Chapter 2
The Asymptotic Density of Relatively Prime
Pairs and of Square-Free Numbers

Pick a positive integer at random. What is the probability of it being even? As
stated, this question is not well posed, because there is no uniform probability
measure on the set N of positive integers. However, what one can do is fix a
positive integer n, and choose a number uniformly at random from the finite set
[n] = {1,...,n}. Letting p, denote the probability that the chosen number was
even, we have lim, o0 p, = %, and we say that the asymptotic density of even
numbers is equal to %

In this spirit, we ask: if one selects two positive integers at random, what is the
probability that they are relatively prime? Fixing n, we choose two positive integers
uniformly at random from [r]. Of course, there are two natural ways to interpret this.
Do we choose a number uniformly at random from [n] and then choose a second
number uniformly at random from the remaining n — 1 integers, or, alternatively,
do we select the second number again from [n], thereby allowing for doubles? The
answer is that it doesn’t matter, because under the second alternative the probability
of getting doubles is only %, and this doesn’t affect the asymptotic probability. Here
is the theorem we will prove.

Theorem 2.1. Choose two integers uniformly at random from [n]. As n — oo, the
asymptotic probability that they are relatively prime is % ~ 0.6079.

We will give two very different proofs of Theorem 2.1: one completely number
theoretic and one completely probabilistic. The number theoretic proof is elegant
even a little magical. However, it does require the preparation of some basic number
theoretic tools, and it provides little intuition. The number theoretic proof gives the
asymptotic probability as (3 p=, =)~ The well-known fact that )2 & = ”{ is
proved in Appendix D. The probabilistic proof requires very little preparation; it is
enough to know just the most rudimentary notions from discrete probability theory:
probability space, event, and independence. A heuristic, non-rigorous version of
the probabilistic proof provides a lot of intuition, some of which the reader might
find obscured in the rigorous proof. The probabilistic proof gives the asymptotic
probability as []po, (1 — pL,f)’ where {p; 72, is an enumeration of the primes. One
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8 2 Relatively Prime Pairs and Square-Free Numbers

then must use the Euler product formula to show that this is equal to (3.~ #)_1.
We will first give the number theoretic proof and then give the heuristic and the
rigorous probabilistic proofs.

The number theoretic ideas we develop along the way to our first proof of
Theorem 2.1 will bring us close to proving another result, which we now describe.
Every positive integer n > 2 can be factored uniquely as n = p]f‘ <+ pkm where
m > 1,{p;}_, aredistinct primes, and k; € N, for j € [m]. If in this factorization,
one has k; = 1, for all j € [m], then we say that n is square-free. Thus, an integer
n > 2 is square-free if and only if it is of the formn = p; --- p,,, where m > 1 and
{p; '’y are distinct primes. The integer 1 is also called square-free. There are 61
square-free positive integers that are no greater than 100:
1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,39,41,42,43,
46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,
87,89,91,93,94,95,97.

Let C, = {k : 1 < k < n, k is square-free}. If lim,_, o ‘Cn—”l exists, we call
this limit the asymptotic density of square-free numbers. After giving the number
theoretic proof of Theorem 2.1, we will prove the following theorem.

Theorem 2.2. The asymptotic density of square-free integers is % ~ 0.6079.

For the number theoretic proof of Theorem 2.1, the first alternative suggested
above in the second paragraph of this chapter will be more convenient. In fact, once
we have chosen the two distinct integers, it will be convenient to order them by size;
thus, we may consider the set B, of all possible (and equally likely) outcomes to be

B, ={(j.k):1=j <k <nj.
Let A, C B, denote those pairs which are relatively prime:
Ay =4{(j,k): 1= j <k <n, ged(j, k) = 1}.
Then the probability ¢, that the two selected integers are relatively prime is

_ A _ 214,
|Bn| I’l(l’l—l)

(2.1)

n

We proceed to develop a circle of ideas that will facilitate the calculation of
lim,, o ¢, and thus give a proof of Theorem 2.1. A function @ : N — R is called
an arithmetic function. The Mobius function  is the arithmetic function defined by

1, ifn = 1;
um) = (=", ifn = ]_[;":] pj» where {p;}_, are distinct primes;

0, otherwise.

Thus, for example, we have ;1 (3) = —1, u(15) = 1, and p(12) = 0.



2 Relatively Prime Pairs and Square-Free Numbers 9

Given arithmetic functions a and b, we define their convolution a * b to be the
arithmetic function satisfying

(aumm=§:uwm§yneN

d|n

Clearly, a x b = b * a. The convolution arises naturally in the following context.
Define formally

fx) = Z “}E’? 22)
n=1
and
b
ﬂﬂ=2:$» 2.3)
n=1

When we say “formally,” what we mean is that we ignore questions of convergence
and manipulate these infinite series according to the laws of addition, subtraction,
multiplication, and division, which are valid for series with a finite number of terms
and for absolutely convergent infinite series. Their formal product is given by

2 a(d b(k d)b(k
Fegt=(3 2Dy ( kZ ,f)):Za((d)k)ﬂ) SL Y aaww
1

d=1 d.k=1 n= l d.k:dk=n

1 n. (@ *b)(n)
=y dzlnja(d)b(g) = ij] — 24)

n=1

If the series on the right hand side of (2.2) and (2.3) are in fact absolutely convergent,
then the series on the right hand side of (2.4) is also absolutely convergent. In
such case, the equality (Y52, 42) (Y52, 20) = 3% | @D 5 4 rigorous
statement in mathematical analysis.

An arithmetic function « is called multiplicative if a(nm) = a(n)a(m) whenever
gcd(n, m) = 1. It follows that if @ # 0 is multiplicative, then a(1) = 1. If a # O is
multiplicative, then it is completely determined by its values on the prime powers;

indeed, if n = ]_['j’f:1 p j’ is the factorization of n into a product of distinct prime

powers, then a(n) = a([]}_, p];j) = [T}, a(pf:/).
It is trivial to verify that p is multiplicative. For the first proposition below, the
following lemma will be useful.

Lemma 2.1. The arithmetic function y_ djn 1(d) is multiplicative.

Proof. Let n and m be positive integers satisfying gcd(n, m) = 1. We have
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Doud) Y md) = Y pldipld) = Y wldid) =) p(d),

dy|n da|lm dy|n.dzlm di|n,d2lm dlnm

where the second equality follows from the fact that w is multiplicative and the fact
that if gcd(n, m) = 1, dy|n and d,|m, then ged(d;, d») = 1, while the final equality
follows from the fact that if ged(n,m) = 1 and d|nm, then d can be written as
d = dd, for a unique pair dy, d, satisfying d;|n and d,|m. (The reader should
verify these facts.) O

We introduce three more arithmetic functions that will be used in the sequel:

1, ifn =1;
1(n) =1, foralln; i(n) =n, foralln; en) = n
0, otherwise.

Note that a * e = a, for all a, and that (a *x 1)(n) = Zd‘n a(d). A key result we
need is the Mobius inversion formula.

Proposition 2.1. Let a be an arithmetic function. Define b = a*1. Thena = b * .

Remark. Written out explicitly, the theorem asserts that if

b(n) := Y _a(d).

dln

thena(n) = 3_,, b(d)u(3).

Proof. To prove the proposition, it suffices to prove that
lxu=e. 2.5)

Indeed, using this along with the easily verified associativity of the convolution, we
have

bxpu=@xD)xpu=ax(lxpu)=ax*xe=a.

We now prove (2.5). We have

(1% () = (D) =Y u(d).

dln

By Lemma 2.1, the function ) dln w(d) is multiplicative. Clearly, the function e
is multiplicative. Obviously, e(1) = 1 and e(p*) = 0, for any prime p and any
positive integer k. We have Zd“ u(d) = p(l) = 1. Thus, since a nonzero,
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multiplicative, arithmetic function is completely determined by its values on prime
powers, to complete the proof that 1 * u = e, it suffices to show that ) dpk 1(d)

= 0. We have 3, u(d) = Yo u(p/) = p() + u(p) = 1-1=0. O

We introduce one final arithmetic function—the well-known Euler ¢-function:

p(n)={j:1=j=n, ged(j,n) =1}

That is, ¢(n) counts the number of positive integers less than or equal to n which
are relatively prime to n. For our calculation of lim,_,« g, we will use a result that
is a corollary of the following proposition.

Proposition 2.2. ¢ x 1 = i; that is,

> ¢d)=n.

d|n

From Proposition 2.2 and the M6bius inversion formula, the following corollary
is immediate.

Corollary 2.1. u xi = ¢; that is,

Bm) = 3 u(d) 7.

d|n

Remark. For the proofs of Theorems 2.1 and 2.2, we do not need Proposition 2.2,
but only Corollary 2.1. In Exercise 2.1, the reader is guided through a direct proof of
the corollary. The proof also will reveal why the seemingly strange Mobius function
has such nice properties.

Proof of Proposition 2.2. Let d|n. It is easy to see that ¢ (d) is equal to the number
of k € [n] satisfying gcd(k,n) = 7. Indeed, k € [n] satisfies gcd(k,n) = 7 if and
only if k = j(%), for some j € [d] satisfying ged(d, j) = 1. (The reader should
verify this.) Also, clearly, every k € [n] satisfies gcd(k,n) = 7 for some d|n. The
proposition follows from these facts. O

Remark. For an alternative proof of Proposition 2.2, exactly in the spirit of
Lemma 2.1 and the proof of (2.5), see Exercise 2.2.

We are now in a position to prove Theorem 2.1.

Number Theoretic Proof of Theorem 2.1. For each k > 2, there are ¢ (k) integers j
satisfying 1 < j < k and ged(j, k) = 1. Thus,

4| = {(.k) 11 < j <k <n, ged(j.k) =1} =) ¢(k).
k=2



12 2 Relatively Prime Pairs and Square-Free Numbers

Therefore, from (2.1), we have

D B3
! nin—1) °
To calculate
230 ok
lim ¢, = lim M, (2.6)
n—00 n—oo n(n— 1)
we analyze the behavior of the sum )", _, ¢ (k) for large n.
Remark. The function ¢ can be written explicitly as
pm)=n]]1- —) n>2, 2.7)

pln

where ]_[p|n indicates that the product is over all primes that divide n; see
Exercise 2.3. However, this formula is of no help whatsoever for analyzing the above
sum.

We will use Corollary 2.1 to analyze ), _, ¢ (k). From Corollary 2.1, we have

ZW‘) Z(M*Z)(k) Zzu(d)gz

k=1 d|k
2.2 dud) = Zu(d) > d.
k=1dd’=k a’'<4

Since ) 7_, j = Im(m + 1), we have
Y k) = Zu(d) Yal= Zu(d)[%]([g] +1). @28
k=1 ar<t 2D

We have [Z]([7]+ 1) < (3 + D = (5’ + L and [FI[(5]1 + D = (5 - D§ =
() = 4 thus,

I’l

n 24
(P =2 <G+ D = (P +

Substituting this two-sided inequality in (2.8), we obtain

d d . d
_Z“() _<Z¢(k)_22“() '2_’;# (2.9)
=1
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Now

p(d) 1
< 1+ — <1+logn, 2.10
IdX_j1 | < Zd ;d g (2.10)

since the final sum is a lower Riemann sum for fln % dx. From (2.9) and (2.10), we
obtain

fim 2i=2?®) _ Iy “a(,f). @11

n—oo n(n—1)

It remains to evaluate Zjil %. On the face of it, from the definition of w,
it would seem very difficult to evaluate this explicitly. However, Mobius inversion
saves the day. Consider (2.2)—-(2.4) witha = 1 and b = p and with x = 2. With
these choices, the right hand sides of (2.2) and (2.3) are absolutely convergent.
By (2.5), we have 1 x u = e; that is, a * b = e. Therefore, we conclude from

(2.2)=(2.4) that

d)) =1. 2.12)

() (5

Recall the well-known formula
—_ = — (2.13)

We give a completely elementary proof of this fact in Appendix D. From (2.12)
and (2.13) we obtain

o0
d 6
Z £ ( — (2.14)
Using (2.14) with (2.11) and (2.6) gives
lim ¢, = —
n—o00 T
completing the proof of the theorem. |

Remark. If a is an arithmetic function and f is a nondecreasing function, we
say that the function f is the average order of the arithmetic function a if
%ZZ:I a(k) = f(n) + o(f(n)). Of course this doesn’t uniquely define f; we
usually choose a particular such f which has a simple form. From (2.11) and (2.14),
it follows that the average order of the Euler ¢-function is =5 3”
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We now turn to Theorem 2.2.

Proof of Theorem 2.2. From the definition of the Mobius function, it follows that

1, if n is square-free;

2
n(n) = (2.15)
0, otherwise.
Thus, letting
A, ={j €[n]:j is square-free},
we have
n
A =D 12 (). (2.16)
—
To prove the theorem, we need to show that
A, 6
lim —| d == 2.17)
n—>o00 n T

We need the following lemma.
Lemma 2.2.

prm) =Y k).

k2|n

Proof. Let A(n) = ZMH w(k). If n is square-free, then the only integer k that
satisfies k?|n is k = 1. Thus, since (1) = 1, we have A(n) = 1. On the other
hand, if n is not square-free, then n can be written in the form n = m?2l, where
m > 1 and [ is square-free. Now k?|m?[ if and only if k|m. (The reader should
verify this.) Thus, we have

Am) = ntk) = Y plk) =) pulk) = (u*1)(m) =0,

k2|n k2|m21 k|m

where the last equality follows from (2.5). The lemma now follows from (2.15). O

Using Lemma 2.2, we have

Do) =) ) nk). (2.18)
j=l1

J=1k2|j
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If k? > n, then w(k) will not appear on the right hand side of (2.18). If k> < n,
then p(k) will appear on the right hand side of (2.18) [}5] times, namely, when
j =Kk*2k* ... [{&]k Thus, we have

Zu ()= ZZu(k) Ylslat) = Y 5l ak) =

TR = i

Z M(k)

ks[n2] k<["2]

([ 2)u(k)- (2.19)

Since each summand in the second term on the right hand side of (2.19) is bounded
in absolute value by 1, we have

| Y (5] - 5 )ntol < nt. (2.20)

kf[n%]

It follows from (2.16), (2.19), and (2.20) that

Al M(k)
S Z -

Using this with (2.14) gives (2.17) and completes the proof of the theorem. |

We now give a heuristic probabilistic proof and a rigorous probabilistic proof of
Theorem 2.1. In the heuristic proof, we put quotation marks around the steps that
are not rigorous.

Heuristic Probabilistic Proof of Theorem 2.1. Let {p;}2, be an enumeration of
the primes. In the spirit described in the first paragraph of the chapter, if we
pick a positive integer “at random,” then the “probability” of it being divisible by
the prime number py is l} (Of course, this is true also with p; replaced by an
arbitrary positive integer.) If we pick two positive integers “independently,” then the

“probability” that they are both divisible by py is p—]pik = #, by “independence.”
k

So the “probability” that at least one of them is not divisible by py is 1 — % The

“probability” that a “randomly” selected positive integer is divisible by tﬁe two
distinct primes, p; and py, is pjlpk = p/ pk . (The reader should check that this
“holds” more generally if p; and p; are replaced by an arbitrary pair of relatively
prime positive integers, but not otherwise.) Thus, the events of being divisible by p;
and being divisible by py are “independent.” Now two “randomly” selected positive
integers are relatively prime if and only if, for every k, at least one of the integers
is not divisible by pk But since the “probability” that at least one of them is not

divisible by py is 1 — 2 , and since being divisible by a prime p; and being divisible
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by a different prime p; are “independent” events, the “probability” that the two

“randomly” selected positive integers are such that, for every k, at least one of them

is not divisible by py is [[ro,(1 — #). Thus, this should be the “probability” that
k

two “randomly” selected positive integers are relatively prime. O

Rigorous Probabilistic Proof of Theorem 2.1. For the probabilistic proof, the sec-
ond alternative suggested in the second paragraph of the chapter will be more
convenient. Thus, we choose an integer from [n] uniformly at random and then
choose a second integer from [n] uniformly at random. Let 2, = [n]. The
appropriate probability space on which to analyze the model described above is the
space (2, x 2,,, P,), where the probability measure P, on €2, x €2, is the uniform
measure; that is, P,(A4) = | ‘ ,forany A C Q, x Q,. The point (i, j) € 2, X 2,
indicates that the integer 7 was chosen the first time and the integer j was chosen
the second time. Let C,, denote the event that the two selected integers are relatively
prime; that is,

C,=1{(,j) € 2, xR, :gdij)=1}
Then the probability ¢, that the two selected integers are relatively prime is

C,
%—PKH—||

Let {pi}72, denote the prime numbers arranged in increasing order. (Any
enumeration of the primes would do, but for the proof it is more convenient to
choose the increasing enumeration.) For each k € N, let B ;; . denote the event that
the first integer chosen is divisible by pj and let Bﬁ;  denote the event that the
second integer chosen is divisible by py. That is,

Bl =A{0.)) € QuxQu:plit, By =1G.j) € QuxQu:pilj}

Note of course that the above sets are empty if pr > n. The event B;.k N B,%. =
{(,]) € Q, x 2, : pr|i and p|j} is the event that both selected integers have
pi as a factor. There are [;7] integers in €2, that are divisible by py, namely,
Dks 2Pk, ,[ﬁ]pk. Thus, there are [%]2 pairs (i, j) € 2, x @, for which both
coordinates are divisible by py; therefore,

[n ]2
mwhmBky_Z (2.21)

Note that U2 1(B 4 N B? k) = UZ=1(B;;,C N Bﬁ;k) is the event that the two
selected integers have at least one common prime factor. (The equality above
follows from the fact that B;. . and B}f, . are clearly empty for k > n.) Consequently,
C, can be expressed as
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Cr = (UZ=1 (B;;k N Br%;k))c = m;é:l(Bli;k N Br%;k)c7

where A := Q, x Q, — A denotes the complement of an event A C 2, x ,.
Thus,

Py(Cy) = Pu( M=y (B N BLL). (2.22)
Let R < n be a positive integer. We have
M1 (B N Bay)® = i (Baye N B = Ul gy (B N Boy
and, of course, Ny _ 1(B 4 N B? wi) C ﬂ,’:zl(B N sz)‘ Thus,
Po(Nfoy (Bl 0 BL)%) = Pl (Bl 0 B)) <
Po(Mizy (Byy N B2) < Pu(NEZ; (B N BoY). (2.23)

Using the sub-additivity property of probability measures for the first inequality
below, and using (2.21) for the equality below, we have

U L o
Pp(Ukmrt1 (B::;k n B:%;k))S Z P”(Brlz;k n Bﬁ;k))z Z ,,):2 = Z 3
k=R41 k=R+1 k=r+1 Pk

(2.24)

Up until now, we have made no assumption on n. Now assume that py|n, for
k = 1,--- | R; that is, assume that n is a multiple of ]_[,15:1 Pk- Denote the set of
such n by Dg; that is,

Dr={neN:pgnfork =1,---,R}.

Recall that the event Bn 4N B? .. 1s the event that both selected integers are divisible

by k. We claim that if n € Dg, then the events {Bn 4 N B}f; i 1R 4= are independent.
That is, for any subset / C {1,2,---, R}, one has

Py(Nier (Byy N BL)) = [ [ Pa(Byy 0 Bry). if n € Dp. (2.25)
kel

The proof of (2.25) is a straightforward counting exercise and is left as Exercise 2.4.
If events { A} *_, are independent, then the complementary events {A¢}X_, are also
independent. See Exercise A.3 in Appendix A. Thus, we conclude that

R
PN (Bl 1 B20) = [ P((Bly B2, ifn € Do 226)
k=1
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n 2

By (2.21) we have P,,((Bli.k N Brf.k)") =1-P, (Bn 4N Bn ) =1- ["’3 , for any
n. Thus, from the definition of D g, we have
|
P,,((B 4 N B? k) ) — —, ifn € Dg. 2.27)

k

From (2.22) to (2.24), (2.26), and (2.27), we conclude that

1
——), for R e Nandn € Dg. (2.28)

0o R
=1 pk

R 1 1
[o-gp- 3= =i
— k k

k=R k

We now use (2.28) to obtain an estimate on P,(C,) for general n. Let n >
]_[,f:1 Pk Let n” denote the largest integer in D g which is smaller or equal to 7,
and let n” denote the smallest integer in D g which is larger or equal to n. Since D g
is the set of positive multiples of ]_[,f:1 Pk, we obviously have

R R
n’>n—1_[pk and n”<n+npk. (2.29)

k=1 k=1
For any n, note that n> P, (C,) = |C,| is the number of pairs (i, j) € R, x 2, that

are relatively prime. Obviously, the number of such pairs is increasing in n. Thus
(n")? Py (Cy) < n?P,(C,) < (n")? P, (Cy,r), or equivalently,

(”;)213"/(0"/) < P,(C)) < <”7)2Pn~<cn~). (2.30)

Since n’,n” € Dy, we conclude from (2.28)—(2.30) that

R o0 R R
(=Tl e "I =)= 3 —2 ) < Patcny < =2 Ly
k=1 P R+

k= Py k=1 Pk
(2.31)
Letting n — oo in (2.31), we obtain
R oo 1 R 1
[]a- Z 7 < liminf P,(C,) < limsup P, (C,) < [Ta-—=).
k=1 k k=r+1 Pk =00 k=1 Py
(2.32)
Now (2.32) holds for arbitrary R; thus letting R — oo, we conclude that
lim P,(C,) = ]‘[(1 - = (2.33)

k
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The celebrated Euler product formula states that

oo

1 1
- N> 2.34
=) 2t 230

see Exercise 2.5. From (2.33), (2.34), and (2.13), we conclude that

. . 1 6
N S .
i

Exercise 2.1. Give a direct proof of Corollary 2.1. (Hint: The Euler ¢-function
¢(n) counts the number of positive integers that are less than or equal to n and
relatively prime to n. We employ the sieve method, which from the point of view
of set theory is the method of inclusion—exclusion. Start with a list of all n integers
between 1 and n as potential members of the set of the ¢ () relatively prime integers

to n. Let {p;}7_, be the prime divisors of 7. For any such p;, the I;—’/ numbers

Djs2pjs .-, f p; are not relatively prime to n. So we should strike these numbers
J

from our list. When we do this for each j, the remaining numbers on the list are
those numbers that are relatively prime to n, and the size of the list is ¢ (n). Now
we haven’t necessarily reduced the size of our list to Ny :=n — 27’:1 pij, because
some of the numbers we have deleted might be multiples of two different primes,
pi and p;, in which case they were subtracted above twice. Thus we need to add

back to N all of the p_';_ multiples of p;p;, for i # j. That is, we now have
iPj k

N, := N, + Zi# pl”—p] Continue in this vein.

Exercise 2.2. This exercise presents an alternative proof to Proposition 2.2:

(a) Show that the arithmetic function ), ¢(d) is multiplicative. Use the fact that
¢ is multiplicative—see Exercise 2.3.

(b) Show that }_,, ¢(d) = n, when n is a prime power.

(c) Conclude that Proposition 2.2 holds.

Exercise 2.3. The Chinese remainder theorem states that if n and m are relatively
prime positive integers, and a € [n] and b € [m], then there exists a unique ¢ € [nm]
such that ¢ = @ modn and ¢ = » mod m. (For a proof, see [27].) Use this to prove
that the Euler ¢-function is multiplicative. Then use the fact that ¢ is multiplicative
to prove (2.7).

Exercise 2.4. Prove (2.25).

Exercise 2.5. Prove the Euler product formula (2.34). (Hint: Let N, denote the set
of positive integers all of whose prime factors are in the set { px }£=1. Using the fact
that

oo

1 1
1 ZZ rm’
P m=0 Pk
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for all k € N, first show that —! 1 = > L and then show that

-4 1—4 neENy n’?
Pl P2

¢ 1 _ 1
[li=i 7= = Zen, > forany £ € N
Pk

Exercise 2.6. Using Theorem 2.1, prove the following result: Let 2 < d € N.
Choose two integers uniformly at random from [n]. As n — oo, the asymptotic
probability that their greatest common divisor is d is #.

Exercise 2.7. Give a probabilistic proof of Theorem 2.2.

Chapter Notes

It seems that Theorem 2.1 was first proven by E. Cesaro in 1881. A good source for
the results in this chapter is Nathanson’s book [27]. See also the more advanced
treatment of Tenenbaum [33], which contains many interesting and nontrivial
exercises. The heuristic probabilistic proof of Theorem 2.1 is well known and
can be found readily, including via a Google-search. I am unaware of a rigorous
probabilistic proof in the literature.
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