
Chapter 2
Convex Analysis

The theory of nonsmooth analysis is based on convex analysis. Thus, we start this
chapter by giving basic concepts and results of convexity (for further readings see also
[202, 204]). We take a geometrical viewpoint by examining the tangent and normal
cones of convex sets. Then we generalize the concepts of differential calculus for
convex, not necessarily differentiable functions [204]. We define subgradients and
subdifferentials and present some basic results. At the end of this chapter, we link
these analytical and geometrical concepts together.

2.1 Convex Sets

We start this section by recalling the definition of a convex set.

Definition 2.1 Let S be a subset of R
n. The set S is said to be convex if

λx + (1 − λ)y ∈ S,

for all x,y ∈ S and λ ∈ [0, 1].
Geometrically this means that the set is convex if the closed line-segment [x,y]

is entirely contained in S whenever its endpoints x and y are in S (see Fig. 2.1).

Example 2.1 (Convex sets). Evidently the empty set ∅, a singleton {x}, the
whole space R

n, linear subspaces, open and closed balls and halfspaces are
convex sets. Furthermore, if S is a convex set also cl S and int S are convex.

Theorem 2.1 Let Si ⊆ R
n be convex sets for i = 1, . . . ,m. Then their intersection

m⋂

i=1

Si (2.1)
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12 2 Convex Analysis

(a) (b)

Fig. 2.1 Illustration of convex and nonconvex sets. (a) Convex. (b) Not convex

is also convex.

Proof Let x,y ∈ ⋂m
i=1 Si and λ ∈ [0, 1] be arbitrary. Because x,y ∈ Si and Si is

convex for all i = 1, . . . ,m, we have λx+ (1 −λ)y ∈ Si for all i = 1, . . . ,m. This
implies that

λx + (1 − λ)y ∈
m⋂

i=1

Si

and the proof is complete. �

Example 2.2 (Intersection of convex sets). The hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where x0,p ∈ R
n and p �= 000 is convex, since it can be represent as an

intersection of two convex closed halfspaces as

H(p,α) = H+(p,α) ∩ H−(p,α)

= {x ∈ R
n | pT (x − x0) ≥ 0} ∩ {x ∈ R

n | pT (x − x0) ≤ 0}.

The next theorem shows that the space of convex sets has some linear properties.
This is due to fact that the space of convex sets is a subspace of the power set P(Rn)

consisting of all subsets of R
n.

Theorem 2.2 Let S1,S2 ⊆ R
n be nonempty convex sets and μ1,μ2 ∈ R. Then the

set μ1S1 + μ2S2 is also convex.

Proof Let the points x,y ∈ μ1S1 + μ2S2 and λ ∈ [0, 1]. Then x and y can be
written {

x = μ1x1 + μ2x2, where x1 ∈ S1 and x2 ∈ S2

y = μ1y1 + μ2y2, where y1 ∈ S1 and y2 ∈ S2
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and

λx + (1 − λ)y = λ(μ1x1 + μ2x2) + (1 − λ)(μ1y1 + μ2y2)

= μ1(λx1 + (1 − λ)y1) + μ2(λx2 + (1 − λ)y2)

∈ μ1S1 + μ2S2.

Thus the set μ1S1 + μ2S2 is convex. �

2.1.1 Convex Hulls

A linear combination
∑k

i=1 λixi is called a convex combination of elements x1, . . . ,

xk ∈ R
n if each λi ≥ 0 and

∑k
i=1 λi = 1. The convex hull generated by a set is

defined as a set of convex combinations as follows.

Definition 2.2 The convex hull of a set S ⊆ R
n is

conv S = {x ∈ R
n | x =

k∑

i=1

λixi,

k∑

i=1

λi = 1, xi ∈ S, λi ≥ 0, k > 0}.

The proof of the next lemma is left as an exercise.

Lemma 2.1 If S ⊆ R
n, then conv S is a convex set and S is convex if and only if

S = conv S.

Proof Exercise. �

The next theorem shows that the convex hull is actually the intersection of all the
convex sets containing the set, in other words, it is the smallest convex set containing
the set itself (see Fig. 2.2).

Theorem 2.3 If S ⊆ R
n, then

conv S =
⋂

S⊆Ŝ

Ŝ convex

Ŝ.

Proof Let Ŝ be convex such that S ⊆ Ŝ. Then due to Lemma 2.1 we have conv S ⊆
conv Ŝ = Ŝ and thus we have

conv S ⊆
⋂

S⊆Ŝ

Ŝ convex

Ŝ.
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On the other hand, it is evident that S ⊆ conv S and due to Lemma 2.1 conv S is a
convex set. Then conv S is one of the sets Ŝ forming the intersection and thus

⋂

S⊆Ŝ

Ŝ convex

Ŝ =
⋂

S⊆Ŝ

Ŝ convex

Ŝ ∩ conv S ⊆ conv S

and the proof is complete. �

2.1.2 Separating and Supporting Hyperplanes

Next we consider some nice properties of hyperplanes. Before those we need the
concept of distance function.

Definition 2.3 Let S ⊆ R
n be a nonempty set. The distance function dS : Rn → R

to the set S is defined by

dS(x) := inf {‖x − y‖ | y ∈ S} for all x ∈ R
n. (2.2)

The following lemma shows that a closed convex set always has a unique closest
point.

Lemma 2.2 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a unique y∗ ∈ bd S minimizing the distance to x∗. In other words

dS(x∗) = ‖x∗ − y∗‖.

Moreover, a necessary and sufficient condition for a such y∗ is that

(x∗ − y∗)T (x − y∗) ≤ 0 for all x ∈ S. (2.3)

Fig. 2.2 Examples of convex hulls
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Proof First we prove the existence of a closest point. Since S �= ∅, there exists
x̂ ∈ S and we can define Ŝ := S ∩ cl B(x∗; r), where r := ‖x∗ − x̂‖ > 0. Then
Ŝ �= ∅ since x̂ ∈ Ŝ. Moreover, Ŝ is closed, since both S and cl B(x∗; r) are closed,
and bounded, since Ŝ ⊆ cl B(x∗; r), thus Ŝ is a nonempty compact set. Then, due
to Weierstrass’ Theorem 3.1 the continuous function

g(y) := ‖x∗ − y‖

attains its minimum over Ŝ at some y∗ ∈ Ŝ and we have

dŜ(x∗) = g(y∗) = ‖x∗ − y∗‖.

If y ∈ S \ Ŝ, it means that y /∈ cl B(x∗; r), in other words

g(y) > r ≥ g(y∗)

and thus

dS(x∗) = g(y∗) = ‖x∗ − y∗‖.

In order to show the uniqueness, suppose that there exists another z∗ ∈ S such
that z∗ �= y∗ and g(z∗) = g(y∗). Then due to convexity we have 1

2 (y∗ + z∗) ∈ S
and by triangle inequality

g
( 1

2 (y∗ + z∗)
) = ‖x∗ − 1

2 (y∗ + z∗)‖ ≤ 1
2‖x∗ − y∗‖ + 1

2‖x∗ − z∗‖
= 1

2g(y∗) + 1
2g(z∗) = g(y∗).

The strict inequality cannot hold since g attains its minimum over S at y∗. Thus we
have

‖(x∗ − y∗) + (x∗ − z∗)‖ = ‖x∗ − y∗‖ + ‖x∗ − z∗‖,

which is possible only if the vectors x∗ − y∗ and x∗ − z∗ are collinear. In other
words x∗ − y∗ = λ(x∗ − z∗) for some λ ∈ R. Since

‖x∗ − y∗‖ = ‖x∗ − z∗‖

we have λ = ±1. If λ = −1 we have

x∗ = 1
2 (y∗ + z∗) ∈ S,

which contradicts the assumption x∗ /∈ S, and if λ = 1, we have z∗ = y∗, thus y∗
is a unique closest point.
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Next we show that y∗ ∈ bd S. Suppose, by contradiction, that y∗ ∈ int S. Then
there exists ε > 0 such that B(y∗; ε) ⊂ S. Because g(y∗) = ‖x∗ − y∗‖ > 0 we
can define

w∗ := y∗ + ε

2g(y∗)
(x∗ − y∗)

and we have w∗ ∈ B(y∗; ε) since

‖w∗ − y∗‖ = ∥∥y∗ + ε

2g(y∗)
(x∗ − y∗) − y∗∥∥

= ε

2g(y∗)
‖x∗ − y∗‖ = ε

2
.

Thus w∗ ∈ S and, moreover

g(w∗) = ∥∥x∗ − y∗ − ε

2g(y∗)
(x∗ − y∗)

∥∥

= (1 − ε

2g(y∗)
)g(y∗) = g(y∗) − ε

2
< g(y∗),

which is impossible, since g attains its minimum over S at y∗. Thus we have y∗ ∈
bd S.

In order to prove that (2.3) is a sufficient condition, let x ∈ S. Then (2.3) implies

g(x)2 = ‖x∗ − y∗ + y∗ − x‖2

= ‖x∗ − y∗‖2 + ‖y∗ − x‖2 + 2(x∗ − y∗)T (y∗ − x)

≥ ‖x∗ − y∗‖2

= g(y∗)2,

which means that y∗ is the closest point.
On the other hand, if y∗ is the closest point, we have

g(x) ≥ g(y∗) for all x ∈ S.

Let x ∈ S be arbitrary. The convexity of S implies that

y∗ + λ(x − y∗) = λx + (1 − λ)y∗ ∈ S for all λ ∈ [0, 1]

and thus

g
(
y∗ + λ(x − y∗)

) ≥ g(y∗). (2.4)

Furthermore, we have
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g
(
y∗ + λ(x − y∗)

)2 = ‖x∗ − y∗ − λ(x − y∗)‖2

= g(y∗)2 + λ2‖x − y∗‖2 − 2λ(x∗ − y∗)T (x − y∗)

and combining this with (2.4) we get

2λ(x∗ − y∗)T (x − y∗) ≤ λ2‖x − y∗‖2 for all λ ∈ [0, 1]. (2.5)

Dividing (2.5) by λ > 0 and letting λ ↓ 0 we get (2.3). �
Next we define separating and supporting hyperplanes.

Definition 2.4 Let S1,S2 ⊂ R
n be nonempty sets. A hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where p �= 000 and pT x0 = α, separates S1 and S2 if S1 ⊆ H+(p,α) and S2 ⊆
H−(p,α), in other words

pT (x − x0) ≥ 0 for all x ∈ S1 and

pT (x − x0) ≤ 0 for all x ∈ S2.

Moreover, the separation is strict if S1 ∩ H(p,α) = ∅ and S2 ∩ H(p,α) = ∅.

Example 2.3 (Separation of convex sets). Let S1 := {x ∈ R
2 | 1

4x2
1 +x2

2 ≤ 1}
and S2 := {x ∈ R

2 | (x1 − 4)2 + (x2 − 2)2 ≤ 1}. Then the hyperplane
H((1, 1)T , 3 1

2 ), in other words the line x2 = −x1 + 3 1
2 separates S1 and S2

(see Fig. 2.3). Notice that H((1, 1)T , 3 1
2 ) is not unique but there exist infinitely

many hyperplanes separating S1 and S2.

Definition 2.5 Let S ⊂ R
n be a nonempty set and x0 ∈ bd S. A hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where p �= 000 and pT x0 = α, supports S at x0 if either S ⊆ H+(p,α), in other
words

pT (x − x0) ≥ 0 for all x ∈ S

or S ⊆ H−(p,α), in other words

pT (x − x0) ≤ 0 for all x ∈ S.
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Fig. 2.3 Separation of convex
sets

Example 2.4 (Supporting hyperplanes). Let S := {x ∈ R
2 | x2

1 + x2
2 ≤ 1}.

Then the hyperplane H((0, 1)T , 1), in other words the line x2 = 1 supports S
at x0 = (0, 1)T . Notice that H((0, 1)T , 1) is the unique supporting hyperplane
of S at x0 = (0, 1)T .

Theorem 2.4 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a hyperplane H(p,α) supporting S at some y∗ ∈ bd S and separating S and
{x∗}.
Proof According to Lemma 2.2 there exists a unique y∗ ∈ bd S minimizing the
distance to x∗. Let p := x∗ − y∗ �= 000 and α := pT y∗. Then due to (2.3) we have

pT (x − y∗) = (x∗ − y∗)T (x − y∗) ≤ 0 for all x ∈ S, (2.6)

in other words S ⊆ H−(p,α). This means that H(p,α) supports S at y∗. Moreover,
we have

pT x∗ = pT (x∗ − y∗) + pT y∗ = ‖p‖2 + α > α (2.7)

in other words {x∗} ⊂ H+(p,α) and thus H(p,α) separates S and {x∗}. �

Next we prove a little bit stronger result, namely that there always exists a hyper-
plane strictly separating a point and a closed convex set.

Theorem 2.5 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a hyperplane H(p,β) strictly separating S and {x∗}.
Proof Using Lemma 2.2 we get a unique y∗ ∈ bd S minimizing the distance to x∗.
As in the previous proof let p := x∗ − y∗ �= 000 but choose now β := pT w∗, where
w∗ = 1

2 (x∗ + y∗). Then due to (2.3) we have
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Fig. 2.4 Supporting hyper-
planes

pT (x − w∗) = pT (x − y∗ − 1
2p)

= (x∗ − y∗)T (x − y∗) − 1
2pT p

≤ − 1
2‖p‖2 < 0 for all x ∈ S,

in other words S ⊂ H−(p,β) and S ∩ H(p,β) = ∅. Moreover, we have

pT (x∗ − w∗) = pT (x∗ − 1
2x∗ − 1

2y∗)
= 1

2pT (x∗ − y∗)
= 1

2‖p‖2 > 0,

which means that {x∗} ⊂ H+(p,β) and {x∗}∩ H(p,β) = ∅. Thus H(p,β) strictly
separates S and {x∗}. �

Replacing S by cl conv S in Theorem 2.5 we obtain the following result.

Corollary 2.1 Let S ⊂ R
n be a nonempty set and x∗ /∈ cl conv S. Then there exists

a hyperplane H(p,β) strictly separating S and {x∗}.
The next theorem is very similar to Theorem 2.3 showing that the closure of

convex hull is actually the intersection of all the closed halfspaces containing the set.

Theorem 2.6 If S ⊂ R
n, then

cl conv S =
⋂

S⊆H−(p,α)
p�=000, α∈R

H−(p,α).

Proof Due to Theorem 2.3 we have

conv S =
⋂

S⊆Ŝ

Ŝ convex

Ŝ ⊆
⋂

S⊆H−(p,α)
p�=000, α∈R

H−(p,α) =: T .

Since T is closed as an intersection of closed sets, we have
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cl conv S ⊆ cl T = T .

Next we show that also T ⊆ cl conv S. To the contrary suppose that there exists
x∗ ∈ T but x∗ /∈ cl conv S. Then due to Corollary 2.1 there exists a closed halfspace
H−(p,β) such that S ⊆ H−(p,β) and x∗ /∈ H−(p,β), thus x∗ /∈ T ⊆ H−(p,β),
which is a contradiction and the proof is complete. �

We can also strengthen the supporting property of Theorem 2.4, namely there
exists actually a supporting hyperplane at every boundary point.

Theorem 2.7 Let S ⊂ R
n be a nonempty convex set and x0 ∈ bd S. Then there

exists a hyperplane H(p,α) supporting cl S at x0.

Proof Since x0 ∈ bd S there exists a sequence (xk) such that xk /∈ cl S and
xk → x0. Then due to Theorem 2.4 for each xk there exists yk ∈ bd S such that
the hyperplane H(qk,βk), where qk := xk − yk and βk := qT

k yk supports cl S at
yk. Then inequality (2.6) implies that

0 ≥ qT
k (x − yk) = qT

k x − βk for all x ∈ cl S,

and thus

qT
k x ≤ βk for all x ∈ cl S.

On the other hand, according to (2.7) we get qT
k xk > βk, thus we have

qT
k x < qT

k xk for all x ∈ cl S. (2.8)

Next we normalize vectors qk by defining pk := qk/‖qk‖. Then ‖pk‖ = 1, which
means that the sequence (pk) is bounded having a convergent subsequence (pkj

), in
other words there exists a limit p ∈ R

n such that pkj
→ p and ‖p‖ = 1. It is easy

to verify, that (2.8) holds also for pkj
, in other words

pT
kj

x < pT
kj

xkj for all x ∈ cl S. (2.9)

Fixing now x ∈ cl S in (2.9) and letting j → ∞ we get pT x ≤ pT x0. In other
words

pT (x − x0) ≤ 0,

which means that cl S ⊆ H−(p,α), where α := pT x0 and thus H(p,α) supports
cl S at x0. �

Finally we consider a nice property of convex sets, namely two disjoint convex
sets can always be separated by a hyperplane. For strict separation it is not enough
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to suppose the closedness of the sets, but at least one of the sets should be bounded
as well.

Theorem 2.8 Let S1,S2 ⊂ R
n be nonempty convex sets. If S1 ∩ S2 = ∅, then there

exists a hyperplane H(p,α) separating S1 and S2. If, in addition, S1 and S2 are
closed and S1 is bounded, then the separation is strict.

Proof It follows from Theorem 2.2, that the set

S := S1 − S2 = {x ∈ R
n | x = x1 − x2, x1 ∈ S1,x2 ∈ S2}

is convex. Furthermore, 000 /∈ S, since otherwise there would exist x1 ∈ S1 and
x2 ∈ S2 such that 000 = x1 − x2, in other words x1 = x2 ∈ S1 ∩ S2 = ∅, which is
impossible.

If 000 /∈ cl S, then due to Corollary 2.1 there exists a hyperplane H(p,α) strictly
separating S and {000}, in other words

pT x < α < pT000 = 0 for all x ∈ S.

Since x = x1 − x2, where x1 ∈ S1 and x2 ∈ S2, we get

pT x1 < α < pT x2 for all x1 ∈ S1,x2 ∈ S2,

and thus H(p,α) strictly separates S1 and S2.
On the other hand, if 000 ∈ cl S it must hold that 000 ∈ bd S (since 000 /∈ int S).

Then due to Theorem 2.7 there exists a hyperplane H(p,β) supporting cl S at 000, in
other words

pT (x − 000) ≤ 0 for all x ∈ cl S.

Denoting again x = x1 − x2, where x1 ∈ S1 and x2 ∈ S2, we get

pT x1 ≤ pT x2 for all x1 ∈ S1,x2 ∈ S2.

Since the set of real numbers {pT x1 | x1 ∈ S1} is bounded above by some number
pT x2, where x2 ∈ S2 �= ∅ it has a finite supremum. Defining α := sup {pT x1 |
x1 ∈ S1} we get

pT x1 ≤ α ≤ pT x2 for all x1 ∈ S1,x2 ∈ S2,

and thus H(p,α) separates S1 and S2.
Suppose next, that S1 and S2 are closed and S1 is bounded. In order to show

that S is closed suppose, that there exists a sequence (xk) ⊂ S and a limit x ∈ R
n

such that xk → x. Then due to the definition of S we have xk = x1k − x2k ,
where x1k ∈ S1 and x2k ∈ S2. Since S1 is compact, there exists a convergent
subsequence (x1kj

) and a limit x1 ∈ S1 such that x1kj
→ x1. Then we have
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x2kj
= x1kj

− xkj → x1 − x := x2. Since S2 is closed x2 ∈ S2. Thus x ∈ S and
S is closed. Now the case 000 /∈ cl S = S given above is the only possibility and thus
we can find H(p,α) strictly separating S1 and S2. �

The next two examples show that both closedness and compactness assumptions
actually are essential for strict separation.

Example 2.5 (Strict separation, counter example 1). Let S1 := {x ∈ R
2 |

x1 > 0 and x2 ≥ 1/x1} and S2 := {x ∈ R
2 | x2 = 0}. Then both S1 and

S2 are closed but neither of them is bounded. It follows that S1 − S2 = {x ∈
R

2 | x2 > 0} is not closed and there does not exist any strictly separating
hyperplane.

Example 2.6 (Strict separation, counter example 2). Let S1 := {x ∈ R
2 |

x2
1 + x2

2 ≤ 1} and S2 := {x ∈ R
2 | (x1 − 2)2 + x2

2 < 1}. Then both S1 and
S2 are bounded but S2 is not closed and it follows again that S1 − S2 = {x ∈
R

2 | (x1 + 2)2 + x2
2 < 4} is not closed and there does not exist any strictly

separating hyperplane.

2.1.3 Convex Cones

Next we define the notion of a cone, which is a set containing all the rays passing
through its points emanating from the origin.

Definition 2.6 A set C ⊆ R
n is a cone if λx ∈ C for all x ∈ C and λ ≥ 0.

Moreover, if C is convex, then it is called a convex cone.

Example 2.7 (Convex cones). It is easy to show that a singleton {000}, the whole
space R

n, closed halfspaces H+(p, 0) and H−(p, 0), the nonnegative orthant
R

n+ = {x ∈ R
n | xi ≥ 0, i = 1 . . . ,n} and halflines starting from the origin

are examples of closed convex cones.
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(a)
(b)

(c)

Fig. 2.5 Illustration of convex and nonconvex cones. (a) Convex. (b) Not convex. (c) Not convex

Theorem 2.9 A set C ⊆ R
n is a convex cone if and only if

λx + μy ∈ C for all x,y ∈ C andλ,μ ≥ 0. (2.10)

Proof Evidently (2.10) implies that C is a convex cone.
Next, let C be a convex cone and suppose that x,y ∈ C and λ,μ ≥ 0. Since C

is a cone we have λx ∈ C and μy ∈ C. Furthermore, since C is convex we have

1
2λx + (1 − 1

2 )μy ∈ C (2.11)

and again using the cone property we get

λx + μy = 2
( 1

2λx + (1 − 1
2 )μy

) ∈ C (2.12)

and the proof is complete. �

Via the next definition we get a connection between sets and cones. Namely a set
generates a cone, when every point of the set is replaced by a ray emanating from
the origin.

Definition 2.7 The ray of a set S ⊆ R
n is

ray S =
⋃

λ≥0

λS = {λx ∈ R
n | x ∈ S, λ ≥ 0}.

The proof of the next lemma is left as an exercise.

Lemma 2.3 If S ⊆ R
n, then ray S is a cone and C ⊆ R

n is cone if and only if

C = ray C.

Proof Exercise. �

The next theorem shows that the ray of a set is actually the intersection of all the
cones containing S, in other words, it is the smallest cone containing S (see Fig. 2.6).
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Theorem 2.10 If S ⊂ R
n, then

ray S =
⋂

S⊆C
C cone

C.

Proof Let C be a cone such that S ⊆ C. Then due to Lemma 2.3 we have ray S ⊆
ray C = C and thus we have

ray S ⊆
⋂

S⊆C
C cone

C.

On the other hand, it is evident that S ⊆ conv S and due to Lemma 2.3 ray S is a
cone. Then ray S is one of the cones C forming the intersection and thus

⋂

S⊆C
C cone

C =
⋂

S⊆C
C cone

C ∩ ray S ⊆ ray S

and the proof is complete. �

It can be seen from Fig. 2.6 that a ray is not necessarily convex. However, if the
set is convex, then also its ray is convex.

Theorem 2.11 If S ⊆ R
n is convex, then ray S is a convex cone.

Proof Due to Lemma 2.3 ray S is a cone. For convexity let x,y ∈ ray S and
λ,μ ≥ 0. Then x = αu and y = βv, where u,v ∈ S and α,β ≥ 0. Since S is
convex we have

z := λα

λα + μβ
u +

(
1 − λα

λα + μβ

)
v ∈ S.

The fact that ray S is cone implies that (λα + μβ)z ∈ ray S, in other words

(λα + μβ)z = λαu + μβv = λx + μy ∈ ray S.

According to Theorem 2.9 this means, that ray S is convex. �

S conv S
ray S

cone S

(a) (b) (c) (d)

Fig. 2.6 Convex hull, ray and conic hull of a set. (a) Set. (b) Convex hull. (c) Ray. (d) Conic hull
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It is also easy to show that a ray is not necessarily closed. However, if the set is
compact not including the origin its ray is closed.

Theorem 2.12 If S ⊂ R
n is compact such that 000 /∈ S, then ray S is closed.

Proof Let (xj) ⊂ ray S be a sequence such that xj → x. Next we show that
x ∈ ray S. The fact that xj ∈ ray S means that xj = λjyj where λj ≥ 0 and
yj ∈ S for all j ∈ N. Since S is compact the sequence yj is bounded, thus there
exists a subsequence (yji) ⊂ S such that yji → y. Because S is closed, it follows
that y ∈ S. Furthermore, since 000 /∈ S one has y �= 000, thus the sequence λji is also
converging to some λ ≥ 0. Then λjiyji → λy = x, which means that x ∈ ray S,
in other words S is closed. �

Similarly to the convex combination we say that the linear combination
∑k

i=1 λixi

is a conic combination of elements x1, . . . ,xk ∈ R
n if each λi ≥ 0 and the conic

hull generated by a set is defined as a set of conic combinations as follows.

Definition 2.8 The conic hull of a set S ⊆ R
n is

cone S = {x ∈ R
n | x =

k∑

i=1

λixi, xi ∈ S, λi ≥ 0, k > 0}.

The proof of the next lemma is again left as an exercise.

Lemma 2.4 If S ⊆ R
n, then cone S is a convex cone and C ⊆ R

n is convex cone
if and only if

C = cone C.

Proof Exercise. �

The next theorem shows that the conic hull cone S is actually the intersection
of all the convex cones containing S, in other words, it is the smallest convex cone
containing S (see Fig. 2.6).

Theorem 2.13 If S ⊂ R
n, then

cone S =
⋂

S⊆C
C convex cone

C.

Proof Let C be a convex cone such that S ⊆ C. Then due to Lemma 2.4 we have
cone S ⊆ cone C = C and thus we have

cone S ⊆
⋂

S⊆C
C convex cone

C.
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On the other hand, it is evident that S ⊆ cone S and due to Lemma 2.4 cone S is a
convex cone. Then cone S is one of the convex cones forming the intersection and
thus

⋂

S⊆C
C convex cone

C =
⋂

S⊆C
C convex cone

C ∩ cone S ⊆ cone S

and the proof is complete. �

Note, that according to Lemma 2.1, Theorems 2.10 and 2.13, and Definitions 2.7
and 2.8 we get the following result.

Corollary 2.2 If S ⊆ R
n, then

cone S = conv ray S.

Finally we get another connection between sets and cones. Namely, every set
generates also so called polar cone.

Definition 2.9 The polar cone of a nonempty set S ⊆ R
n is

S◦ = {y ∈ R
n | yT x ≤ 0 for all x ∈ S}.

The polar cone ∅0 of the empty set ∅ is the whole space R
n.

The next lemma gives some basic properties of polar cones (see Fig. 2.7). The
proof is left as an exercise.

Lemma 2.5 If S ⊆ R
n, then S◦ is a closed convex cone and S ⊆ S◦◦.

Proof Exercise. �

Theorem 2.14 The set C ⊆ R
n is a closed convex cone if and only if

C = C◦◦.

Proof Suppose first that C = C◦◦ = (C◦)◦. Then due to Lemma 2.5 C is a closed
convex cone.

Suppose next, that C is a closed convex cone. Lemma 2.5 implies that C ⊆ C◦◦.
We shall prove next that C◦◦ ⊆ C. Clearly ∅◦◦ = (Rn)◦ = ∅ and thus we can assume
that C is nonempty. Suppose, by contradiction, that there exists x ∈ C◦◦ such that
x /∈ C. Then due to Theorem 2.4 there exists a hyperplane H(p,α) separating C
and {x}, in other words there exist p �= 000 and α ∈ R such that

pT y ≤ α for all y ∈ C and pT x > α.
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Fig. 2.7 Polar cones of the set

Since 000 ∈ C we have α ≥ pT000 = 0 and thus

pT x > 0. (2.13)

If p /∈ C◦ then due to the definition of the polar cone there exists z ∈ C such that
pT z > 0. Since C is cone we have λz ∈ C for all λ ≥ 0. Then pT (λz) > 0 can
grow arbitrary large when λ → ∞, which contradicts the fact that pT y ≤ α for all
y ∈ C. Therefore we have p ∈ C◦. On the other hand

x ∈ C◦◦ = {y ∈ R
n | yT v ≤ 0 for all v ∈ C◦}

and thus pT x ≤ 0, which contradicts (2.13). We conclude that x ∈ C and the proof
is complete. �

2.1.4 Contingent and Normal Cones

In this subsection we consider tangents and normals of convex sets. First we define
a classical notion of contingent cone consisting of the tangent vectors (see Fig. 2.8).

Definition 2.10 The contingent cone of the nonempty set S at x ∈ S is given by
the formula
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KS(x) := {d ∈ R
n | there exist ti ↓ 0 and di → d such that x + tidi ∈ S}.

(2.14)

The elements of KS(x) are called tangent vectors.

Several elementary facts about the contingent cone will now be listed.

Theorem 2.15 The contingent cone KS(x) of the nonempty convex set S at x ∈ S
is a closed convex cone.

Proof We begin by proving that KS(x) is closed. To see this, let (di) be a sequence
in KS(x) converging to d ∈ R

n. Next we show that d ∈ KS(x). The fact that
di → d implies that for all ε > 0 there exists i0 ∈ N such that

‖d − di‖ < ε/2 for all i ≥ i0.

On the other hand, di ∈ KS(x), thus for each i ∈ N there exist sequences (dij ) ⊂ R
n

and (tij ) ⊂ R such that dij → di, tij ↓ 0 and x + tij dij ∈ S for all j ∈ N. Then
there exist j

y
i ∈ N and jt

i ∈ N such that for all i ∈ N

‖di − dij ‖ < ε/2 for all j ≥ j
y
i

and
|tij | < 1/i for all j ≥ jt

i .

Let us choose ji := max {jy
i , jt

i }. Then tiji ↓ 0 and for all i ≥ i0

‖d − diji
‖ ≤ ‖d − di‖ + ‖di − diji

‖ ≤ ε/2 + ε/2 = ε,

which implies that diji
→ d and, moreover, x + tiji diji

∈ S. By the definition of
the contingent cone, this means that d ∈ KS(x) and thus KS(x) is closed.

Fig. 2.8 Contingent cone KS(x) of a convex set
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We continue by proving that KS(x) is a cone. If d ∈ KS(x) is arbitrary then there
exist sequences (dj) ⊂ R

n and (tj) ⊂ R such that dj → d, tj ↓ 0 and x+ tjdj ∈ S
for all j ∈ N. Let λ > 0 be fixed and define d′

j := λdj and t′j := tj/λ. Since t′j ↓ 0,

‖d′
j − λd‖ = λ‖dj − y‖ −→ 0 whenever j → ∞

and

x + t′jd′
j = x + tj

λ
· λdj ∈ S

it follows that λd ∈ KS(x). Thus KS(x) is a cone.
For convexity let λ ∈ [0, 1] and d1,d2 ∈ KS(x). We need to show that d :=

(1−λ)d1 +λd2 belongs to KS(x). By the definition of KS(x) there exist sequences
(d1

j ), (d
2
j ) ⊂ R

n and (t1
j ), (t

2
j ) ⊂ R such that di

j → di, tij ↓ 0 and x + tijd
i
j ∈ S

for all j ∈ N and i = 1, 2. Define

dj := (1 − λ)d1
j + λd2

j and tj := min {t1
j , t

2
j }.

Then we have

x + tjdj = (1 − λ)(x + tjd
1
j ) + λ(x + tjd

2
j ) ∈ S

because S is convex and

x + tjd
i
j = (1 − tj

tij
)x + tj

tij
(x + tijd

i
j) ∈ S

because tj
tij

∈ [0, 1] and S is convex. Moreover, we have

‖dj − d‖ = ‖(1 − λ)d1
j + λd2

j − (1 − λ)d1 − λd2‖
≤ (1 − λ)‖d1

j − d1‖ + λ‖d2
j − d2‖ −→ 0,

when j → ∞, in other words dj → d. Since tj ↓ 0 we have d ∈ KS(x) and thus
KS(x) is convex. �

The following cone of feasible directions is very useful in optimization when
seeking for feasible search directions.

Definition 2.11 The cone of globally feasible directions of the nonempty set S at
x ∈ S is given by the formula

GS(x) := {d ∈ R
n | there exists t > 0 such that x + td ∈ S}.
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The cone of globally feasible directions has the same properties as the contingent
cone but it is not necessarily closed. The proof of the next theorem is very similar to
that of Theorem 2.15 and it is left as an exercise.

Theorem 2.16 The cone of globally feasible directions GS(x) of the nonempty
convex set S at x ∈ S is a convex cone.

Proof Exercise. �

We have the following connection between the contingent cone and the cone of
feasible directions.

Theorem 2.17 If S is a nonempty set and x ∈ S, then

KS(x) ⊆ cl GS(x).

If, in addition, S is convex then

KS(x) = cl GS(x).

Proof If d ∈ KS(x) is arbitrary, then there exist sequences dj → d and tj ↓ 0 such
that x + tjdj ∈ S for all j ∈ N, thus d ∈ cl GS(x).

To see the equality, let S be convex and d ∈ cl GS(x). Then there exist sequences
dj → d and tj > 0 such that x + tjdj ∈ S for all j ∈ N. It suffices now to find
a sequence t′j such that t′j ↓ 0 and x + t′jdj ∈ S. Choose t′j := min { 1

j , tj}, which
implies that

|t′j | ≤ 1

j
−→ 0

and by the convexity of S it follows that

x + t′jdj = (1 − t′j
tj

)x + t′j
tj

(x + tjdj) ∈ S,

which proves the assertion. �

Next we shall define the concept of normal cone (see Fig. 2.9). As we already
have the contingent cone, it is natural to use polarity to define the normal vectors.

Definition 2.12 The normal cone of the nonempty set S at x ∈ S is the set

NS(x) := KS(x)◦ = {z ∈ R
n | zT d ≤ 0 for all d ∈ KS(x)}. (2.15)

The elements of NS(x) are called normal vectors.

The natural corollary of the polarity is that the normal cone has the same properties
as the contingent cone.
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Fig. 2.9 Contingent and
normal cones of a convex set

Theorem 2.18 The normal cone NS(x) of the nonempty convex set S at x ∈ S is a
closed convex cone.

Proof Follows directly from Lemma 2.5. �

Notice that if x ∈ int S, then clearly KS(x) = R
n and NS(x) = ∅. Thus the

only interesting cases are those when x ∈ bd S.
Next we present the following alternative characterization to the normal cone.

Theorem 2.19 The normal cone of the nonempty convex set S at x ∈ S can also be
written as follows

NS(x) = {z ∈ R
n | zT (y − x) ≤ 0 for all y ∈ S}. (2.16)

Proof Let us denote

Z := {z ∈ R
n | zT (y − x)T ≤ 0 for all y ∈ S}.

If z ∈ NS(x) is an arbitrary point, then by the definition of the normal cone we have

zT d ≤ 0 for all d ∈ KS(x).

Now let y ∈ S, set d := y − x and choose t := 1. Then

x + td = x + ty − tx = y ∈ S,

thus d ∈ GS(x) ⊆ cl GS(x) = KS(x) by Theorem 2.17. Since z ∈ NS(x) one
has

zT (y − x)T = zT d ≤ 0,

thus z ∈ Z and we have NS(x) ⊆ Z .
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On the other hand, if z ∈ Z and d ∈ KS(x) then there exist sequences (dj) ⊂ R
n

and (tj) ⊂ R such that dj → d, tj > 0 and x + tjdj ∈ S for all j ∈ N. Let us set
yj := x + tjdj ∈ S. Since z ∈ Z we have

tjz
T dj = zT (yj − x) ≤ 0.

Because tj is positive, it implies that zT dj ≤ 0 for all j ∈ N. Then

zT d = zT dj + zT (d − dj)

≤ ‖z‖ ‖d − dj‖,

where ‖d − dj‖ −→ 0 as j → ∞. This means that

zT d ≤ 0 for all d ∈ KS(x).

In other words, we have z ∈ NS(x) and thus Z ⊆ NS(x), which completes the
proof. �

The main difference between the groups of cones ray S, cone S, S◦ and KS(x),
GS(x), NS(x) is, that the origin is the vertex point of the cone in the first group and
the point x ∈ S in the second group. If we shift x to the origin, we get the following
connections between these two groups.

Theorem 2.20 If S is a nonempty convex set such that 000 ∈ S, then

(i) GS(000) = ray S,
(ii) KS(000) = cl ray S,

(iii) NS(000) = S◦.

Proof Exercise. �

2.2 Convex Functions

A function f : Rn → R is said to be convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) (2.17)

whenever x and y are in R
n and λ ∈ [0, 1]. If a strict inequality holds in (2.17) for

all x,y ∈ R
n such that x �= y and λ ∈ (0, 1), the function f is said to be strictly

convex. A function f : Rn → R is (strictly) concave if −f is (strictly) convex (see
Fig. 2.10).

Next we give an equivalent definition of a convex function.

Theorem 2.21 (Jensen’s inequality) A function f : Rn → R is convex if and only if
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x x x

(a) (b) (c)

Fig. 2.10 Examples of different functions. (a) Convex. (b) Concave. (c) Neither convex or concave

f

(
m∑

i=1

λixi

)
≤

m∑

i=1

λif(xi), (2.18)

whenever xi ∈ R
n, λi ∈ [0, 1] for all i = 1, . . . ,m and

∑m
i=1 λi = 1.

Proof Follows by induction from the definition of convex function. �

Next we show that a convex function is always locally Lipschitz continuous.

Theorem 2.22 Let f : Rn → R be a convex function. Then for any x in R
n, f is

locally Lipschitz continuous at x.

Proof Let u ∈ R
n be arbitrary. We begin by proving that f is bounded on a neigh-

borhood of u. Let ε > 0 and define the hypercube

Sε := {y ∈ R
n | |yi − ui| ≤ ε for all i = 1, . . . ,n}.

Let u1, . . . ,um denote the m = 2n vertices of Sε and let

M := max {f(ui) | i = 1, . . . ,m}.

Since eachy ∈ Sε can be expressed asy = ∑m
i=1 λiui withλi ≥ 0 and

∑m
i=1 λi = 1,

by Theorem 2.21. we obtain

f(y) = f

(
m∑

i=1

λiui

)
≤

m∑

i=1

λif(ui) ≤ M

m∑

i=1

λi = M .

Since B(u; ε) ⊂ Sε, we have an upper bound M of f on an ε-neighborhood of u,
that is

f(x′) ≤ M for all x′ ∈ B(u; ε).

Now let x ∈ R
n, choose ρ > 1 and y ∈ R

n so that y = ρx. Define
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λ := 1/ρ and

V := {v | v = (1 − λ)(x′ − u) + x, where x′ ∈ B(u; ε)}.

The set V is a neighborhood of x = λy with radius (1 − λ)ε. By convexity one has
for all v ∈ V

f(v) = f((1 − λ)(x′ − u) + λy)

= f((1 − λ)x′ + λ(y + u − 1
λu))

≤ (1 − λ)f(x′) + λf(y + u − 1
λu).

Now f(x′) ≤ M and f(y + u − 1
λu) = constant =: K and thus

f(v) ≤ M + λK.

In other words, f is bounded above on a neighborhood of x.
Let us next show that f is also bounded below. Let z ∈ B(x; (1−λ)ε) and define

z′ := 2x − z. Then
‖z′ − x‖ = ‖x − z‖ ≤ (1 − λ)ε.

Thus z′ ∈ B(x; (1 − λ)ε) and x = (z + z′)/2. The convexity of f implies that

f(x) = f((z + z′)/2) ≤ 1
2f(z) + 1

2f(z′),

and
f(z) ≥ 2f(x) − f(z′) ≥ 2f(x) − M − λK

so that f is also bounded below on a neighborhood of x. Thus we have proved that
f is bounded on a neighborhood of x.

Let N > 0 be a bound of |f | so that

|f(x′)| ≤ N for all x′ ∈ B(x; 2δ),

where δ > 0, and let x1,x2 ∈ B(x; δ) with x1 �= x2. Define

x3 := x2 + (δ/α)(x2 − x1),

where α := ‖x2 − x1‖. Then
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‖x3 − x‖ = ‖x2 + (δ/α)(x2 − x1) − x‖
≤ ‖x2 − x‖ + (δ/α)‖x2 − x1‖

< δ + δ

‖x2 − x1‖‖x2 − x1‖
= 2δ,

thus x3 ∈ B(x; 2δ). Solving for x2 gives

x2 = δ

α + δ
x1 + α

α + δ
x3,

and by the convexity we get

f(x2) ≤ δ

α + δ
f(x1) + α

α + δ
f(x3).

Then

f(x2) − f(x1) ≤ α

α + δ
[f(x3) − f(x1)]

≤ α

δ
|f(x3) − f(x1)|

≤ α

δ
(|f(x3)| + |f(x1)|).

Since x1,x3 ∈ B(x; 2δ) we have |f(x3)| < N and |f(x1)| < N , thus

f(x2) − f(x1) ≤ 2N

δ
‖x2 − x1‖.

By changing the roles of x1 and x2 we have

|f(x2) − f(x1)| ≤ 2N

δ
‖x2 − x1‖,

showing that the function f is locally Lipschitz continuous at x. �
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Fig. 2.11 Absolute-value
function f(x) = |x|

f(x
)=

|x|

f(x)

1 2−1

1

2

3

3− 2− 3 x

The simplest example of nonsmooth function is the absolute-value function on
reals (see Fig. 2.11).

Example 2.8 (Absolute-value function). Let us consider the absolute-value
function

f(x) = |x|

on reals.
The gradient of function f is

∇f(x) =
{

1, when x > 0,

−1, when x < 0.

Function f is not differentiable at x = 0.
We now show that function f is both convex and (locally) Lipschitz con-

tinuous. Let λ ∈ [0, 1] and x, y ∈ R. By triangle inequality we have

f(λx + (1 − λ)y) = |λx + (1 − λ)y|
≤ |λx| + |(1 − λ)y|
= |λ||x| + |1 − λ||y|
= λ|x| + (1 − λ)|y|
= λf(x) + (1 − λ)f(y).

Thus, function f is convex. Furthermore, by triangle inequality we also have

|f(x) − f(y)| = ||x| − |y|| ≤ |x − y|
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for all x, y ∈ R. In space R, the right-hand side equals to the norm ‖x − y‖.
Thus, we have the Lipschitz constant K = 1 > 0 and function f is Lipschitz
continuous.

2.2.1 Level Sets and Epigraphs

Next we consider two sets, namely level sets and epigraphs, closely related to convex
functions.

Definition 2.13 The level set of a function f : Rn → R with a parameter α ∈ R is
defined as

levα f := {x ∈ R
n | f(x) ≤ α}.

We have the following connection between the convexity of functions and level
sets.

Theorem 2.23 If f : Rn → R is a convex function, then the level set levα f is a
convex set for all α ∈ R.

Proof If x,y ∈ levα f and λ ∈ [0, 1] we have f(x) ≤ α and f(y) ≤ α. Let
z := λx + (1 − λ)y with some λ ∈ [0, 1]. Then the convexity of f implies that

f(z) ≤ λf(x) + (1 − λ)f(y) ≤ λα + (1 − λ)α = α,

in other words z ∈ levα f and thus levα f is convex. �
The previous result can not be inverted since there exist nonconvex functions with
convex level sets (see Fig. 2.12). The equivalence can be achieved by replacing the
level set with the so called epigraph being a subset of R

n × R (see Fig. 2.13).

Fig. 2.12 Nonconvex func-
tion with convex level sets
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Fig. 2.13 Epigraph of the
function

Definition 2.14 The epigraph of a function f : Rn → R is the following subset of
R

n × R:

epi f := {(x, r) ∈ R
n × R | f(x) ≤ r}. (2.19)

Theorem 2.24 The function f : Rn → R is convex if and only if the epigraph epi f
is a convex set.

Proof Exercise. �

Notice, that we have the following connection between the epigraph and level sets
of a function f : Rn → R at x ∈ R

n

levf(x) f = {y ∈ R
n | (y, f(x)) ∈ epi f}.

2.2.2 Subgradients and Directional Derivatives

In this section we shall generalize the classical notion of gradient for convex but not
necessarily differentiable functions. Before that we consider some properties related
to the directional derivative of convex functions.

Theorem 2.25 If f : Rn → R is a convex function, then the directional derivative
f ′(x;d) exists in every direction d ∈ R

n and it satisfies

f ′(x;d) = inf
t>0

f(x + td) − f(x)

t
. (2.20)

Proof Let d ∈ R
n be an arbitrary direction. Define ϕ: R → R by

ϕ(t) := f(x + td) − f(x)

t
.
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We begin by proving that ϕ is bounded below at t when t ↓ 0. Let ε > 0 and let
constants t1 and t2 be such that 0 < t1 < t2 < ε. By the convexity of f we have

ϕ(t2) − ϕ(t1) = 1

t1t2
[t1f(x + t2d) − t2f(x + t1d) + (t2 − t1)f(x)]

= 1

t1

{( t1

t2
f(x + t2d) + (1 − t1

t2
)f(x)

)

− f
( t1

t2
(x + t2d) + (1 − t1

t2
)x

)}

≥ 0,

thus the function ϕ(t) decreases as t ↓ 0. Then for all 0 < t < ε one has

ϕ(t) − ϕ(−ε/2) =
1
2f(x + td) + 1

2f(x) + t
εf(x − ε

2d) + (1 − t
ε )f(x) − 2f(x)

t/2

≥
1
2f(x + t

2d) + 1
2f(x − t

2d) − f(x)

t/4

≥ f(x) − f(x)

t/4
= 0,

which means that the function ϕ is bounded below for 0 < t < ε. This implies that
there exists the limit

lim
t↓0

ϕ(t) = f ′(x;d) for all d ∈ R
n

and since the function ϕ(t) decreases as t ↓ 0 we deduce that

f ′(x;d) = inf
t>0

f(x + td) − f(x)

t
. �

Theorem 2.26 Let f : Rn → R be a convex function with a Lipschitz constant K at
x ∈ R

n. Then the function d �→ f ′(x;d) is positively homogeneous and subadditive
on R

n with
|f ′(x;d)| ≤ K‖d‖.

Proof We start by proving the inequality. From the Lipschitz condition we obtain

|f ′(x;d)| ≤ lim
t↓0

|f(x + td) − f(x)|
t

≤ lim
t↓0

K‖x + td − x‖
t

≤ K‖d‖.
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Next we show that f ′(x; · ) is positively homogeneous. To see this, let λ > 0. Then

f ′(x;λd) = lim
t↓0

f(x + tλd) − f(x)

t

= lim
t↓0

λ ·
{

f(x + tλd) − f(x)

tλ

}

= λ · lim
t↓0

f(x + tλd) − f(x)

tλ

= λ · f ′(x;d).

We turn now to the subadditivity. Let d,p ∈ R
n be arbitrary directions, then by

convexity

f ′(x;d + p) = lim
t↓0

f(x + t(d + p)) − f(x)

t

= lim
t↓0

f( 1
2 (x + 2td) + 1

2 (x + 2tp)) − f(x)

t

≤ lim
t↓0

f(x + 2td) − f(x)

2t
+ lim

t↓0

f(x + 2tp) − f(x)

2t

= f ′(x;d) + f ′(x;p).

Thus d �→ f ′(x;d) is subadditive. �

From the previous theorem we derive the following consequence.

Corollary 2.3 If f : Rn → R is a convex function, then the function d �→ f ′(x;d)

is convex, its epigraph epi f ′(x; ·) is a convex cone and we have

f ′(x;−d) ≥ −f ′(x;d) for all x ∈ R
n.

Proof Exercise. �

Next we define the subgradient and the subdifferential of a convex function. Note
the analogy to the smooth differential theory, namely if a function f : Rn → R is
both convex and differentiable, then for all y ∈ R

n we have

f(y) ≥ f(x) + ∇f(x)T (y − x).

Figure 2.14 illustrates the meaning of the definition of the subdifferential.

Definition 2.15 The subdifferential of a convex function f : Rn → R at x ∈ R
n is

the set ∂cf(x) of vectors ξ ∈ R
n such that

∂cf(x) =
{
ξ ∈ R

n | f(y) ≥ f(x) + ξT (y − x) for all y ∈ R
n
}

.
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Fig. 2.14 Subdifferential

Each vector ξ ∈ ∂cf(x) is called a subgradient of f at x.

Example 2.9 (Absolute-value function). As noted in Example 2.8 function
f(x) = |x| is convex and differentiable when x �= 0. By the definition of
subdifferential we have

ξ ∈ ∂cf(0) ⇐⇒ |y| ≥ |0| + ξ · (y − 0) for all y ∈ R

⇐⇒ |y| ≥ ξ · y for all y ∈ R

⇐⇒ ξ ≤ 1 and ξ ≥ −1.

Thus, ∂cf(0) = [−1, 1].

Theorem 2.27 Let f : Rn → R be a convex function with a Lipschitz constant K at
x∗ ∈ R

n. Then the subdifferential ∂cf(x∗) is a nonempty, convex, and compact set
such that

∂cf(x∗) ⊆ B(000;K).

Proof We show first that there exists a subgradient ξ ∈ ∂cf(x∗), in other words
∂cf(x∗) is nonempty. By Theorem 2.24 epi f is a convex set and by Theorem 2.22 and
Exercise 2.29 it is closed. Since (x∗, f(x∗)) ∈ epi f it is also nonempty, furthermore
we have (x∗, f(x∗)) ∈ bd epi f . Then due to Theorem 2.7 there exists a hyperplane
supporting epi f at (x∗, f(x∗)). In other words there exists (ξ∗,μ) �= (000, 0) where
ξ∗ ∈ R

n and μ ∈ R such that for all (x, r) ∈ epi f we have

(ξ∗,μ)T
(
(x, r) − (x∗, f(x∗))

) = (ξ∗)T (x − x∗) + μ(r − f(x∗)) ≤ 0. (2.21)
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In the above inequality r can be chosen as large as possible, thus μ must be nonpos-
itive. If μ = 0 then (2.21) reduces to

(ξ∗)T (x − x∗) ≤ 0 for all x ∈ R
n.

If we choose x := x∗ + ξ∗ we get (ξ∗)T ξ∗ = ‖ξ∗‖2 ≤ 0. This means that ξ∗ = 000,
which is impossible because (ξ∗,μ) �= (000, 0), thus we have μ < 0. Dividing the
inequality (2.21) by |μ| and noting ξ := ξ∗/|μ| we get

ξT (x − x∗) − r + f(x∗) ≤ 0 for all (x, r) ∈ epi f .

If we choose now r := f(x) we get

f(x) ≥ f(x∗) + ξT (x − x∗) for all x ∈ R
n,

which means that ξ ∈ ∂cf(x∗).
To see the convexity let ξ1, ξ2 ∈ ∂cf(x∗) and λ ∈ [0, 1]. Then we have

f(y) ≥ f(x∗) + ξT
1 (y − x∗) for all y ∈ R

n and

f(y) ≥ f(x∗) + ξT
2 (y − x∗) for all y ∈ R

n.

Multiplying the above two inequalities by λ and (1 − λ), respectively, and adding
them together, we obtain

f(y) ≥ f(x∗) + (
λξ1 + (1 − λ)ξ2

)T
(y − x∗) for all y ∈ R

n,

in other words
λξ1 + (1 − λ)ξ2 ∈ ∂cf(x∗)

and thus ∂cf(x∗) is convex.
If d ∈ R

n we get from the definition of the subdifferential

ϕ(t) := f(x + td) − f(x)

t
≥ ξT (td)

t
= ξT d for all ξ ∈ ∂cf(x∗).

Since ϕ(t) → f ′(x∗;d) when t ↓ 0 we obtain

f ′(x∗;d) ≥ ξT d for all ξ ∈ ∂cf(x∗). (2.22)

Thus for an arbitrary ξ ∈ ∂cf(x∗) we get

‖ξ‖2 = |ξT ξ| ≤ |f ′(x∗; ξ)| ≤ K‖ξ‖

by Theorem 2.26. This means that ∂cf(x∗) is bounded and we have

∂cf(x∗) ⊆ B(000;K).
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Thus, for compactness it suffices to show that ∂cf(x∗) is closed. To see this let
(ξi) ⊂ ∂cf(x∗) such that ξi → ξ. Then for all y ∈ R

n we have

f(y) − f(x∗) ≥ ξT
i (y − x) → ξT (y − x),

whenever i → ∞, thus ξ ∈ ∂cf(x∗) and ∂cf(x∗) is closed. �

The next theorem shows the relationship between the subdifferential and the
directional derivative. It turns out that knowing f ′(x;d) is equivalent to knowing
∂cf(x).

Theorem 2.28 Let f : Rn → R be a convex function. Then for all x ∈ R
n

(i) ∂cf(x) = {ξ ∈ R
n | f ′(x,d) ≥ ξT d for all d ∈ R

n}, and
(ii) f ′(x;d) = max {ξT d | ξ ∈ ∂cf(x)} for any d ∈ R

n.

Proof (i) Set
S := {ξ ∈ R

n | f ′(x;d) ≥ ξT d for all d ∈ R
n}

and let ξ ∈ S be arbitrary. Then it follows from convexity that, for all d ∈ R
n, we

have

ξT d ≤ f ′(x;d)

= lim
t↓0

f
(
(1 − t)x + t(x + d)

) − f(x)

t

≤ lim
t↓0

(1 − t)f(x) + tf(x + d) − f(x)

t

= f(x + d) − f(x),

whenever t ≤ 1. By choosing d := y −x we derive ξ ∈ ∂cf(x). On the other hand,
if ξ ∈ ∂cf(x) then due to (2.22) we have

f ′(x;d) ≥ ξT d for all d ∈ R
n.

Thus ξ ∈ S, which establishes (i).

(ii) First we state that since the subdifferential is compact and nonempty set
(Theorem 2.27) the maximum of the linear function d �→ ξT d is well-defined due
to the Weierstrass’ Theorem 1.1. Again from (2.22) we deduce that for each d ∈ R

n

we have

f ′(x;d) ≥ max {ξT d | ξ ∈ ∂cf(x)}.
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Suppose next that there were d∗ ∈ R
n for which

f ′(x;d∗) > max {ξT d∗ | ξ ∈ ∂cf(x)}. (2.23)

By Corollary 2.3 function d �→ f ′(x;d) is convex and thus by Theorem 2.24
epi f ′(x; ·) is a convex set and by Theorem 2.22 and Exercise 2.29 it is closed.
Since (d∗, f ′(x;d∗)) ∈ epi f ′(x; ·) it is also nonempty, furthermore we have
(d∗, f ′(x;d∗)) ∈ bd epi f ′(x; ·). Then due to Theorem 2.7 there exists a hyper-
plane supporting epi f ′(x; ·) at (d∗, f ′(x;d∗)), in other words there exists (ξ∗,μ) �=
(000, 0) where ξ∗ ∈ R

n and μ ∈ R such that for all (d, r) ∈ epi f ′(x; ·) we have

(ξ∗,μ)T
(
(d, r) − (d∗, f ′(x;d∗))

) = (ξ∗)T (d − d∗) + μ(r − f ′(x;d∗)) (2.24)

≤ 0.

Just like in the proof of Theorem 2.27 we can deduce that μ < 0. Again dividing the
inequality (2.24) by |μ| and noting ξ := ξ∗/|μ| we get

ξT (d − d∗) − r + f ′(x;d∗) ≤ 0 for all (d, r) ∈ epi f ′(x; ·).

If we choose now r := f ′(x;d) we get

f ′(x;d) − f ′(x;d∗) ≥ ξT (d − d∗) for all d ∈ R
n. (2.25)

Then from the subadditivity of the directional derivative (Theorem 2.26) we obtain

f ′(x;d − d∗) ≥ ξT (d − d∗) for all d ∈ R
n,

which by assertion (i) means that ξ ∈ ∂cf(x). On the other hand from Eqs. (2.25)
and (2.23) we get

f ′(x;d) − ξT d ≥ f ′(x;d∗) − ξT d∗ > 0 for all d ∈ R
n,

in other words we have

f ′(x;d) > ξT d for all d ∈ R
n.

Now by choosing d := 000 we get ‘0 > 0’, which is impossible, thus by the contra-
diction (2.23) is wrong and we have the equality

f ′(x;d) = max {ξT d | ξ ∈ ∂cf(x)} for all d ∈ R
n

and the proof is complete. �
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Example 2.10 (Absolute-value function). By Theorem 2.28 (i) we have

ξ ∈ ∂cf(0) ⇐⇒ f ′(0, d) ≥ ξ · d for all d ∈ R.

Now

f ′(0, d) = lim
t↓0

|0 + td| − |0|
t

= lim
t↓0

t|d|
t

= |d|

and, thus,

ξ ∈ ∂cf(0) ⇐⇒ |d| ≥ ξ · d for all d ∈ R

⇐⇒ ξ ∈ [−1, 1].

The next theorem shows that the subgradients really are generalizations of the clas-
sical gradient.

Theorem 2.29 If f : Rn → R is convex and differentiable at x ∈ R
n, then

∂cf(x) = {∇f(x)}. (2.26)

Proof According to Theorem 2.25 the directional derivative f ′(x;d) of a convex
function exists in every direction d ∈ R

n. From the definition of differentiability we
have

f ′(x;d) = ∇f(x)T d for all d ∈ R
n,

which implies, by Theorem 2.28 (i) that ∇f(x) ∈ ∂cf(x). Suppose next that there
exists another ξ ∈ ∂cf(x) such that ξ �= ∇f(x). Then by Theorem 2.28 (i) we have

ξT d ≤ f ′(x;d) = ∇f(x)T d for all d ∈ R
n,

in other words
(ξ − ∇f(x))T d ≤ 0 for all d ∈ R

n.

By choosing d := ξ − ∇f(x) we get

‖ξ − ∇f(x))‖2 ≤ 0,

implying that ξ = ∇f(x), which contradicts the assumption. Thus

∂cf(x) = {∇f(x)}. �
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Example 2.11 (Absolute-value function). Let us define the whole subdifferen-
tial ∂f(x) of the function f(x) = |x|. Function f is differentiable in every-
where except in x = 0, and

∇f(x) =
{

1, when x > 0

−1, when x < 0.

In Examples 2.9 and 2.10, we have computed the subdifferential at x = 0, that
is, ∂cf(0) = [−1, 1]. Thus, the subdifferential of f is

∂f(x) =
⎧
⎨

⎩

{−1}, when x < 0
[−1, 1], when x = 0
{1}, when x > 0

(see also Fig. 2.15).

We are now ready to present a very useful result in developing optimization methods.
It gives a representation to a convex function by using subgradients.

Theorem 2.30 If f : Rn → R is convex then for all y ∈ R
n

f(y) = max {f(x) + ξT (y − x) | x ∈ R
n, ξ ∈ ∂cf(x)}. (2.27)

Proof Suppose that y ∈ R
n is an arbitrary point and ζ ∈ ∂f(y). Let

S := {f(x) + ξT (y − x) | ξ ∈ ∂cf(x), x ∈ R
n}.

By the definition of subdifferential of a convex function we have

f(y) ≥ f(x) + ξT (y − x) for all x ∈ R
nand ξ ∈ ∂cf(x)

Fig. 2.15 Subdifferential
∂cf(x) of f(x) = |x|

1 2−1

1

2

3− 2− 3 x
−1

ξ
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implying that the set S is bounded from above and

sup S ≤ f(y).

On the other hand, we have

f(y) = f(y) + ζT (y − y) ∈ S,

which means that f(y) ≤ sup S. Thus

f(y) = max {f(x) + ξT (y − x) | ξ ∈ ∂cf(x), x ∈ R
n}. �

2.2.3 ε-Subdifferentials

In nonsmooth optimization, so called bundle methods are based on the concept of
ε-subdifferential, which is an extension of the ordinary subdifferential. Therefore we
now give the definition of ε-subdifferential and present some of its basic properties.

We start by generalizing the ordinary directional derivative. Note the analogy with
the property (2.20).

Definition 2.16 Let f : Rn → R be convex. The ε-directional derivative of f at x
in the direction d ∈ R

n is defined by

f ′
ε(x;d) = inf

t>0

f(x + td) − f(x) + ε

t
. (2.28)

Now we can reach the same results as in Theorem 2.26 and Corollary 2.3 also for
the ε-directional derivative.

Theorem 2.31 Let f : Rn → R be a convex function with a Lipschitz constant K at
x ∈ R

n. Then the function d �→ f ′
ε(x;d) is

(i) positively homogeneous and subadditive on R
n with

|f ′
ε(x;d)| ≤ K‖d‖,

(ii) convex, its epigraph epi f ′
ε(x; ·) is a convex cone and

f ′
ε(x;−d) ≥ −f ′

ε(x;d) for all x ∈ R
n.

Proof These results follow immediately from Theorem 2.26, Corollary 2.3 and the
fact that for all ε > 0 we have inft>0 ε/t = 0. �
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Fig. 2.16 Illustration of ε-
subdifferential

As before we now generalize the subgradient and the subdifferential of a convex
function. We illustrate the meaning of the definition in Fig. 2.16.

Definition 2.17 Let ε ≥ 0, then the ε- subdifferential of the convex function
f : Rn → R at x ∈ R

n is the set

∂εf(x) = {ξ ∈ R
n | f(x′) ≥ f(x) + ξT (x′ − x) − ε for all x′ ∈ R

n}. (2.29)

Each element ξ ∈ ∂εf(x) is called an ε-subgradient of f at x.

The following summarizes some basic properties of the ε-subdifferential.

Theorem 2.32 Let f : Rn → R be convex function with a Lipschitz constant K at
x ∈ R

n. Then

(i) ∂0f(x) = ∂cf(x).
(ii) If ε1 ≤ ε2, then ∂ε1f(x) ⊆ ∂ε2f(x).

(iii) ∂εf(x) is a nonempty, convex, and compact set such that ∂εf(x) ⊆ B(000;K).
(iv) ∂εf(x) = {ξ ∈ R

n | f ′
ε(x;d) ≥ ξT d for all d ∈ R

n}.
(v) f ′

ε(x;d) = max {ξT d | ξ ∈ ∂εf(x)} for all d ∈ R
n.

Proof The definition of the ε-subdifferential implies directly the assertions (i) and
(ii) and the proofs of assertions (iv) and (v) are the same as for ε = 0 in The-
orem 2.28 (i) and (ii), respectively. By Theorem 2.27 ∂cf(x) is nonempty which
implies by assertion (i) that ∂εf(x) is also nonempty. The proofs of the convexity
and compactness are also same as in Theorem 2.27. �
The following shows that the ε-subdifferential contains in a compressed form the
subgradient information from the whole neighborhood.

Theorem 2.33 Let f : Rn → R be convex with Lipschitz constant K at x. Then for
all ε ≥ 0 we have

∂cf(y) ⊆ ∂εf(x) for all y ∈ B
(
x; ε

2K

)
. (2.30)
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Proof Let ξ ∈ ∂cf(y) and y ∈ B
(
x; ε

2K

)
. Then for all z ∈ R

n it holds

f(z) ≥ f(y) + ξT (z − y)

= f(x) + ξT (z − x) − (f(x) − f(y) + ξT (z − x) − ξT (z − y))

and, using the Lipschitz condition and Theorem 2.27 we calculate

|f(x) − f(y)+ξT (z − x) − ξT (z − y)|
≤ |f(x) − f(y)| + |ξT (z − x) − ξT (z − y)|
≤ K ‖x − y‖ + ‖ξ‖ ‖x − y‖
≤ 2K ‖x − y‖
≤ 2K · ε

2K
= ε,

which gives ξ ∈ ∂εf(x). �

2.3 Links Between Geometry and Analysis

In this section we are going to show that the analytical and geometrical concepts
defined in the previous sections are actually equivalent. We have already showed that
the level sets of a convex function are convex, the epigraph of the directional derivative
is a convex cone and a function is convex if and only if its epigraph is convex. In
what follows we give some more connections, on the one hand, between directional
derivatives and contingent cones, and on the other hand, between subdifferentials
and normal cones in terms of epigraph, level sets and the distance function.

2.3.1 Epigraphs

The next two theorems describe how one could equivalently define tangents and
normals by using the epigraph of a convex function (see Figs. 2.17 and 2.18). First
result show that the contingent cone of the epigraph is the epigraph of the directional
derivative.

Theorem 2.34 If the function f : Rn → R is convex, then

Kepi f (x, f(x)) = epi f ′(x; ·). (2.31)

Proof Suppose first that (d, r) ∈ Kepi f (x, f(x)). By the definition of the contingent
cone there exist sequences (dj, rj) → (d, r) and tj ↓ 0 such that
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Fig. 2.17 Contingent cone of
the epigraph

Fig. 2.18 Normal cone of the
epigraph

(x, f(x)) + tj(dj, rj) ∈ epi f for all j ∈ N,

in other words
f(x + tjdj) ≤ f(x) + tjrj .

Now by using (2.20) we can calculate

f ′(x;d) = inf
t>0

f(x + td) − f(x)

t

= lim
j→∞

f(x + tjdj) − f(x)

tj

≤ lim
j→∞ rj = r,

which implies that (d, r) ∈ epi f ′(x; ·).
Suppose, next, that (d, r) ∈ epi f ′(x; ·), which means that

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t
≤ r.

Then there exists a sequence tj ↓ 0 such that

f(x + tjd) − f(x)

tj
≤ r + 1

j
,
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which yields

f(x + tjd) ≤ f(x) + tj(r + 1

j
)

and thus (x, f(x))+ tj(d, r+ 1
j ) ∈ epi f . This and the fact that (d, r+ 1

j ) → (d, r)
shows that (d, r) ∈ Kepi f (x, f(x)) and we obtain the desired conclusion. �
Next we show that the subgradient is essentially a normal vector of the epigraph.

Theorem 2.35 If the function f : Rn → R is convex, then

∂cf(x) = {ξ ∈ R
n | (ξ,−1) ∈ Nepi f (x, f(x))}. (2.32)

Proof By Theorem 2.28 (i) we know that ξ ∈ ∂cf(x) if and only if for any d ∈ R
n

we have f ′(x;d) ≥ ξT d. This is equivalent to the condition that for any d ∈ R
n and

r ≥ f ′(x;d) we have r ≥ ξT d, that is, for any d ∈ R
n and r ≥ f ′(x;d) we have

(ξ,−1)T (d, r) ≤ 0.

By the definition of the epigraph and Theorem 2.34 we have (d, r) ∈ epi f ′(x; ·) =
Kepi f (x; f(x)). This and the last inequality means, by the definition of the normal
cone, that (ξ,−1) lies in Nepi f (x; f(x)). �

2.3.2 Level Sets

In the following theorem we give the relationship between the directional derivative
and the contingent cone via the level sets.

Theorem 2.36 If the function f : Rn → R is convex, then

Klevf(x) f (x) ⊆ lev0 f ′(x; ·). (2.33)

If, in addition, 000 /∈ ∂cf(x), then

Klevf(x) f (x) = lev0 f ′(x; ·). (2.34)

Proof Suppose first that d ∈ Klevf(x) f (x). By the definition of the contingent cone
there exist sequences dj → d and tj ↓ 0 such that

x + tjdj ∈ levf(x) f for all j ∈ N,

in other words
f(x + tjdj) ≤ f(x).

Now by using (2.20) we can calculate
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f ′(x;d) = inf
t>0

f(x + td) − f(x)

t

= lim
j→∞

f(x + tjdj) − f(x)

tj

≤ lim
j→∞ rj = r,

which implies that d ∈ lev0 f ′(x; ·).
Suppose, next, that 000 /∈ ∂cf(x) and d ∈ lev0 f ′(x; ·), which means that

f ′(x;d) ≤ 0. Since 000 /∈ ∂cf(x) by Theorem 2.28 (i) we have

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t
< 0.

Then there exists a sequence tj ↓ 0 such that

f(x + tjd) − f(x)

tj
≤ 0,

which yields
f(x + tjd) ≤ f(x)

and thus x + tjd ∈ levf(x) f . This means that d ∈ Klevf(x) f (x) and the proof is
complete. �

Next theorem shows the connection between subgradients and normal vectors of
the level sets.

Theorem 2.37 If the function f : Rn → R is convex, then

Nlevf(x) f (x) ⊇ ray ∂cf(x).

If, in addition, 000 /∈ ∂cf(x), then

Nlevf(x) f (x) = ray ∂cf(x).

Proof If z ∈ ray ∂cf(x) then z = λξ, where λ ≥ 0 and ξ ∈ ∂cf(x). Let now
d ∈ Klevf(x) f (x), which means due to Theorem 2.36 that d ∈ lev0 f ′(x; ·). Then
using Theorem 2.28 (i) we get

zT d = λξT d ≤ λf ′(x;d) ≤ 0,

in other words z ∈ Nlevf(x) f (x).
Suppose next that 000 /∈ ∂cf(x) and there exists z ∈ Nlevf(x) f (x) such that z /∈

ray ∂cf(x). According to Theorem 2.27 ∂cf(x) is a convex and compact set. Since
000 /∈ ∂cf(x) Theorems 2.11 and 2.12 implies that ray ∂cf(x) is closed and convex,
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respectively. As a cone it is nonempty since 000 ∈ ray ∂cf(x). Then by Theorem 2.4
there exists a hyperplane separating {z} and ray ∂cf(x), in other words there exist
p �= 000 and α ∈ R such that

yT p ≤ α for all y ∈ ray ∂cf(x) (2.35)

and

zT p > α. (2.36)

Since ray ∂cf(x) is cone the components of y can be chosen as large as possible in
(2.35), thus α ≤ 0. On the other hand 000 ∈ ray ∂cf(x) implying α ≥ pT000 = 0, thus
α = 0. Since ∂cf(x) ⊆ ray ∂cf(x) Theorem 2.28 (ii) and (2.35) imply

f ′(x;p) = max
ξ∈∂cf(x)

ξT p ≤ max
y∈ray ∂cf(x)

yT p ≤ 0.

This means that p ∈ lev0 f ′(x; ·) and thus due to Theorem 2.36 we have p ∈
Klevf(x) f (x). Since z ∈ Nlevf(x) f (x) it follows from the definition of the normal
cone that

zT p ≤ 0

contradicting with inequality (2.36). Thus, z ∈ ray ∂cf(x) and the theorem is
proved. �

2.3.3 Distance Function

Finally we study the third link between analysis and geometry, namely the distance
function defined by (2.2). First we give some important properties of the distance
function.

Theorem 2.38 If S ⊆ R
n is a nonempty set, then the distance function dS is Lip-

schitz continuous with constant K = 1, in other words

|dS(x) − dS(y)| ≤ ‖x − y‖ for all x,y ∈ R
n. (2.37)

If in addition the set S is convex then the function dS is also convex.

Proof Let any ε > 0 and y ∈ R
n be given. By definition, there exists a point z ∈ S

such that
dS(y) ≥ ‖y − z‖ − ε.

Now we have
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dS(x) ≤ ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖
≤ ‖x − y‖ + dS(y) + ε

which establishes the Lipschitz condition as ε > 0 is arbitrary.
Suppose now that S is a convex set and let x,y ∈ R

n, λ ∈ [0, 1] and ε > 0 be
given. Choose points zx,zy ∈ S such that

‖zx − x‖ ≤ dS(x) + ε and ‖zy − x‖ ≤ dS(y) + ε

and define z := (1 − λ)zx + λzy ∈ S. Then

dS

(
(1 − λ)x + λy

) ≤ ‖c − (1 − λ)x − λy‖
≤ (1 − λ)‖zx − x‖ + λ‖zy − y‖
≤ (1 − λ)dS(x) + λdS(y) + ε.

Since ε is arbitrary, dS is convex. �

Lemma 2.6 If S ⊆ R
n is closed, then

x ∈ S ⇐⇒ dS(x) = 0. (2.38)

Proof Let x ∈ Z be arbitrary. Then

0 ≤ dS(x) ≤ ‖x − x‖ = 0

and thus dS(x) = 0.
On the other hand if dS(x) = 0, then there exists a sequence (yj) ⊂ S such that

‖x − yj‖ < 1/j −→ 0, when j → ∞.

Thus, the sequence (yj) converges to x and x ∈ cl S = S. �

The next two theorems show how one could equivalently define tangents and
normals by using the distance function.

Theorem 2.39 The contingent cone of the convex set S at x ∈ S can also be
written as

KS(x) = {y ∈ R
n | d′

S(x;y) = 0}. (2.39)
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Proof Let Z := {y ∈ R
n | d′

S(x;y) = 0} and let y ∈ KS(x) be arbitrary. Then
there exist sequences (yj) ⊂ R

n and (tj) ⊂ R such that yj → y, tj ↓ 0 and
x + tjyj ∈ S for all j ∈ N. It is evident that d′

S(x;y) is always nonnegative thus it
suffices to show that d′

S(x;y) ≤ 0. Since x ∈ S we have

d′
S(x;y) = lim

t↓0

dS(x + ty) − dS(x)

t

= lim
t↓0

infz∈S{‖x + ty − z‖}
t

≤ lim
t↓0

infz∈S{‖x + tyj − z‖} + ‖ty − tyj‖
t

and

inf
z∈S

{‖x + tyj − z‖} = inf
z∈S

{‖(1 − t

tj
)x + t

tj
(x + tjyj) − c‖}.

Since x ∈ S, x + tjyj ∈ S and t/tj ∈ [0, 1] whenever 0 ≤ t ≤ tj , the convexity of
S implies that

(1 − t

tj
)x + t

tj
(x + tjyj) ∈ S,

and thus

inf
z∈S

‖(1 − t

tj
)x + t

tj
(x + tjyj) − z‖ = 0.

Therefore
d′

S(x;y) ≤ t‖y − yj‖ −→ 0,

when j → ∞. Thus d′
S(x;y) = 0 and KS(x) ⊆ Z .

For the converse let y ∈ Z and (tj) ⊂ R be such that tj ↓ 0. By the definition of
Z we get

d′
S(x;y) = lim

tj↓0

dS(x + tjy)

tj
= 0.

By the definition of dS we can choose points zj ∈ S such that

‖x + tjy − zj‖ ≤ dS(x + tjy) + tj

j
.

By setting

yj := zj − x

tj
,

we have
x + tjyj = x + tj

zj − x

tj
= zj ∈ S
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and

‖y − yj‖ = ‖y − zj − x

tj
‖

= ‖x + tjy − zj‖
tj

≤ dS(x + tjy)

tj
+ 1

j
−→ 0,

as j → ∞. Thus y ∈ KS(x) and Z = KS(x). �

Theorem 2.40 The normal cone of the convex set S at x ∈ S can also be written as

NS(x) = cl ray ∂cdS(x). (2.40)

Proof First, let z ∈ ∂cdS(x). Then by Theorem 2.28 (i)

zT y ≤ d′
S(x;y) for all y ∈ R

n.

If one has y ∈ KS(x) then by Theorem 2.39 d′
S(x;y) = 0. Thus zT y ≤ 0 for all

y ∈ KS(x) which implies that z ∈ NS(x). By Theorem 2.27 ∂cdS(x) is a convex set
and then by Theorem 2.11 ray ∂cdS(x) is a convex cone. Furthermore, by Theorem
2.10 ray ∂cdS(x) is the smallest cone containing ∂cdS(x). Then, because NS(x) is
also a convex cone (Theorem 2.18), we have

ray ∂cdS(x) ⊆ NS(x).

On the other hand, if NS(x) = {000} we have clearly NS(x) ⊆ ray ∂cdS(x).
Suppose next that NS(x) �= {000} and let z ∈ NS(x)\{000} be arbitrary. Since S is
convex due to Theorem 2.19 we have

zT (y − x) ≤ 0 for all y ∈ S

and hence S ⊆ H−(z,zT x). Since dS(y) ≥ 0 for all y ∈ R
n we have

λzT (y − x) ≤ 0 ≤ dS(y) for all y ∈ H−(z,zT x) and λ ≥ 0.

Suppose next that y ∈ H+(z,zT x). Since S ⊆ H−(z,zT x) we have clearly
dH−(z,zT x)(y) ≤ dS(y) for all y ∈ R

n. On the other hand (see Exercise 2.3)

dH−(z,zT x)(y) = 1

‖z‖zT (y − x) for all y ∈ H+(z,zT x).

Thus, for any y ∈ R
n = H−(z,zT x) ∪ H+(z,zT x) we have
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1

‖z‖zT (y − x) ≤ dS(y) = dS(y) − dS(x).

Then the definition of subdifferential of convex function and the convexity of dS

imply that
1

‖z‖z ∈ ∂cdS(x),

thus NS(x) ⊆ ray ∂cdS(x) and the proof is complete. �
Note that since NS(x) is always closed, we deduce that also ray ∂cdS(x) is closed

if S is convex.

2.4 Summary

This chapter contains the basic results from convex analysis. First we have concen-
trated on geometrical concepts and started by considering convex sets and cones. The
main results are the existence of separating and supporting hyperplanes (Theorems
2.4, 2.7 and 2.8). We have defined tangents and normals in the form of contingent
and normal cones. Next we moved to analytical concepts and defined subgradients
and subdifferentials of convex functions. Finally we showed that everything is one
by connecting these geometrical and analytical concepts via epigraphs, level sets and
the distance functions. We have proved, for example, that the contingent cone of the
epigrapf is the epigrapf of the directional derivative (Theorem 2.34), the contingent
cone of the zero level set is zero level set of the directional derivative (Theorem 2.36),
and the contigent cone of a convex set consist of the points where the directional
derivative of the distance function vanish (Theorem 2.39).

Exercises

2.1 Show that open and closed balls and halfspaces are convex sets.

2.2 (Lemma 2.1) Prove that if S ⊆ R
n, then conv S is a convex set and S is convex

if and only if S = conv S.

2.3 Let p ∈ R
n, p �= 000 and α ∈ R. Prove that

dH−(p,α)(y) = 1

‖p‖ (pT y − α) for all y ∈ H+(p,α).

2.4 (Farkas’ Lemma) Let A ∈ R
n×n and c ∈ R

n. Prove that either

Ax ≤ 000 and cT x > 0 for some x ∈ R
n
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or
AT y = c and y ≥ 0 for some y ∈ R

n.

2.5 (Gordan’s Lemma) Let A ∈ R
n×n. Prove that either

Ax < 000 and cT x > 0 for some x ∈ R
n

or
AT y = 000 and 000 �= y ≥ 0 for some y ∈ R

n.

2.6 Show that closed halfspaces H+(p, 0) and H−(p, 0), the nonnegative orthant
R

n+ = {x ∈ R
n | xi ≥ 0, i = 1 . . . ,n} and halflines starting from the origin are

closed convex cones.

2.7 (Lemma 2.3) Prove that if S ⊆ R
n, then ray S is a cone and C ⊆ R

n is cone
if and only if C = ray C.

2.8 (Lemma 2.4) Prove that if S ⊆ R
n, then cone S is a convex cone and C ⊆ R

n

is convex cone if and only if C = cone C.

2.9 (Corollary 2.2) Prove that if S ⊆ R
n, then cone S = conv ray S.

2.10 Show that S1 ⊆ S2 implies S◦
2 ⊆ S◦

1 .

2.11 (Lemma 2.5) Prove that if S ⊆ R
n, then S◦ is a closed convex cone and

S ⊆ S◦◦.

2.12 Specify the sets conv S, ray S, cone S and S◦ when

(a) S = {(1, 1)}
(b) S = {(1, 1), (1, 2), (2, 1)}
(c) S = int R

2+ ∪ {(0, 0)}.

2.13 Let C ⊆ R
n be a closed convex cone. Show that KC(000) = C.

2.14 (Theorem 2.16) Prove that the cone of global feasible directions GS(x) of the
nonempty convex set S at x ∈ S is a convex cone.

2.15 Let S ⊆ R
n be convex. Show that KS(x) = NS(x)◦.

2.16 Specify the sets K
R

2+(000) and N
R

2+(000).

2.17 Let S ⊆ R
n be convex and x ∈ int S. Show that KS(x) = R

n and NS(x) =
∅.
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2.18 Let S1,S2 ⊆ R
n be convex and x ∈ S1 ∩ S2. Show that

(a) KS1∩S2(x) ⊆ KS1(x) ∩ KS2(x),

(b) NS1∩S2(x) ⊇ NS1(x) + NS2(x).

2.19 (Theorem 2.20) Prove that if S is a nonempty convex set such that 000 ∈ S, then

(a) GS(000) = ray S,

(b) KS(000) = cl ray S,

(c) NS(000) = S◦.

2.20 Show that the function f : R → R defined by

f(x) := ex2

is convex.

2.21 By exploiting Exercise 2.20 show that for all x, y > 0 we have

x

4
+ 3y

4
≤

√√√√ln

(
ex2

4
+ 3ey2

4

)
.

2.22 (Theorem 2.24) Prove that the function f : Rn → R is convex if and only if its
epigraph epi f is a convex set.

2.23 How should the concept of a ‘concave set’ to be defined?

2.24 (Corollary 2.3) Prove that if f : Rn → R is a convex function, then the function
d �→ f ′(x;d) is convex, its epigraph epi f ′(x; ·) is a convex cone and we have

f ′(x;−d) ≥ −f ′(x;d) for all x ∈ R
n.

2.25 Show that the function f : R → R defined by

f(x) := max{|x|,x2}

is convex. Calculate f ′(1;±1) and ∂cf(1).

2.26 Let f : R2 → R be such that

f(x, y) := max {− max {−x, y}, y − x}.

Calculate ∂cf(0, 0).
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2.27 Let f : Rn → R be such that f(x) := ‖x‖ and g: R → R such that g(x) := x2.
Calculate ∂cf(0) and ∂cg(f(0)).

2.28 Let f : Rn → R be convex. Show that the mapping x �→ ∂cf(x) is monotonic,
in other words for all x,y ∈ R

n we have

(ξx − ξy)T (x − y) ≥ 0 for all ξx ∈ ∂cf(x), ξy ∈ ∂cf(y).

2.29 Prove that if f : Rn → R is continuous, then epi f and levα f are closed for
all α ∈ R.

2.30 Let the functions fi: Rn → R be convex for all i = 1, . . . ,m and define
f : Rn → R by

f(x) := max {fi(x) | i = 1, . . . ,m}.

Show that

(a) lev f = ⋂m
i=1 lev fi,

(b) epi f = ⋂m
i=1 epi fi.

2.31 Show that the equality does not hold in Theorem 2.36 without the extra assump-
tion 000 /∈ ∂cf(x). In other words, if the function f : Rn → R is convex, then

Klevf(x) f (x) � lev0 f ′(x; ·).

(Hint: Consider the function f(x) := ‖x‖2).

2.32 Let S ⊆ R
n convex and x ∈ S. Show that if 0 /∈ ∂cdS(x), then

(a) KS(x) = KlevdS (x) dS (x) ∩ Klev−dS (x) −dS (x),

(a) NS(x) = NlevdS (x) dS (x).

2.33 Let
S = {x ∈ R

2 | x2
1 ≤ x2 and |x1| ≤ x2}.

Calculate KS((1, 1)) and NS((1, 1)).

2.34 Let
S = {x ∈ R

2 | x1 ≤ 2, x1 ≥ −2x2 and x1 ≥ 2x2}.

Calculate KS((0, 0)) and NS((0, 0)).
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