
Chapter 2
The Asymptotic Density of Relatively Prime
Pairs and of Square-Free Numbers

Pick a positive integer at random. What is the probability of it being even? As
stated, this question is not well posed, because there is no uniform probability
measure on the set N of positive integers. However, what one can do is fix a
positive integer n, and choose a number uniformly at random from the finite set
Œn� D f1; : : : ; ng. Letting �n denote the probability that the chosen number was
even, we have limn!1 �n D 1

2
, and we say that the asymptotic density of even

numbers is equal to 1
2
.

In this spirit, we ask: if one selects two positive integers at random, what is the
probability that they are relatively prime? Fixing n, we choose two positive integers
uniformly at random from Œn�. Of course, there are two natural ways to interpret this.
Do we choose a number uniformly at random from Œn� and then choose a second
number uniformly at random from the remaining n � 1 integers, or, alternatively,
do we select the second number again from Œn�, thereby allowing for doubles? The
answer is that it doesn’t matter, because under the second alternative the probability
of getting doubles is only 1

n
, and this doesn’t affect the asymptotic probability. Here

is the theorem we will prove.

Theorem 2.1. Choose two integers uniformly at random from Œn�. As n ! 1, the
asymptotic probability that they are relatively prime is 6

�2
� 0:6079.

We will give two very different proofs of Theorem 2.1: one completely number
theoretic and one completely probabilistic. The number theoretic proof is elegant
even a little magical. However, it does require the preparation of some basic number
theoretic tools, and it provides little intuition. The number theoretic proof gives the
asymptotic probability as .

P1
nD1 1

n2
/�1. The well-known fact that

P1
nD1 1

n2
D �2

6
is

proved in Appendix D. The probabilistic proof requires very little preparation; it is
enough to know just the most rudimentary notions from discrete probability theory:
probability space, event, and independence. A heuristic, non-rigorous version of
the probabilistic proof provides a lot of intuition, some of which the reader might
find obscured in the rigorous proof. The probabilistic proof gives the asymptotic
probability as

Q1
kD1.1 � 1

p2k
/, where fpkg1

kD1 is an enumeration of the primes. One
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8 2 Relatively Prime Pairs and Square-Free Numbers

then must use the Euler product formula to show that this is equal to .
P1

nD1 1
n2
/�1.

We will first give the number theoretic proof and then give the heuristic and the
rigorous probabilistic proofs.

The number theoretic ideas we develop along the way to our first proof of
Theorem 2.1 will bring us close to proving another result, which we now describe.
Every positive integer n � 2 can be factored uniquely as n D p

k1
1 � � �pkmm , where

m � 1, fpj gmjD1 are distinct primes, and kj 2 N, for j 2 Œm�. If in this factorization,
one has kj D 1, for all j 2 Œm�, then we say that n is square-free. Thus, an integer
n � 2 is square-free if and only if it is of the form n D p1 � � �pm, where m � 1 and
fpj gmjD1 are distinct primes. The integer 1 is also called square-free. There are 61
square-free positive integers that are no greater than 100:
1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,39,41,42,43,
46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,
87,89,91,93,94,95,97.

Let Cn D fk W 1 � k � n; k is square-freeg. If limn!1 jCnj
n

exists, we call
this limit the asymptotic density of square-free numbers. After giving the number
theoretic proof of Theorem 2.1, we will prove the following theorem.

Theorem 2.2. The asymptotic density of square-free integers is 6
�2

� 0:6079.

For the number theoretic proof of Theorem 2.1, the first alternative suggested
above in the second paragraph of this chapter will be more convenient. In fact, once
we have chosen the two distinct integers, it will be convenient to order them by size;
thus, we may consider the set Bn of all possible (and equally likely) outcomes to be

Bn D f.j; k/ W 1 � j < k � ng:

Let An � Bn denote those pairs which are relatively prime:

An D f.j; k/ W 1 � j < k � n; gcd.j; k/ D 1g:

Then the probability qn that the two selected integers are relatively prime is

qn D jAnj
jBnj D 2jAnj

n.n � 1/ : (2.1)

We proceed to develop a circle of ideas that will facilitate the calculation of
limn!1 qn and thus give a proof of Theorem 2.1. A function a W N ! R is called
an arithmetic function. The Möbius function � is the arithmetic function defined by

�.n/ D

8
ˆ̂<

ˆ̂:

1; if n D 1I
.�1/m; if n D Qm

jD1 pj ; where fpj gmjD1 are distinct primesI
0; otherwise:

Thus, for example, we have �.3/ D �1; �.15/ D 1, and �.12/ D 0.
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Given arithmetic functions a and b, we define their convolution a 	 b to be the
arithmetic function satisfying

.a 	 b/.n/ D
X

d jn
a.d/b.

n

d
/; n 2 N:

Clearly, a 	 b D b 	 a. The convolution arises naturally in the following context.
Define formally

f .x/ D
1X

nD1

a.n/

nx
(2.2)

and

g.x/ D
1X

nD1

b.n/

nx
: (2.3)

When we say “formally,” what we mean is that we ignore questions of convergence
and manipulate these infinite series according to the laws of addition, subtraction,
multiplication, and division, which are valid for series with a finite number of terms
and for absolutely convergent infinite series. Their formal product is given by

f .x/g.x/D�
1X

dD1

a.d/

dx

�� 1X

kD1

b.k/

kx

�D
1X

d;kD1

a.d/b.k/

.dk/x
D

1X

nD1

1

nx

X

d;k W dkDn
a.d/b.k/

D
1X

nD1

1

nx

X

d jn
a.d/b.

n

d
/ D

1X

nD1

.a 	 b/.n/
nx

: (2.4)

If the series on the right hand side of (2.2) and (2.3) are in fact absolutely convergent,
then the series on the right hand side of (2.4) is also absolutely convergent. In
such case, the equality

�P1
dD1

a.d/

dx

��P1
kD1

b.k/

kx

� D P1
nD1

.a�b/.n/
nx

is a rigorous
statement in mathematical analysis.

An arithmetic function a is called multiplicative if a.nm/ D a.n/a.m/whenever
gcd.n;m/ D 1. It follows that if a 6
 0 is multiplicative, then a.1/ D 1. If a 6
 0 is
multiplicative, then it is completely determined by its values on the prime powers;

indeed, if n D Qm
jD1 p

kj
j is the factorization of n into a product of distinct prime

powers, then a.n/ D a.
Qm
jD1 p

kj
j / D Qm

jD1 a.p
kj
j /.

It is trivial to verify that � is multiplicative. For the first proposition below, the
following lemma will be useful.

Lemma 2.1. The arithmetic function
P

d jn �.d/ is multiplicative.

Proof. Let n and m be positive integers satisfying gcd.n;m/ D 1. We have
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X

d1jn
�.d1/

X

d2jm
�.d2/ D

X

d1jn;d2jm
�.d1/�.d2/ D

X

d1jn;d2jm
�.d1d2/ D

X

d jnm
�.d/;

where the second equality follows from the fact that � is multiplicative and the fact
that if gcd.n;m/ D 1, d1jn and d2jm, then gcd.d1; d2/ D 1, while the final equality
follows from the fact that if gcd.n;m/ D 1 and d jnm, then d can be written as
d D d1d2 for a unique pair d1; d2 satisfying d1jn and d2jm. (The reader should
verify these facts.) �

We introduce three more arithmetic functions that will be used in the sequel:

1.n/ D 1; for all nI i.n/ D n; for all nI e.n/ D
(
1; if n D 1I
0; otherwise:

Note that a 	 e D a, for all a, and that .a 	 1/.n/ D P
d jn a.d/. A key result we

need is the Möbius inversion formula.

Proposition 2.1. Let a be an arithmetic function. Define b D a	1. Then a D b	�.

Remark. Written out explicitly, the theorem asserts that if

b.n/ WD
X

d jn
a.d/;

then a.n/ D P
d jn b.d/�. nd /.

Proof. To prove the proposition, it suffices to prove that

1 	 � D e: (2.5)

Indeed, using this along with the easily verified associativity of the convolution, we
have

b 	 � D .a 	 1/ 	 � D a 	 .1 	 �/ D a 	 e D a:

We now prove (2.5). We have

.1 	 �/.n/ D .� 	 1/.n/ D
X

d jn
�.d/:

By Lemma 2.1, the function
P

d jn �.d/ is multiplicative. Clearly, the function e
is multiplicative. Obviously, e.1/ D 1 and e.pk/ D 0, for any prime p and any
positive integer k. We have

P
d j1 �.d/ D �.1/ D 1. Thus, since a nonzero,
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multiplicative, arithmetic function is completely determined by its values on prime
powers, to complete the proof that 1 	 � D e, it suffices to show that

P
d jpk �.d/

D 0. We have
P

d jpk �.d/ D Pk
jD0 �.pj / D �.1/C �.p/ D 1 � 1 D 0. �

We introduce one final arithmetic function—the well-known Euler �-function:

�.n/ D jfj W 1 � j � n; gcd.j; n/ D 1gj:

That is, �.n/ counts the number of positive integers less than or equal to n which
are relatively prime to n. For our calculation of limn!1 qn, we will use a result that
is a corollary of the following proposition.

Proposition 2.2. � 	 1 D i ; that is,

X

d jn
�.d/ D n:

From Proposition 2.2 and the Möbius inversion formula, the following corollary
is immediate.

Corollary 2.1. � 	 i D �; that is,

�.n/ D
X

d jn
�.d/

n

d
:

Remark. For the proofs of Theorems 2.1 and 2.2, we do not need Proposition 2.2,
but only Corollary 2.1. In Exercise 2.1, the reader is guided through a direct proof of
the corollary. The proof also will reveal why the seemingly strange Möbius function
has such nice properties.

Proof of Proposition 2.2. Let d jn. It is easy to see that �.d/ is equal to the number
of k 2 Œn� satisfying gcd.k; n/ D n

d
. Indeed, k 2 Œn� satisfies gcd.k; n/ D n

d
if and

only if k D j. n
d
/, for some j 2 Œd � satisfying gcd.d; j / D 1. (The reader should

verify this.) Also, clearly, every k 2 Œn� satisfies gcd.k; n/ D n
d

for some d jn. The
proposition follows from these facts. �

Remark. For an alternative proof of Proposition 2.2, exactly in the spirit of
Lemma 2.1 and the proof of (2.5), see Exercise 2.2.

We are now in a position to prove Theorem 2.1.

Number Theoretic Proof of Theorem 2.1. For each k � 2, there are �.k/ integers j
satisfying 1 � j < k and gcd.j; k/ D 1. Thus,

jAnj D jf.j; k/ W 1 � j < k � n; gcd.j; k/ D 1gj D
nX

kD2
�.k/:
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Therefore, from (2.1), we have

qn D 2
Pn

kD2 �.k/
n.n � 1/ :

To calculate

lim
n!1 qn D lim

n!1
2
Pn

kD2 �.k/
n.n � 1/ ; (2.6)

we analyze the behavior of the sum
Pn

kD1 �.k/ for large n.

Remark. The function � can be written explicitly as

�.n/ D n
Y

pjn
.1 � 1

p
/; n � 2; (2.7)

where
Q
pjn indicates that the product is over all primes that divide n; see

Exercise 2.3. However, this formula is of no help whatsoever for analyzing the above
sum.

We will use Corollary 2.1 to analyze
Pn

kD1 �.k/. From Corollary 2.1, we have

nX

kD1
�.k/ D

nX

kD1
.� 	 i/.k/ D

nX

kD1

X

d jk
�.d/

k

d
D

nX

kD1

X

dd 0Dk
d 0�.d/ D

nX

dD1
�.d/

X

d 0� n
d

d 0:

Since
Pm

jD1 j D 1
2
m.mC 1/, we have

nX

kD1
�.k/ D

nX

dD1
�.d/

X

d 0� n
d

d 0 D 1

2

nX

dD1
�.d/Œ

n

d
�.Œ
n

d
�C 1/: (2.8)

We have Œ n
d
�.Œ n

d
�C 1/ � n

d
. n
d

C 1/ D . n
d
/2 C n

d
, and Œ n

d
�.Œ n

d
�C 1/ � . n

d
� 1/ n

d
D

. n
d
/2 � n

d
; thus,

.
n

d
/2 � n

d
� Œ

n

d
�.Œ
n

d
�C 1/ � .

n

d
/2 C n

d
:

Substituting this two-sided inequality in (2.8), we obtain

n2

2

nX

dD1

�.d/

d2
� n

2

nX

dD1

�.d/

d
�

nX

kD1
�.k/ � n2

2

nX

dD1

�.d/

d2
C n

2

nX

dD1

�.d/

d
: (2.9)
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Now

j
nX

dD1

�.d/

d
j �

nX

dD1

1

d
D 1C

nX

dD2

1

d
� 1C logn; (2.10)

since the final sum is a lower Riemann sum for
R n
1
1
x
dx. From (2.9) and (2.10), we

obtain

lim
n!1

Pn
kD2 �.k/
n.n � 1/ D 1

2

1X

dD1

�.d/

d2
: (2.11)

It remains to evaluate
P1

dD1
�.d/

d2
. On the face of it, from the definition of �,

it would seem very difficult to evaluate this explicitly. However, Möbius inversion
saves the day. Consider (2.2)–(2.4) with a D 1 and b D � and with x D 2. With
these choices, the right hand sides of (2.2) and (2.3) are absolutely convergent.
By (2.5), we have 1 	 � D e; that is, a 	 b D e. Therefore, we conclude from
(2.2)–(2.4) that

 1X

dD1

1

d2

! 1X

dD1

�.d/

d2

!
D 1: (2.12)

Recall the well-known formula

1X

nD1

1

n2
D �2

6
: (2.13)

We give a completely elementary proof of this fact in Appendix D. From (2.12)
and (2.13) we obtain

1X

dD1

�.d/

d2
D 6

�2
: (2.14)

Using (2.14) with (2.11) and (2.6) gives

lim
n!1 qn D 6

�2
;

completing the proof of the theorem. �

Remark. If a is an arithmetic function and f is a nondecreasing function, we
say that the function f is the average order of the arithmetic function a if
1
n

Pn
kD1 a.k/ D f .n/ C o.f .n//. Of course this doesn’t uniquely define f ; we

usually choose a particular such f which has a simple form. From (2.11) and (2.14),
it follows that the average order of the Euler �-function is 3n

�2
.
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We now turn to Theorem 2.2.

Proof of Theorem 2.2. From the definition of the Möbius function, it follows that

�2.n/ D
(
1; if n is square-freeI
0; otherwise:

(2.15)

Thus, letting

An D fj 2 Œn� W j is square-freeg;

we have

jAnj D
nX

jD1
�2.j /: (2.16)

To prove the theorem, we need to show that

lim
n!1

jAnj
n

D 6

�2
: (2.17)

We need the following lemma.

Lemma 2.2.

�2.n/ D
X

k2jn
�.k/:

Proof. Let ƒ.n/ WD P
k2jn �.k/. If n is square-free, then the only integer k that

satisfies k2jn is k D 1. Thus, since �.1/ D 1, we have ƒ.n/ D 1. On the other
hand, if n is not square-free, then n can be written in the form n D m2l , where
m > 1 and l is square-free. Now k2jm2l if and only if kjm. (The reader should
verify this.) Thus, we have

ƒ.n/ D
X

k2jn
�.k/ D

X

k2jm2l
�.k/ D

X

kjm
�.k/ D .� 	 1/.m/ D 0;

where the last equality follows from (2.5). The lemma now follows from (2.15). �

Using Lemma 2.2, we have

nX

jD1
�2.j / D

nX

jD1

X

k2jj
�.k/: (2.18)
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If k2 > n, then �.k/ will not appear on the right hand side of (2.18). If k2 � n,
then �.k/ will appear on the right hand side of (2.18) Œ n

k2
� times, namely, when

j D k2; 2k2; : : : ; Œ n
k2
�k2. Thus, we have

nX

jD1
�2.j / D

nX

jD1

X

k2jj
�.k/ D

X

k2�n
Œ
n

k2
� �.k/ D

X

k�Œn 12 �
Œ
n

k2
� �.k/ D

n
X

k�Œn 12 �

�.k/

k2
C

X

k�Œn 12 �

�
Œ
n

k2
� � n

k2

�
�.k/: (2.19)

Since each summand in the second term on the right hand side of (2.19) is bounded
in absolute value by 1, we have

j
X

k�Œn 12 �

�
Œ
n

k2
� � n

k2

�
�.k/j � n

1
2 : (2.20)

It follows from (2.16), (2.19), and (2.20) that

lim
n!1

jAnj
n

D
1X

kD1

�.k/

k2
:

Using this with (2.14) gives (2.17) and completes the proof of the theorem. �

We now give a heuristic probabilistic proof and a rigorous probabilistic proof of
Theorem 2.1. In the heuristic proof, we put quotation marks around the steps that
are not rigorous.

Heuristic Probabilistic Proof of Theorem 2.1. Let fpkg1
kD1 be an enumeration of

the primes. In the spirit described in the first paragraph of the chapter, if we
pick a positive integer “at random,” then the “probability” of it being divisible by
the prime number pk is 1

pk
. (Of course, this is true also with pk replaced by an

arbitrary positive integer.) If we pick two positive integers “independently,” then the
“probability” that they are both divisible by pk is 1

pk

1
pk

D 1

p2k
, by “independence.”

So the “probability” that at least one of them is not divisible by pk is 1 � 1

p2k
. The

“probability” that a “randomly” selected positive integer is divisible by the two
distinct primes, pj and pk , is 1

pj pk
D 1

pj

1
pk

. (The reader should check that this
“holds” more generally if pj and pk are replaced by an arbitrary pair of relatively
prime positive integers, but not otherwise.) Thus, the events of being divisible by pj
and being divisible by pk are “independent.” Now two “randomly” selected positive
integers are relatively prime if and only if, for every k, at least one of the integers
is not divisible by pk . But since the “probability” that at least one of them is not
divisible by pk is 1� 1

p2k
, and since being divisible by a prime pj and being divisible
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by a different prime pk are “independent” events, the “probability” that the two
“randomly” selected positive integers are such that, for every k, at least one of them
is not divisible by pk is

Q1
kD1.1 � 1

p2k
/. Thus, this should be the “probability” that

two “randomly” selected positive integers are relatively prime. �

Rigorous Probabilistic Proof of Theorem 2.1. For the probabilistic proof, the sec-
ond alternative suggested in the second paragraph of the chapter will be more
convenient. Thus, we choose an integer from Œn� uniformly at random and then
choose a second integer from Œn� uniformly at random. Let �n D Œn�. The
appropriate probability space on which to analyze the model described above is the
space .�n ��n;Pn/, where the probability measure Pn on �n ��n is the uniform
measure; that is, Pn.A/ D jAj

n2
, for any A � �n ��n. The point .i; j / 2 �n ��n

indicates that the integer i was chosen the first time and the integer j was chosen
the second time. Let Cn denote the event that the two selected integers are relatively
prime; that is,

Cn D f.i; j / 2 �n ��n W gcd.i; j / D 1g:

Then the probability qn that the two selected integers are relatively prime is

qn D Pn.Cn/ D jCnj
n2

:

Let fpkg1
kD1 denote the prime numbers arranged in increasing order. (Any

enumeration of the primes would do, but for the proof it is more convenient to
choose the increasing enumeration.) For each k 2 N, let B1

nIk denote the event that
the first integer chosen is divisible by pk and let B2

nIk denote the event that the
second integer chosen is divisible by pk . That is,

B1
nIk D f.i; j / 2 �n ��n W pkjig; B2

nIk D f.i; j / 2 �n ��n W pkjj g:

Note of course that the above sets are empty if pk > n. The event B1
nIk \ B2

nIk D
f.i; j / 2 �n � �n W pkji and pkjj g is the event that both selected integers have
pk as a factor. There are Œ n

pk
� integers in �n that are divisible by pk , namely,

pk; 2pk; � � � ; Œ npk �pk . Thus, there are Œ n
pk
�2 pairs .i; j / 2 �n � �n for which both

coordinates are divisible by pk ; therefore,

Pn.B
1
nIk \ B2

nIk/ D
Œ n
pk
�2

n2
: (2.21)

Note that [1
kD1.B1

nIk \ B2
nIk/ D [n

kD1.B1
nIk \ B2

nIk/ is the event that the two
selected integers have at least one common prime factor. (The equality above
follows from the fact that B1

nIk and B2
nIk are clearly empty for k > n.) Consequently,

Cn can be expressed as
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Cn D � [n
kD1 .B1

nIk \ B2
nIk/

�c D \n
kD1.B1

nIk \ B2
nIk/c;

where Ac WD �n � �n � A denotes the complement of an event A � �n � �n.
Thus,

Pn.Cn/ D Pn
� \n

kD1 .B1
nIk \ B2

nIk/c
�
: (2.22)

Let R < n be a positive integer. We have

\n
kD1.B1

nIk \ B2
nIk/c D \R

kD1.B1
nIk \ B2

nIk/c � [n
kDRC1.B1

nIk \ B2
nIk/

and, of course, \n
kD1.B1

nIk \ B2
nIk/c � \R

kD1.B1
nIk \ B2

nIk/c . Thus,

Pn
� \R

kD1 .B1
nIk \ B2

nIk/c
� � Pn

� [n
kDRC1 .B1

nIk \ B2
nIk/

� �
Pn
� \n

kD1 .B1
nIk \ B2

nIk/c
� � Pn

� \R
kD1 .B1

nIk \ B2
nIk/c

�
: (2.23)

Using the sub-additivity property of probability measures for the first inequality
below, and using (2.21) for the equality below, we have

Pn
� [nkDRC1 .B1nIk \ B2nIk/

��
nX

kDRC1
Pn
�
B1nIk \ B2nIk/

�D
nX

kDRC1

Œ npk
�2

n2
�

1X

kDRC1

1

p2
k

:

(2.24)

Up until now, we have made no assumption on n. Now assume that pkjn, for
k D 1; � � � ; R; that is, assume that n is a multiple of

QR
kD1 pk . Denote the set of

such n by DR; that is,

DR D fn 2 N W pkjn for k D 1; � � � ; Rg:

Recall that the event B1
nIk \B2

nIk is the event that both selected integers are divisible
by k. We claim that if n 2 DR, then the events fB1

nIk \ B2
nIkgRkD1 are independent.

That is, for any subset I � f1; 2; � � � ; Rg, one has

Pn
� \k2I .B1

nIk \ B2
nIk/

� D
Y

k2I
Pn.B

1
nIk \ B2

nIk/; if n 2 DR: (2.25)

The proof of (2.25) is a straightforward counting exercise and is left as Exercise 2.4.
If events fAkgRkD1 are independent, then the complementary events fAckgRkD1 are also
independent. See Exercise A.3 in Appendix A. Thus, we conclude that

Pn
� \R

kD1 .B1
nIk \ B2

nIk/c
� D

RY

kD1
Pn
�
.B1

nIk \ B2
nIk/c

�
; if n 2 DR: (2.26)
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By (2.21) we have Pn
�
.B1

nIk \B2
nIk/c

� D 1� Pn.B1
nIk \B2

nIk/ D 1� Œ npk
�2

n2
, for any

n. Thus, from the definition of DR, we have

Pn
�
.B1

nIk \ B2
nIk/c

� D 1 � 1

p2k
; if n 2 DR: (2.27)

From (2.22) to (2.24), (2.26), and (2.27), we conclude that

RY

kD1
.1� 1

p2k
/�

1X

kDRC1

1

p2k
� Pn.Cn/ �

RY

kD1
.1� 1

p2k
/; forR 2 N and n 2 DR: (2.28)

We now use (2.28) to obtain an estimate on Pn.Cn/ for general n. Let n �QR
kD1 pk . Let n0 denote the largest integer in DR which is smaller or equal to n,

and let n00 denote the smallest integer inDR which is larger or equal to n. SinceDR

is the set of positive multiples of
QR
kD1 pk , we obviously have

n0 > n �
RY

kD1
pk and n00 < nC

RY

kD1
pk: (2.29)

For any n, note that n2Pn.Cn/ D jCnj is the number of pairs .i; j / 2 �n ��n that
are relatively prime. Obviously, the number of such pairs is increasing in n. Thus
.n0/2Pn0.Cn0/ � n2Pn.Cn/ � .n00/2Pn00.Cn00/, or equivalently,

.
n0

n
/2Pn0.Cn0/ � Pn.Cn/ � .

n00

n
/2Pn00.Cn00/: (2.30)

Since n0; n00 2 DR, we conclude from (2.28)–(2.30) that

.
n�QR

kD1 pk
n

/2
� RY

kD1
.1� 1

p2
k

/�
1X

kDRC1

1

p2
k

�
< Pn.Cn/ < .

nCQR
kD1 pk
n

/2
RY

kD1
.1� 1

p2
k

/:

(2.31)

Letting n ! 1 in (2.31), we obtain

RY

kD1
.1 � 1

p2k
/ �

1X

kDRC1

1

p2k
� lim inf

n!1 Pn.Cn/ � lim sup
n!1

Pn.Cn/ �
RY

kD1
.1 � 1

p2k
/:

(2.32)

Now (2.32) holds for arbitrary R; thus letting R ! 1, we conclude that

lim
n!1Pn.Cn/ D

1Y

kD1
.1 � 1

p2k
/: (2.33)
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The celebrated Euler product formula states that

1
Q1
kD1.1 � 1

prk
/

D
1X

nD1

1

nr
; r > 1I (2.34)

see Exercise 2.5. From (2.33), (2.34), and (2.13), we conclude that

lim
n!1 qn D lim

n!1Pn.Cn/ D 1
P1

nD1 1
n2

D 6

�2
: �

Exercise 2.1. Give a direct proof of Corollary 2.1. (Hint: The Euler �-function
�.n/ counts the number of positive integers that are less than or equal to n and
relatively prime to n. We employ the sieve method, which from the point of view
of set theory is the method of inclusion–exclusion. Start with a list of all n integers
between 1 and n as potential members of the set of the �.n/ relatively prime integers
to n. Let fpj gmjD1 be the prime divisors of n. For any such pj , the n

pj
numbers

pj ; 2pj ; : : : ;
n
pj
pj are not relatively prime to n. So we should strike these numbers

from our list. When we do this for each j , the remaining numbers on the list are
those numbers that are relatively prime to n, and the size of the list is �.n/. Now
we haven’t necessarily reduced the size of our list to N1 WD n �Pm

jD1 n
pj

, because
some of the numbers we have deleted might be multiples of two different primes,
pi and pj , in which case they were subtracted above twice. Thus we need to add
back to N1 all of the n

pipj
multiples of pipj , for i ¤ j . That is, we now have

N2 WD N1 CP
i¤j n

pipj
. Continue in this vein.

Exercise 2.2. This exercise presents an alternative proof to Proposition 2.2:

(a) Show that the arithmetic function
P

d jn �.d/ is multiplicative. Use the fact that
� is multiplicative—see Exercise 2.3.

(b) Show that
P

d jn �.d/ D n, when n is a prime power.
(c) Conclude that Proposition 2.2 holds.

Exercise 2.3. The Chinese remainder theorem states that if n and m are relatively
prime positive integers, and a 2 Œn� and b 2 Œm�, then there exists a unique c 2 Œnm�
such that c D a modn and c D b modm. (For a proof, see [27].) Use this to prove
that the Euler �-function is multiplicative. Then use the fact that � is multiplicative
to prove (2.7).

Exercise 2.4. Prove (2.25).

Exercise 2.5. Prove the Euler product formula (2.34). (Hint: Let N` denote the set
of positive integers all of whose prime factors are in the set fpkg`kD1. Using the fact
that

1

1 � 1
prk

D
1X

mD0

1

prmk
;
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for all k 2 N, first show that 1

1� 1
pr1

1

1� 1
pr2

D P
n2N2

1
nr

, and then show that
Q`
kD1 1

1� 1
pr
k

D P
n2N`

1
nr

, for any ` 2 N.)

Exercise 2.6. Using Theorem 2.1, prove the following result: Let 2 � d 2 N.
Choose two integers uniformly at random from Œn�. As n ! 1, the asymptotic
probability that their greatest common divisor is d is 6

d2�2
.

Exercise 2.7. Give a probabilistic proof of Theorem 2.2.

Chapter Notes

It seems that Theorem 2.1 was first proven by E. Cesàro in 1881. A good source for
the results in this chapter is Nathanson’s book [27]. See also the more advanced
treatment of Tenenbaum [33], which contains many interesting and nontrivial
exercises. The heuristic probabilistic proof of Theorem 2.1 is well known and
can be found readily, including via a Google-search. I am unaware of a rigorous
probabilistic proof in the literature.
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