
Chapter 4
Probability Measures on Compact
Lie Groups

Abstract We introduce the space of Borel probability measures (and the important
subspaces of central and symmetric measures) on a group, and topologise this space
with the topology of weak convergence. A key tool for studying such measures is the
(non-commutative) Fourier transform, which we extend from its action on functions
that we described in Chap. 2. We discuss Lo-Ng positivity as a possible replacement
for Bochner’s theorem in this context. The theorems of Raikov-Williamson and
Raikov are presented that give necessary and sufficient conditions for absolute con-
tinuity with respect to Haar measure. We then use the Fourier transform to find con-
ditions for square-integrable densities, and the Sugiura space techniques of Chap. 3
to investigate smoothness of densities. Next we turn our attention to classifying
idempotent measures and present the Kawada-Itô equidistribution theorem for the
convergence of convolution powers of a measure to the uniform distribution. We
introduce and establish key properties of convolution operators, including the notion
of associated (sub/super-)harmonic functions. Finally we study some properties of
recurrent measures on groups.

4.1 Classes of Probability Measures and Convolution

Let P(G) be the set of all Borel probability measures defined on an arbitrary Lie
group G. As discussed in Appendix A.5, everyμ ∈ P(G) is both regular and Radon.1

We equip P(G) with the topology of weak convergence, so if (μn, n ∈ N) is a
sequence of measures in P(G) and μ ∈ P(G), we say that the sequence converges
to μ weakly as n → ∞ if limn→∞

∫
G f (x)μn(dx) = ∫

G f (x)μ(dx) for all f ∈
Cb(G, R). In this case we sometimes write μn →

w
μ as n → ∞. In the Chap. 5

1 But if we drop the condition that G be a Lie group, we should work instead with regular Borel
probability measures on the topological group G.
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we will also need vague convergence of probability measures and this is defined in
exactly the same manner as weak convergence, except that the part of Cb(G, R) is
played by Cc(G, R).

If μ ∈ P(G), its reversed measure is μ̃ ∈ P(G) where μ̃(A) := μ(A−1) for all
A ∈ P(G). We say that μ ∈ P(G) is symmetric if μ = μ̃ and central (or conjugate
invariant) if μ(gAg−1) = μ(A) for all g ∈ G and all A ∈ B(G). We write Ps(G)

and Pc(G) to denote the spaces of symmetric and central Borel probability measures
defined on G (respectively), and we define Psc(G) = Pc(G) ∩ Ps(G).

If we are given a (left or right) Haar measure on G (which is always, as
usual, assumed to be normalised when G is compact), we define Pac(G) to be
the corresponding subset of P(G) comprising absolutely continuous measures, so
μ ∈ Pac(G) if there exists fμ ∈ L1(G) so thatμ(A) = ∫

A fμ(g)dg for all A ∈ B(G).
The Radon-Nikodym derivative fμ is called the density of the measureμ (with respect
to the given Haar measure). If G is compact and μ ∈ Pac, then μ ∈ Ps if and only
if fμ(g) = fμ(g−1) for almost all g ∈ G, and μ ∈ Pc if and only if for all h ∈ G,
fμ(hgh−1) = fμ(g) for almost all g ∈ G.

To see that P(G) �= ∅, consider the Dirac mass δg at the point g ∈ G which is
defined for each A ∈ B(G) by

δg(A) =
{

1 if g ∈ A
0 if g /∈ A

.

Clearly δg ∈ P(G) and δ̃g = δg−1 . We may also form measures in P(G) by tak-
ing convex combinations of distinct Dirac masses. We will consider many more
interesting examples as this and the subsequent chapter unfold.

Let μ1,μ2 ∈ P(G). Using the Riesz representation theorem we may assert the
existence in P(G) of the left and right convolution products μ1 ∗L μ2 and μ1 ∗R μ2,
which are defined (respectively) for all f ∈ Cc(G) by

∫

G

f (g)(μ1 ∗L μ2)(dg) =
∫

G

∫

G

f (gh)μ1(dg)μ2(dh),

∫

G

f (g)(μ1 ∗R μ2)(dg) =
∫

G

∫

G

f (hg)μ1(dg)μ2(dh).

It is easily verified that μ1 ∗R μ2 = μ2 ∗L μ1. From now on we will only deal
with left convolution, and we will write μ1 ∗ μ2 := μ1 ∗L μ2. It can be shown (see
e.g. Stromberg [197]) that for all B ∈ B(G)

(μ1 ∗ μ2)(B) =
∫

G

∫

G

1B(gh)μ1(dg)μ2(dh) (4.1.1)

=
∫

G

μ1(Bh−1)μ2(dh) =
∫

G

μ2(g
−1 B)μ1(dg).
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Convolution is associative, i.e. if μ1,μ2,μ3 ∈ P(G), then (μ1 ∗ μ2) ∗ μ3 =
μ1 ∗ (μ2 ∗μ3), and so (P(G), ∗) is a semigroup . But note that if G is not abelian, we
cannot expect commutativity to hold. Indeed, you can easily check that for g, h ∈
G, δg ∗ δh = δgh , and so δg ∗ δh = δh ∗ δg if and only if gh = hg. In the general case
(P(G), ∗) is a monoid (i.e. a semigroup with an identity element), since μ ∗ δe =
δe ∗ μ for all μ ∈ P(G).

If μ ∈ Pac(G) and ν ∈ P(G), we write fμ ∗ ν := μ ∗ ν and ν ∗ fμ := ν ∗ μ.
By using Fubini’s theorem we easily verify that if we employ a right-invariant Haar
measure, then fμ ∗ ν ∈ Pac(G) with density

∫
G fμ(gh−1)ν(dh) and if we choose a

left-invariant Haar measure, then ν ∗ fμ ∈ Pac(G) with density
∫

G fμ(g−1h)ν(dh).
The operation ·̃ acts as an involution on (P(G), ∗). Indeed, we have ˜̃μ = μ for all

μ ∈ P(G), μ̃1 ∗ μ2 = μ̃2 ∗ μ̃1 for all μ1,μ2 ∈ P(G) and δ̃e = δe.
The support of μ ∈ P(G), which we denote by supp(μ), is the set of all g ∈ G

for which every Borel neighbourhood of g has strictly positive μ-measure. It is clear
that supp(μ) is a closed subset of G. It is shown in Wendel [217] (pp. 925–926) that
if μ1,μ2 are regular probability measures on G, then

supp(μ1 ∗ μ2) = supp(μ1)supp(μ2), (4.1.2)

where if A, B ∈ B(G), AB := {gh, g ∈ A, h ∈ B} (and for later usage A2 := AA).
Although we won’t use it in the sequel, the next result may be of interest.

Proposition 4.1.1 If G is a compact group, then the space P(G), equipped with the
weak topology, is compact.

Proof By identifying each μ ∈ P(G) with the linear functional Iμ on C(G, R)

defined by Iμ( f ) = ∫
G f (g)μ(dg) for f ∈ C(G, R), we embed P(G) into the

topological dual space C(G, R)∗, and recognise that the weak topology on P(G) is
in fact the restriction of the weak-∗ topology on C(G, R)∗. By the Banach-Alaoglu
theorem, the unit ball in C(G, R)∗ is weak-∗ compact. However, P(G) is easily
verified to be a closed subset of this ball, and the result follows. �

Note that the mapping g → δg is a continuous embedding of G into a closed
subspace of P(G).

We recall that a family of Borel probability measures (μα ∈ I) defined on some
locally compact space X (where I is some index set) is tight if given any ε > 0
there exists a compact set Kε such that μα(Kε) > 1 − ε for all α ∈ I. If X is itself
compact, then it is clear that any family of probability measures is tight (just take
Kε = X for all ε). So on a compact group G, by Prohorov’s theorem, (see e.g. Heyer
[95] Theorem 1.1.11, p. 26), any family of Borel probability measures (μα ∈ I)

contains a convergent sequence.
Let (�,F , P) be a probability space. A G-valued random variable is a measurable

function from (�,F) to (G,B(G)). If X is such a random variable, its law or
distribution is the measure μX ∈ P(G) defined by μX (B) = P(X−1(B)) for all
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B ∈ B(G). The product of two random variables X and Y is the random variable
XY whose value at ω ∈ � is X (ω)Y (ω).2 If X and Y are independent then the law
of XY is the convolution μX ∗ μY .

4.2 The Fourier Transform of a Probability Measure

Let Rep(G)be the set of all unitary representations of G. So for eachπ ∈ Rep(G), g ∈
G,π(g) acts as a unitary operator on the complex separable Hilbert space Vπ . For
each μ ∈ P(G), we define its Fourier transform or characteristic function μ̂(π) at
π ∈ Rep(G) to be the bounded linear operator on Vπ defined as a Bochner integral
(see e.g. Cohn [50] Appendix E, pp. 350–354) by:

μ̂(π)ψ =
∫

G

π(g−1)ψμ(dg), (4.2.3)

for each ψ ∈ Vπ . Equivalently, it may be defined as a Pettis integral to be the unique
bounded linear operator on Vπ for which

〈μ̂(π)φ,ψ〉 =
∫

G

〈π(g−1)φ,ψ〉μ(dg), (4.2.4)

for allφ,ψ ∈ Vπ (c.f. Heyer [93], Siebert [185] and Hewitt and Ross [92], pp. 77–87).
Note that if μ is absolutely continuous with respect to a given left Haar measure

on μ and has density f ∈ L1(G), then our definition is such that μ̂(π) = f̂ (π),
where f̂ (π) is as defined in Chap. 2.3

From now until Sect.4.7, we will take G to be a compact Lie group and restrict π
to be an irreducible representation.4

So (observing our usual convention of identifying equivalence classes with repre-
sentative elements) we will from now on always take π ∈ Ĝ. Then μ̂(π) is a dπ × dπ
matrix and both (4.2.3) and (4.2.4) are equivalent to defining the matrix elements

μ̂(π)i j =
∫

G

πi j (g
−1)μ(dg), (4.2.5)

2 If G is abelian, then the binary operation in the group is usually written additively.
3 It is common in the literature to see the alternative definition “ μ̂(π) = ∫

G π(g)μ(dg)” which
is natural for probabilists but which clashes with the analysts’ convention that we introduced in
Chap. 2.
4 Many theorems that we state hold under more general conditions on G. The reader who wants
minimal assumptions may consult the original sources, or check what is really needed from the
proof.

http://dx.doi.org/10.1007/978-3-319-07842-7_2
http://dx.doi.org/10.1007/978-3-319-07842-7_2
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for 1 ≤ i, j ≤ dπ .
It is often convenient to write (4.2.5) using the simplified notation:

μ̂(π) :=
∫

G

π(g−1)μ(dg).

Example 1 Dirac Mass. If μ = δg for some g ∈ G, then it is easily verified that for
all π ∈ Ĝ, μ̂(π) = π(g−1). In particular, δ̂e = Iπ .

Example 2 Normalised Haar measure. We again denote this measure by m. It is easy
to see that m ∈ Psc(G). We have

m̂(π) =
{

0 if π �= π0
1 if π = π0

.

To see this, it is sufficient to observe that for all π ∈ Ĝ, 1 ≤ i, j ≤ dπ,

m̂(π)i j =
∫

G

πi j (g
−1)dg = 〈1,πi j 〉L2(G),

and the result then follows by Peter-Weyl theory (Theorem 2.2.4).

Example 3 Standard Gaussian Measures. We recall the discussion of the heat kernel
in Sect. 3.1.1. Now fix a parameter σ > 0 and consider the heat equation:

∂u

∂t
= σ�u. (4.2.6)

We write the corresponding heat kernel as kσ ∈ C∞((0,∞) × G, R), and for
fixed t > 0 we write kt,σ(·) := kσ(t, ·) ∈ C∞(G, R). Taking f = 1 in ( 3.1.8), we
see immediately from (4.2.6) that

∫
G kt,σ(g)dg = 1, and so kt,σ is the density of a

measure γt,σ ∈ P(G) which we call a standard Gaussian measure with parameter
σ.5 We now compute the Fourier transform. Using the smoothness of t → kt,σ and
dominated convergence, we deduce that for all π ∈ Ĝ,

∫

G

π(g−1)
∂kt,σ(g)

∂t
dg = ∂

∂t

∫

G

π(g−1)kt,σ(g)dg,

and so the mapping t → k̂t,σ(π) is differentiable. Taking Fourier transforms of both
sides of (4.2.6) then yields that

5 If we were to take a strict analogy with the well-known theory in Euclidean space, we would only

use the terminology “standard” Gaussian measure for the case where σt = 1

2
.

http://dx.doi.org/10.1007/978-3-319-07842-7_3
http://dx.doi.org/10.1007/978-3-319-07842-7_3
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∂k̂t,σ(π)

∂t
= σ�̂kt,σ(π)

= −σκπ k̂t,σ(π).

Since k̂0,σ(π) = δ̂e(π) = Iπ , we deduce that

k̂t,σ(π) = e−tσκπ Iπ. (4.2.7)

The next theorem summarises some key properties of the Fourier transform (see
also Heyer [93]):

Theorem 4.2.1 For all μ,μ1,μ2 ∈ P(G),π ∈ Ĝ,

1. μ̂(π0) = 1,
2. μ̂1 ∗ μ2(π) = μ̂2(π)μ̂1(π),
3. ||μ̂(π)||op ≤ 1,
4. ̂̃μ(π) = μ̂(π)∗.

Proof 1. is obvious.
2. For all 1 ≤ i, j ≤ dπ

μ̂1 ∗ μ2(π)i j =
∫

G
πi j (h

−1g−1)μ1(dg)μ2(dh)

=
dπ∑

k=1

(∫

G
πik(h

−1)μ2(dh)

) (∫

G
πk j (g

−1)μ1(dg)

)

= [μ̂2(π)μ̂1(π)]i j .

3. For all φ ∈ Vπ ,

||μ̂(π)φ|| =
∣
∣
∣
∣

∣
∣
∣
∣

∫

G
π(g−1)φμ(dg)

∣
∣
∣
∣

∣
∣
∣
∣

≤
∫

G
||π(g−1)φ||μ(dg)

= ||φ||.
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4.

̂̃μ(π) =
∫

G

π(g−1)μ̃(dg)

=
∫

G

π(g)μ(dg)

=
⎛

⎝
∫

G

π(g−1)μ(dg)

⎞

⎠

∗
= μ̂(π)∗. �

Corollary 4.2.1 The measureμ ∈ Ps(G) if and only if the matrix μ̂(π) is self-adjoint6

for all π ∈ Ĝ.

Proof Necessity is immediate from Theorem 4.2.1 (4). For sufficiency it is enough
to observe that if the self-adjointness condition holds, then for all π ∈ Ĝ,φ,ψ ∈ Vπ ,

∫

G

〈π(g)φ,ψ〉μ(dg) =
∫

G

〈π(g)φ,ψ〉μ̃(dg).

By linearity we find that
∫

G f (g)μ(dg) = ∫
G f (g)μ̃(dg) for all f ∈ E(G) which is

norm dense in C(G) by the Peter-Weyl theorem (Theorem 2.2.4). By extension of
bounded linear functionals, we then see that

∫
G f (g)μ(dg) = ∫

G f (g)μ̃(dg) for all
f ∈ C(G), and the result follows from the Riesz representation theorem. �

The next theorem generalises Theorem 2.4.1 (see also Hewitt and Ross [92]
Theorem 28.48, pp. 84–85).

Theorem 4.2.2 The measure μ ∈ Pc(G) if and only if μ̂(π) = cπ Iπ , where cπ ∈ C,
for all π ∈ Ĝ.

Proof Necessity is established by Schur’s lemma just as in Theorem 2.4.1. For
sufficiency, for each h ∈ G define μh ∈ P(G) by μh(A) = μ(h Ah−1) for
A ∈ B(G). Then arguing as in the proof of Theorem 2.4.1 we obtain for all π ∈ Ĝ,∫
G π(g−1)μ(dg) = ∫

G π(g−1)μh(dg), and so for all φ,ψ ∈ Vπ ,

∫

G

〈π(g)φ,ψ〉μ(dg) =
∫

G

〈π(g)φ,ψ〉μh(dg).

We can now reach our desired conclusion by proceeding as in the proof of Corollary
4.2.1 �
Corollary 4.2.2 The measureμ ∈ Psc(G) if and only if μ̂(π) = cπ Iπ , where cπ ∈ R,
for all π ∈ Ĝ.

6 i.e. hermitian, if you prefer that terminology.
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Proof This follows immediately from Corollary 4.2.1 and Theorem 4.2.2. �

For example we find by (4.2.7) that standard Gaussian measure is both central
and symmetric.

The remaining results in this section were originally due to Kawada and Itô [114].
The first of these establishes the injectivity of the Fourier transform:

Theorem 4.2.3 Let μ1,μ2 ∈ P(G). Then μ̂1(π) = μ̂2(π) for all π ∈ Ĝ if and only
if μ1 = μ2.

Proof Sufficiency is immediate. For necessity let f ∈ C(G), and ε > 0 be arbitrary.
By the Peter-Weyl theorem (Theorem 2.2.4) there exists Ĝ0 ⊂ Ĝ with #Ĝ0 ∈ N

such that

sup
g∈G

∣
∣
∣
∣
∣
∣

f (g) −
∑

π∈Ĝ0

dπ∑

i, j=1

α
(π)
i j πi j (g)

∣
∣
∣
∣
∣
∣
<
ε

2
,

where α(π)
i j ∈ C (1 ≤ i, j ≤ dπ). Then for k = 1, 2 we find that

∣
∣
∣
∣
∣
∣

∫

G

f (g)μk(dg) −
∑

π∈Ĝ0

dπ∑

i, j=1

α
(π)
i j μ̂k(π)i j

∣
∣
∣
∣
∣
∣
<
ε

2
.

But since μ̂1(π)i j = μ̂2(π)i j for all 1 ≤ i, j ≤ dπ , we deduce that

∣
∣
∣
∣
∣
∣

∫

G

f (g)μ1(dg) −
∫

G

f (g)μ2(dg)

∣
∣
∣
∣
∣
∣
< ε,

and the result follows by the fact that ε is arbitrary and by use of the Riesz represen-
tation theorem. �

Theorem 4.2.4 Let μ1,μ2 ∈ P(G). Then μ1 ∗ μ2 = μ2 ∗ μ1 if and only if
μ̂1(π)μ̂2(π) = μ̂2(π)μ̂1(π) for all π ∈ Ĝ.

Proof Necessity follows immediately from Theorem 4.2.1(2). For sufficiency,
observe that by Theorem 4.2.1(2) again

μ̂1 ∗ μ2(π) = μ̂2(π)μ̂1(π) = μ̂1(π)μ̂2(π) = μ̂2 ∗ μ1(π),

and then apply Theorem 4.2.3. �

Theorem 4.2.5 Let (μn, n ∈ N) be a sequence of measures in P(G). Then μn →
w
μ

as n → ∞ if and only if μ̂n(π)i j → μ̂(π)i j as n → ∞ for all 1 ≤ i, j ≤ dπ,π ∈ Ĝ.
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Proof If μn →
w
μ as n → ∞, then

lim
n→∞ μ̂n(π)i j = lim

n→∞

∫

G

πi j (g
−1)μn(dg) =

∫

G

πi j (g
−1)μ(dg) = μ̂(π)i j .

Conversely, if μ̂n(π)i j → μ̂(π)i j as n → ∞ for all 1 ≤ i, j ≤ dπ,π ∈ Ĝ, then using
the same notation, and a similar argument to that given in the proof of Theorem 4.2.3,
we first observe that for any f ∈ C(G), ε > 0 there exists Ĝ0 ⊂ Ĝ with #Ĝ0 ∈ N

so that for all n ∈ N

∣
∣
∣
∣
∣
∣

∫

G

f (g)μn(dg) −
∑

π∈Ĝ0

dπ∑

i, j=1

α
(π)
i j μ̂n(π)i j

∣
∣
∣
∣
∣
∣
<
ε

3
,

and also ∣
∣
∣
∣
∣
∣

∫

G

f (g)μ(dg) −
∑

π∈Ĝ0

dπ∑

i, j=1

α
(π)
i j μ̂(π)i j

∣
∣
∣
∣
∣
∣
<
ε

3
.

But we can also find n1 ∈ N so that if n > n1 we have

|μ̂n(π)i j − μ̂(π)i j | <
ε

3C

for all 1 ≤ i, j ≤ dπ,π ∈ Ĝ0 where C := ∑
π∈Ĝ0

∑dπ
i, j=1 |α(π)

i j |. From these
estimates we deduce that for all n > n1,

∣
∣
∣
∣
∣
∣

∫

G

f (g)μn(dg) −
∫

G

f (g)μ(dg)

∣
∣
∣
∣
∣
∣
< ε,

and this gives the desired weak convergence. �

Then final result of this section gives a compact Lie group version of the celebrated
Lévy convergence theorem for sequences of probability measures in Euclidean space.

Theorem 4.2.6 (Kawada,Itô,Lévy convergence theorem) Suppose that (μn, n ∈ N)

is a sequences of measures in P(G) and that there exists a family of compatible
matrices (Y (π),π ∈ Ĝ) so that μ̂n(π)i j → Y (π)i j as n → ∞ for all 1 ≤ i, j ≤
dπ,π ∈ Ĝ. Then there exists μ ∈ P(G) for which μn →

w
μ as n → ∞ and

μ̂(π) = Y (π) for all π ∈ Ĝ.

Proof Let f ∈ C(G). Once again using (a straightforward variation of) the same
notation to that used in the proof of Theorem 4.2.3, we can assert that given any
m ∈ N there exists Ĝ0 ⊂ Ĝ with #Ĝ0 ∈ N so that
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sup
g∈G

∣
∣
∣
∣
∣
∣

f (g) −
∑

π∈Ĝ0

dπ∑

i, j=1

α(π,m)
i j ( f )πi j (g)

∣
∣
∣
∣
∣
∣
<

1

2m
,

and so for all n ∈ N

∣
∣
∣
∣
∣
∣

∫

G

f (g)μn(dg) −
∑

π∈Ĝ0

dπ∑

i, j=1

α
(π,m)
i j ( f )μ̂n(π)i j

∣
∣
∣
∣
∣
∣
<

1

2m
.

Now given any ε > 0 and choosing n sufficiently large, we obtain for such n and
arbitrary m that:

∣
∣
∣
∣
∣
∣

∫

G

f (g)μn(dg) −
∑

π∈Ĝ0

dπ∑

i, j=1

α(π,m)
i j ( f )Y (π)i j

∣
∣
∣
∣
∣
∣
<

1

2m
+ ε.

Define �m( f ) := ∑
π∈Ĝ0

∑dπ
i, j=1 α

(π,m)
i j ( f )Y (π)i j . Then from the last inequality

we deduce that (�m( f ), m ∈ N) is a Cauchy sequence, and hence convergent to
�( f ) ∈ C. Again from the last inequality, we deduce that

�( f ) = lim
n→∞

∫

G

f (g)μn(dg),

from which it follows that f → �( f ) is a positive linear functional on C(G) for
which�(1) = 1. Hence by the Riesz representation theorem, there exists a probability
measure μ ∈ P(G) for which

�( f ) =
∫

G

f (g)μ(dg),

for all f ∈ C(G) and this gives the required weak convergence. The fact that μ̂(π) =
Y (π) for all π ∈ Ĝ then follows from Theorem 4.2.3. �

4.3 Lo-Ng Positivity

Let μ be a Borel probability measure defined on a locally compact abelian group
G (with group composition written additively). Let Ĝ be the (abelian) dual group
of characters (see Sect. 2.2.2) and let the neutral element in Ĝ be ê. In this case we
have μ̂(χ) = ∫

G χ(g)μ(dg) for all χ ∈ Ĝ. Let F : Ĝ → C. The celebrated Bochner
theorem gives a necessary and sufficient condition for F = μ̂, for some μ ∈ P(G),
and this is precisely that F (̂e) = 1, F is continuous at ê and F is positive definite, i.e.

http://dx.doi.org/10.1007/978-3-319-07842-7_2
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n∑

i, j=1

ci c j F(xi − x j ) ≥ 0

for all n ∈ N, c1, . . . , cn ∈ C and all x1, . . . , xn ∈ Ĝ (see e.g. Heyer [96],
pp. 162–184 or Rudin [171], pp. 19–21). There is an analogue of this result if G
is a compact Lie group which we now describe. Further details and proofs are in
Heyer [95], pp. 57–59.7

We recall the coefficient algebra E(G) of G from Chap. 2. We say that a linear
functional φ : E(G) → C is continuous if given any sequence ( fn, n ∈ N) converg-
ing uniformly to f ∈ E(G), we have that (φ( fn), n ∈ N) converges to φ( f ). We say
that φ is positive if φ( f f ) ≥ 0 for all f ∈ E(G).

Theorem 4.3.1 If G is a compact Lie group, then for any positive continuous linear
functional φ on E(G) for which φ(1) = 1, there exists μ ∈ P(G) so that

〈μ̂(π)x, y〉 = φ(〈π(·)x, y〉),

for all π ∈ Ĝ, x, y ∈ Vπ .

As an alternative to Bochner’s theorem, we can find an interesting necessary and
sufficient condition for a family of compatible matrices to be the Fourier transform of
a finite measure if we introduce a new notion of positivity due to Lo and Ng [136], as
we will now demonstrate. To this end let C : Ĝ → M(Ĝ) be a compatible mapping.
We say that it is Lo-Ng positive if the following holds: Whenever B : Ĝ → M(Ĝ)

is any other compatible mapping for which

∑

π∈S

dπtr(π(g)B(π)) ≥ 0

for all g ∈ G for some finite subset8 S of Ĝ, then

∑

π∈S

dπtr(π(g)C(π)B(π)) ≥ 0

for all g ∈ G. It is immediate that if C is Lo-Ng positive and a ≥ 0, then
aC is also Lo-Ng positive. The following gives a useful alternative criterion for
Lo-Ng positivity:

Lemma 4.3.1 The compatible mapping C is Lo-Ng positive if and only for all
compatible mappings B : Ĝ → M(Ĝ),

∑
π∈S dπtr(π(g)B(π)) ≥ 0 for all g ∈ G

for some finite subset S of Ĝ implies that
∑

π∈S dπtr(B(π)C(π)) ≥ 0.

7 As a result of reading an early version of this manuscript, Herbert Heyer [97] was inspired to
prove a new Bochner-type theorem for central probability measures on compact groups.
8 Our definition is slightly different from that of Lo and Ng, who introduce an ordering of the
countable set Ĝ and instead of taking arbitrary finite subsets of Ĝ as we do, choose sets of the form
{1, 2, . . . , n}, with respect to their given ordering.

http://dx.doi.org/10.1007/978-3-319-07842-7_2
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Proof First suppose that C is indeed Lo-Ng positive. Then the required result follows
by taking g = e in the definition. Conversely suppose the given condition holds on
some finite subset S of Ĝ. By the assumption on B we have

∑

π∈S

dπtr(π(gh)B(π)) ≥ 0

for all g, h ∈ G. It follows that

∑

π∈S

dπtr(π(g)(B(π)π(h))) ≥ 0

for all g ∈ G. Then by the given condition, for all h ∈ G,

∑

π∈S

dπtr(π(h)C(π)B(π)) =
∑

π∈S

dπtr(C(π)(B(π)π(h))) ≥ 0,

and Lo-Ng positivity is established. �

Lemma 4.3.1 equips us with the tool to show that the set of all Lo-Ng positive
compatible mappings is closed under taking adjoints. To be precise, let C : Ĝ →
M(Ĝ) be a compatible mapping and define its adjoint C∗ : Ĝ → M(Ĝ) by the
prescription C∗(π) := C(π)∗ for all π ∈ Ĝ.

Lemma 4.3.2 If C is a Lo-Ng positive compatible mapping, then so is C∗.

Proof Let B : Ĝ → M(Ĝ) be a compatible mapping for which

∑

π∈S

dπtr(π(g)B(π)) ≥ 0

for all g ∈ G for some finite subset S of Ĝ. Then

∑

π∈S

dπtr(π(g)B(π)∗) =
∑

π∈S

dπtr(B(π)∗π(g))

=
∑

π∈S

dπtr(π(g−1)B(π))

=
∑

π∈S

dπtr(π(g−1)B(π)) ≥ 0.

So by Lemma 4.3.1,

∑

π∈S

dπtr(C(π)∗B(π)) =
∑

π∈S

dπtr(B(π)∗C(π)) =
∑

π∈S

dπtr(B(π)∗C(π)) ≥ 0,

and the result follows. �
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Before we proceed further we state a useful technical lemma

Lemma 4.3.3 Let B, C : Ĝ → M(Ĝ) be compatible mappings and let S, S′ be
finite subsets of Ĝ with S′ ⊆ S. Then

∫

G

(
∑

π′∈S′
dπ′ tr(π′(g−1)B(π′))

) (
∑

π∈S

dπtr(π(g)C(π))

)

dg (4.3.8)

=
∑

π∈S′
dπtr(B(π)C(π)).

Proof Write both traces on the left hand side of (4.3.8) as finite sums and then use
the Schur orthogonality relations (Corollary 2.2.3). �

The next result begins to establish the link between Lo-Ng positivity and the
Fourier transform. Let S be a finite subset of Ĝ and C : S → M(Ĝ) be compatible
(we may consider C as extended to the whole of Ĝ by defining it to be the zero
matrix on Ĝ − S). Note that fS,C ∈ C(G), where for each g ∈ G, fS,C (g) :=∑

π∈S dπtr(C(π)π(g)).

Proposition 4.3.1 Let S, C and fS,C be as above.

1. For all π ∈ Ĝ, C(π) = f̂S,C (π).

2. If fS,C ≥ 0, then C is Lo-Ng positive.

Proof 1. This follows by uniqueness of Fourier coefficients in the Fourier expan-
sion (2.3.7) of fS,C .

2. Suppose that B : Ĝ → M(Ĝ) is a compatible mapping for which

∑

π∈S′
dπtr(π(g)B(π)) ≥ 0

for all g ∈ G and some finite subset S′ of S. By the hypothesis on fS,C and
(4.3.8), it follows that ∑

π∈S′
dπtr(B(π)C(π)) ≥ 0

and so C is Lo-Ng positive by Lemma 4.3.1. �

Next we state another technical lemma:

Lemma 4.3.4 There exists a sequence (ψn, n ∈ N) of continuous non-negative
functions on G, with each ψn(g) = ∑

π∈Sn
dπz(n)

π χπ(g) where Sn is a finite subset

of Ĝ and z(n)
π ∈ C for all π ∈ Sn, n ∈ N which has the following properties:

(i)
∫

G ψn(g)dg = 1 for all n ∈ N;
(ii) Given any neighbourhood U of e and any ε > 0 there exists n0 ∈ N such that

ψn(g) < ε for all g ∈ U c and all n ≥ n0,
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(iii) limn→∞ z(n)
π = 1 for all π ∈ Ĝ.

Proof We follow Talman [202] Theorem A.7.1, pp. 96–98 for (i) and (ii) and Lo-Ng
[136] for (iii).

(i) First note that if π is a finite-dimensional representation of G, then by (3.3.13)
we easily deduce that

sup
g∈G

|χπ(g)| ≤ dπ.

Next observe that since G is a compact Lie group, it has a faithful finite-
dimensional representation π (see e.g. Theorem 4.1 in Bröcker and tom Dieck
[36], pp. 136–137) and for all g, h ∈ G with g �= h,

dπ∑

i, j=1

|πi j (g) − πi j (h)|2 > 0,

indeed, if there were equality, π would not be injective. Now

dπ∑

i, j=1

|πi j (g) − πi j (h)|2

=
dπ∑

i, j=1

(πi j (g) − πi j (h))(πi j (g) − πi j (h))

=
dπ∑

i, j=1

(πi j (g) − πi j (h))(π j i (g
−1) − π j i (h

−1))

= 2χπ(e) − χπ(gh−1) − χπ(gh−1).

Let π′ := π⊕ π. Then for all g ∈ G,χπ′(g) = χπ(g) + χπ(g), and we deduce
from the last display that for all g ∈ G \ {e}

χπ′(g) < χπ′(e) = dπ′ .

Incorporating this with our earlier estimate, we see that for all g ∈ G \ {e}

−dπ′ ≤ χπ′(g) < dπ′ .

Now define a new representation π′′ of G to be the direct sum of π′ and dπ′
copies of the trivial representation. Then for all g ∈ G,

χπ′′(g) = dπ′ + χπ′(g),

and the estimate just established yields, for all g ∈ G \ {e},

http://dx.doi.org/10.1007/978-3-319-07842-7_3
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0 ≤ χπ′′(g) < 2dπ′ = dπ′′ .

Now for each n ∈ N, g ∈ G define ψn(g) := cnχπ′′(g)n , where cn :=(∫
G χπ′′(g)ndg

)−1. Then by construction ψn is continuous, non-negative and∫
G ψn(g)dg = 1. By Theorem 2.4.2 (ii), χπ′′(g)n is the value at g of the

character of the n-fold tensor product of π′′, and so by Theorem 2.4.2 (iv),
χπ′′(g)n = ∑

π∈Sn
m(n)
π χπ (where m(n)

π is a non-negative integer). Hence the

complex numbers z(n)
π appearing in the statement of the lemma are given by

z(n)
π = cnm(n)

π

dπ
.

(ii) For simplicity we write χ := χπ′′ and d := dπ′′ for the remainder of this proof.
Let U be an open neighbourhood of e. Then G \ U is compact, and so there
exists g0 ∈ G \ U for which χ(g0) = supg∈G\U χ(g) and we have χ(g0) < d.
By continuity of g → χ(g) at g = e, given any ε > 0 there exists an open
neighbourhood V of e so that if g ∈ V , then d − ε < χ(g) < d + ε. Now

choose ε = d − χ(g0)

2
and we see that for all g ∈ G,χ(g) >

d + χ(g0)

2
.

Consequently, for each n ∈ N,

∫

V

χ(g)ndg > m(V )

(
d + χ(g0)

2

)n

.

Now

cn <

⎛

⎝
∫

V

χ(g)ndg

⎞

⎠

−1

<
1

m(V )

(
2

d + χ(g0)

)n

.

Then for all g ∈ G \ U we have

ψn(g) <
1

m(V )

(
2χ(g)

d + χ(g0)

)n

≤ 1

m(V )

(
2χ(g0)

d + χ(g0)

)n

,

and we can make the quantity on the right hand side arbitrarily small by taking
n to be sufficiently large.

(iii) If we take the inner product in L2(G) of ψn with the character of an arbitrary

representation in Ĝ and use Theorem 2.4.3, we can easily deduce that for each

n ∈ N,π ∈ Sn, z(n)
π = 1

dπ

∫
G ψn(g)χπ(g

−1)dg. Then we find that
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|z(n)
π − 1| = 1

dπ

∣
∣
∣
∣
∣
∣

∫

G

ψn(g)χπ(g
−1)dg − dπ

∫

G

ψn(g)dg

∣
∣
∣
∣
∣
∣

≤ 1

dπ

∫

U c

ψn(g)|χπ(g−1) − dπ|dg + 1

dπ

∫

U

ψn(g)|χπ(g−1) − dπ|dg,

and the required result follows by taking U sufficiently small, n sufficiently
large, and using the result of (ii) and the fact that g → χπ(g

−1) is continuous,
and takes the value dπ at e. �

The next result is the main one of this section.

Theorem 4.3.2 (The Lo-Ng Criterion) Let C : Ĝ → M(Ĝ) be compatible. Then
C(π) = μ̂(π) for all π ∈ Ĝ where μ ∈ P(G) if and only if C is Lo-Ng positive with
C(π0) = 1. Furthermore, μ is the weak limit of a sequence (μn, n ∈ N), where for
each n ∈ N,μn ∈ P(G) is absolutely continuous with respect to Haar measure and
has Radon-Nikodym derivative

hn(g) =
∑

π∈Sn

z(n)
π dπtr(π(g)C(π))

for all g ∈ G, where #Sm < #Sn < ∞ if m < n and π0 ∈ Sn for all n ∈ N.

Proof Assume that μ ∈ P(G) and
∑

π∈S dπtr(π(g)Bπ) ≥ 0 for all g ∈ G and some
finite subset S of Ĝ. Then

∑

π∈S

dπtr(μ̂(π)Bπ) =
∫

G

∑

π∈S

dπtr(π(g−1)Bπ)μ(dg) ≥ 0,

and so μ̂ : Ĝ → M(Ĝ) is Lo-Ng positive.

Conversely (and using the notation of Lemma 4.3.4), we have that for all n ∈
N,ψn(g) = ∑

π∈Sn
dπtr(π(g)[z(n)

π Idπ ]) ≥ 0 by Lemma 4.3.4, and so since C is
assumed to be Lo-Ng positive, it follows that

∑

π∈Sn

dπtr(π(g)z(n)
π C(π)) ≥ 0.

By Lemma 4.3.1 we deduce that the compatible mapping whose value at π ∈ Sn is
z(n)
π C(π) (and whose value at π /∈ Sn is the zero matrix) is also Lo-Ng positive. By

Proposition 4.3.1 (1),

z(n)
π C(π) =

∫

G

π(g−1)hn(g)dg.
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Since hn is continuous it is integrable, and as hn is non-negative, we can define a
Borel measure μn on G whose Radon-Nikodym derivative is hn . Using Peter-Weyl
theory (Corollary 2.2.4), we have

μn(G) =
∫

G

hn(g)dg

=
∫

G

hn(g)π0(g)dg

= z(n)
π0

C(π0) = 1.

The fact that z(n)
π0 = 1 follows from Lemma 4.3.4 (i) and the formula z(n)

π =
1

dπ

∫
G ψn(g)χπ(g

−1)dg that is established within the proof of that same lemma. By
Prohorov’s theorem, we can now assert that there is a subsequence (μnk , k ∈ N)

that converges weakly to a probability measure μ. By Theorem 4.2.5, we have
limk→∞ μ̂nk (π) = μ̂(π) for all π ∈ Ĝ. But by construction limk→∞ μ̂nk (π) =
limk→∞ z(nk)

π C(π) = C(π) by Lemma 4.3.4 (iii). Hence the converse is established.
To prove the last part of the theorem let h ∈ C(G). Then by the Peter-Weyl

theorem (Theorem 2.2.4), there exists a sequence of matrices (Hn, n ∈ N) where
each Hn acts in a finite-dimensional complex Hilbert space of dimension dn such that
h(g) = limn→∞

∑n
i=1 di tr(πi (g)

∗Hi ), and the convergence is uniform in g ∈ G.
Using Schur orthogonality and (4.3.8), we find that

∫

G

h(g)

⎛

⎝
∑

π∈Sn

dπz(n)
π tr(π(g)C(π))

⎞

⎠ dg

= lim
m→∞

∫

G

(
m∑

i=1

di tr(πi (g)
∗Hi )

) ⎛

⎝
∑

π∈Sn

dπz(n)
π tr(π(g)C(π))

⎞

⎠ dg

=
∑

π∈Sn

dπtr(H(π)z(n)
π C(π))

=
∫

G

⎛

⎝
∑

π∈Sn

dπtr(π(g)∗H(π))

⎞

⎠ hn(g)dg

→
∫

G

h(g)μ(dg),

as n → ∞, using the dominated convergence theorem.



98 4 Probability Measures on Compact Lie Groups

Remark

1. Although Lo-Ng positivity is an interesting theoretical result, it seems very
difficult to use in practice to determine whether a given family of compatible
matrices really is the Fourier transform of a finite measure.

2. As positive-definiteness (in the usual sense) is a key component of Bochner’s
theorem on locally compact abelian groups, it is worth pointing out that there is
a general notion of positive definiteness for functions on a more general locally
compact group G. Indeed, a continuous function f : G → C is positive definite
if and only if

∑n
i, j=1 ci c j f (gig

−1
j ) ≥ 0 for all g1, . . . , gn ∈ G, c1, . . . , cn ∈

C, n ∈ N. You can learn about these functions in e.g. Sect. 2.8 of Edwards [61]
or section 32 of Hewitt and Ross [92]. Note that there is even a Bochner theorem
which describes the structure of such functions as linear combinations of certain
elementary ones, but readers should be warned that it is not related to the Bochner
theorem that we discussed at the beginning of this section (i.e. it does not give
information about Fourier transforms of finite measures).

4.4 Absolute Continuity

We investigate absolute continuity of probability measures on G with respect to
normalised Haar measure m. We follow the account in Wehn [216].

Theorem 4.4.1 (Raikov-Williamson) Let μ ∈ P(G). Then μ ∈ Pac(G) if and only
if either μ(Eg) → μ(E) or μ(gE) → μ(E) as g → e for all E ∈ B(G).

Proof We only deal here with the case μ(Eg) → μ(E) as g → e. The other limit is
dealt with by a similar argument.

First assume that μ � m and let fμ := dμ

dm
. Then for all E ∈ B(G),

|μ(Eg) − μ(E)| ≤
∫

E

| fμ(hg
−1) − fμ(h)|dh

≤ ||Rg−1 fμ − fμ||1 → 0 as g → e,

by Proposition 1.2.1. Conversely, suppose that μ(Eg−1) → μ(E) as g → e and
suppose that E ∈ B(G) exists with m(E) = 0 and μ(E) > 0. We seek a contradic-
tion. Let ρ ∈ L1(G) be such that ρ ≥ 0 and

∫
G ρ(g)dg = 1. Then we may define a

measure νρ ∈ Pac(G) by νρ(A) = ∫
A ρ(g)dg for all A ∈ B(G). For all g ∈ G,

νρ(g
−1 E) =

∫

G

ρ(h)1E (gh)dh

=
∫

G

ρ(g−1h)1E (h)dh = 0,

http://dx.doi.org/10.1007/978-3-319-07842-7_2
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since m(E) = 0. Hence by (4.1.1)

(μ ∗ νρ)(E) =
∫

G

νρ(g
−1 E)μ(dg) = 0.

But again by (4.1.1), we have

(μ ∗ νρ)(E) =
∫

G

μ(Eg−1)νρ(dg) > 0,

and this yields the required contradiction. �

For each μ ∈ P(G) we define the associated convolution operator Tμ : Bb(G) →
Bb(G) by

(Tμ f )(σ) := ( f ∗ μ)(σ) =
∫

G

f (στ )μ(dτ ),

for all f ∈ Bb(G),σ ∈ G. It is easy to see that Tμ is linear and a contraction.
Furthermore, if μ, ν ∈ P(G) we have

Tμ∗ν = TμTν . (4.4.9)

It is an important fact that Tμ : C(G) → C(G). To see this, let σ1,σ2 ∈ G and
observe that for all f ∈ C(G),

|Tμ f (σ1) − Tμ f (σ2)| ≤
∫

G

| f (σ1τ ) − f (σ2τ )|μ(dτ ) ≤ ||Lσ−1
1

f − Lσ−1
2

f ||∞,

and the result follows by left uniform continuity of f (see Theorem A.2.1 in Appen-
dix A.2).

Before we state and prove the next result we recall that a subset S of C(G) is
equicontinuous if given any ε > 0, each g ∈ G has an open neighbourhood Ug so
that if h ∈ Ug , then | f (g)− f (h)| < ε for all f ∈ S. The next theorem was originally
established by Raikov [164], and we follow the account of Wehn [216].

Theorem 4.4.2 (Raikov) Let μ ∈ P(G). Then μ ∈ Pac(G) if and only if Tμ :
C(G) → C(G) is compact.

Proof First suppose that μ � m and write ρμ := dμ

dm
. Let ( fn, n ∈ N) be a bounded

sequence in C(G). Then for all g, h ∈ G, n ∈ N,
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Tμ fn(g) − Tμ fn(h) =
∫

G

fn(gτ )ρμ(τ )dτ −
∫

G

fn(hτ )ρμ(τ )dτ

=
∫

G

fn(τ )(ρμ(g
−1τ ) − ρμ(h

−1τ ))dτ ,

from which we easily deduce that

|Tμ fn(g) − Tμ fn(h)| ≤ sup
n∈N

|| fn||∞||Lgρμ − Lhρμ||1.

Then equicontinuity of {Tμ fn, n ∈ N} follows from Proposition 1.2.1. Uniform
boundedness of {Tμ fn, n ∈ N} is easily verified. We can now appeal to the Arzelà-
Ascoli theorem to deduce that {Tμ fn, n ∈ N} is relatively compact, and so contains
a convergent subsequence. It follows that Tμ is compact.

Conversely, suppose that Tμ is compact and let E be an open set in G. Then since
1E is lower semi-continuous, we can find a sequence ( fn, n ∈ N) in C(G) which
increases monotonically to 1E (see e.g. Nagami [152]). So in particular this sequence
is bounded. Hence by assumption, its image contains a convergent subsequence
(Tμ fnk , k ∈ N), and (uniformly in) g ∈ G,

lim
k→∞ Tμ fnk (g) = Tμ1E (g) = μ(g−1 E).

It follows that the mapping g → μ(g−1 E) is continuous, and so μ(g−1 E) → μ(E)

as g → e. A similar argument holds for the case where E is compact. By regularity
of μ, the same limiting behaviour holds for E ∈ B(G). So by Theorem 4.4.1 we
deduce that μ � m, as required. �

In the case G = �1, the celebrated theorem of F. and M. Riesz gives a sufficient
condition for a probability measureμ to be absolutely continuous. In that case Ĝ = Z

and

μ̂(n) = 1

2π

2π∫

0

e−inxμ(dx)

for each n ∈ Z. Their sufficient condition for absolute continuity is that μ̂(n) = 0
for all n < 0 (see e.g. Katznelson [113] p. 113). This result has been extended to
compact Lie groups by Brummelhuis [38] (see also [37]). For ease of exposition, we
state it here in the case where G is also connected and semisimple. Let π ∈ Ĝ and
recall that Vπ = ⊕

μ∈W(π) Vμ where W(π) is the set of weights of π. Let λ be the

highest weight and define V 0
π := Vπ � Vλ.

Theorem 4.4.3 (Brummelhuis) Let G be a compact, connected, semisimple Lie
group. If μ ∈ P(G) is such that μ̂(π)v = 0 for all v ∈ V 0

π and for all π ∈ Ĝ, then
μ � m.
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4.5 Regularity of Densities

In this section, we will investigate conditions for a probability measure on a compact
group to have a square-integrable, continuous and smooth density of various orders.
Although this topic is closely related to that of the Sect. 4.4, we will make no use of
the results that we obtained there.

In this section we first examine the case where μ ∈ P(G) has a square-integrable
density. The following result is established in Applebaum [8].

Theorem 4.5.1 Let G be a compact Lie group. Then μ ∈ P(G) has an L2-density
fμ if and only if ∑

π∈Ĝ

dπ||μ̂(π)||2H S < ∞. (4.5.10)

In this case
fμ =

∑

π∈Ĝ

dπtr(μ̂(π)π(·)) (4.5.11)

Proof For necessity, suppose that fμ ∈ L2(G) is the density of μ. Then f̂μ(π) =
μ̂(π) for allπ ∈ Ĝ and (4.5.10) follows from the Parseval-Plancherel identity ( 2.3.8).

For sufficiency define
fμ :=

∑

π∈Ĝ

dπtr(μ̂(π)π).

Then fμ ∈ L2(G) since by ( 2.3.8),

|| fμ||22 =
∑

π∈Ĝ

dπ||μ̂(π)||2H S < ∞,

and by uniqueness of Fourier coefficients (in the Hilbert space sense) f̂μ(π) = μ̂(π)

for all π ∈ Ĝ.9

Since Haar measure is finite, L2(G) ⊆ L1(G), and so fμ ∈ L1(G). Recall that
by Theorem 2.2.4 E(G), which is the algebra of all continuous functions on G that
have only finitely many non-zero Fourier coefficients, is norm dense in C(G). Let
h ∈ E(G). Then there exists a finite subset S of Ĝ so that

h(σ) =
∑

π∈S

dπtr(̂h(π)π(σ))

for all σ ∈ G. Furthermore, by the Schur orthogonality relations, ĥ(π) = 0 if π ∈ Sc.
Using the Parseval-Plancherel identity ( 2.3.9), for each h ∈ E(G):

9 To verify this directly, compute 〈 fμ,π′
i j 〉 for eachπ′ ∈ Ĝ, 1 ≤ i, j ≤ d ′; it is then a straightforward

application of the Peter-Weyl theorem (Corollary 2.2.4) to deduce that f̂μ(π′)i j = μ̂(π′)i j .

http://dx.doi.org/10.1007/978-3-319-07842-7_2
http://dx.doi.org/10.1007/978-3-319-07842-7_2
http://dx.doi.org/10.1007/978-3-319-07842-7_2
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∫

G

h(σ) fμ(σ)dσ =
∑

π∈Ĝ

dπtr(̂h(π)μ̂(π)∗)

=
∑

π∈S

dπtr(̂h(π)μ̂(π)∗)

=
∫

G

∑

π∈S

dπtr(̂h(π)π(σ))μ(dσ)

=
∫

G

h(σ)μ(dσ).

By a standard density argument, it then follows that

∫

G

h(σ) fμ(σ)dσ =
∫

G

h(σ)μ(dσ),

for all h ∈ C(G). The Riesz representation theorem implies that fμ is real valued
and fμ(σ)dσ = μ(dσ). The fact that fμ is non-negative a.e. then follows from the
Jordan decomposition for signed measures (see Appendix A.5). �

Note that we can also write (4.5.11) as

fμ = 1 +
∑

π∈Ĝ\{π0}
dπtr(μ̂(π)π(·)),

and that such a representation is often found in the literature.
It is easily seen that if μ is central, so that μ̂(π) = cπ Iπ for all π ∈ Ĝ (where

cπ ∈ C), and has L2-density fμ, then fμ is central (a.e.). Then from (4.5.11) we have

fμ =
∑

π∈Ĝ

dπcπχπ, (4.5.12)

in the L2 sense.
Next we examine continuity of densities:

Proposition 4.5.1 Let μ ∈ P(G). A sufficient condition for μ to have a continuous
density fμ is that the infinite series

∑
π∈Ĝ dπtr(μ̂(π)π(σ)) converges uniformly in

σ ∈ G.

Proof Define fμ(σ) = ∑
π∈Ĝ dπtr(μ̂(π)π(σ)) for all σ ∈ G. Then fμ ∈ C(G), and

by uniqueness of Fourier coefficients, f̂μ(π) = μ̂(π) for all π ∈ Ĝ. Now argue as in
the proof of Theorem 4.5.1. �

More concrete sufficient conditions for μ to have a continuous density are as
follows. In the second of these, for each μ ∈ P(G) we employ the notation μ̂(λ) :=
μ̂(πλ), where λ ∈ D is the highest weight corresponding to πλ ∈ Ĝ:
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• ∑
π∈Ĝ d

3
2
π ||μ̂(π)||H S < ∞,

• ||μ̂(πλ)||H S = O(|λ|−s) as |λ| → ∞, where s > r + m

2
.

The first of these is implicit in the first part of the proof of Proposition 3.3.2
(see also Faraut [63], pp. 117–119). and the second is a direct consequence of the
statement of that same proposition.

Next we investigate differentiability of densities. Recall that {κπ,π ∈ Ĝ} is the
Casimir spectrum of G.

Theorem 4.5.2 If μ ∈ P(G) and there exists p ∈ N so that

∑

π∈Ĝ

dπ(1 + κπ)
p||μ̂(π)||2H S < ∞,

then μ has a Ck density for all k < p − d

2
.

Proof Since κπ ≥ 0 for all π ∈ Ĝ, we have
∑

π∈Ĝ dπ||μ̂(π)||2H S < ∞, and so by
Theorem 4.5.1, μ has a L2-density fμ and f̂μ(π) = μ̂(π) for all π ∈ Ĝ. The result
then follows by Proposition 3.1.4, and the Sobolev embedding theorem (Theorem
3.1.3). �

The next result establishes necessary and sufficient conditions for densities to
exist and be C∞. It was first established in Applebaum [12]. Recall that S(D) is the
Sugiura space that was introduced in Sect. 3.4.

Theorem 4.5.3 For G a compact connected Lie group, μ ∈ P(G) has a C∞ density
if and only if μ̂ ∈ S(D).

Proof Necessity is obvious. For sufficiency it is enough by Theorem 3.4.3 to show
that μ has an L2-density. Choose s > r , so that Suguira’s zeta function (see below)
converges (c.f. Theorem 3.2.1). Then using Theorem 4.5.1 we have

∑

λ∈D−{0}
dλ||μ̂λ||2H S ≤ N

∑

λ∈D−{0}
|λ|m ||μ̂λ||2H S

≤ N sup
λ∈D−{0}

|λ|m+s ||μ̂λ||2H S

∑

λ∈D−{0}

1

|λ|s
< ∞.

�
The following result gives an application of Theorem 4.5.3. First we note a useful

and easily verified inequality for matrices. If A, B ∈ Mn(C), then

||AB||H S ≤ ||A||op||B||H S and ||AB||H S ≤ ||B||op||A||H S (4.5.13)

Corollary 4.5.1 Let G be a compact connected Lie group. Let μ ∈ P(G) be arbi-
trary and γt,σ be a standard Gaussian measure with parameters t,σ > 0. Then the
measures μ ∗ γt,σ and γt,σ ∗ μ have smooth densities.

http://dx.doi.org/10.1007/978-3-319-07842-7_3
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Proof It suffices to establish the result for μ ∗ γt,σ . First note that by Theorem 4.2.1,
(4.5.13) and (4.2.7) for all λ ∈ D,

||μ̂ ∗ γt,σ(λ)||H S = ||γ̂t,σ(λ)μ̂(λ)||H S ≤ ||μ̂(λ)||op||γ̂t,σ(λ)||H S ≤ dλe−tσκλ .

But then using the dimension estimate of Corollary 2.5.2 and (2.5.23) we obtain for
all p ∈ N,

lim sup
|λ|→∞

|λ|p||μ̂ ∗ γt,σ(λ)||H S ≤ lim
|λ|→∞

|λ|pdλe−tσκλ ≤ C lim
|λ|→∞

|λ|p+me−tσ|λ|2 = 0,

and the result follows from Theorem 4.5.3. �

4.6 Idempotents and Convolution Powers

We say that μ ∈ P(G) is idempotent if μ ∗ μ = μ. Equivalently by Theorems 4.2.1
and 4.2.3, μ is idempotent if and only if μ̂(π)2 = μ̂(π) for all π ∈ Ĝ. It is easy to
see that normalised Haar measure m on G is idempotent. More generally, let H be
a closed subgroup of G and let m(0)

H denote its normalised Haar measure. We extend

m(0)
H to a measure m H ∈ P(G) that has support H by the prescription

m H (B) = m(0)
H (B ∩ H)

for all B ∈ B(G). For example if H = {e}, then m H = δe. It is again easy to see that
m H is always idempotent. The following result is due to Wendel [217] for compact
groups, but note that it also holds in general locally compact groups (see Heyer [95]
Theorem 1.2.10, p. 34).10

Theorem 4.6.1 If μ ∈ P(G) is idempotent, then μ = m H for some closed subgroup
H of G. Moreover, H = supp(μ).

Proof For H := supp(μ), by (4.1.2) we have H = H2, and so H is a semigroup
under the group law. It is also closed, and hence compact. It is known that any subset
of G that has these properties is a subgroup (see e.g. Lemma 2 in Gelbaum et. al.
[71] and also Corollary 1.2.9. on p. 34 of Heyer [95]). Now let f ∈ C(H, R), and
define for each h ∈ H :

A f (h) =
∫

G

f (gh)μ(dg).

Using Proposition 1.2.1 it is easily verified that A f ∈ C(H, R). Now let h0 be the
point in G where A f attains its maximum value. From now on we denote f1 := Rho f .

10 Our standing hypothesis remains that G is compact Lie, but observe that the proof of Theorem
4.6.1 requires no use of Lie structure.

http://dx.doi.org/10.1007/978-3-319-07842-7_2
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Then A f1 attains its maximum at e. Then since μ is idempotent:

A f1(e) =
∫

H

f1(g)μ(dg)

=
∫

H

f1(g)(μ ∗ μ)(dg)

=
∫

H

∫

H

f1(g1g2)μ(dg1)μ(dg2)

=
∫

H

A f1(g2)μ(dg2).

Hence we see that
∫

H (A f1(e)− A f1(g2))μ(dg2) = 0, and so A f1(e)− A f1(g) for
all g ∈ H . It follows by uniqueness of Haar measure, and the fact that μ(H) = 1,
that μ = m H , as required. �

Let μ ∈ P(G) and n ∈ N. We define the nth convolution power of μ to be

μ∗(n) = μ∗· · ·∗μ (n times). Note that we then have for all π ∈ Ĝ, μ̂∗(n)(π) = μ̂(π)n .
Let (�,F , P) be a probability space and (Xn, n ∈ N) be a sequence of independent,
identically distributed (or i.i.d.) G–valued random variables. Let (Sn, n ∈ N) be the
associated G-valued random walk, so that for each n ∈ N, Sn = X1 X2 . . . Xn . Then
the law of Sn is precisely μ∗(n). It is of interest to study the asymptotic behaviour
of the random walk as for large n. In particular we might consider the weak limit
of μ∗(n) as n → ∞. It is clear that if the limit exists, it is an idempotent, and so by
Theorem 4.6.1

lim
n→∞μ∗(n) = m H ,

for some closed subgroup H of G.
Necessary and sufficient conditions for the limit to exist were found by Stromberg

[198]. We quote his result but omit the proof (see also Heyer [95] Theorem 2.1.4,
pp. 91–92).

Theorem 4.6.2 Let μ ∈ P(G) and let K be the smallest closed subgroup of G
containing supp(μ). Then limn→∞ μ∗(n) exists if and only if supp(μ) is not contained
in any coset of a proper closed normal subgroup of K .

Kawada and Itô [114] established an equidistribution theorem which gives
conditions for the limit to exist and be normalised Haar measure m on the whole
group. First we need a definition. We say that μ ∈ P(G) is aperiodic if supp(μ) is
not contained in a left or right coset of a proper closed normal subgroup of G. We
then have the following:

Theorem 4.6.3 (Kawada-Itô equidistribution theorem) If μ ∈ P(G) is aperiodic,
then (μ∗(n), n ∈ N) converges weakly to normalised Haar measure.
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Proof This is based on the proof of Theorem 8 in [114]. By Theorem 4.2.6, it is
sufficient to show that limn→∞ μ̂(π)n = 0 for all non-trivial π ∈ Ĝ. This is clearly
equivalent to the requirement that all the eigenvalues of μ̂ have modulus strictly less
than 1. Note that since μ̂(π) is a contraction, its eigenvalues cannot have moduli that
exceed 1. Now let λ be an eigenvalue of μ̂(π). Then we can find a unitary matrix Uπ

acting in Vπ so that

Uπμ̂(π)U−1
π =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 0 · · · 0
0
·
· Dπ

·
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Dπ is some (dπ − 1) × (dπ − 1) matrix. In particular, we have

λ = (Uπμ̂(π)U−1
π )11 =

∫

G

(Uππ(g−1)U−1
π )11μ(dg),

and if |λ| = 1, (Uππ(g−1)U−1
π )11 = λ for all g ∈ G for which g−1 ∈ supp(μ).

Now suppose that λ = 1. Then we have

supp(μ) ⊆ H :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g ∈ G, Uππ(g−1)U−1
π =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
0
·
· Eπ(g)
·
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

where Eπ(g) is some (dπ − 1)× (dπ − 1) matrix. But H is a proper closed subgroup
of G and this contradicts aperiodicity of μ.

Now suppose that λ = eiθ for some θ ∈ R\2πZ. Then arguing as above we can
find a unitary matrixUπ so that eiθ = (Uπμ̂(π)U−1

π )11 = ∫
G(Uππ(g−1)U−1

π )11μ(dg)
and

supp(μ) ⊆ � :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g ∈ G, Uππ(g−1)U−1
π =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

eiθ 0 · · · 0
0
·
· Fπ(g)
·
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,
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where Fπ(g) is some (dπ − 1) × (dπ − 1) matrix. Now let g0 ∈ G be such that
(Vππ(g−1

0 )V −1
π )11 = eiθ. Then it is easily verified that � = g0 H , and this again

contradicts aperiodicity. The required result follows. �

We briefly draw the reader’s attention to more recent work in this area. Shlosman
and Major [142] and Shlosman [179, 180] were able to extend the Kawada-Itô
theorem to the case where μ has a density and there is uniform convergence of
its convolution powers to the uniform density. Johnson and Suhov [109] used the
Kullback-Liebler distance to obtain exponential rates of convergence and Harremoës
[81] examined this from the perspective of uniform convergence of the rate distortion
function.

4.7 Convolution Operators

In this and the Sect. 4.8 we will drop the condition that G be a compact Lie group.
We work more generally and assume (unless otherwise stated) that G is a locally
compact, Hausdorff and second countable topological group. Convolution operators
were already introduced in Sect. 4.4 for compact Lie groups. Now we study them
more systematically. Let μ ∈ P(G). The associated right convolution operator P(R)

μ

is defined on Bb(G) by the prescription P(R)
μ f = f ∗ μ for f ∈ Bb(G), so that

(P(R)
μ f )(g) =

∫

G

f (gh)μ(dh)

for all g ∈ G. Similarly the left convolution operator P(L)
μ is defined by

(P(L)
μ f )(g) =

∫

G

f (hg)μ(dh).

The reader may check that these are related by the identity

P(L)
μ f = ˜

P(R)
μ̃ f̃ .

Furthermore, if μ1,μ2 ∈ P(G), then P(R)
μ1 P(L)

μ2 = P(L)
μ2 P(R)

μ1 . We also have that for

all μ ∈ P(G), g ∈ G, LgP(R)
μ = P(R)

μ Lg and RgP(L)
μ = P(L)

μ Rg .

From now on we will almost always work with P(R)
μ , which we will denote simply

as Pμ.

Proposition 4.7.1 For each μ ∈ P(G),

1. Pμ is linear,
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2. Pμ1 = 1,
3. If f ≥ 0, then Pμ f ≥ 0,
4. Pμ is a contraction,
5. Pμ : C0(G) → C0(G),

6. If μ1,μ2 ∈ P(G), then
Pμ1∗μ2 = Pμ1 Pμ2 .

Proof (1)–(4) are all easy exercises. For (5) first note that continuity is straightforward
to establish by using a dominated convergence argument (or see the discussion before
Theorem 4.4.2). To see that if f vanishes at infinity then so does Pμ f , let G∞ :=
G ∪ {∞} be the one-point compactification of G (see Appendix A.1). We extend
μ to a probability measure on (G∞,B(G∞)) by the requirement that μ({∞}) = 0.
Then Pμ extends to a linear operator from C(G∞) to C(G∞). If F ∈ C(G∞) then
F ∈ C0(G) if and only if limg→∞ F(g) = 0. Since Rh : C0(G) → C0(G) for all
h ∈ G, the required result follows by using the dominated convergence theorem. To
show (6), let f ∈ Bb(G) and g ∈ G. By Fubini’s theorem,

(Pμ1∗μ2 f )(g) =
∫

G

f (gh)(μ1 ∗ μ2)(dh)

=
∫

G

∫

G

f (gh1h2)μ1(dh1)μ2(dh2)

=
∫

G

⎛

⎝
∫

G

f (gh1h2)μ2(dh2)

⎞

⎠μ1(dh1)

=
∫

G

(Pμ2 f )(gh1)μ1(dh1)

= (Pμ1 Pμ2 f )(g). �
Note that if G is compact, then we use C(G) in place of C0(G) in

Proposition 4.7.1(5).
There is a useful link between the convolution operator and Fourier transform of

the measure on compact groups.

Proposition 4.7.2 If μ is a Borel probability measure on a compact Lie group G,
then for all π ∈ Ĝ, 1 ≤ i, j ≤ dπ

̂̃μ(π)i j = Pμπi j (e).
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Proof

Pμπi j (e) =
∫

G

πi j (τ )μ(dτ )

=
∫

G

πi j (τ
−1)μ̃(dτ )

= ̂̃μ(π)i j �

Returning to the general case, we easily deduce from Proposition 4.7.1 (6) that
for all μ ∈ P(G), n ∈ N,

Pμ∗(n) = Pn
μ . (4.7.14)

Note also that Pn
μ is the n-step transition operator for the random walk (S(n), n ∈

N). Indeed, for all f ∈ Bb(G), g ∈ G,

(Pn
μ f )(g) = E( f (gS(n))).

In the following we fix a right Haar measure m R on G and consider the p-norms
|| · ||p in the spaces L p(G, m R) for 1 ≤ p < ∞.

Proposition 4.7.3 For all μ ∈ P(G), f ∈ Cc(G), 1 ≤ p < ∞,

||Pμ f ||p ≤ || f ||p.

Proof By Jensen’s inequality and Fubini’s theorem,

||Pμ f ||p
p =

∫

G

|Pμ f (g)|pm R(dg)

=
∫

G

∣
∣
∣
∣
∣
∣

∫

G

f (gh)μ(dh)

∣
∣
∣
∣
∣
∣

p

m R(dg)

≤
∫

G

∫

G
| f (gh)|pμ(dh)m R(dg)

=
∫

G

∫

G

| f (gh)|pm R(dg)μ(dh)

=
∫

G

| f (g)|pm R(dg) = || f ||p
p.

�

We have just shown that Pμ is a contraction from Cc(G) to L p(G, m R) and so it
extends to a contraction on the whole of L p(G, m R). We will continue to denote the
operator by the same symbol Pμ whenever we consider it as acting in the L p-spaces.
For the case p = 2 the reader may verify the useful result
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P∗
μ = P̃μ. (4.7.15)

Let f be a non-negative measurable function defined on G. It is said to be μ-
harmonic if Pμ f = f , μ-superharmonic if Pμ f ≤ f and μ-subharmonic if Pμ f ≥
f . Clearly non-negative constant functions are μ-harmonic. In the Sect. 4.8 we will
investigate a condition under which they are the only ones. Note that if (Sn, n ∈ N)

is the random walk associated to μ and f is bounded and μ-superharmonic, then
( f (Sn), n ∈ N) is a supermartingale with respect to the filtration (Fn, n ∈ N) of
F where for each n ∈ N,Fn := σ{X1, . . . , Xn}. To see this, observe that by the
Markov property

E( f (Sn+1)|Fn) = (Pμ f )(Sn) ≤ f (Sn).

Similarly we obtain a martingale (respectively, submartingale) if f is μ-harmonic
(respectively, μ-subharmonic).

Now let M(G) be the space of all regular Borel measures on G. For each
μ ∈ M(G), we may consider the dual action P∗

μ of Pμ on M(G) defined by the
prescription:

(P∗
μρ)( f ) = ρ(Pμ f ),

for all ρ ∈ M(G), f ∈ Cc(G). We generalise the definitions we gave above for
functions and say that ρ ∈ M(G) is μ-harmonic if P∗

μρ = ρ, μ-superharmonic
if P∗

μρ ≤ ρ and μ-subharmonic if P∗
μρ ≥ ρ.11 Now let ρ ∈ M(G) be absolutely

continuous with respect to m R with fρ := dρ

dm R
. It is left as an exercise for the reader

to check that fρ is μ-superharmonic if and only if ρ is μ̃-superharmonic.
We give some useful properties of μ-superharmonic functions.

Proposition 4.7.4 Let μ ∈ P(G)

1. Suppose that λ, ρ ∈ M(G). If ρ is μ-superharmonic, then so is λ ∗ ρ.
2. If f is μ-superharmonic, then so is f ∧ c for any c > 0.

Proof

1. For all f ∈ Cc(G)+ we have

11 If ρ1, ρ2 ∈ M(G) we write ρ1 ≥ ρ2 if ρ1( f ) ≥ ρ2( f ) for all f ∈ Cc(G)+.
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P∗
μ (λ ∗ ρ)( f ) =

∫

G

∫

G

(P(R)
μ f )(gh)λ(dg)ρ(dh)

=
∫

G

(P(L)
λ P(R)

μ f )(h)ρ(dh)

=
∫

G

(P(R)
μ P(L)

λ f )(h)ρ(dh)

= (P∗
μρ)(P(L)

λ f )

≤ ρ(P(L)
λ f ) = (λ ∗ ρ)( f ).

2. This follows from the easily verified fact that Pμ( f ∧ c) ≤ Pμ f ∧ c. �
Next we establish a connection between properties of convolution operators and

existence and regularity of densities as discussed in Sect. 4.5. This result will be
useful for us in the next chapter. Readers requiring background on Hilbert-Schmidt
operators are referred to Appendix A.6. This result was obtained in Applebaum [9].

Theorem 4.7.1 Let G be a compact Lie group and μ ∈ P(G). The operator Pμ
acting in L2(G) is Hilbert-Schmidt if and only if μ has a square-integrable density.

Proof For sufficiency, assume that μ has density fμ ∈ L2(G, R). Then for all g ∈
L2(G),σ ∈ G, (Pμg)(σ) = ∫

G g(στ ) fμ(τ )dτ = ∫
G g(τ ) fμ(σ−1τ )dτ . Now define

the mapping kμ : G × G → R by kμ(σ, τ ) := fμ(σ−1τ ). Then kμ ∈ L2(G × G)

since by left-invariance of (normalised) Haar measure, and Fubini’s theorem

∫

G

∫

G

|kμ(σ, τ )|2dσdτ =
∫

G

∫

G

| fμ(σ
−1τ )|2dτdσ = || fμ||22 < ∞,

and the result follows by Theorem A.6.4 in Appendix A.6. For necessity, suppose
that Pμ is Hilbert-Schmidt. Then it has a kernel kμ ∈ L2(G × G) and

(Pμ f )(σ) =
∫

G

f (τ )kμ(σ, τ )dτ .

In particular, for each A ∈ B(G),

μ(A) = Pμ1A(e) =
∫

A

kμ(e, τ )dτ .

Then for all g ∈ C(G, R),
∫

G g(σ)μ(dσ) = ∫
G g(σ)kμ(e,σ)dσ. It then follows by

the argument used in the last part of the proof of Theorem 4.5.1 that μ is absolutely
continuous with respect to m with density fμ := kμ(e, ·), and we also have fμ ∈
L2(G, R). �
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A linear operator T : Bb(G) → Bb(G) is said to be strong Feller if Ran(T ) ⊆
Cb(G). The next theorem can essentially be found in Hewitt and Ross [91] (see (iv)
on p. 298). The probabilistic interpretation was first observed by Hawkes [82] for
the case G = R

n , where a more detailed analysis appears to be possible.

Theorem 4.7.2 If μ ∈ P(G) has a continuous density gμ with respect to left Haar
measure, then the convolution operator Pμ is strong Feller.

Proof We need only establish continuity. Let σ ∈ G and (σn, n ∈ N) be a sequence
in G that converges to σ. Then for all f ∈ Bb(G), n ∈ N,

|Pμ f (σ) − Pμ f (σn)| =
∣
∣
∣
∣
∣
∣

∫

G

f (στ )μ(dτ ) −
∫

G

f (σnτ )μ(dτ )

∣
∣
∣
∣
∣
∣

≤
∫

G

| f (τ )||gμ(σ−1τ ) − gμ(σ
−1
n τ )|dτ

≤ sup
τ∈G

| f (τ )|
∫

G

|gμ(σ−1τ ) − gμ(σ
−1
n τ )|dτ

≤ sup
τ∈G

| f (τ )|
∫

G

(gμ(σ
−1τ ) + gμ(σ

−1
n τ ))dτ

≤ 2 sup
τ∈G

| f (τ )|.

The result then follows by dominated convergence and the continuity of gμ. �

Finally we establish a useful spectral property for the case where μ is a central
measure and G is compact.

Theorem 4.7.3 If G is compact and μ ∈ Pc(G), then {πi j , 1 ≤ i, j ≤ dπ,π ∈ Ĝ}
is a complete set of eigenfunctions for Pμ acting in L2(G). Moreover, we have

Pμπi j = cππi j

for all 1 ≤ i, j ≤ dπ,π ∈ Ĝ, where μ̂(π) = cπ Iπ (c.f. Corollary 4.2.2).

Proof For all σ ∈ G, using Theorem 4.2.1 (4) we have

Pμπi j (σ) =
∫

G

πi j (στ )μ(dτ )

=
dπ∑

k=1

πik(σ)

∫

G

πk j (τ )μ(dτ )
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=
dπ∑

k=1

πik(σ)̂̃μ(π)k j

=
dπ∑

k=1

πik(σ)μ̂(π)
∗
k j

=
dπ∑

k=1

πikcπδk j

= cππi j (σ),

and the result follows. �

4.8 Recurrence

If μ ∈ P(G) we define μ∗(0) = δe. Throughout this section we will assume that
μ ∈ P(G) is regular and also full, i.e. the closed subgroup of G that is generated by
supp(μ) is G. We define the potential measure Vμ of μ by the prescription

Vμ :=
∞∑

n=0

μ∗(n),

so that Vμ( f ) = ∑∞
n=0 μ(Pn

μ f ) for each f ∈ Cc(G)+. If Vμ is regular, then Vμ( f ) <

∞; otherwise it may take the value ∞.
We say that μ is transient if Vμ(A) < ∞ for all open relatively compact subsets

of G and recurrent if Vμ(A) = ∞ for all non-empty open subsets of G. We say that
the group G is recurrent if P(G) contains at least one full recurrent measure.

Theorem 4.8.1 (Recurrence-Transience Dichotomy) Every full μ ∈ P(G) is either
recurrent or transient.

We omit the proof, which can be obtained by combining the results of Theorem
22 (pp. 19–20) and Theorem 26 (pp. 23–24) in Guivarc’h et al. [75].

From the random-walk perspective, recurrence is equivalent to the requirement
that for all g ∈ G, P

(
limn→∞(Sn ∈ Vg)|S(0) = e

) = 1 for every neighbourhood
Vg of g. From the point of view of this monograph a key result is the following:

Proposition 4.8.1 1. Any full probability measure on a compact group is recurrent.
2. Every compact group G is recurrent.

Proof 1. Let μ ∈ P(G) be full. By the recurrence-transience dichotomy (Theorem
4.8.1), if Vμ(A) = ∞ for some open relatively compact subset A of G, then G
cannot be transient and so must be recurrent. But we may take A = G and then
Vμ(G) = ∑∞

n=0 μ
∗(n)(G) = ∞.
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2. Take μ to be normalised Haar measure on G. �

Lemma 4.8.1 Let μ be a full measure in P(G) and f be continuous and μ-
superharmonic. If μ is recurrent, then f is μ-harmonic.

Proof We follow Guivarc’h et al [75] p. 43. Without loss of generality, we suppose
that f − Pμ f > 0 and seek a contradiction. By the recurrence assumption,

∞ = Vμ( f − Pμ f ) =
∞∑

n=0

(Pn
μ ( f − Pμ f )),

and so
∞ = lim

n→∞( f − Pn
μ f ) ≤ f,

giving the required contradiction. �

The main result of this section is the following. Our proof closely mirrors that of
Guivarc’h et al [75] Proposition 45, pp. 42–44.

Theorem 4.8.2 Let μ ∈ P(G) be full. The following are equivalent.

(i) μ is recurrent.
(ii) Every μ-superharmonic continuous function on G is constant.

(iii) Every μ-superharmonic measure is a right Haar measure.
(iv) Every μ-superharmonic function on G is constant m R-almost everywhere.

Proof (i) ⇒ (ii). Let f be a continuous μ-superharmonic function on G. By Lemma
4.8.1 it is μ-harmonic. Assume that f is bounded and suppose that it attains it
maximum value, so there exists g0 ∈ G such that f (g0) = supg∈G f (g). Then
we have

f (g0) = (Pμ f )(g0) =
∫

G

f (g0h)μ(dh),

and so ∫

G

( f (g0) − f (g0h))μ(dh) = 0.

It follows that f (g0) = f (g0h) for all h ∈ g−1
0 supp(μ). By repeatedly using the fact

that f is harmonic we deduce that f (g0) = f (g0h1 . . . hn) for all h1, . . . , hn, n ∈ N

such that g0h1 . . . hn ∈ supp(μ). Repeatedly applying Proposition 4.7.4, wherein λ
is taken to be μ̃, allows us to repeat the previous argument with any hi , i = 1, . . . , n
replaced by h−1

i . Finally, using the continuity of f and the fact that μ is full, we
deduce that f is constant. To extend this result to the general case, observe that if
f �= 0, we can replace f by f ∧ c where c > 0 and appeal to Proposition 4.7.4(2).

(ii) ⇒ (i). We assume that μ is transient and seek a contradiction. Let f ∈
Cc(G)+ be non-trivial and define F f = f ∗ Vμ, so that for all g ∈ G, F f (g) =
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∑∞
n=0 f (gh)μ∗(n)(dh). By a standard use of dominated convergence, we can see

that F f is continuous. Then it is easily verified that

PμF f = F f − f ≤ F f ,

and so F f is both continuous and μ-superharmonic. Hence it is constant, and so
f = PμF f − F f = 0, giving the desired contradiction.

(ii) ⇒ (iii). Assume that ρ ∈ M(G) is μ̃-superharmonic. Choose an arbitrary
ψ ∈ Cc(G) and let αψ be the measure of compact support that has Radon-Nikodym

derivative
dαψ
dm R

= ψ with respect to right Haar measure. By Proposition 4.7.4(1)

αψ ∗ ρ is μ̃-superharmonic, and it is easily verified that this measure is absolutely
continuous with respect to right Haar measure, and has Radon-Nikodym derivative
Fψ where Fψ(g) = ∫

G ψ(gh−1)ρ(dh) for all g ∈ G. The mapping Fψ is clearly
non-negative, continuous and it is μ-superharmonic. Then it is constant by (ii). So
Fψ(g) = Fψ(e) for all g ∈ G. Then for all ψ ∈ Cc(G), g ∈ G,

∫

G

ψ(gh−1)ρ(dh) =
∫

G

ψ(h−1)ρ(dh).

It follows that ρ̃ is a left Haar measure and so ρ is a right Haar measure.
(iii) ⇒ (iv). Let f ∈ Bb(G)+ and consider the measure ρ f ∈ M(G) for which

dρ f

dm R
= f . If f is μ-superharmonic, then ρ f is μ̃-superharmonic, and so ρ f is a

right Haar measure. It follows that f is constant almost everywhere with respect to
m R . If f is not bounded, we can again replace f by f ∧ c where c > 0 and use
Proposition 4.7.4(2).

(iv) ⇒ (ii) is obvious. �

Let M be a Hausdorff topological space and let P(M) be the space of all regular
Borel probability measures on M . A continuous mappingα : G×M → M for which
α(e, x) = x for all x ∈ M is called an action of G on M . An action is transitive if for
all g1, g2 ∈ G, x ∈ M,α(g1,α(g2, x)) = α(g1g2, x). A locally compact Hausdorff
group G is said to be amenable in action12 if for every transitive action α on every
compact space M , there exists a regular Borel probability measure μM on M such
that for all f ∈ C(M), g ∈ G

∫

M

f (α(g, x))μM (dx) =
∫

G

f (x)μM (dx).

12 This term should not be confused with the notion of an amenable group, which is a group that
possesses an invariant mean in the sense of the existence of a positive linear functional on L∞(G)

that is invariant with respect to left, or right translations. Such groups play an important role in
ergodic theory, see e.g. Ornstein and Weiss [154].
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The proof of the following theorem is based on that in Guivarc’h et al. [75]
(pp. 45–47). We will need the notion of the convolution of μ ∈ P(G) and λ ∈ P(M)

relative to a given transitive action α. This is the measure μ ∗α λ ∈ P(M) such that
for all A ∈ B(M):

(μ ∗α λ)(A) :=
∫

M

∫

G

1A(α(g, x))μ(dg)λ(dx).

Theorem 4.8.3 Every recurrent group is amenable in action.

Proof Let μ be a full recurrent probability measure on G and ν ∈ P(M) be arbitrary.

For each n ∈ N define μn := 1
n

∑n−1
k=0 μ

∗(k). Then (μn ∗α ν, n ∈ N) is weakly
relatively compact and so has a subsequence (μnk ∗α ν, k ∈ N) that converges
weakly to some λ ∈ P(M). If we can prove that λ is invariant, then we are done. We
first show that μ ∗α λ = λ. Indeed, we have for all f ∈ C(M), using the transitivity
of α,

(μ ∗α λ)( f ) =
∫

M

∫

G

f (α(g, x))μ(dg)λ(dx)

= lim
k→∞

∫

M

∫

G

∫

G

f (α(gh, x))μ(dg)μk(dh)ν(dx)

= lim
k→∞

∫

M

f (x)[(μ ∗ μk) ∗α ν](dx)

= lim
k→∞

∫

M

f (x)(μk ∗α ν)(dx) = λ( f ).

To see that λ is indeed invariant, let f ∈ C(M)+ and define � f ∈ C(G)+ by
� f (g) = ∫

M f (α(g, x))λ(dx) for g ∈ G. Then � f is μ-harmonic, for by Fubini’s
theorem

Pμ� f (g) =
∫

M

∫

G

f (α(gh, x))μ(dh)λ(dx)

=
∫

M

f (α(g, x))(μ ∗α λ)(dx)

=
∫

M

f (α(g, x))λ(dx) = � f (g).

So by Theorem 4.8.2, � f is constant, and hence for all g ∈ G,
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∫

M

f (α(g, x))λ(dx) = � f (g) = � f (e) =
∫

M

f (α(e, x))λ(dx) =
∫

M

f (x)λ(dx),

and the result follows. �

For example, let H be a closed subgroup of a compact group G and M = G/H be
the (compact) homogeneous space of left cosets. Define the natural action of G on M
by α(g, g′ H) = gg′H for all g, g′ ∈ G. This is clearly continuous and transitive. G
is recurrent by Proposition 4.8.1, and so by Theorem 4.8.3 we can assert the existence
of μM ∈ P(M) so that for all g ∈ G

∫

M

f (gx)μM (dx) =
∫

M

f (x)μM (dx).

In particular take G = SO(n) and H = SO(n − 1), so that M = Sn−1. In this
case μM is the normalised surface measure σn−1, for which we have the recursive
formula

∫

Sn−1

f (x)σn−1(dx)

= �
( n

2

)

√
π�

( n−1
2

)

π∫

0

⎛

⎜
⎝

∫

Sn−2

f (sin(θy) + cos(θ)en)σn−2(dy)

⎞

⎟
⎠ sinn−2(θ)dθ,

for all f ∈ C(Sn−1) where en is the “north pole” in Sn−1 (see Faraut [63],
pp. 186–190 for details).

Some detailed results on recurrent random walks on non-compact groups (at least
in the abelian case) may be found in Chap. 9 of Revuz [167].

4.9 Notes and Further Reading

The interaction between probability and group theory covers a huge area and it is
difficult to do this justice in such a short space. In particular this includes proba-
bility on discrete groups (which is not really the topic of this monograph) and has
considerable overlap with “stochastic differential geometry”, as random motion on
a Lie group can be regarded as a special case of that on a more general manifold.

In the 1960s a considerable literature began to evolve on probability theory in such
general mathematical structures as groups on the one hand and Banach spaces on the
other. These two directions have now diverged considerably, but in 1963 Grenander
[73] was able to justify including both themes within a single volume. From the
continuous group point of view, he introduced the Fourier transform and gave some
attention to limit theorems. He traces the historic roots of the subject back to work by
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Perrin [159] in 1928 on Brownian motion in the rotation group. Hannan’s survey paper
[78] from 1965 is also of historical interest. He develops applications to second-order
stationary processes, experimental design and ANOVA. Parthasarathy’s book [155],
which appeared in 1967, discusses probability on metric groups and gives an account
of infinite divisibility, the Lévy-Khintchine formula and the central limit theorem on
locally compact abelian groups. Ten years later, Heyer’s highly influential treatise
[95] appeared which gave a comprehensive and detailed state of the art account of
probability on (general) locally compact groups. This monograph is now a classic and
after 35 years is still a highly valuable resource for those doing research in this area.
Highlights are the treatment of Hunt’s classification of the generators of convolution
semigroups and the central limit theorem. We will investigate both of these topics in
the next chapter. Ten years later, Diaconis [56] published his beautiful lecture notes
that demonstrate the fruitfulness of group actions in a variety of contexts within both
probability and statistics, from card shuffling to ANOVA and spectral analysis of
time series.

In more recent years there have been a number of books and monographs on
more specific topics concerned with probability on groups. For example Hazod and
Siebert [85] study stable laws on locally compact groups (where these make sense),
Neuenschwander [153] investigates limit theorems and Brownian motion on the
Heisenberg group, and Liao’s monograph [132] is devoted to Lie group-valued Lévy
processes. The treatise of Guivarc’h et al. [75] is a comprehensive account of random
walks on groups. For a more recent survey, see Breuillard [35]. Random walks on
the rotation groups SO(n) were given an extensive treatment by Rosenthal [170].
For a study of random walks on spheres, see Bingham [29]. Central measures were
introduced in this chapter and will feature prominently in the next one. These have
been investigated by a number of analysts (see e.g. Ragozin [163] and Hare [79])
and probabilists (see e.g. Siebert [184]).

We can regard normalised Haar measure on U (n) as the uniform distribution
therein, and choosing unitary matrices according to this law plays an important role
in random matrix theory ; see e.g. Keating and Snaith [115] for intriguing connections
to the Riemann hypothesis, and Diaconis and Shahshahani [57] for computations of
the eigenvalues of random matrices in connection with a continuous generalisation
of the classical matching problem. For a monograph treatment of this topic, see
Anderson et al. [3].

It is worth pointing out that there is an interesting class of locally compact groups
called Moore groups, whose defining property is that all of their irreducible rep-
resentations are finite dimensional. So all compact groups are Moore groups and
many probabilistic results that hold for Moore groups are automatically applicable
to compact groups; see e.g. Sects. 1.3 and 1.4 of Heyer [95].

http://dx.doi.org/10.1007/978-3-319-07842-7_1
http://dx.doi.org/10.1007/978-3-319-07842-7_1
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