Chapter 4
Probability Measures on Compact
Lie Groups

Abstract We introduce the space of Borel probability measures (and the important
subspaces of central and symmetric measures) on a group, and topologise this space
with the topology of weak convergence. A key tool for studying such measures is the
(non-commutative) Fourier transform, which we extend from its action on functions
that we described in Chap. 2. We discuss Lo-Ng positivity as a possible replacement
for Bochner’s theorem in this context. The theorems of Raikov-Williamson and
Raikov are presented that give necessary and sufficient conditions for absolute con-
tinuity with respect to Haar measure. We then use the Fourier transform to find con-
ditions for square-integrable densities, and the Sugiura space techniques of Chap.3
to investigate smoothness of densities. Next we turn our attention to classifying
idempotent measures and present the Kawada-Itd equidistribution theorem for the
convergence of convolution powers of a measure to the uniform distribution. We
introduce and establish key properties of convolution operators, including the notion
of associated (sub/super-)harmonic functions. Finally we study some properties of
recurrent measures on groups.

4.1 Classes of Probability Measures and Convolution

Let P(G) be the set of all Borel probability measures defined on an arbitrary Lie
group G. As discussed in Appendix A.5, every i1 € P(G) is both regular and Radon. !
We equip P(G) with the topology of weak convergence, so if (u,,n € N) is a
sequence of measures in P(G) and p € P(G), we say that the sequence converges
to o weakly as n — oo if lim, oo [ f(X)pn(dx) = [; f(x)u(dx) for all f €
Cy(G, R). In this case we sometimes write i, — pasn — oo In the Chap.5

1 But if we drop the condition that G be a Lie group, we should work instead with regular Borel
probability measures on the topological group G.
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we will also need vague convergence of probability measures and this is defined in
exactly the same manner as weak convergence, except that the part of Cp (G, R) is
played by C.(G, R).

If 1 € P(G), its reversed measure is Ji € P(G) where Ji(A) := u(A~") for all
A € P(G). We say that u € P(G) is symmetric if y = i and central (or conjugate
invariant) if u(gAg_l) = p(A) forall g € G and all A € B(G). We write Ps(G)
and P, (G) to denote the spaces of symmetric and central Borel probability measures
defined on G (respectively), and we define Ps.(G) = P.(G) N P (G).

If we are given a (left or right) Haar measure on G (which is always, as
usual, assumed to be normalised when G is compact), we define P,.(G) to be
the corresponding subset of P(G) comprising absolutely continuous measures, so
i € Pac(G) if there exists f), € L'(G)sothat ju(A) = Ja fu(g)dgforall A € B(G).
The Radon-Nikodym derivative f}, is called the density of the measure p (with respect
to the given Haar measure). If G is compact and 1 € Py, then p € Py if and only
if fu(g) = fﬂ(g’l) for almost all ¢ € G, and jv € P, if and only if for all & € G,
fulhgh™") = £,(g) for almostall g € G.

To see that P(G) # @, consider the Dirac mass ¢, at the point g € G which is
defined for each A € B(G) by

1 ifgeA
%A =10 ifgea-

Clearly 6, € P(G) and (i] = 0,-1. We may also form measures in P(G) by tak-
ing convex combinations of distinct Dirac masses. We will consider many more
interesting examples as this and the subsequent chapter unfold.

Let p1, p2 € P(G). Using the Riesz representation theorem we may assert the
existence in P(G) of the left and right convolution products pi1 *p, (12 and fi1 *g f2,
which are defined (respectively) for all f € C.(G) by

/ F(9) (1 #1 12)(dg) = / / Flghym (dg)a(dh),
G

G G

/ F(9) 1 #& p2)(dg) = / / Fhg)n (dg)ua(dh).
G

G G

It is easily verified that p *p g2 = p2 *p 1. From now on we will only deal
with left convolution, and we will write (1 * pp 1= pp *r po. It can be shown (see
e.g. Stromberg [197]) that for all B € B(G)

(p1 * p2)(B) =//13(gh)u1(dg)u2(dh) (4.1.1)
G G

- / ji1 (B~ Yya(dh) = / 1a(g By dyg).

G G
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Convolution is associative, i.e. if uy, 2, u3 € P(G), then (ug * p2) * u3 =
w1 % (o * pu3), and so (P(G), *) is a semigroup . But note that if G is not abelian, we
cannot expect commutativity to hold. Indeed, you can easily check that for g, h €
G, 64 %0y = Ogn, and 50 64 * 0y = 0y, * 4 if and only if gh = hg. In the general case
(P(G), *) is a monoid (i.e. a semigroup with an identity element), since p * J, =
0, * pforall u € P(G).

If 1t € Pue(G) and v € P(G), we write f, * v := pxvand v * f, 1= U * .
By using Fubini’s theorem we easily verify that if we employ a right-invariant Haar
measure, then f,, * v € Py (G) with density fG fﬂ(gh’l)u(dh) and if we choose a
left-invariant Haar measure, then v * f,, € P,.(G) with density fG Su (g’lh)u(dh).

The operation - acts as an involution on (P(G), ). Indeed, we have ﬁ = p forall
we P(G), 11y % pa = fip * iy forall yu1, po € P(G) and b, = 0.

The support of ;1 € P(G), which we denote by supp(u), is the set of all g € G
for which every Borel neighbourhood of g has strictly positive u-measure. It is clear
that supp(p) is a closed subset of G. It is shown in Wendel [217] (pp. 925-926) that
if p1, po are regular probability measures on G, then

supp(f41 * p12) = supp(p1)supp(p2), (4.1.2)

where if A, B € B(G), AB := {gh, g € A, h € B} (and for later usage A2 = AA).
Although we won’t use it in the sequel, the next result may be of interest.

Proposition 4.1.1 If G is a compact group, then the space P(G), equipped with the
weak topology, is compact.

Proof By identifying each y € P(G) with the linear functional 1, on C(G, R)
defined by 1,(f) = fG f(9u(dg) for f € C(G,R), we embed P(G) into the
topological dual space C (G, R)*, and recognise that the weak topology on P(G) is
in fact the restriction of the weak-* topology on C (G, R)*. By the Banach-Alaoglu
theorem, the unit ball in C(G, R)* is weak-* compact. However, P(G) is easily
verified to be a closed subset of this ball, and the result follows. |

Note that the mapping g — J, is a continuous embedding of G into a closed
subspace of P(G).

We recall that a family of Borel probability measures (u, € ) defined on some
locally compact space X (where Z is some index set) is tight if given any € > 0
there exists a compact set K. such that p,(K¢) > 1 — e for all @ € Z. If X is itself
compact, then it is clear that any family of probability measures is tight (just take
K¢ = X for all €). So on a compact group G, by Prohorov’s theorem, (see e.g. Heyer
[95] Theorem 1.1.11, p. 26), any family of Borel probability measures (1, € Z)
contains a convergent sequence.

Let (2, F, P) be aprobability space. A G-valued random variable is a measurable
function from (2, F) to (G, B(G)). If X is such a random variable, its law or
distribution is the measure 1y € P(G) defined by px(B) = P(X~'(B)) for all
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B € B(G). The product of two random variables X and Y is the random variable
XY whose value at w € Qis X (w)Y (w).2 If X and Y are independent then the law
of XY is the convolution px * py.

4.2 The Fourier Transform of a Probability Measure

LetRep(G) be the set of all unitary representations of G. Soforeachm € Rep(G), g €
G, 7(g) acts as a unitary operator on the complex separable Hilbert space V. For
each i € P(G), we define its Fourier transform or characteristic function [i(m) at
7 € Rep(G) to be the bounded linear operator on V. defined as a Bochner integral
(see e.g. Cohn [50] Appendix E, pp. 350-354) by:

Ay = / (g~ Hudg), (4.2.3)
G

for each ) € V. Equivalently, it may be defined as a Pettis integral to be the unique
bounded linear operator on V. for which

(A6, ) = / (g™, D) a(dg), 42.4)

G

forall ¢, v € V; (c.f. Heyer [93], Siebert [185] and Hewitt and Ross [92], pp. 77-87).

Note that if p is absolutely continuous with respect to a given left Haar measure
on p and has density f € L'(G), then our definition is such that fi(7) = f(w),
where f(7r) is as defined in Chap. 23

From now until Sect.4.7, we will take G to be a compact Lie group and restrict
to be an irreducible representation.*

So (observing our usual convention of identifying equivalence classes with repre-
sentative elements) we will from now on always take 7 € G. Then w(m)isad; x dy
matrix and both (4.2.3) and (4.2.4) are equivalent to defining the matrix elements

() =/7Tij(g_1)u(dg), (4.2.5)
G

2 If G is abelian, then the binary operation in the group is usually written additively.

3 It is common in the literature to see the alternative definition “ a(r) = f ¢ T(@)u(dg)” which
is natural for probabilists but which clashes with the analysts’ convention that we introduced in
Chap. 2.

4 Many theorems that we state hold under more general conditions on G. The reader who wants
minimal assumptions may consult the original sources, or check what is really needed from the
proof.
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forl <i,j <d;.
It is often convenient to write (4.2.5) using the simplified notation:

Am) == / (g~ Hu(dg).

G

Example 1 Dirac Mass. If i = 4, for some g € G, then it is easily verified that for
allme G, 7(m) =7m(g~"). In partlcular 6 = I.

Example 2 Normalised Haar measure. We again denote this measure by m. It is easy
to see that m € P.(G). We have

_ [0 ifr#m
m(w)—[l ifm=my"

To see this, it is sufficient to observe that for all = € G 1 <i,j <d,

m(m);; =/7Tij(9_l)d9 = (L, mij)12(G)
G

and the result then follows by Peter-Weyl theory (Theorem 2.2.4).

Example 3 Standard Gaussian Measures. We recall the discussion of the heat kernel
in Sect.3.1.1. Now fix a parameter ¢ > 0 and consider the heat equation:

% = oAu. (4.2.6)

We write the corresponding heat kernel as k, € C*°((0, c0) x G, R), and for
fixed r > 0 we write k; 5(-) 1= ks(t, ) € C®°(G, R). Taking f = 1in (3.1.8), we
see immediately from (4.2.6) that fG k. o(g)dg = 1, and so k; , is the density of a
measure v, » € P(G) which we call a standard Gaussian measure with parameter
0.5 We now compute the Fourier transform. Using the smoothness of ¢ — k, , and
dominated convergence, we deduce that for all 7 € G ,

Ok; » 0 _
/ g KeeD > / (0 Yo (9)dg,
G

ot
G

and so the mapping t — kt7(7r) is differentiable. Taking Fourier transforms of both
sides of (4.2.6) then yields that

5 If we were to take a strict analogy with the well-known theory in Euclidean space, we would only

use the terminology “standard” Gaussian measure for the case where ot = —
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817; T —
o — oy
= —0krks o ().

Since?o;(w) = g;(w) = I, we deduce that
kio(m) =e "7 I 4.2.7)

The next theorem summarises some key properties of the Fourier transform (see
also Heyer [93]):

Theorem 4.2.1 Forall u, py, p2 € P(G), 7 € 6

1. T(m) =1,

fi1 % o () = i3 (m) i (),
|/|]I(7T)||0p <1

1i(m) = ().

NN

Proof 1. is obvious.
2. Foralll <i,j <d;

TR = /G wii (g™ (dg)pa(dh)

dr
= Z (/ wik(h_l)uz(dh)) (/ ij(g_l)m(dg))
k=1 WG G

= [f2(m) i1 (1)1}
3. Forall ¢ € V,,
7@l = H /G w(glwu(dg)H

< /G (g™ Dllu(dg)
— l1éll.
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4.

Bim) = / (g~ Vidg)

G

= /ﬂ(g)u(dg)

G

*

- / (g~ Huldg) | = Fm*. 0

G

Corollary 4.2.1 Themeasure ji € Ps(G) if and only if the matrix () is self-adjoint®
forall me G.

Proof Necessity is immediate from Theorem 4.2.1 (4). For sufficiency it is enough
to observe that if the self-adjointness condition holds, then forall 7 € G, ¢, ¢ € Vp,

/ (r(9). ) uldg) = / (r(9)d. V)T (dg).

G G

By linearity we find that [; f(9)u(dg) = [, f(9)fi(dg) forall f € £(G) which is
norm dense in C(G) by the Peter-Weyl theorem (Theorem 2.2.4). By extension of
bounded linear functionals, we then see that [ f(9)u(dg) = [; f(9)1i(dg) for all
f € C(G), and the result follows from the Riesz representation theorem. O

The next theorem generalises Theorem 2.4.1 (see also Hewitt and Ross [92]
Theorem 28.48, pp. 84-85).

Theorem 4.2.2 The measure v € Pc(G) if and only if w(m) = cqly, where c; € C,
forall T e G.

Proof Necessity is established by Schur’s lemma just as in Theorem 2.4.1. For
sufficiency, for each ' € G define u" € P(G) by p"(A) = phAr~") for
A € B(G). Then arguing as in the proof of Theorem 2.4.1 we obtain for all 7 € G,
Jo (g Hudg) = [5 (g " (dg), and so for all ¢, ¢ € Vi,

/ (7 (9). ) uldg) = / (r(9)d. ) (dg).

G G

We can now reach our desired conclusion by proceeding as in the proof of Corollary
42.1 O

Corollary {.\2.2 The measure |1 € Py (G) ifand only if [i() = ¢y I, where c; € R,
forall T e G.

6 i.e. hermitian, if you prefer that terminology.
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Proof This follows immediately from Corollary 4.2.1 and Theorem 4.2.2. (|

For example we find by (4.2.7) that standard Gaussian measure is both central
and symmetric.

The remaining results in this section were originally due to Kawada and It6 [114].
The first of these establishes the injectivity of the Fourier transform:

Theorem 4.2.3 Let j11, pto € P(G). Then 11 () = j1a(w) forall 7w € G if and only
if py = po

Proof Sufficiency is immediate. For necessity let f € C(G), and € > 0 be arbitrary.
By the Peter-Weyl theorem (Theorem 2.2.4) there exists Go C G with #Gy € N
such that

dr
€
sup | £(9) = D D aif mj9)| < 5.
geG

71'660 i,j=1

where a7’ € C (1 <i, j < dy). Then for k = 1,2 we find that

/f(g)uk(dg) 2 Z o7 ik (m)ij | < %

7T€Goll 1

But since 711 () = fia(m);j forall 1 < i, j < d,, we deduce that

/f@mww—/f@mum<a
G

and the result follows by the fact that € is arbitrary and by use of the Riesz represen-
tation theorem. O

Theorem 4.2.4 Let py, po € P(G). Then py * po = po * p if and only if
(M) aa(m) = fa(m)f(n) forall m € G.

Proof Necessity follows immediately from Theorem 4.2.1(2). For sufficiency,
observe that by Theorem 4.2.1(2) again

i1 * o () = i (m) i (m) = i1 (m) fia () = pig * i (),
and then apply Theorem 4.2.3. (]

Theorem 4.2.5 Let (i, n € N) be a sequence of measures in P(G). Then p,, —
w

asn — oo if and only if [i,(7);j — [(m)ijasn — oo foralll <i,j <d; 7€ G.
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Proof If u, — pasn — oo, then
w

tim 73 = Jim [ g™ untdg) = [ iy 6” ) = .
n— oo n—oQ
G G
Conversely, ifﬂ;(w)ij — ﬁ(w),-j asn — ooforalll <i,j <d,,me 6, then using
the same notation, and a similar argument to that given in the proof of Theorem 4.2.3,

we first observe that for any f € C(G), € > 0 there exists 60 c G with #60 eN
so that foralln € N

d77
/f(g),ufn(dg) - z Z Oég;-r)ﬁn(ﬂ')ij < g,
G

ﬂea() i,j=1
and also
dr ¢
/ Fndg) = 37 > o fimij| < 5.
G Weao i,j=1

But we can also find n; € N so that if n > n; we have

o~ —~ €
|ftn (m)ij — p(m)ijl < ic

forall 1 < i,j < d;, 7 € 60 where C = ZWEGO Zfl;:l |a§}r)|. From these
estimates we deduce that for all n > nj,

/ F@un(dg) — / Fudg)| < e
G G

and this gives the desired weak convergence. O

Then final result of this section gives a compact Lie group version of the celebrated
Lévy convergence theorem for sequences of probability measures in Euclidean space.

Theorem 4.2.6 (Kawada,It6,Lévy convergence theorem) Suppose that (i, n € N)
is a sequences of measures in 'P(G) and that there exists a family of compatible
matrices (Y (m), 7 € 5) so that fi,(m);jj — Y(n);j asn — oo forall1 <i,j <
dr,m € G. Then there exists u € P(G) for which u, - pasn — o0 and

f(m) =Y(n) forall m e G.
Proof Let f € C(G). Once again using (a straightforward variation of) the same

notation to that used in the proof of Theorem 4.2.3, we can assert that given any
m € N there exists Gg C G with #G( € N so that
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7Tln 1
sup |f () - 2 Z 7 OT@| < 5
ge

7TEG01 Jj=1

and so foralln e N

1
/f(g)un(dg) > Z a7 ™ (F)fin(m)ij| < -

7T€G()’ Jj=1

Now given any € > 0 and choosing n sufficiently large, we obtain for such n and
arbitrary m that:

/ HOCOESDY Z MO zim+e-

‘n'GGOl Jj=1

Define T'),(f) = Zﬂego Zf‘l,ﬂ,':] al(;r’m)(f)Y(w)ij. Then from the last inequality
we deduce that (I',,(f), m € N) is a Cauchy sequence, and hence convergent to
I'(f) € C. Again from the last inequality, we deduce that

i) = lim / F(@in(dg),
G

from which it follows that f — I'(f) is a positive linear functional on C(G) for
which I'(1) = 1. Hence by the Riesz representation theorem, there exists a probability
measure i € P(G) for which

INOP) =/f(g)u(dg),

forall f € C(G) and this gives the required weak convergence. The fact that (r) =
Y () for all m € G then follows from Theorem 4.2.3. ([l

4.3 Lo-Ng Positivity

Let 1 be a Borel probability measure defined on a locally compact abelian group
G (with group composition written additively). Let G be the (abelian) dual group
of characters (see Sect.2.2.2) and let the neutral element in G be 2. In this case we
have 71(x) = fG X(9)p(dg) forall y € G.Let F : G — C. The celebrated Bochner
theorem gives a necessary and sufficient condition for F = 7, for some . € P(G),
and this is precisely that F(e) = 1, F is continuous at e and F is positive definite, i.e.


http://dx.doi.org/10.1007/978-3-319-07842-7_2
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n
Z cic_jF(x,- —x]') >0

ij=1

forall n € N,c¢y,...,¢;, € Cand all x;,...,x, € G (see e.g. Heyer [96],
pp- 162-184 or Rudin [171], pp. 19-21). There is an analogue of this result if G
is a compact Lie group which we now describe. Further details and proofs are in
Heyer [95], pp. 57-59.”

We recall the coefficient algebra £(G) of G from Chap.2. We say that a linear
functional ¢ : £(G) — C is continuous if given any sequence ( f;;, n € N) converg-
ing uniformly to f € £(G), we have that (¢( f,,), n € N) converges to ¢( f). We say
that ¢ is positive if ¢(f f) > 0 for all f € £(G).

Theorem 4.3.1 If G is a compact Lie group, then for any positive continuous linear
Sfunctional ¢ on E(G) for which ¢(1) = 1, there exists u € P(G) so that

(E(mx, y) = o({m()x, y)),

forallm e a,x, y € V.

As an alternative to Bochner’s theorem, we can find an interesting necessary and
sufficient condition for a family of compatible matrices to be the Fourier transform of
a finite measure if we introduce a new notion of positivity due to Lo and Ng [136], as
we will now demonstrate. To this endlet C : G — M(G) be a compatible mapping.
We say that it is Lo-Ng positive if the following holds: Whenever B : G — M(G)
is any other compatible mapping for which

> drtr(n(g)B(m) = 0

Tes

for all g € G for some finite subset® S of G, then

D drtr(w(g)C(m)B(m)) = 0

mes

for all ¢ € G. It is immediate that if C is Lo-Ng positive and ¢ > 0, then
aC is also Lo-Ng positive. The following gives a useful alternative criterion for
Lo-Ng positivity:

Lemma 4.3.1 The compatible mapping C is Lo-Ng positive if and only for all
compatible mappings B : Q — M(G), ZﬂeS drtr(m(g)B(m)) = O forallg € G
for some finite subset S of G implies that Zﬂes drtr(B(m)C(m)) = 0.

7 As a result of reading an early version of this manuscript, Herbert Heyer [97] was inspired to
prove a new Bochner-type theorem for central probability measures on compact groups.

8 Our definition is slightly different from that of Lo and Ng, who introduce an ordering of the
countable set G and instead of taking arbitrary finite subsets of G as we do, choose sets of the form
{1,2, ..., n}, with respect to their given ordering.
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Proof First suppose that C is indeed Lo-Ng positive. Then the required result follows
by taking g = e in the definition. Conversely suppose the given condition holds on
some finite subset S of G. By the assumption on B we have

D dtr(m(gh)B(m) = 0

mes

for all g, h € G. It follows that

> drtr(x(g)(B(m)m(h))) = 0

Tes

for all g € G. Then by the given condition, for all & € G,

> detr(r()C(m) B(m) = > dete(C(m) (B(m)m(h)) = O,

mes TeS

and Lo-Ng positivity is established. ]

Lemma 4.3.1 equips us with the tool to show that the set of all Lo-Ng positive
compatible mappings is closed under taking adjoints. To be precise, let C : G —
M(G) be a compatible mapping and define its adjoint C* : G > M(G) by the
prescription C*(w) := C(m)* forall 7 € G.

Lemma 4.3.2 If C is a Lo-Ng positive compatible mapping, then so is C*.
Proof Let B : G — M(@) be a compatible mapping for which

> drtr(m(g)B(m)) = 0

Tes

for all g € G for some finite subset S of G. Then

> drtr(n(9) B(m)*) = D drtr(B(m)*7(g))

Tes mes

= D dytr(x(g~ ") B(m)

mes

= > dytr(m(g”")B(m)) = 0.

mes

So by Lemma 4.3.1,

D dntr(C(m)*B(m) = Y drtr(B(m)*C(m) = D drtr(B(m)*C(m)) = 0,

mes mes mTes

and the result follows. O
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Before we proceed further we state a useful technical lemma

Lemma4.3.3 Let B, C : G — ./\/l(a) be compatible mappings and let S, S’ be
finite subsets of G with S’ C S. Then

/ ( > dotr(a(g”! )Bw))) (Z dwtror(g)cm)) dg 4.3.8)

G “es TeS

= Z dtr(B(m)C(m)).

Tes’

Proof Write both traces on the left hand side of (4.3.8) as finite sums and then use
the Schur orthogonality relations (Corollary 2.2.3). O

The next result begins to establish the link between Lo-Ng positivity and the
Fourier transform. Let S be a finite subset of G and C : S — M(a) be compatible
(we may consider C as extended to the whole of G by defining it to be the zero
matrix on G — S). Note that fsc € C(G), where for each g € G, fs.c(9) =
> res drtr(C ()T (9).

Proposition 4.3.1 Let S, C and fs c be as above.

1. Forall e 6, C(m) = TS,\C(W)-
2. If fs.c = 0, then C is Lo-Ng positive.

Proof 1. This follows by uniqueness of Fourier coefficients in the Fourier expan-
sion (2.3.7) of fs,g- R
2. Suppose that B : G — M(G) is a compatible mapping for which

> dxtr(n(g)B(m)) = 0

Tes’

for all ¢ € G and some finite subset S’ of S. By the hypothesis on fg ¢ and
(4.3.8), it follows that
> drtr(B(m)C(m)) = 0

mes’

and so C is Lo-Ng positive by Lemma 4.3.1. (]
Next we state another technical lemma:
Lemma 4.3.4 There exists a sequence (Y,,n € N) of continuous non-negative

functions on G, with each ¥n(g9) = 3., s,
of G and z;") € Cforallm € Sy, n € N which has the following properties:
(i) [;¥n(g)dg = 1foralln € N;

(ii) Given any neighbourhood U of e and any € > 0 there exists no € N such that
Ya(g) < eforall g € U and all n > ny,

dﬂzgr")x7r (g9) where S, is a finite subset
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(iii) limp—oo 2" = 1 forall 7 € G.

Proof We follow Talman [202] Theorem A.7.1, pp. 96-98 for (i) and (ii) and Lo-Ng
[136] for (iii).

(i) First note that if 7 is a finite-dimensional representation of G, then by (3.3.13)
we easily deduce that
sup |xx(9)| = dr.
geG

Next observe that since G is a compact Lie group, it has a faithful finite-
dimensional representation 7 (see e.g. Theorem 4.1 in Brocker and tom Dieck
[36], pp. 136-137) and for all g, h € G with g # h,

dr
> Imijg) — mij (W > 0,
i,j=1
indeed, if there were equality, m would not be injective. Now
dr
> Imijlg) = mij (W)

i,j=1

de
= > (mijlg) — mij () (mij(g) — mij ()

ij=1

d’ﬂ'
= > (mij(g) — mij(M)(mji(g™") = mji(h™"))

i,j=1

= 2xr(e) — xr(gh™) — xx(gh™ ).

Let 7’ ;= 7 @® 7. Then for all g € G, x/(9) = Xx(9) + X (9), and we deduce
from the last display that for all g € G \ {e}

Xn'(9) < xn'(€) = dy.
Incorporating this with our earlier estimate, we see that for all g € G \ {e}
—dp < X' (9) < dp .

Now define a new representation 7 of G to be the direct sum of 7’ and d,
copies of the trivial representation. Then for all g € G,

X‘n'”(g) = dﬂ" + X‘n'/(.g)s

and the estimate just established yields, for all g € G \ {e},
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(ii)

(iii)

0 < Xﬂ'”(g) < 2d7r/ = dTr/"

Now for each n € N,g € G define ¥,(g9) = cpx(9)", where ¢, =

( Jo x=(9)"d g)_l. Then by construction 1, is continuous, non-negative and
fG Un(g9)dg = 1. By Theorem 2.4.2 (ii), x~(g)" is the value at g of the
character of the n-fold tensor product of 7, and so by Theorem 2.4.2 (iv),
Xa (D" = Dres, m . (where m™ is a non-negative integer). Hence the

complex numbers zgr") appearing in the statement of the lemma are given by

(n) c,,m;n)
s
For simplicﬂity we write X := X, and d := d,» for the remainder of this proof.
Let U be an open neighbourhood of e. Then G \ U is compact, and so there
exists go € G \ U for which x(go) = SUPgeG\U x(g) and we have x(go) < d.
By continuity of ¢ — x(g) at g = e, given any € > 0 there exists an open
neighbourhood V of e so thatif g € V,thend — ¢ < x(9) < d + . Now

d- d
choose ¢ = 4= x{g0) and we see that for all g € G, x(g9) > 4+ x(g0) ;((90).
Consequently, for each n € N,
d +x(g0) )"
/X(g)”dg >m(V) (T :

\%
Now
-1

Cn < / x(9)"dg

\

1 ( 2 )I‘l
< .
m(V) \d + x(g0)

Then for all g € G \ U we have

1 2x(9) )”
o) < T (d T x(90)

! ( 2x(g0) )"

“m(V) \d+x(0))
and we can make the quantity on the right hand side arbitrarily small by taking
n to be sufficiently large.

If we take the inner product in L%(G) of 1, with the character of an arbitrary
representation in G and use Theorem 2.4.3, we can easily deduce that for each
neNmeS, "= i fG ()X (g~ Hdg. Then we find that
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1
2P =1 = — /%(g)xw(g_])dg—dn/%(g)dg

dx
G G

1 1
;/dm(g)lxw(g_l) —dwldg+d*/wn(g)lxﬂ(g_l) —drldg,
ue U

and the required result follows by taking U sufficiently small, n sufficiently
large, and using the result of (ii) and the fact that g — X,r(g_l) is continuous,
and takes the value d; at e. (Il

The next result is the main one of this section.

Theorem 4.3.2 (The Lo-Ng Criterion) Let C : G — M(G) be compatible. Then
C(m) = ji(m) forall w € G where w € P(G) if and only if C is Lo-Ng positive with
C(mo) = 1. Furthermore, 4 is the weak limit of a sequence (u,, n € N), where for
eachn € N, u,, € P(G) is absolutely continuous with respect to Haar measure and
has Radon-Nikodym derivative

ha(g) = D 2P dstr(m(g)C(m))

TeS,
forall g € G, where #S,, < #S,, < ocoifm <nandmy € S, foralln € N.

Proof Assume thzig,u € P(G)and > __¢drtr(m(g9)By) > 0 forall g € G and some
finite subset S of G. Then

> i @B = [ 3 detn(rtg ™) Bntdg) 0,

mes G Tes

and so 11 : G - M(G)is Lo-Ng positive.

Conversely (and using the notation of Lemma 4.3.4), we have that for all n €
N, ¥, (9) = Z‘/reSn dﬂtr(w(g)[z;")ldw]) > 0 by Lemma 4.3.4, and so since C is
assumed to be Lo-Ng positive, it follows that

> drte(w(9)z8"C(m)) = 0.

meSsy,

By Lemma 4.3.1 we deduce that the compatible mapping whose value at ™ € S, is
z;")C(w) (and whose value at 7w ¢ §,, is the zero matrix) is also Lo-Ng positive. By
Proposition 4.3.1 (1),
e = [ 7 s
G
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Since h,, is continuous it is integrable, and as %, is non-negative, we can define a
Borel measure 11, on G whose Radon-Nikodym derivative is /,. Using Peter-Weyl
theory (Corollary 2.2.4), we have

(G = / ha(g)dg

G

_ / i ()T0(9)dg
G

=zC(m) = 1.

The fact that zg(l,) = 1 follows from Lemma 4.3.4 (i) and the formula z§;’> =
% fG Yn(9)xx (g~ Vdg that is established within the proof of that same lemma. By
Prohorov’s theorem, we can now assert that there is a subsequence (up,, k € N)
that converges weakly to a probability measure p. By Theorem 4.2.5, we have
limy—, o0 fin, (1) = pi(m) for all m € G. But by construction limy_, oo fin, (7) =
limg s 00 z;"" ¢ (m) = C(m) by Lemma 4.3.4 (iii). Hence the converse is established.

To prove the last part of the theorem let & € C(G). Then by the Peter-Weyl
theorem (Theorem 2.2.4), there exists a sequence of matrices (H,,n € N) where
each H, acts in a finite-dimensional complex Hilbert space of dimension d,, such that
h(g) = lim,—o >, ditr(m;(g)* H;), and the convergence is uniform in g € G.
Using Schur orthogonality and (4.3.8), we find that

/ hg) | D dezMte(w(g)C(m)) | dg

G TeS,

m—00 4
i=1 TES,

= lim (Zditr(m(g)*Hi)) > dezu(n(g)C(m) | dg
G

D drtr(H(m)z{" C(m)

meS,

- / > dete(n(g) H(m) | ha(9)dg

G TEeS,

— /h(g)u(dg),
G

as n — 00, using the dominated convergence theorem.
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Remark

1. Although Lo-Ng positivity is an interesting theoretical result, it seems very
difficult to use in practice to determine whether a given family of compatible
matrices really is the Fourier transform of a finite measure.

2. As positive-definiteness (in the usual sense) is a key component of Bochner’s
theorem on locally compact abelian groups, it is worth pointing out that there is
a general notion of positive definiteness for functions on a more general locally
compact group G. Indeed, a continuous function f : G — C is positive definite
if and only if >} ;| c,-c—,»f(g,»g;l) > 0forall gi,...,g: € G,cl,...,Cn €
C, n € N. You can learn about these functions in e.g. Sect. 2.8 of Edwards [61]
or section 32 of Hewitt and Ross [92]. Note that there is even a Bochner theorem
which describes the structure of such functions as linear combinations of certain
elementary ones, but readers should be warned that it is not related to the Bochner
theorem that we discussed at the beginning of this section (i.e. it does not give
information about Fourier transforms of finite measures).

4.4 Absolute Continuity

We investigate absolute continuity of probability measures on G with respect to
normalised Haar measure m. We follow the account in Wehn [216].

Theorem 4.4.1 (Raikov-Williamson) Let pn € P(G). Then p € P,:(G) if and only
if either W(Eg) — p(E) or p(gE) — u(E) as g — e for all E € B(G).

Proof We only deal here with the case u(Eg) — p(E) as g — e. The other limit is
dealt with by a similar argument.

d
First assume that ;4 < m and let f), := d_,u Then for all E € B(G),
m

(Eg) — w(E)| < / fulhg™) = fu(h)ldh
E
<Ry fy— fulli = Oasg — e,

by Proposition 1.2.1. Conversely, suppose that u(Eg~') — u(E) as ¢ — e and
suppose that E € B(G) exists with m(E) = 0 and u(E) > 0. We seek a contradic-
tion. Let p € L'(G) be such that p > 0 and fG p(9)dg = 1. Then we may define a
measure v, € Pac(G) by v,(A) = [, p(g)dg forall A € B(G).Forall g € G,

V(g 'E) = / p()1 g (gh)dh
G

= /p(g’lh)lE(h)dh =0,
G
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since m(E) = 0. Hence by (4.1.1)

(1 * V) (E) = / V(g7 E)u(dg) = 0.
G

But again by (4.1.1), we have

(1 * V) (E) = / 1(Eg~M,(dg) > 0,
G

and this yields the required contradiction. (I
For each u € P(G) we define the associated convolution operator T,, : By(G) —
By(G) by
(Tu (o) == (f * (o) = / floT)pdr),
G

for all f € Bp(G),o € G. Itis easy to see that T}, is linear and a contraction.
Furthermore, if 14, v € P(G) we have

Tyww = T, T, (4.4.9)

It is an important fact that 7, : C(G) — C(G). To see this, let 01,02 € G and
observe that for all f € C(G),

T, f(01) = T f (02)] < / £ (@17) = F@2Iu@T) < 1Ly f = L1 flloo,
G

and the result follows by left uniform continuity of f (see Theorem A.2.1 in Appen-
dix A.2).

Before we state and prove the next result we recall that a subset S of C(G) is
equicontinuous if given any € > 0, each g € G has an open neighbourhood U, so
thatif h € Uy, then | f(g)— f(h)| < eforall f € S. The next theorem was originally
established by Raikov [164], and we follow the account of Wehn [216].

Theorem 4.4.2 (Raikov) Let j1 € P(G). Then jn € Puc(G) if and only if T, :
C(G) — C(G) is compact.

d
Proof First suppose that 1 < m and write p;, := d_u Let (f,, n € N) be a bounded
m
sequence in C(G). Then forall g, h € G,n € N,
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T fog) — T fu(h) = / Fulgrpu(rdr - / FulhT)pu(m)d
G G
=/fn(T)(pu(g’lT)—pu(h”T))dT,
G

from which we easily deduce that

[T fn(9) — Ty fu(W)| < sup || fullool|Lgpp — Lipulli-

neN

Then equicontinuity of {7, f,,n € N} follows from Proposition 1.2.1. Uniform
boundedness of {7}, f,, n € N} is easily verified. We can now appeal to the Arzela-
Ascoli theorem to deduce that {7}, f,,, n € N} is relatively compact, and so contains
a convergent subsequence. It follows that 7}, is compact.

Conversely, suppose that 7}, is compact and let £ be an open setin G. Then since
1 g is lower semi-continuous, we can find a sequence ( f,,n € N) in C(G) which
increases monotonically to 1 g (see e.g. Nagami [152]). So in particular this sequence
is bounded. Hence by assumption, its image contains a convergent subsequence
(T, fny.» k € N), and (uniformly in) g € G,

Jim T, £,(9) = Tl p(9) = ™' E).

It follows that the mapping g — (g~ ' E) is continuous, and so j(g~'E) — u(E)
as g — e. A similar argument holds for the case where E is compact. By regularity
of p, the same limiting behaviour holds for £ € B(G). So by Theorem 4.4.1 we
deduce that 1 < m, as required. O

In the case G = I1', the celebrated theorem of F. and M. Riesz gives a sufficient
condition for a probability measure 4 to be absolutely continuous. In thatcase G = Z

and
2

N 1T
tn) = 5— / ™ u(dx)
v

0

for each n € Z. Their sufficient condition for absolute continuity is that z(n) = 0
for all n < O (see e.g. Katznelson [113] p. 113). This result has been extended to
compact Lie groups by Brummelhuis [38] (see also [37]). For ease of exposition, we
state it here in the case where G is also connected and semisimple. Let 7 € G and
recall that V; = @#EW(,T) V., where W(m) is the set of weights of 7. Let A be the

highest weight and define V,? =V eV,

Theorem 4.4.3 (Brummelhuis) Let G be a compact, connected, semisimple Lie
group. If i € P(G) is such that [i(m)v = 0 for all v € Vfr) and for all m € G, then
B <L m.
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4.5 Regularity of Densities

In this section, we will investigate conditions for a probability measure on a compact
group to have a square-integrable, continuous and smooth density of various orders.
Although this topic is closely related to that of the Sect. 4.4, we will make no use of
the results that we obtained there.

In this section we first examine the case where i € P(G) has a square-integrable
density. The following result is established in Applebaum [8].

Theorem 4.5.1 Let G be a compact Lie group. Then ji € P(G) has an L>-density
Sy if and only if

> d )13 < oo (4.5.10)
reG
In this case
fu =D drtr(f(mm()) (4.5.11)
reG

Proof For necessity, suppose that f, € L?(G) is the density of x. Then fu(w)
() forallw € G and (4.5.10) follows from the Parseval-Plancherel identity (2.3.8).
For sufficiency define
fu =D drtr(f(m)m).

reG

Then f,, € L*(G) since by (2.3.8),

full3 =D dellfi(m) I35 < 00,

7eG

and by umqueness of Fourier coefficients (in the Hilbert space sense) fu (m) = ()
forall m € G.2

Since Haar measure is finite, L>(G) € L'(G), and so fu € L'(G). Recall that
by Theorem 2.2.4 £(G), which is the algebra of all continuous functions on G that
have only finitely many non-zero Fourier coefficients, is norm dense in C(G). Let
h € £(G). Then there exists a finite subset S of G so that

h(o) = Z drtr(h(m)m(0))

mes

forall o € G.Furthermore, by the Schur orthogonality relations,ﬁ(w) =0ifr e S€.
Using the Parseval-Plancherel identity (2.3.9), for each & € £(G):

9 To verify this directly, compute (fu» m;;) for cachn’ € G,1 <1, J < d’;itisthen astraightforward
application of the Peter-Weyl theorem (Corollary 2.2.4) to deduce that f“ ()i = =(7)ij ;-
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[ hoF@rde = 3 dre i)

G e

= > dtr(h(m)fi(m)*)

Tes

= / Zdﬁtr(ﬁ(w)F(J))M(dU)

G mes

= /h(a)u(da).

G

By a standard density argument, it then follows that

/h(a)fﬂ(a)da=/h(a),u(d0),

G G

for all h € C(G). The Riesz representation theorem implies that f,, is real valued

and f,(0)do = pu(do). The fact that f;, is non-negative a.e. then follows from the

Jordan decomposition for signed measures (see Appendix A.5). (]
Note that we can also write (4.5.11) as

fu=14 D der(mm()),

7eG\{mo)

and that such a representation is often found in the literature. R
It is easily seen that if y is central, so that ji(7) = c; I for all # € G (where
cr € C),and has Lz-density fu»then f), is central (a.e.). Then from (4.5.11) we have

fu=" drcrxx. (4.5.12)

reG

in the L? sense.
Next we examine continuity of densities:

Proposition 4.5.1 Let 1 € P(G). A sufficient condition for p to have a continuous
density f, is that the infinite series D _ g dxtr(fi(m)m(0)) converges uniformly in
oceG.

Proof Define fj,(0) = 2 g drtr(ji(m)m(0)) forall o € G. Then f, € C(G), and
by uniqueness of Fourier coefficients, f,(m) = fi(r) for all 7 € G. Now argue as in
the proof of Theorem 4.5.1. (]

More concrete sufficient conditions for p to have a continuous density are as
follows. In the second of these, for each 11 € P(G) we employ the notation ) =
11(my), where A € D is the highest weight corresponding to 7y € G:
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3
o > odillu(m|lus < oo,

o |[(m)|lus = O(N™) as |A| — oo, where s > r + %

The first of these is implicit in the first part of the proof of Proposition 3.3.2
(see also Faraut [63], pp. 117-119). and the second is a direct consequence of the
statement of that same proposition.

Next we investigate differentiability of densities. Recall that {x,, 7 € @} is the
Casimir spectrum of G.

Theorem 4.5.2 If u € P(G) and there exists p € N so that

D de (1 + k)P |5 < 00,

reG

d
then p has a C* density for all k < p — 3

Proof Since ki > 0 forall m € G, we have 3 & dx|[fi(m)| |35 < oo, and so by
Theorem 4.5.1, u has a L2-density fuand f,(m) = Ji(r) for all 7 € G. The result
then follows by Proposition 3.1.4, and the Sobolev embedding theorem (Theorem
3.1.3). |

The next result establishes necessary and sufficient conditions for densities to
exist and be C*°. It was first established in Applebaum [12]. Recall that S(D) is the
Sugiura space that was introduced in Sect. 3.4.

Theorem 4.5.3 For G a compact connected Lie group, 11 € P(G) has a C* density
if and only if i € S(D).

Proof Necessity is obvious. For sufficiency it is enough by Theorem 3.4.3 to show
that 1 has an L2-density. Choose s > r, so that Suguira’s zeta function (see below)
converges (c.f. Theorem 3.2.1). Then using Theorem 4.5.1 we have

> dlimllis <N D NI
{0}

reD— XeD—(0)
<N sup N"PIdlEs D G
XeD—{0} /\eD—{O}l |

< 0.

O
The following result gives an application of Theorem 4.5.3. First we note a useful
and easily verified inequality for matrices. If A, B € M,,(C), then

I|AB|lus < ||Allopl|Bllas and ||AB||us < ||BllopllAllas (4.5.13)
Corollary 4.5.1 Let G be a compact connected Lie group. Let . € P(G) be arbi-

trary and ;,; be a standard Gaussian measure with parameters t, o > 0. Then the
measures [L x Y o and 7y o * |t have smooth densities.
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Proof It suffices to establish the result for 1 * 7; . First note that by Theorem 4.2.1,
(4.5.13) and (4.2.7) for all A € D,

1% 30 Mas = 11750 MAEM s < EMlopl17re Mlas < dre ™.

But then using the dimension estimate of Corollary 2.5.2 and (2.5.23) we obtain for
all p e N,

hmsup|/\|p||u*fy,a()\)||HS< Jim |A|!’dAe*f<’~A<c lim APt — o
|A]—00 [A]l—>00

and the result follows from Theorem 4.5.3. |

4.6 Idempotents and Convolution Powers

We say that i € P(G) is idempotent if p % p = p. Equivalently by Theorems 4.2.1
and 4.2.3, ;1 is idempotent if and only if 7i(r)2 = 7i(r) for all 7 € G. It is easy to
see that normalised Haar measure m on G is idempotent. More generally, let H be
a closed subgroup of G and let mg) denote its normalised Haar measure. We extend

( ) to a measure m u € P(G) that has support H by the prescription
mu(B) =mY (BN H)

forall B € B(G). For example if H = {e}, then my = .. It is again easy to see that
mp is always idempotent. The following result is due to Wendel [217] for compact
groups, but note that it also holds in general locally compact groups (see Heyer [95]
Theorem 1.2.10, p. 34).10

Theorem 4.6.1 If u € P(G) is idempotent, then i = mg for some closed subgroup
H of G. Moreover, H = supp(p).

Proof For H := supp(p), by (4.1.2) we have H = H?, and so H is a semigroup
under the group law. It is also closed, and hence compact. It is known that any subset
of G that has these properties is a subgroup (see e.g. Lemma 2 in Gelbaum et. al.
[71] and also Corollary 1.2.9. on p. 34 of Heyer [95]). Now let f € C(H, R), and
define foreach € H:

Ay(h) = / flghu(dg).

Using Proposition 1.2.1 it is easily verified that Ay € C(H, R). Now let i be the
pointin G where A 7 attains its maximum value. From now on we denote f := Ry, f.

10 Our standing hypothesis remains that G is compact Lie, but observe that the proof of Theorem
4.6.1 requires no use of Lie structure.
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Then Ay, attains its maximum at e. Then since . is idempotent:

Ay (e) =/f1(g)u(dg)
H
=/f1(g)(u*u)(dg)
H

=//f1(glgz)u(dgl)u(dgz)

H H

= /Af. (92)(d g2).

H

Hence we see that fH (Ap(e)—Ap(92)u(dg2) = 0,and so Ay, (e) — Ay, (g) for
all g € H. It follows by uniqueness of Haar measure, and the fact that u(H) = 1,
that ;1 = m g, as required. ]

Let © € P(G) and n € N. We define the nth convolution power of u to be

w*™ = %+ o (n times). Note that we then have forall m € G, p*( () = fi(m)".
Let (€2, F, P) be a probability space and (X,, n € N) be a sequence of independent,
identically distributed (or i.i.d.) G—valued random variables. Let (S,, n € N) be the
associated G-valued random walk, so that foreachn € N, §,, = X1 X, ... X,,. Then
the law of S, is precisely p*. It is of interest to study the asymptotic behaviour
of the random walk as for large n. In particular we might consider the weak limit
of 1™ as n — oo. It is clear that if the limit exists, it is an idempotent, and so by
Theorem 4.6.1

lim u*(") =my,

n— o0
for some closed subgroup H of G.

Necessary and sufficient conditions for the limit to exist were found by Stromberg

[198]. We quote his result but omit the proof (see also Heyer [95] Theorem 2.1.4,
pp- 91-92).

Theorem 4.6.2 Let ;1 € P(G) and let K be the smallest closed subgroup of G
containing supp(jv). Then lim,,_, oo p*" exists if and only if supp(j) is not contained
in any coset of a proper closed normal subgroup of K.

Kawada and It6 [114] established an equidistribution theorem which gives
conditions for the limit to exist and be normalised Haar measure m on the whole
group. First we need a definition. We say that . € P(G) is aperiodic if supp(u) is
not contained in a left or right coset of a proper closed normal subgroup of G. We
then have the following:

Theorem 4.6.3 (Kawada-Itd equidistribution theorem) If i € P(G) is aperiodic,
then (1", n e N) converges weakly to normalised Haar measure.
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Proof This is based on the proof of Theorem 8 in [114]. By Theorem 4.2.6, it is
sufficient to show that lim,,_, oo f2(7)" = 0 for all non-trivial = € G. This is clearly
equivalent to the requirement that all the eigenvalues of 7 have modulus strictly less
than 1. Note that since 7z(7) is a contraction, its eigenvalues cannot have moduli that
exceed 1. Now let A be an eigenvalue of (). Then we can find a unitary matrix Uy
acting in V;; so that

U i(mU; " =
0
where Dy is some (d; — 1) x (d; — 1) matrix. In particular, we have

A = (U AU )1 = /(Uﬁw(g‘l)U;I)nu(dg),
G

and if |A\| =1, (U,rw(g’l)U;I)n = Mforall g € G for which g~ € supp(u).
Now suppose that A = 1. Then we have

o =1 _ | -
supp(p) € H := 19 € G, Urm(g" HU " = | E.(9) ,
0
where E;(g) is some (d; — 1) x (d; — 1) matrix. But H is a proper closed subgroup

of G and this contradicts aperiodicity of y.
Now suppose that A = ¢/’ for some # € R\27Z. Then arguing as above we can

find a unitary matrix U, sothate’? = (Uﬂﬁ(w)Uﬂ_l)n = fG(Uﬂﬂ(g_l)Uﬂ_l)nu(dg)
and

supp() ST = 19 € G, Urm(g HU; ' = | Foto) :
™
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where F(g) is some (d,r — 1) x (dr — 1) matrix. Now let go € G be such that
(Vﬂr(go_l)Vﬂ_l)ll = ¢'?. Then it is easily verified that I' = ggH, and this again
contradicts aperiodicity. The required result follows. (]

We briefly draw the reader’s attention to more recent work in this area. Shlosman
and Major [142] and Shlosman [179, 180] were able to extend the Kawada-Itd
theorem to the case where p has a density and there is uniform convergence of
its convolution powers to the uniform density. Johnson and Suhov [109] used the
Kullback-Liebler distance to obtain exponential rates of convergence and Harremogs
[81] examined this from the perspective of uniform convergence of the rate distortion
function.

4.7 Convolution Operators

In this and the Sect.4.8 we will drop the condition that G be a compact Lie group.
We work more generally and assume (unless otherwise stated) that G is a locally
compact, Hausdorff and second countable topological group. Convolution operators
were already introduced in Sect.4.4 for compact Lie groups. Now we study them
more systematically. Let 4 € P(G). The associated right convolution operator PAER)

is defined on By (G) by the prescription P,ER) f = f=pfor f € Bp(G), so that

(PP f)(g) = / f(gh)u(dh)
G

for all g € G. Similarly the left convolution operator P,il‘) is defined by

PP i) = [ Fhgutan.
G

The reader may check that these are related by the identity

e
PP f=PIF.

Furthermore, if p1, o € P(G), then Pﬁfe) Pﬁ% ) = PL(QL )P/Efe). We also have that for
all € P(G), g€ G, L,P® = P®L,and R,P" = PP'R,.
From now on we will almost always work with PAER) , which we will denote simply
as P,.
1

Proposition 4.7.1 For each p € P(G),

1. P, is linear,
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Pyl =1,

If f >0, then P, f >0,
Py, is a contraction,

P, : Co(G) — Co(G),
If pi, po € P(G), then

Ak

Py = Puy Py

Proof (1)-(4) are all easy exercises. For (5) first note that continuity is straightforward
to establish by using a dominated convergence argument (or see the discussion before
Theorem 4.4.2). To see that if f vanishes at infinity then so does P, f, let G :=
G U {00} be the one-point compactification of G (see Appendix A.1). We extend
(4 to a probability measure on (G, B(G)) by the requirement that p({oc}) = 0.
Then P, extends to a linear operator from C(G ) t0 C(Go). If F € C(Go) then
F € Co(G) if and only if limy_. o F(g) = 0. Since R : Co(G) — Co(G) for all
h € G, the required result follows by using the dominated convergence theorem. To
show (6), let f € B,(G) and g € G. By Fubini’s theorem,
Purnis @) = [ Flgh)u 5 ()

G

_ / / £ (ghy i) (dh) o (dhy)
G G

_ / / Fghiho)pa(dha) | (dhy)
G

G

= /(Puzf)(ghl)ﬂl(dhl)
G

= (Piu P )(9)- -
Note that if G is compact, then we use C(G) in place of Co(G) in
Proposition 4.7.1(5).
There is a useful link between the convolution operator and Fourier transform of
the measure on compact groups.

Proposition 4.7.2 If i is a Borel probability measure on a compact Lie group G,
then forallme G,1 <i,j <d;

ﬁ(ﬂ—)lj = P,mij(e).
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Proof

P,mij(e) =/7Tij(7')u(d7)
G
— / i (7O T)
G
zﬁ(ﬂ')ij O

Returning to the general case, we easily deduce from Proposition 4.7.1 (6) that
forall u € P(G),n € N,

P o = Pﬁ. (4.7.14)

Note also that P/’j is the n-step transition operator for the random walk (S(n), n €
N). Indeed, for all f € B,(G), g € G,

(P g =E(f(gSm)).

In the following we fix a right Haar measure m g on G and consider the p-norms
[| - Il in the spaces L¥ (G, mpg) for 1 < p < oo.

Proposition 4.7.3 Forall n € P(G), f € C.(G), 1 < p < o0,
HPufllp = I1fllp-

Proof By Jensen’s inequality and Fubini’s theorem,

1P, fIIE =/|P,lf<g>|"mR<dg>
G

p

[ amuan| meay

G IG

< / A £ (gh)I? p(dhym g (dg)

G

A

/ / £ (g Pmg(dg)(dh)
G

G

:/|f(g)|PmR(dg) =111
J O

We have just shown that P, is a contraction from C¢(G) to L”(G, mg) and so it
extends to a contraction on the whole of L? (G, mg). We will continue to denote the
operator by the same symbol P, whenever we consider it as acting in the L”-spaces.
For the case p = 2 the reader may verify the useful result
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P/j‘ =P (4.7.15)

Let f be a non-negative measurable function defined on G. It is said to be p-
harmonic if P, f = f, u-superharmonic if P, f < f and u-subharmonic if P, f >
f. Clearly non-negative constant functions are p-harmonic. In the Sect. 4.8 we will
investigate a condition under which they are the only ones. Note that if (S, n € N)
is the random walk associated to p and f is bounded and p-superharmonic, then
(f(Sp),n € N) is a supermartingale with respect to the filtration (F,,n € N) of
F where for each n € N, F, := o{X1, ..., X,}. To see this, observe that by the
Markov property

E(f(Sn+l)|]:n) = (Puf)(sn) = f(Sn)

Similarly we obtain a martingale (respectively, submartingale) if f is p-harmonic
(respectively, p-subharmonic).

Now let M(G) be the space of all regular Borel measures on G. For each
1w € M(G), we may consider the dual action Plj‘ of P, on M(G) defined by the
prescription:

(PE0)(f) = p(Pyuf),

for all p € M(G), f € C.(G). We generalise the definitions we gave above for
functions and say that p € M(G) is p-harmonic if P;fp = p, p-superharmonic

if P;p < p and pi-subharmonic if Pjp > p.1! Now let p € M(G) be absolutely
d
continuous with respect to m g with f, := d_p Itis left as an exercise for the reader

mg
to check that f, is p-superharmonic if and only if p is fi-superharmonic.

We give some useful properties of p-superharmonic functions.

Proposition 4.7.4 Let ;1 € P(G)

1. Suppose that X\, p € M(G). If p is p-superharmonic, then so is \ * p.
2. If f is u-superharmonic, then so is f A c for any ¢ > 0.

Proof
1. Forall f € C.(G)4+ we have

If p1, p2 € M(G) we write p1 > pa if p1(f) = pa(f) forall f € C.(G)s.
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PiOve o) = [ [ pgmadgipan
G G
= [@P P
G

= [ &P p® P
G

= (Fip(P" )
< p(P" )y = (% p)(f).

2. This follows from the easily verified fact that P,(f Ac) < P, f Ac. (I

Next we establish a connection between properties of convolution operators and
existence and regularity of densities as discussed in Sect.4.5. This result will be
useful for us in the next chapter. Readers requiring background on Hilbert-Schmidt
operators are referred to Appendix A.6. This result was obtained in Applebaum [9].

Theorem 4.7.1 Let G be a compact Lie group and . € P(G). The operator P,
acting in L*(G) is Hilbert-Schmidt if and only if 1 has a square-integrable density.

Proof For sufficiency, assume that 4 has density f,, € L*(G,R). Then for all g €
L*(G), 0 € G, (Pug)(0) = |5 9(o7) fu(r)dT = [; 9(7) fu (o' T)dT. Now define
the mapping k, : G x G — Rby k, (0, 7) := f,(c~'7). Then k, € L*(G x G)
since by left-invariance of (normalised) Haar measure, and Fubini’s theorem

//lku(o, 7)|2dad7=//|fu(a*‘T)|2dea= 1 full5 < 00,

G G G G

and the result follows by Theorem A.6.4 in Appendix A.6. For necessity, suppose
that P, is Hilbert-Schmidt. Then it has a kernel k, € L*(G x G) and

(Puf)(o) =/f(r)kﬂ(a,r)d7.

G

In particular, for each A € B(G),

u(A) = Pyla(e) = /ku(e, T)dT.
A

Then for all g € C(G,R), [ g(o)u(do) = [; g(o)ky(e, o)do. It then follows by
the argument used in the last part of the proof of Theorem 4.5.1 that y is absolutely
continuous with respect to m with density f,, := kj(e, -), and we also have f, €
L*(G,R). O
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A linear operator T : Bp(G) — Bp(G) is said to be strong Feller if Ran(T) C
Cp(G). The next theorem can essentially be found in Hewitt and Ross [91] (see (iv)
on p. 298). The probabilistic interpretation was first observed by Hawkes [82] for
the case G = R", where a more detailed analysis appears to be possible.

Theorem 4.7.2 If u € P(G) has a continuous density g, with respect to left Haar
measure, then the convolution operator P, is strong Feller.

Proof We need only establish continuity. Let 0 € G and (0, n € N) be a sequence
in G that converges to o. Then for all f € B,(G),n € N,

I&ﬂw—HJWMZL/ﬂmwwﬂ—/fWmeﬂ
G G
s/umMWFW—%wﬁmw

< sup |f (DI [ lgu(o™ 1) — guloy, ' D)ldr
7€G e

swyﬂm (9o~ ') + gu(oy ' ))dr
TE G

< 2sup|f(7)].

T7eG
The result then follows by dominated convergence and the continuity of g,,. ]

Finally we establish a useful spectral property for the case where p is a central
measure and G is compact.

Theorem 4.7.3 If G is compact and ;i € P.(G), then {m;;,1 < i, j < dr, 7 € G}
is a complete set of eigenfunctions for P, acting in L%(G). Moreover, we have

Pymij = crmij
foralll <i,j<d; me 6, where [i(m) = c; I (c.f. Corollary 4.2.2).

Proof For all o € G, using Theorem 4.2.1 (4) we have

Pymij(0) = /mj(af)u(dT)

G
dr
Zm@/%mwm
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dy
= D mik()a(m)y
k=1
dﬂ- —
= D mik(@)u(m)y
k=1
dr
= > mikCrlkj
k=1
= cxmij(0),
and the result follows. O

4.8 Recurrence

If 4 € P(G) we define 1@ = §,. Throughout this section we will assume that
1 € P(G) is regular and also full, i.e. the closed subgroup of G that is generated by
supp(u) is G. We define the potential measure V,, of p by the prescription

o0

V= Z M*(n)’

n=0

sothat V,,(f) = Z:O:O ,u(P;' f)foreach f € Co.(G)4.If V, istegular, then V,, (f) <
oo; otherwise it may take the value oco.

We say that i is transient if V;,(A) < oo for all open relatively compact subsets
of G and recurrent if V,,(A) = oo for all non-empty open subsets of G. We say that
the group G is recurrent if P(G) contains at least one full recurrent measure.

Theorem 4.8.1 (Recurrence-Transience Dichotomy) Every full i € P(G) is either
recurrent or transient.

We omit the proof, which can be obtained by combining the results of Theorem
22 (pp. 19-20) and Theorem 26 (pp. 23-24) in Guivarc’h et al. [75].

From the random-walk perspective, recurrence is equivalent to the requirement
that for all g € G, P (limy—00(Sy € V,)|S(0) =€) = 1 for every neighbourhood
Vy of g. From the point of view of this monograph a key result is the following:

Proposition 4.8.1 1. Anyfull probability measure on a compact group is recurrent.
2. Every compact group G is recurrent.

Proof 1. Letp € P(G) be full. By the recurrence-transience dichotomy (Theorem
4.8.1), if V,,(A) = oo for some open relatively compact subset A of G, then G
cannot be transient and so must be recurrent. But we may take A = G and then
Vi(G) = 2520 15 (G) = oo
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2. Take i to be normalised Haar measure on G. (]

Lemma 4.8.1 Let p be a full measure in ‘P(G) and f be continuous and -
superharmonic. If p is recurrent, then f is p-harmonic.

Proof We follow Guivarc’h et al [75] p. 43. Without loss of generality, we suppose
that f — P, f > 0 and seek a contradiction. By the recurrence assumption,

00 = Vulf = Puf) = D (PI(f = Puf)),
n=0

and so
oo = lim (f—P/’jf)Sf,
n—oo

giving the required contradiction. (]

The main result of this section is the following. Our proof closely mirrors that of
Guivarc’h et al [75] Proposition 45, pp. 42—44.

Theorem 4.8.2 Let ;i € P(G) be full. The following are equivalent.

(i) wis recurrent.
(ii) Every p-superharmonic continuous function on G is constant.
(iii) Every u-superharmonic measure is a right Haar measure.
(iv) Every p-superharmonic function on G is constant m g-almost everywhere.

Proof (i) = (ii). Let f be a continuous u-superharmonic function on G. By Lemma
4.8.1 it is p-harmonic. Assume that f is bounded and suppose that it attains it
maximum value, so there exists go € G such that f(go) = supyeq f(9). Then
we have

f(g0) = (Puf)(go) = / f(goh)u(dh),
G

and so

/(f(yo) — f(gom)p(dh) = 0.
G

It follows that f(go) = f(goh) forall h € g, ! supp(u). By repeatedly using the fact
that f is harmonic we deduce that f(go) = f(goh1...h,) forall hy, ... hy,n € N
such that goh ... h, € supp(u). Repeatedly applying Proposition 4.7.4, wherein A
is taken to be iz, allows us to repeat the previous argument with any h;,i = 1,...,n
replaced by A~ L Finally, using the continuity of f and the fact that p is full, we
deduce that f is constant. To extend this result to the general case, observe that if
f # 0, we can replace f by f A ¢ where ¢ > 0 and appeal to Proposition 4.7.4(2).

(i) = (i). We assume that p is transient and seek a contradiction. Let f €
C.(G)4 be non-trivial and define Fy = f %V, so that for all g € G, Fr(g) =
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Z;O:O f(gh) ,u*(”)(dh). By a standard use of dominated convergence, we can see
that F's is continuous. Then it is easily verified that

PuFp=Fy—f =<Fy,

and so Fy is both continuous and p-superharmonic. Hence it is constant, and so
f =P, Fy— Fy =0, giving the desired contradiction.

(i1) = (iii). Assume that p € M(G) is p-superharmonic. Choose an arbitrary
1 € Cc(G) and let oy be the measure of compact support that has Radon-Nikodym
derivative % = 1 with respect to right Haar measure. By Proposition 4.7.4(1)
Q) * p is ﬁ-sulf)erharmonic, and it is easily verified that this measure is absolutely
continuous with respect to right Haar measure, and has Radon-Nikodym derivative
Fy where Fy(g) = fG ¥(gh~Yp(dh) for all ¢ € G. The mapping Fy is clearly
non-negative, continuous and it is g-superharmonic. Then it is constant by (ii). So
Fy(g9) = Fy(e) forall g € G. Then for all ¥ € C:(G), g € G,

/ Plgh™yp(dh) = / BNy p(dh).
G G

It follows that p is a left Haar measure and so p is a right Haar measure.

(iii) = (iv). Let f € By(G)+ and consider the measure py € M(G) for which
s
dmR
right Haar measure. It follows that f is constant almost everywhere with respect to
mpg. If f is not bounded, we can again replace f by f A ¢ where ¢ > 0 and use
Proposition 4.7.4(2).

(iv) = (ii) is obvious. O

= f.If f is p-superharmonic, then ps is fi-superharmonic, and so py is a

Let M be a Hausdorff topological space and let P(M) be the space of all regular
Borel probability measures on M. A continuous mapping o : G x M — M for which
a(e, x) = x forall x € M is called an action of G on M. An action is transitive if for
all g1, 920 € G, x € M, a(gr, a(g, x)) = a(g192, x). A locally compact Hausdorff
group G is said to be amenable in action'? if for every transitive action o on every
compact space M, there exists a regular Borel probability measure 15, on M such
thatforall f e C(M),g € G

/ F (g X)puag(dx) = / F O ().
M G

12 This term should not be confused with the notion of an amenable group, which is a group that
possesses an invariant mean in the sense of the existence of a positive linear functional on L*°(G)
that is invariant with respect to left, or right translations. Such groups play an important role in
ergodic theory, see e.g. Ornstein and Weiss [154].
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The proof of the following theorem is based on that in Guivarc’h et al. [75]
(pp- 45-47). We will need the notion of the convolution of i € P(G) and \ € P(M)
relative to a given transitive action «. This is the measure p *,, A € P(M) such that
forall A € B(M):

(1 %0 N(A) = / / La(a(g. ) (dg)Adx).
M G

Theorem 4.8.3 Every recurrent group is amenable in action.

Proof Let p be a full recurrent probability measure on G and v € P(M) be arbitrary.
1 n—

For each n € N define u, = - k:(l) u*(k). Then (u, *q v,n € N) is weakly

n
relatively compact and so has a subsequence (p,, *o v,k € N) that converges

weakly to some A € P(M). If we can prove that A is invariant, then we are done. We
first show that o %, A = A. Indeed, we have for all f € C (M), using the transitivity
of a,

(1 xa M) (f) =//f(04(g,X))u(dg)>\(dX)

M G

=kl_i)rgo///f(oz(gh,X))u(dg)uk(dh)V(dx)
M G G

= lim. / FOOLG# 1) * V1(dx)
M

= lim / FOO (k0 v)(dx) = A(S).
M

To see that A is indeed invariant, let f € C(M)4 and define ®; € C(G)y by
Dr(g) = fM f(a(g, x))A(dx) for g € G. Then @ is p-harmonic, for by Fubini’s
theorem

Py = [ [ siatgh opuanan
M G
- / F@g, ) (1 0 M)
M
:/f(a(g,x)))\(dx) = r(9).
M

So by Theorem 4.8.2, ® ¢ is constant, and hence for all g € G,



4.8 Recurrence 117

/f(a(g, NAMdx) = Pr(g) = Pyle) =/f(oz(e,x))/\(dx) =/f(X)/\(dX),
M M M

and the result follows. O

For example, let H be a closed subgroup of a compact group G and M = G/H be
the (compact) homogeneous space of left cosets. Define the natural action of G on M
by a(g, g H) = gg'H forall g, ¢ € G. This is clearly continuous and transitive. G
is recurrent by Proposition 4.8.1, and so by Theorem 4.8.3 we can assert the existence
of uyy € P(M) so thatforall g € G

/f(QX)uM(dX) =/f(X)MM(dX)-
M M

In particular take G = SO(n) and H = SO(n — 1), so that M = §"~!. In this
case s is the normalised surface measure o,_1, for which we have the recursive
formula

/ S(xX)on—1(dx)
sn—1

us

= —n1)/ / f(sin(Ay) + cos(f)en)o,_2(dy) | sin"~2(0)d0,

0 n—2

for all f € C(S" 1) where e, is the “north pole” in sl (see Faraut [63],
pp- 186190 for details).

Some detailed results on recurrent random walks on non-compact groups (at least
in the abelian case) may be found in Chap. 9 of Revuz [167].

4.9 Notes and Further Reading

The interaction between probability and group theory covers a huge area and it is
difficult to do this justice in such a short space. In particular this includes proba-
bility on discrete groups (which is not really the topic of this monograph) and has
considerable overlap with “stochastic differential geometry”, as random motion on
a Lie group can be regarded as a special case of that on a more general manifold.
In the 1960s a considerable literature began to evolve on probability theory in such
general mathematical structures as groups on the one hand and Banach spaces on the
other. These two directions have now diverged considerably, but in 1963 Grenander
[73] was able to justify including both themes within a single volume. From the
continuous group point of view, he introduced the Fourier transform and gave some
attention to limit theorems. He traces the historic roots of the subject back to work by
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Perrin [159] in 1928 on Brownian motion in the rotation group. Hannan’s survey paper
[78] from 1965 is also of historical interest. He develops applications to second-order
stationary processes, experimental design and ANOVA. Parthasarathy’s book [155],
which appeared in 1967, discusses probability on metric groups and gives an account
of infinite divisibility, the Lévy-Khintchine formula and the central limit theorem on
locally compact abelian groups. Ten years later, Heyer’s highly influential treatise
[95] appeared which gave a comprehensive and detailed state of the art account of
probability on (general) locally compact groups. This monograph is now a classic and
after 35 years is still a highly valuable resource for those doing research in this area.
Highlights are the treatment of Hunt’s classification of the generators of convolution
semigroups and the central limit theorem. We will investigate both of these topics in
the next chapter. Ten years later, Diaconis [56] published his beautiful lecture notes
that demonstrate the fruitfulness of group actions in a variety of contexts within both
probability and statistics, from card shuffling to ANOVA and spectral analysis of
time series.

In more recent years there have been a number of books and monographs on
more specific topics concerned with probability on groups. For example Hazod and
Siebert [85] study stable laws on locally compact groups (where these make sense),
Neuenschwander [153] investigates limit theorems and Brownian motion on the
Heisenberg group, and Liao’s monograph [132] is devoted to Lie group-valued Lévy
processes. The treatise of Guivarc’h et al. [75] is a comprehensive account of random
walks on groups. For a more recent survey, see Breuillard [35]. Random walks on
the rotation groups SO (n) were given an extensive treatment by Rosenthal [170].
For a study of random walks on spheres, see Bingham [29]. Central measures were
introduced in this chapter and will feature prominently in the next one. These have
been investigated by a number of analysts (see e.g. Ragozin [163] and Hare [79])
and probabilists (see e.g. Siebert [184]).

We can regard normalised Haar measure on U(n) as the uniform distribution
therein, and choosing unitary matrices according to this law plays an important role
in random matrix theory ; see e.g. Keating and Snaith [115] for intriguing connections
to the Riemann hypothesis, and Diaconis and Shahshahani [57] for computations of
the eigenvalues of random matrices in connection with a continuous generalisation
of the classical matching problem. For a monograph treatment of this topic, see
Anderson et al. [3].

It is worth pointing out that there is an interesting class of locally compact groups
called Moore groups, whose defining property is that all of their irreducible rep-
resentations are finite dimensional. So all compact groups are Moore groups and
many probabilistic results that hold for Moore groups are automatically applicable
to compact groups; see e.g. Sects. 1.3 and 1.4 of Heyer [95].
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