (1.13.43) are solutions of a
Riccati ODE system

2
ji—Zpe = 0 (2.1.2)
ag
s+ (- L2 = o (2.1.3)
o 20“ S@)7 =0 1.

Separating and integrating in the first equation yields

i 20 d d
E':£<:>—ln/l:2—lna<:>/l:002,
7} o ds ds

with ¢ constant. We solve the equation in the following two cases:

1. The case ¢ = 0. It follows that p = constant, which corresponds
1

to vertical half lines. Then o satisfies the equation & = —¢2. Writing
o

the equation as

o 0
o o
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and integrating yields Ing = In(Co), with C' constant. Integrating
again, we find o(s) = Ke®s. Hence, the geodesics in this case have
the following explicit equations

w = c (2.1.4)
o(s) = Ke,
with ¢, C € R, K > 0 constants.

2. The case ¢ # 0. Substituting /1 = zo? in Eq. (2.1.3), we obtain
the following equation in o

2

o5 + o' = (6)* =0. (2.1.6)
. . du
Let 6 = u. Then ¢ = oot and (2.1.6) becomes
o
du .,
U%U + 50’ —u® =0.

1
Multiplying by the integrant factor — leads to the exact equation
o

2 2
2 du+ (C—a— u—)da:O,
o2 2 o3
~—~ ~——
=M N
since
oM  ON
=T — oo s,
Jo ou ue

Then there is a function f(o,u) such that df = 0, with
of of
— =M — =N
ou ’ oo
Integrating in the first equation yields
u?
flo,u) = 292 + h(o),

with function h to be determined in the following. Differentiating
with respect to o in the above equation,
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and comparing with

of _y_c, v
do 2 37
we get
2 2 2
h’(a):%(7:>h(c7):cli7 + co,

with ¢g constant. Hence, a first integral for the system is

2 2 2
U c’o E
f(O',U)—ﬁ‘F 4 _55

with F positive constant. Solving for u, we obtain

2 )
U c‘o
—+ — = FE<—=
0'2+ 2
o c
2 = 02 -2,
g \/Q

where C? = 2E/c%. Separating and integrating, we find

do c
/U ] = (s—i—so)\ﬁ.

Using the value of the integral
dx 1 T\ 2
e i (2)
/ xV/C? — x? VC C
we obtain

1 1 o2
_ﬁtanh 1-— (6) = (s+ so)

Solving for o, we get

7

7= C\/l ~ tanh? (\/E(S " SO)) N cosh (\/E(S + 50)) .

In order to find p we integrate in [ = co? and obtain

3 3
p(s) = / cosh® (VE(s + 50)) ds = = tanh (\/E(s + s0)) + K.
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Since we have

2o B

o(s)” + (uls) = K)*— = ¢,

A
the geodesics will be half-ellipses, with o > 0.

In the case ¢ = 0, the unknown o satisfies
G d
—=VE<+= —lno=VE
o ds

with solution
o(s) = o(0)eVE?,

while p is constant, 4 = K. The geodesics in this case are vertical
half-lines.

Proposition 2.1.2 Consider two normal distributions with equal
means, po = p1, and distinct standard deviations og and o1. Then the
smallest information transform, which deforms the first distribution
into the second one, is a normal distribution with constant mean and
standard deviation

o(s) = Uf/TU(l]fs/T, s € [0,7].

Proof: The geodesic in this case is a vertical half-line with constant
mean and o(s) = 0'(0)6@8. The amount v/E can be found from the
boundary condition o(7) = o7. |

Let g = Inog, 21 = Inoy, and 2(s) = Ino(s). Then z(s) =
2x0+ (1— f) x1, which corresponds to a line segment. The minimal inf-
ormation loss during the deformation occurs when the log-likelihood
function describes a line segment.

2.1.3 a-Autoparallel Curves

A straightforward computation, using (1.11.34), yields the following
Christoffel coefficients of first kind

Fg(i)l = Fgf,)z = Fgé = Fg;,)l =0

F(a) l—«o

1+« 2(1+2a)
11,2 — o3 Fg?l = ng)l == F(a) - 3

g3 222 — T

o3
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The Christoffel symbols of second kind are obtained by rising indices

F}j(a) _ gllrij,l(a)+gl2rij,2(a):O'Qrij,l(a)
0 _lta 0 _lta
2
- (e )= (e )
F?j(a) _ ngFij,l(a)+922Pij,2(a)

o’ (L2 0 e 0
= ? 0 _21—5%& = 0 _1-1;-204 .

The Riccati equations (1.13.43) for the a-autoparallel curves are

2(1
- 25— g
o
1- 1+2
G ot g,
20 o

The first equation can be transformed as in the following

- 2(1+0z)g<:>
L o
disln;l = 2(1+0z)%1n0<:>
Ing = 21+a)lno+cy =
/:L _ 60_2(1+a)7

with ¢ constant. Substituting in the second equation yields

&+1_ac204(1+°‘)—1+2ad2:0,

20 o
which after the new substitution © = ¢ writes as
du 11—« 1+ 2«
—u 4 —— 2ot LuQ =0.
do 20 o

Multiplying the equation by an integral factor of the form o**1, we
obtain

11—«
k+1 2 _4(a+1)+k _ k 2>
o udu—i—( 5 Co (14 2a)o"u® )do = 0.
-M

=N
From the closeness condition
oM B ON
do  Ou’
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we determine k£ + 1 = —(4a + 2). The exact equation we need to
solve is

uo~4ot2) gy 1 (1 —

- (14 2a)u’o (40‘+3)) do = 0.

We need to determine a function f that satisfies the system

Of  _  _(4at2)
ou ue
of l—a,

or _ 1 2,—(20+3)
B 5 CO (14 2a)u‘c

From the first equation, we have
~(4a+2) of _ (dat3) | 7/
f—f + h(o) = 9 = —(1 4 2a)u’c~ + K (o)

and comparing with the second equation yields

1-— 1—a)c?
2a020:>h( ) = (404)002_’_6'

(o) =
Hence, a first integral of motion is given by

f—— f(4a+2)+1—a6202:ﬁ

4 2’

with E constant. Next we shall solve for ¢. Using that u = &, we have

02(2a+1)+ 5 ‘o’ = FE<«—

2
o l-«
<0'2a+1> + 2 ¢ot = B

2
o l—a , 5

/ do
= x5+ 59 <=
o2a+1 /E_I—TaCQUQ
g - (+ 1—a 2.1.7
iy (+s+ s0) 5 C (2.1.7)
where
2F 1

C=Co="

c l—a
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The left side integral can be transformed using the substitutions

t =02 v=+C?—t as follows

do dt dt
/U2a+1, /02 — o2 /202(a+1), /02 — 52 / otat+1. /02 — ¢
_ /21} dv _/ dv
N 2tatly (C2% — p2)atl’

and hence (2.1.7) becomes

dv 11—«
_/(Cz_vz)aﬂ = (£s+s0) 5 C (2.1.8)

The p-component is given by

w=-c /02(1+0‘)(8)ds. (2.1.9)

There are a few particular values of a for which this equation can
be solved explicitly.

Case aa = —1

Equation (2.1.8) becomes

with solution

l-«
2
for K constant. Equation (2.1.3) easily yields

u(s) = s + u(0).

o?(s) = C* — ((is+so) c+K)2,

Case a=1/2
Since
/ dv B )
(€2 —v2)*? COT =2
we solve
Y (hers)C4K
202 — 02 5T 50)5

and obtain
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C
=.
1+ C’4<(:|:5 +50)5 + K)
The p-component is given by the integral

u(s) = ¢ / o3(s) ds.

o(s) =

2.2  Jeffrey’s Prior
In the following we shall compute the prior on the statistical model

S, = {pe; Elpe = p, Varlpe] > 1} = {puo0);0 > 1}

which represents a vertical half line in the upper-half plane. The
determinant is

1
G(§) = det gi5(€) =det( 3 % ) = 34

Then the volume is computed as

Vol(S /Fda_/ —da—\/§<oo.

Therefore the prior on S, is given by

G(o) 1
Vol(S,) o

©

)
I
I

[N}

2.3 Lognormal Distribution

In the case of lognormal distribution

1 _(nz—p)?
e 202 z >0,

Puo(®) = o ’

the Fisher information matrix (Fisher-Riemann metric) is given by

(5 5)-(t 1)
Jou Yoo 0 3

The computation details are left for the reader and are the sub-
ject of Problem 2.2. It is worth noting that this coincides with the
Fisher metric of a normal distribution model. Hence, the associated
geodesics are vertical half lines or halfs of ellipses.
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2.4 Gamma Distribution

In this case the statistical model is defined by the following family of
densities

1

b, (Jj) = Papg ($) = BO‘F(O{) maflefz/ﬁ’

with (o, 8) € (0,00) x (0,00), z € (0,00). In the study of this model
we need some special functions. Let

Pla) = () =¥/ (a) (2.4.10)

be the digamma and the trigamma functions, respectively. Differen-
tiating in the Dirichlet’s integral representation (see Erdélyi [42] vol.
I, p. 17)

P(a) = /Ooo[et — 1+t at, a>0

yields the following integral expression for the trigamma function

* In(1+1¢)

AT dt. (2.4.11)

() = v'(e) = |

Another interesting formula is the expression of the trigamma func-
tion as a Hurwitz zeta function

1

vile) =C20) =3

n>0

(2.4.12)

which holds for o ¢ {0, —1,—2,—3,...}, relation obviously satisfied
in our case since a > 0.

Then the components of the Fisher-Riemann metric are obtained
from Proposition 1.6.3, using the relations

/pf(x)dle, /xps(a:)dm:aﬁ
0 0
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and the derivatives of the log-likelihood function that are asked to be
computed in Problem 2.2:

Goo = - / ¥(a)p, (@) do = ¥/(a) = 1 (),
2
gy = B =~ [ (5 5)p)d
2 o
= _524-53/ xpg(x)dx:@,
9o = aﬁg / Bpg dl‘ 6

Proposition 2.4.1 The Fisher information matriz (Fisher—Riemann
metric) for the gamma distribution is

1
9=<w1£a> >: ;z%(“r”)?
5

1
It is worth noting that here « is the parameter for the gamma
distribution and it has nothing to do with a-connections.

e @l
=

e

B

2.5 Beta Distribution

The Fisher information metric for the beta distribution

DT O B Lo a,b> 0,z €[0,1]

" Bla.b)

will be worked in terms of trigamma functions. Since the beta function

1
B(a,b) = / 21— 2) e
0
can be expressed in terms of gamma functions as

['(a)C(b)

Bla.b) = to 15

then its partial derivatives can be written in terms of digamma func-
tions, using relation (2.11.17), see Problem 2.4, part (a).

The log-likelihood function and its partial derivatives are left for
the reader as an exercise in Problem 2.4, parts (b) and (c). Since the
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second partial derivatives of ¢(a,b) do not depend on z, they will
coincide with their own expected values. It follows the next compo-
nents for the Fisher—Riemann metric:

9aa = — [82€(a, b)] =11 (a) —n (a + b)
g = [26 (a,b)] = 11(b) — 1 (a + b)
Jab = Gpa = —E[0a0plu(a,b)] = —¢p1(a +D).

Proposition 2.5.1 The Fisher information matriz (Fisher—Riemann
metric) for the beta distribution is given by

g ( Ui(a) —¢a(a+b)  —Yi(a+b) >
—1(a+b) Y1(b) —1(a +b)

where 1 stands for the trigamma function.

2.6 Bernoulli Distribution

Consider the sample space X = {0,1,...,n} and parameter space
E = [0, 1]. The Bernoulli, or binomial distribution, is given by

pk:§) = ()" - ",

where the parameter £ denotes the success probability. Then & =
{pe;€ € [0,1]} becomes a one-dimensional statistical model. The
derivatives of the log-likelihood function ¢;(§) = Inp(k;&) are pro-
posed as an exercise in Problem 2.5. Then the Fisher information is
given by the function

gu(6) = —Egdze(¢ Zpk§

n  n(l-=¢ n
£ (1-9* 1-¢°

where we used that the mean of a Bernoulli distribution is n¢. Using
that the variance is n€(1 — &), it follows that

n2

Var(pe)’

which is a Cramér—Rao type identity corresponding to an efficient
estimator.

g1 (&) =
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2.7 Geometric Probability Distribution

Let X = {1,2,3,...}, E = [0,1] and consider p(k;¢) = (1 — &)F1¢,
k€ X, £ € E. The formulas for the partial derivatives of the log-
likelihood function are left as an exercise for the reader in Prob-
lem 2.6. Then the Fisher information becomes

g (§) = —Eé[agg(f)]
- (k — Dp(k;€) 1 ..
= ;(g_l)Q +;£2p(k,€)
1
Cea-gy

where we used the expression for the mean ), -, kp(k;§) = %

2.8 Multinomial Geometry

In this section we investigate the geometry associated with the multi-
nomial probability distribution. The computation performed here is
inspired from Kass and Vos [49]. Consider m independent, identical
trials with n possible outcomes. The probability that a single trial
falls into class i is p;, i = 1,2, ..., n, and remains the same from trial
to trial. Since p; + - - - + p, = 1, the parameter space is given by the
(n — 1)-dimensional simplex

n—1
E={(p1,..,pn-1)i0<pi <1, pi=1}.
=1

It is advantageous to consider the new parameterization

Zi=2\/]97‘, i=1,...,n.

Then >, 22 = 4, and hence

(2
z € Sg;l ={z e R";|2|* = 4,2 > 0}.

Therefore, the statistical manifold of multinomial probability dis-
tributions can be identified with S;jrl, the positive portion of the
(n — 1)-dimensional sphere of radius 2. The Fisher information matrix
with respect to a local coordinate system (£°) is
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grs(§) = 4 Z 0r\/pi(€)0s/pi(€)
= Z 0rzi(§) 0s2i(&)

= <8rz, 0s2),

where 05 = O¢s. Therefore, the Fisher metric is the natural metric
induced from the Euclidean metric of R™ on the sphere S;_°. We
note that 9,z is a tangent vector to the sphere in the dlrectlon of I

To find the information distance between two multinomial distri-
butions p and q, we need to find the length of the shortest curve on
the sphere S5 + , joining p and ¢. The curve that achieves the mini-
mum is an arc of great circle passing through p and ¢, and this curve
is unique.

Let z, and z; denote the points on the sphere corresponding to the
aforementioned distributions. The angle a made by the unit vectors
zp/2 and z,/2 satisfies cos v = (2p/2, 24/2). Since the distance on the
sphere is the product between the radius and the central angle, we
have

L
d(p,q) = 2a = 2arccos (Z Epfq)
i=1
n
= 2arccos (Z(piQi)l/Q) _

i=1
It is worthy to note that the Fuclidean distance between p and ¢ can
be written as

el = (i) =3 (2= )

=1 =1
= 2(D(vmi - \/@2)1/2 = du(p,q),
=1

which is called the Hellinger distance between p and q. We shall dis-
cuss about this distance in more detail later.

The foregoing computation of the Fisher metric was exploiting
geometric properties. In the following we shall provide a direct com-
putation. We write the statistical model of multinomial distributions

by § = {p(k; &)}, with

n! k km—1_ km
P(k‘;f) = mﬁll. ~P— 11pm )
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where

and £ = (¢1,..., M HY eE=[0,1]" Y with& =p;,i=1,...m—1,

and p,, =1 —p1 — -+ — pm_1. Then a straightforward computation
shows
ki km
Oil(k;§) = ———
Di Pm
0.0k 6) = -] o p?n]

Using the formula for the marginal probability

> kip(k;€) = np;,
k

we have
9ii(6) = —Eel0,0;0(k:€)) = E [ 7:]
= ”Zkzpks kapk
- [iﬁ:+;] [%fn_g S—

2.9 Poisson Geometry

Consider m independent Poisson distributions with parameters \;,
i =1,...,m. The joint probability function is given by the product

p(ai) = [Toate) =TT 2
i=1 =1

with A = (A,..., Amq1) € E = (0,00)™, and & = (x1,...,2m) €
= (NU{0})™. The log-likelihood function and its derivatives with
respect to 0; = dy,; are

Lxz;N) = —=XN+xln) —In(x,!)
9it(x;N) = —1+2
Aj
8k8j£(x; )\) = 5k3

)\2
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Then the Fisher information is obtained as

T 1
gik(A) = E[/\%%}ZQ%E[%]
J J

1 1
= —25kj ijp(q:; A) = —ﬁkj.
AT Ag

Therefore the Fisher matrix has a diagonal form with positive entries.

2.10 The Space P(X)

Let X = {x1,...,2z,} and consider the statistical model P(X) of all
discrete probability densities on X'. The space P(X) can be imbedded
into the function space RY = {f;f : X — R} in several ways, as
we shall describe shortly. This study can be found in Nagaoka and
Amari [61].

For any a € R consider the function ¢4 : (0,00) — R

2

WS, ifa
11—«

Palu) =
In u, if o = 1.

The imbedding
P(X) 3 p(x;€) = pa(p(x;€)) € RY

is called the a-representation of P(X). A distinguished role will be
played by the «a-likelihood functions

() (@) = pa(p(x:€)).
The coordinate tangent vectors in this representation are given by
0:0') (5 €) = Bgipa (p(3€)).

The a-representation can be used to define the Fisher metric and
the V(®)-connection on P(X).

Proposition 2.10.1 The Fisher metric can be written in terms of
the a-likelihood functions as in the following
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(i) gij(€) = Y 0l (wx; €)0;0) (ay; €);
k=1
2 n 14+
(1) gi5(&) = Tia ;p($k§f)28iaj£(a)($k§f)-

Proof: Differentiating yields

80 = pa oL (2.10.13)

80 = p o (2.10.14)
Ca 1—

89,0 = p%(aiaju To‘aizajz), (2.10.15)

where {(z;€) = Inp(x;§).
(7) The previous computations and formula (1.6.16) provide

300 (@ )00 iz &) = S p 2 Oil(an)p E Ol )
k=1 k=1

= > p(ar; )0t ()05t ()
k=1
= Eg [(915 836] = Gij (ﬁ)

(74) Relation (2.10.15) implies

1+«

p"5 0051 (23 €) = plas 0,053 )+ plw; N0, ().

Summing and using (1.6.16) and (1.6.18), we have

> Plag; &) 2 00,0 (wh: €)= Ee0;0,0) + ! ; © B[00 0;0)
k=1
1 _
= _gij<§)+Tagij(§>
1
= _%gij(é)'

The symmetry of relation (i) implies that the Fisher metric in-
duced by both a and —a-representations are the same.
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Proposition 2.10.2 The components of the a-connection are given
in terms of the a-representation as

Za 00 (1,5 €) Ol =Y (2,5 ). (2.10.16)
Proof: Combining relations (2.10.14) and (2.10.15)

zn: 2:0,00®) 90— = zn: (s €) (a 0,0+ 2= 00, e) Ob(xy: €)

r=1

_ [(aau ~ Y900, e)akﬁ}

_ pla
= Tij
by (1.11.34). [ |
The particular values o = —1,0,1 provide distinguished impor-

tant cases of representations of P(X).

2.10.1 —1-Representation

If « = —1, then ¢_1(u) = u, and £~ ( (2;€)) = p(x;€) is the
identical imbedding of P(X) into R*. Thus P(X) is an open set of
the affine space A1 = {f : X — R; Y, f(xx) = 1}. Therefore, the
tangent space at any point pe can be identified with the following
affine variety

TVP@) = Ag={f: X R flay) =0},
k=1

The coordinate vector fields in this representation are given by
—1
(az )g = aipf-

We can easily check that

n

Z(ai_l)g(xk) = Zaz'pg(l‘k) =0;(1) =0,
k=1

k=1

S0 (8{1)£ € T¢(P), for any &.
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2.10.2 0-Representation

This is also called the square root representation. In this case ¢o(u) =
2y/u, and the imbedding ¢g : P(X) — RY is

p(2;€) = po(p(:€)) = L0 (2;6) = 2¢/p(a; €) = () € RY.

Since >"p_; 0(zr)? = 4, the image of the imbedding ¢ is an open
subset of the sphere of radius 2,

©o(P(X)) C {6;6: X — R; Zﬁ(xk)Q =4}.
k

The induced metric from the natural Euclidean metric of R on this
sphere is

(0:0,0,0) = Y 0;0(x1)0;0(xy)
k=1
= 4 0iV/p(wr; )05\ p(k; §)
k=1

i.e., the Fisher metric on the statistical model P(X).
The coordinate vector fields are given by

09, = 0O (x;¢) = Aip(x; ).

b
Vp(E:€)
The next computation deals with the tangent space generated by
(89),. We have
1
p(xk; €)

n 1
- gzmw@p(m;&)

k=1

= 20, ) plax; ) =0,
k=1

so that the vector (8?) ¢ is perpendicular on the vector ¢, and hence

belongs to the tangent plane to the sphere at 6. This can be identified
with the tangent space TéO)P(X ) in the O-representation.
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2.10.3 1-Representation

This is also called the ezponential (or the logarithmic) representation,
because each distribution p(x;§) € P(X) is identified with
Inp(z;€) € RY. In this case the 1-likelihood function becomes
D(z;6) = (z;€) = Inp(x; €), i.e., the usual likelihood function.
The coordinate vector fields are given by

1

1 = €, —
(@) =t w:6) = o

Oip(w; €).

In the virtue of the computation
Ep[(8)).] = Eploit™ ()] = Y dp(a: €) = 8:(1) = 0,
k=1

it follows that the tangent space in this representation is given by

TO(P(X)) = {f; f € R}, E,[f] = 0}.

It is worth noting that tangent spaces are invariant objects, that
do not depend on any representation. However, when considering
different system of parameters, tangent vectors can be described by
some particular relations, like in the cases of +1 and 0 representations.

2.10.4 Fisher Metric
Let & = p(x;;€),i=1,...,n— 1, be the coordinates on P(X). Since
p(xn;€) =1— E?;l €7, then the partial derivatives with respect to
& are
o | b, ifE=1,...,n—1
azp(xkaé) - { -1, itk = n.

Then the Fisher metric is given by

9i5(&) = Bpl0it0;0) = plak; §)0i np(a; £)0; Inp(a; )
k=1
e Ok ©)9p(; )
> p(; §)

k=1

_ Z 1k5]k 1
11—y le

% N ;

&g 1=y




2.11. Problems 71

2.11 Problems

2.1. Consider the statistical model given by the densities of a nor-
mal family

1 _@=w?
e 22 relX =R,

p(x,§) =

oV 2

with parameters (¢!, £2) = (u,0) € R x (0, 00).

(a) Show that the log-likelihood function and its derivatives
are given by

)2
() =Tnp(z,6) = —LIn(2m)—Ino— T
2 202
1 1
Oola(§) = o lnp(w,8) = ——+ —(z—p)*
1 3
Oo0la(§) = 0p05 np(x,€) = —5 = —(z = p)?
1
8u€a:(§) = au lnp(x,{) = ﬁ(m - /’L)
1
0u0ulz(§) = 0,0, Inp(z,§) = >
2
O050ulz(§) = 0,0, Inp(z,§) = —;(w — ).
(b) Show that the Fisher-Riemann metric components are
given by
1 2
911 = —5, g12 = g21 = 0, 922 = —5-
o o

2.2. Consider the statistical model defined by the lognormal
distribution

1 _ (lnzfp,)2
e 207 x> 0.

p'u,,o'(x) = maw Y

(a) Show that the log-likelihood function and its derivatives
are given by

1
U p,o) = —ln\/27r—lna—lnav—2—2(11136—,11)2
o
1
2 —
3”,5(%0) - T2
1 3
02(p,0) = ;—g(lnaz—uf
2
Ou0ot(p,0) = ——5(Inz—p).
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(b) Using the substitution y = Inz — p, show that the compo-
nents of the Fisher—Riemann metric are given by

2 1
Yoo = ﬁa up = ﬁ7 Guo = Yop = 0.
2.3. Let
1 1 _

with (a, 8) € (0,00) x (0,00), € (0,00) be the statistical
model defined by the gamma distribution.

(a) Show that the log-likelihood function is

lz(§) =Inp, = —alnf—InT'(a) + (¢ = 1) Inz — %

(b) Verify the relations

05ls(€) = —%+%
1
aaﬁga?(f) = _B
2
D2,(6) = 52—5%
0ul(§) = —Inf—4¢(a)+Inz

where

vle)= oy i@ =) (2111)

are the digamma and the trigamma functions, respectively.

(¢) Prove that for a > 0, we have

Zﬁ>1.

n>0
2.4. Consider the beta distribution

271 — )b a,b> 0,z € [0,1].

pa,b = B(a’ b)
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(a) Using that the beta function

1
B(a,b) = / 21— z)" " tda
0

can be expressed in terms of gamma function as

[(a)T(b)

Bleb) =T vay

show that its partial derivatives can be written in terms of
digamma functions, as

O,InB(a,b) = v(a) —Y(a+0b) (2.11.18)
O InB(a,b) = 1(b) —v(a+Db). (2.11.19)

<

(b) Show that the log-likelihood function is given by
l(a,b) =Inpep = —InB(a,b) + (a—1)Inz+ (b—1)In(1 — z).

(c) Take partial derivatives and use formulas (2.11.18) and
(2.11.19) to verify relations

Ool(a,b) = —0,InB(a,b) +Inz=v(a+0b) —¢(a)+Inz

Wl(a,b) = Y(a+b)—(b)+In(1l—x)

97l(a,b) = ¢'(a+b)—¢'(a) = Pi(a+b) —i(a)

dplla,b) = ¢'(a+b)—¢'(b) = ¢i(a+b) — i (b)
0a0pl(a,b) = Y'(a+0b)=11(a+b).

(c) Using the expression of trigamma functions as a Hurwitz
zeta function, show that the Fisher information matrix can be

written as a series g = E Gn, Where

n>0
1 1 1
(a+mn)? (a+b+n)? (a+b+n)?
9n =
! 1 1
(a+b+n)? (b+n)? (a+b+n)?

2.5. Let S = {pg; £ € [0,1]} be a one-dimensional statistical model,
where

p(k: €) = (:)5’“(1 I
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2.6.

2.7.

Chapter 2. Explicit Examples
is the Bernoulli distribution, with & € {0,1,...,n}and £ € [0, 1].
Show that the derivatives of the log-likelihood function ¢4 (&) =
Inp(k;§) are
Ilr(§) = z-(—k)—

RE) = —=—(n—Fk)

Consider the geometric probability distribution p(k;§) =
(1—&F e ke {1,2,3,...}, £ €]0,1]. Show that

k_

41
“17¢
)

—_

0eli(§) =

k 1 1

R

Let f be a density function on R and define the statistical
model

Sf:{p(:ﬂ;,u,a):§f<x;M);u€R,a>O}.

(a) Show that [, p(x;p, 0)dr = 1.

(b) Verify the following formulas involving the log-likelihood
function £ = Inp(-;u,0):

oy 1 @S
o= et= o S
f/ 1 !

0ol = 2 [( o 02 -] )f_ o JQM(f)Q]'

(b) Show that for any continuous function h we have

T —p

Eu.0) [h< - )} = Eq1)[h()].

(c) Assume that f is an even function (i.e., f(—x) = f(x)).
Show that the Fisher-Riemann metric, g, has a diagonal
form (i.e., g12 = 0).

(d) Prove that the Riemannian space (S, g) has a negative,
constant curvature.
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2.8.

2.9.

2.10.

2.11.

2.12.

(e) Consider f(z) = \/%6_9”2/ 2, Use the aforementioned points

to deduct the formula for g;; and to show that the curva-

_ 1
ture K = -3

Search the movement of the curve

1 _(=z=p)?
e 2?2, pP4ot=1

(u7 0) — pM,U(x) =
oV 2

with (u,0,p) € R x (0,00) x (0,00), x € R, fixed, in the direc-
tion of the binormal vector field.
The graph of the normal density of probability

1 _(w—w)?
€ 202

T = Puo(x) =
oV 2T

is called Gauss bell. Find the equation of the surface obtained
by revolving the Gauss bell about:

(a) Ox axis;

(b) Op axis.

Inspect the movement of the trajectories of the vector field
(y, z, x) after the direction of the vector field

<1 ) 1 _(m—é>2>

y by —F7—=¢€ 20 )
oV 2T

where p and o are fixed.

The normal surface

1 _(m—w)?
[ 202

(1,0) = ppo(z) =

)
oV 2w

(n,0) € R x (0,00); z €R
is deformed into p,, ,(tz), t € R. What happens with the Gauss
curvature?
The gamma surface

_ 1 o] —Z
(a, B) = paplz) = 7,6’0T(a) T e B

(e, B) € (0,00) x (0,00); = € (0,00)

is deformed into psa g(x), t € (0,00). What happens with the
mean curvature?
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