Chapter 2
Convex Analysis

The theory of nonsmooth analysis is based on convex analysis. Thus, we start this
chapter by giving basic concepts and results of convexity (for further readings see also
[202, 204]). We take a geometrical viewpoint by examining the tangent and normal
cones of convex sets. Then we generalize the concepts of differential calculus for
convex, not necessarily differentiable functions [204]. We define subgradients and
subdifferentials and present some basic results. At the end of this chapter, we link
these analytical and geometrical concepts together.

2.1 Convex Sets

We start this section by recalling the definition of a convex set.

Definition 2.1 Let S be a subset of R"™. The set .S is said to be convex if
A+ (1—XNy €S,

forall z,y € Sand A € [0, 1].

Geometrically this means that the set is convex if the closed line-segment [z, y]
is entirely contained in .S whenever its endpoints « and y are in .S (see Fig. 2.1).

Example 2.1 (Convex sets). Evidently the empty set @, a singleton {x}, the
whole space R”, linear subspaces, open and closed balls and halfspaces are
convex sets. Furthermore, if S is a convex set also ¢l S and int S are convex.

Theorem 2.1 Let S; € R" be convex sets fori = 1, ..., m. Then their intersection
m
e 2.1)
i=1
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12 2 Convex Analysis

(a) (b)

Fig. 2.1 Illustration of convex and nonconvex sets. (a) Convex. (b) Not convex

is also convex.

Proof Letx,y € (-, S; and X € [0, 1] be arbitrary. Because =, y € S; and S; is
convex foralli =1, ..., m,wehave A+ (1 — Ny € S;foralli =1, ..., m. This
implies that

A+ (1= Ny e[S

i=1

and the proof is complete. O

Example 2.2 (Intersection of convex sets). The hyperplane
H(p,a)={x e R" | p! (x — xo) =0},

where g, p € R"” and p # 0 is convex, since it can be represent as an
intersection of two convex closed halfspaces as

H(p,a) = H (p,a) N H™ (p, a)
={z eR" | pT(z —z0) 20} N{z e R" | p’ (x — ) < O}.

The next theorem shows that the space of convex sets has some linear properties.
This is due to fact that the space of convex sets is a subspace of the power set P(R")
consisting of all subsets of R".

Theorem 2.2 Let Sy, S» C R"™ be nonempty convex sets and |11, 1o € R. Then the
set (11 S1 + 25> is also convex.

Proof Let the points @,y € u1.S1 + p252 and A € [0, 1]. Then x and y can be
written
{:13 = x| + ppxy, where x; € Sy and @y € S

Y =y +p2yy, wherey, € Syandy, € S
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and
AT + (1 = Ny = Az + pz2) + (1 = (1Y) + p2ys)
= p1Az1 + (1 = Ny + p2Az2 + (1 = Ny)
€ (1St + p2Ss.
Thus the set 111.51 + 1257 is convex. ([l

2.1.1 Convex Hulls

A linear combination Zf: | Aizx; is called a convex combination of elements x1, . . .,

xy € R"if each \; > 0 and Zle Ai = 1. The convex hull generated by a set is
defined as a set of convex combinations as follows.

Definition 2.2 The convex hull of aset S C R™ is

k k
convS={aceR”|a:=Z/\ixi, Z)\i=1, xz, €5, \;>0,k> 0}

i=1 i=1
The proof of the next lemma is left as an exercise.

Lemma 2.1 If S C R", then conv S is a convex set and S is convex if and only if
S =conv S.

Proof Exercise. O

The next theorem shows that the convex hull is actually the intersection of all the
convex sets containing the set, in other words, it is the smallest convex set containing
the set itself (see Fig. 2.2).

Theorem 2.3 IfS C R", then

conv S = ﬂ S,
8c§

S convex

Proof ALet S be convex such that S C S. Then due to Lemma 2.1 we have conv S -
conv S = S and thus we have

conv S C ﬂ S.

Sc8

S convex
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On the other hand, it is evident that S C conv S and due to Lemma 2.1 conv S'is a
convex set. Then conv S is one of the sets S forming the intersection and thus

ﬂ S = ﬂ S'ﬂconngconVS

sc8 5cd
§ convex 3 convex
and the proof is complete. ]

2.1.2 Separating and Supporting Hyperplanes

Next we consider some nice properties of hyperplanes. Before those we need the
concept of distance function.

Definition 2.3 Let S C R" be a nonempty set. The distance function dg: R™" — R
to the set S is defined by

ds(x) :=inf {||x —y| |y € S} forall = e R". 2.2)

The following lemma shows that a closed convex set always has a unique closest
point.

Lemma 2.2 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a unique y* € bd S minimizing the distance to x*. In other words

dg(@®) = [lz* — y*|.

Moreover, a necessary and sufficient condition for a such y* is that

(" —y) (@ —y*) <0 forallz e S. (2.3)
° S
S
conv §

Fig. 2.2 Examples of convex hulls
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Proof First we prove the existence of a closest point. Since S # {, there exists
x € S and we can define S := S Ncl B(x*; r), where r := ||* — &| > 0. Then
S # (since & € S. Moreover, S is closed, since both S and ¢l B(x*; r) are closed,

and bounded, since S C cl B(x*; r), thus Sisa nonempty compact set. Then, due
to Weierstrass’ Theorem 3.1 the continuous function

9(y) = llz* -yl
attains its minimum over S at some y* e S and we have
dg(x™) = g(y") = =" — y*|.
IfyeS)\ S, it means that y ¢ cl B(x*; r), in other words
9y > r = gy")
and thus
ds(@®) = g(y") = =" — y"|.
In order to show the uniqueness, suppose that there exists another z* € S such

that z* # y* and g(z*) = g(y*). Then due to convexity we have %(y* +2z*)e S
and by triangle inequality

| | |
le* — 5 (y" + 291 < zllz* —y*l + 5 llz” — 27|

Sa(®) + 39(z") = g(y).

g (A +29)

The strict inequality cannot hold since g attains its minimum over S at y*. Thus we
have

[@* —y") + (@ — 29 = llz" —y*ll + " — 27|,

which is possible only if the vectors * — y* and «* — z* are collinear. In other
words * — y* = A\(x* — z*) for some A\ € R. Since

* —y*| = [l* — 2"
we have A = £1. If A = —1 we have
= %(y* +2" eS8,

which contradicts the assumption * ¢ S, and if A = 1, we have z* = y*, thus y*
is a unique closest point.
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Next we show that y* € bd S. Suppose, by contradiction, that y* € int S. Then
there exists € > 0 such that B(y*; ) C S. Because g(y*) = |[* — y*|| > 0 we
can define

ko ok £ * ook
w =y +2g(y*)(w y)

and we have w* € B(y™*; ) since

€
l[w* —y*ll = |y* + (x* —y*) -y~
v+ 5 ||
g 13
= e —y*|l = <.
29(y*) 2
Thus w* € S and, moreover
gw*) = |o* — y* — ——— @ —y")|
29(y*)
g g
=(- )9(y*) = 9" — = < 9(y"),
29(y*) 2

which is impossible, since ¢ attains its minimum over S at y*. Thus we have y* €

bd S.
In order to prove that (2.3) is a sufficient condition, let € S. Then (2.3) implies

g(@)?* = |z* —y* +y* — x|’
= llz* — y*II* + lly* — z|* + 2(=z* — ¥ (" — )
> lz* — y*|?
= g(y")%,

which means that y* is the closest point.
On the other hand, if y* is the closest point, we have

g(x) > gy*) forallxz € S.
Let « € S be arbitrary. The convexity of S implies that
Y+ XMz —yH) = x+ (1 —-Ny*eS forall A e]0,1]
and thus
9 (W + Az —y") = g(yH). (2.4)

Furthermore, we have
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2
g (Y + Mz —yH) = lz* —y* — Az —yH)|?
=g+ Mz — y*1? - 2@ -y (@ — y")

and combining this with (2.4) we get
220" —y) T (@ — y*) < N|la — y*||> forall X € [0, 1]. (2.5)

Dividing (2.5) by A > 0 and letting A | 0 we get (2.3). (]
Next we define separating and supporting hyperplanes.

Definition 2.4 Let S, S2 C R" be nonempty sets. A hyperplane
H(p,a)={x e R" | p! (x —xo) =0},

where p # 0 and p’xy = a, separates S and S> if S| € Ht(p, @) and S> C
H™ (p, a), in other words

pT(a: —x9) >0 forallz € S; and

pT(a: —x9) <0 forall z € 5,.

Moreover, the separation is strict if S| N H(p, «) = @ and So N H(p, o) = .

Example 2.3 (Separation of convex sets). Let S1 := {x € R? | %x%—}-x% <1}
and S; := {x € R? | (x; — 4)?> + (2 — 2)> < 1}. Then the hyperplane
H((1, DT, 3%), in other words the line v = —x; + 3% separates S| and .S,
(see Fig. 2.3). Notice that H ((1, DT, 3%) is not unique but there exist infinitely
many hyperplanes separating .S7 and .S5.

Definition 2.5 Let S C R" be a nonempty set and ¢ € bd S. A hyperplane
H(p, ) = {z € R" | p" (& — z0) = 0},

where p # 0 and p’xg = «, supports S at x if either S € HT(p, av), in other
words

pT(w —x9) >0 forallz e S
or S € H™ (p, a), in other words

pT(m —x9) <0 forallz € S.
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Fig. 2.3 Separation of convex
sets

Example 2.4 (Supporting hyperplanes). Let S := {x € R? | x% aF x% < 1}
Then the hyperplane H ((0, 1), 1), in other words the line x5 = 1 supports S
atzo = (0, 1)”. Notice that H((0, 1)”, 1) is the unique supporting hyperplane
of S atzg = (0, DT,

Theorem 2.4 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a hyperplane H (p, ) supporting S at some y* € bd S and separating S and

{x*}.

Proof According to Lemma 2.2 there exists a unique y* € bd S minimizing the
distance to x*. Let p := * — y* # 0 and o := p’ y*. Then due to (2.3) we have

plx—y) =@ —yH ' (@—y*) <0 forallz €S, (2.6)

in other words S' € H ™ (p, ). This means that H (p, ) supports S at y*. Moreover,
we have

ple* =pl@ —yH+p 'y =Ipl*+a>a 2.7)

in other words {x*} C H¥(p, o) and thus H (p, ) separates S and {z*}. O

Next we prove a little bit stronger result, namely that there always exists a hyper-
plane strictly separating a point and a closed convex set.

Theorem 2.5 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a hyperplane H (p, [3) strictly separating S and {x*}.

Proof Using Lemma 2.2 we get a unique y* € bd S minimizing the distance to x*.
As in the previous proof let p := x* — y* # 0 but choose now 3 := p’ w*, where
w* = %(:c* + y*). Then due to (2.3) we have
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Fig. 2.4 Supporting hyper-
planes

p'@—w") =p’ (@—y* - ip)
=@ —yH'(@-y)—ip'p
< -Jlpl* <0 forallz e S,

in other words S C H~ (p, ) and S N H(p, ) = #. Moreover, we have

1

T 1

o' —w") = p(

p
= 1pl@* —y")
1 2
= 5lpll© > 0,

which means that {x*} C H' (p, §) and {z*} N H (p, 3) = @. Thus H (p, 3) strictly
separates .S and {x*}. |

Replacing S by cl conv S in Theorem 2.5 we obtain the following result.

Corollary 2.1 Let S C R"™ be anonempty set and x* ¢ cl conv S. Then there exists
a hyperplane H (p, [3) strictly separating S and {x*}.

The next theorem is very similar to Theorem 2.3 showing that the closure of
convex hull is actually the intersection of all the closed halfspaces containing the set.

Theorem 2.6 IfS C R", then

cl conv § = ﬂ H™ (p, a).

SCH™ (p,a)
p#0, aeR

Proof Due to Theorem 2.3 we have

conv S = ﬂ §g ﬂ H (p,a)=:T.

5c8 SCH™ (p.a)
8 convex p#0, aeR

Since 7' is closed as an intersection of closed sets, we have
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clconv SCclT=T.

Next we show that also 7" € cl conv S. To the contrary suppose that there exists
x* € T'butx* ¢ cl conv S. Then due to Corollary 2.1 there exists a closed halfspace
H~(p, B) suchthat S € H™ (p, B) and x* ¢ H™ (p, B),thusx* ¢ T'C H™ (p, ),
which is a contradiction and the proof is complete. (I

We can also strengthen the supporting property of Theorem 2.4, namely there
exists actually a supporting hyperplane at every boundary point.

Theorem 2.7 Let S C R"” be a nonempty convex set and xg € bd S. Then there
exists a hyperplane H (p, ) supporting cl S at x.

Proof Since xy € bd S there exists a sequence (xj) such that x; ¢ cl .S and
xj — xo. Then due to Theorem 2.4 for each xj, there exists y;, € bd S such that
the hyperplane H (q;,, B1), where q;, :== =}, — y;, and (), == qkT,yk supports cl S at
y;.. Then inequality (2.6) implies that

0> q;‘f(az —Yyp) = q,{w — O forallxz ecl S,
and thus

q;{w < f forallz eclS.

On the other hand, according to (2.7) we get q%mk > (3, thus we have

qgw < q{wk forallxz ecl S. (2.8)
Next we normalize vectors g, by defining p;. := q;./|/q.|l- Then ||p.| = 1, which
means that the sequence (p;,) is bounded having a convergent subsequence (ij)’ in
other words there exists a limit p € R such that pr, = P and ||p|| = 1. Itis easy

to verify, that (2.8) holds also for Py in other words

pfjw < p{jazkj forallz e cl S. 2.9)

Fixing now & € cl S in (2.9) and letting j — oo we get p’ & < p’ xg. In other
words

p’ (x — xp) <0,

which means that cl S € H™ (p, o), where « := pTa:o and thus H (p, «) supports
cl S at xy. O

Finally we consider a nice property of convex sets, namely two disjoint convex
sets can always be separated by a hyperplane. For strict separation it is not enough
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to suppose the closedness of the sets, but at least one of the sets should be bounded
as well.

Theorem 2.8 Ler Sy, 5> C R" be nonempty convex sets. If S| NS> = (0, then there
exists a hyperplane H(p, o)) separating S1 and S». If, in addition, S| and Sy are
closed and S| is bounded, then the separation is strict.

Proof 1t follows from Theorem 2.2, that the set
S=51-S={xecR" | x=x — x>, T1 €51, 22 € 5>}

is convex. Furthermore, 0 ¢ S, since otherwise there would exist ; € S| and
x> € S» such that 0 = x; — x>, in other words ; = x> € S;1 NS> = ¥, which is
impossible.

If0 ¢ cl S, then due to Corollary 2.1 there exists a hyperplane H (p, «) strictly
separating S and {0}, in other words

ple <a<p'0=0 forallz € S.
Since x = x| — x», where 1 € S| and x; € Sy, we get
T T
px<a<p x; forallz; € S1,xr €5,
and thus H (p, «) strictly separates S| and 5.

On the other hand, if 0 € cl S it must hold that 0 € bd S (since 0 ¢ int S).
Then due to Theorem 2.7 there exists a hyperplane H (p, ) supporting cl S at 0, in
other words

pT(as —0) <0 forallz eclS.
Denoting again @ = x| — x3, where | € 51 and > € 5>, we get
T T

px <p x forallx; € S|,z € 5,.
Since the set of real numbers {p’ z; | &; € S} is bounded above by some number
pTazz, where xy € S # (it has a finite supremum. Defining o := sup {pTa; 1
x| € S1} we get

T T

pxri<a=<p xy forallx; € S1,xr € 57,

and thus H (p, «v) separates S| and .S5.

Suppose next, that S| and .Sy are closed and S} is bounded. In order to show
that S is closed suppose, that there exists a sequence (z;) C S and a limit x € R”
such that & — x. Then due to the definition of S we have x;, = x|, — x2,,

where 1, € S1 and xp, € S>. Since S} is compact, there exists a convergent
subsequence (x1 kj) and a limit 1 € S such that x; g > Tl Then we have
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x2, = T1y,; — T; —> T — & = @2. Since 5y is closed x> € S>. Thus x € S and
S is closed. Now the case 0 ¢ cl S = S given above is the only possibility and thus
we can find H (p, o) strictly separating .S and S>. ]

The next two examples show that both closedness and compactness assumptions
actually are essential for strict separation.

Example 2.5 (Strict separation, counter example ). Let S; = {x € R? |
z1 > 0andzr > 1/z1} and S> := {& € R? | 2 = 0}. Then both S; and
S, are closed but neither of them is bounded. It follows that S; — S» = {x €
R? | x5 > 0} is not closed and there does not exist any strictly separating
hyperplane.

Example 2.6 (Strict separation, counter example 2). Let S; = {x € R? |
23+ 23 < 1}and S := {x € R? | (¥1 —2)> + 23 < 1}. Then both S} and
S> are bounded but S is not closed and it follows again that S| — 5S> = {x €
R? | (z1 +2)% + x% < 4} is not closed and there does not exist any strictly
separating hyperplane.

2.1.3 Convex Cones

Next we define the notion of a cone, which is a set containing all the rays passing
through its points emanating from the origin.

Definition 2.6 A set C' € R"™ is a cone if A € C forall x € C and A > 0.
Moreover, if C'is convex, then it is called a convex cone.

Example 2.7 (Convex cones). It is easy to show that a singleton {0}, the whole
space R", closed halfspaces H T(p,0) and H (p, 0), the nonnegative orthant
RY ={x e R" | z; > 0, i = 1...,n} and halflines starting from the origin
are examples of closed convex cones.
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(a)
b
(b) ©

Fig. 2.5 Tllustration of convex and nonconvex cones. (a) Convex. (b) Not convex. (¢) Not convex

Theorem 2.9 A set C C R" is a convex cone if and only if
A+ puy e C forallx,y e Cand, u>0. (2.10)

Proof Evidently (2.10) implies that C' is a convex cone.
Next, let C' be a convex cone and suppose that ,y € C and A, p > 0. Since C
is a cone we have \x € C' and py € C. Furthermore, since C' is convex we have

Dz + (11— HuyeC (2.11)
and again using the cone property we get
e+ py=2(Ma+ 1 - bHuy)ec 2.12)

and the proof is complete. (]

Via the next definition we get a connection between sets and cones. Namely a set
generates a cone, when every point of the set is replaced by a ray emanating from
the origin.

Definition 2.7 The ray of aset S C R" is

ray S=| JAS={MxeR" [ eS, A>0)
A=0

The proof of the next lemma is left as an exercise.
Lemma 2.3 IfS C R", thenray S is a cone and C' C R" is cone if and only if
C =ray C.
Proof Exercise. (I

The next theorem shows that the ray of a set is actually the intersection of all the
cones containing S, in other words, it is the smallest cone containing .S (see Fig. 2.6).
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Theorem 2.10 If.S C R", then

ray S = m C.

ScC

C' cone

Proof Let C be a cone such that S € C. Then due to Lemma 2.3 we have ray S C
ray C' = C and thus we have

ray S C m C.

scc
C' cone

On the other hand, it is evident that S € conv S and due to Lemma 2.3 ray S is a
cone. Then ray S is one of the cones C' forming the intersection and thus

ﬂ C= ﬂ CNray S Cray S

scc scc
C' cone C' cone
and the proof is complete. (]

It can be seen from Fig. 2.6 that a ray is not necessarily convex. However, if the
set is convex, then also its ray is convex.

Theorem 2.11 [f S C R" is convex, then ray S is a convex cone.

Proof Due to Lemma 2.3 ray S is a cone. For convexity let ,y € ray S and
A, > 0. Then € = au and y = fv, where u, v € S and «, f > 0. Since S is
convex we have

o (1222 Yoes
zi=———u - ——Jves.
Ao+ pf Ao+

The fact that ray S is cone implies that (A« + p3)z € ray S, in other words
Aa+ pf)z = dau + ppv = Ax + py €ray S.
According to Theorem 2.9 this means, that ray .S is convex. (I

(@ (b) (0 (d)

L]
N . cok

Fig. 2.6 Convex hull, ray and conic hull of a set. (a) Set. (b) Convex hull. (¢) Ray. (d) Conic hull
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It is also easy to show that a ray is not necessarily closed. However, if the set is
compact not including the origin its ray is closed.

Theorem 2.12 If .S C R" is compact such that 0 ¢ S, then ray S is closed.

Proof Let (x;) C ray S be a sequence such that ; — x. Next we show that
x € ray S. The fact that z; € ray S means that ; = \;y; where \; > 0 and
y; € Sforall j € N. Since S is compact the sequence y; is bounded, thus there
exists a subsequence (y;,) C S such that y; — y. Because S is closed, it follows
that y € S. Furthermore, since 0 ¢ .S one has y # 0, thus the sequence )}, is also
converging to some A > 0. Then \j;y;, = Ay = @, which means that x € ray S,
in other words S is closed. O

Similarly to the convex combination we say that the linear combination Zle i
is a conic combination of elements x|, ..., x; € R" if each \; > 0 and the conic
hull generated by a set is defined as a set of conic combinations as follows.

Definition 2.8 The conic hull of aset S C R" is

k
cone S={x eR" [x= D> Naj, z; €5, A =0k> 0}

i=1
The proof of the next lemma is again left as an exercise.

Lemma 2.4 [fS C R", then cone S is a convex cone and C' C R" is convex cone
if and only if

C = cone C.

Proof Exercise. O

The next theorem shows that the conic hull cone S is actually the intersection
of all the convex cones containing .S, in other words, it is the smallest convex cone
containing S (see Fig. 2.6).

Theorem 2.13 [f S C R", then

cone S = ﬂ C.

scc
C' convex cone

Proof Let C be a convex cone such that S € C. Then due to Lemma 2.4 we have
cone S C cone C = (C and thus we have

cone S C ﬂ C.

sccC
C' convex cone
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On the other hand, it is evident that S C cone S and due to Lemma 2.4 cone S is a
convex cone. Then cone S is one of the convex cones forming the intersection and
thus

ﬂ C = ﬂ C' Ncone S C cone S

ScC scC
C' convex cone C' convex cone

and the proof is complete. (]

Note, that according to Lemma 2.1, Theorems 2.10 and 2.13, and Definitions 2.7
and 2.8 we get the following result.

Corollary 2.2 If S C R", then
cone S = conv ray S.

Finally we get another connection between sets and cones. Namely, every set
generates also so called polar cone.

Definition 2.9 The polar cone of a nonempty set S C R" is
S°={yeR"|y'z <0forall x € S}.

The polar cone #° of the empty set ¢ is the whole space R™.

The next lemma gives some basic properties of polar cones (see Fig. 2.7). The
proof is left as an exercise.

Lemma 2.5 [fS C R", then S° is a closed convex cone and S C 5°°.

Proof Exercise. (|

Theorem 2.14 The set C' C R" is a closed convex cone if and only if
C=C°.

Proof Suppose first that C = C°° = (C°)°. Then due to Lemma 2.5 C'is a closed
convex cone.

Suppose next, that C'is a closed convex cone. Lemma 2.5 implies that C' € C°°.
We shall prove next that C°° C C'. Clearly #°° = (R"™)° = ¢ and thus we can assume
that C' is nonempty. Suppose, by contradiction, that there exists € C°° such that
x ¢ C. Then due to Theorem 2.4 there exists a hyperplane H (p, ) separating C'
and {x}, in other words there exist p # 0 and « € R such that

ply<aforalye C and p'x > a.
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A
Soo
s
g
Fig. 2.7 Polar cones of the set
Since 0 € C' we have o > pTO = 0 and thus
plz > 0. (2.13)

If p ¢ C° then due to the definition of the polar cone there exists z € C' such that
p’z > 0. Since C is cone we have Az € C for all A\ > 0. Then p”(\z) > 0 can
grow arbitrary large when A\ — 0o, which contradicts the fact that p’ y < « for all
y € C. Therefore we have p € C°. On the other hand

ggec"":{yeR”|yTv§0f0rall'ueC’°}

and thus pTa: < 0, which contradicts (2.13). We conclude that € C and the proof
is complete. U

2.1.4 Contingent and Normal Cones

In this subsection we consider tangents and normals of convex sets. First we define
a classical notion of contingent cone consisting of the tangent vectors (see Fig. 2.8).

Definition 2.10 The contingent cone of the nonempty set S at x € S is given by
the formula
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Kg(x) ;= {d € R" | there exist t; | 0 and d; — d such that x + t;d; € S}.
(2.14)
The elements of K g(x) are called rangent vectors.
Several elementary facts about the contingent cone will now be listed.

Theorem 2.15 The contingent cone Kg(x) of the nonempty convex set S at x € S
is a closed convex cone.

Proof We begin by proving that Kg(z) is closed. To see this, let (d;) be a sequence
in Kg(x) converging to d € R". Next we show that d € Kg(x). The fact that
d; — d implies that for all € > 0 there exists ¢p € N such that

ld—d;|| <e/2 forall > 1.
On the otherhand, d; € Kg(x), thus foreach € N there exist sequences (d;;) C R"
and (tij) C R such that dz-j — d;, ti J 0and x + tijdz-j € S forall j € N. Then
there exist jiy € Nand jf € N such that for all 7 € N

ldi —di;|| <e/2  forall j=> ;¥

and
ti;| <1/i  forall j> ji.

Let us choose j; := max {j;, j;}. Then ¢;; |, 0 and for all i > io
ld—di |l <ld—dill +lldi —di, || <e/2+¢/2 =¢,

which implies that d;; — d and, moreover, x +t;; d;; € S. By the definition of
the contingent cone, thls means that d € Kg(x) and thus Kg(x) is closed.

Fig. 2.8 Contingent cone K g(x) of a convex set
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We continue by proving that Kg(x) is acone. If d € Kg(x) is arbitrary then there
exist sequences (d;) C R" and (¢;) C Rsuchthatd; — d,t; | Oandx+t;d; € S
forall j € N.Let A > 0 be fixed and define d/j = Adj and t’j :=t;/A. Since t; 10,

||d’j — M| = \A|d; —yll — 0 whenever j — 00

and
j

oy

-)\djES

it follows that \d € Kg(x). Thus Kg(x) is a cone.

For convexity let A € [0, 1] and d',d?> € Kg(z). We need to show that d :=
(1=Nd'+\d? belongs to Kg(x). By the definition of K g(x) there exist sequences
(d})), (d) C R" and (t}), (3) C R such thatd); — d', ! | 0 and = + t'd} € S
forall j € Nand ¢ = 1, 2. Define

dj:=(1—Nd}+Ad; and t;:=min{t] t3).

Then we have
o+ tid; = (1 = N + t;d)) + \@ + t;d}) € §
because S is convex and

. t; t; Py
T+ tjd; = (1 — t—])a: + t—J(:c +td) e S
J J

ti .
because t—f € [0, 1] and S is convex. Moreover, we have
)

Id; — dll = (1 = Ndj + Adj — (1 — )d' — \d?||
< (1=Xdj —d'll + Al|d} — d*|| — 0,

when j — 00, in other words d; — d. Since t; | 0 we have d € Kg(x) and thus
Kg(x) is convex. U

The following cone of feasible directions is very useful in optimization when
seeking for feasible search directions.

Definition 2.11 The cone of globally feasible directions of the nonempty set S at
x € S is given by the formula

Gg(x) := {d € R" | there exists ¢ > 0 such that  + td € S}.
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The cone of globally feasible directions has the same properties as the contingent
cone but it is not necessarily closed. The proof of the next theorem is very similar to
that of Theorem 2.15 and it is left as an exercise.

Theorem 2.16 The cone of globally feasible directions Gg(x) of the nonempty
convex set S at x € S is a convex cone.

Proof Exercise. U

We have the following connection between the contingent cone and the cone of
feasible directions.

Theorem 2.17 If S is a nonempty set and x € S, then
Kg(x) € cl Gg(x).
If, in addition, S is convex then
Kgs(x) =cl Gs(x).

Proof If d € Kg(x) is arbitrary, then there exist sequences d; — d and ¢; | 0 such
that © +t;d; € Sforall j € N, thus d € cl Gg(x).

To see the equality, let S be convex and d € cl G g(x). Then there exist sequences
d; — dandt; > 0 such that « + ¢;d; € S for all j € N. It suffices now to find
a sequence t} such that t; J Oand = + t;-dj € S. Choose t;- := min {%, t;}, which
implies that

, 1
lt;l <= —0
J
and by the convexity of S it follows that
t. t.
z+thd;=(1- t—?)a: + #(w +tidj) € S,
J J

which proves the assertion. (I

Next we shall define the concept of normal cone (see Fig. 2.9). As we already
have the contingent cone, it is natural to use polarity to define the normal vectors.

Definition 2.12 The normal cone of the nonempty set S at x € S is the set
Ng(x) := Kg(x)° = {z € R" | 2T'd <0Oforalld e Kg(x)}. (2.15)

The elements of Ng(x) are called normal vectors.

The natural corollary of the polarity is that the normal cone has the same properties
as the contingent cone.
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Fig. 2.9 Contingent and
normal cones of a convex set

Theorem 2.18 The normal cone Ng(x) of the nonempty convex set S atx € S'is a
closed convex cone.

Proof Follows directly from Lemma 2.5. (I

Notice that if € int S, then clearly Kg(x) = R"™ and Ng(x) = ¢. Thus the
only interesting cases are those when € bd S.
Next we present the following alternative characterization to the normal cone.

Theorem 2.19 The normal cone of the nonempty convex set S at € S can also be
written as follows

Ng(z) ={zeR" | 2T (y—2) <0 forally € S}. (2.16)

Proof Let us denote
Z:={zeR"| 2T (y—x)! <Oforally € S}.
If z € Ng(x) is an arbitrary point, then by the definition of the normal cone we have
2'd <0 forall de Kg(z).
Now let y € S, set d := y — « and choose ¢ := 1. Then
rt+td=zxz+ty—tex=yeS,

thus d € Gg(x) C cl Gg(x) = Kg(x) by Theorem 2.17. Since z € Ng(x) one
has zT(y — a:)T =2Td <0,

thus z € Z and we have Ng(x) C Z.
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On the other hand, if z € Z and d € Ks(x) then there exist sequences (d;) C R"
and (t;) C Rsuchthatd; — d,t; > O and ¢ +t;d; € S forall j € N. Let us set
yj = +t;d; € S.Since z € Z we have

tjodj = zT(yj —x) <0.
Because t; is positive, it implies that szj < 0 forall j € N. Then

2'd=2"d;+ 2" (d - d))
< lzlllld — djll,

where ||d — d;|| — 0 as j — oo. This means that
2'd <0 forall de Kg(z).

In other words, we have z € Ng(x) and thus Z € Ng(x), which completes the
proof. ]

The main difference between the groups of cones ray .S, cone .S, S° and Kg(x),
Gs(x), Ng(z) is, that the origin is the vertex point of the cone in the first group and
the point € S in the second group. If we shift x to the origin, we get the following
connections between these two groups.

Theorem 2.20 If S is a nonempty convex set such that 0 € S, then

(i) Gs(0) =ray S,
(i) Kg(0) =clray S,
(iii) Ng(0) = S°.

Proof Exercise. O

2.2 Convex Functions

A function f:R" — R is said to be convex if

JQz+ 0 =Ny) < Af(@)+ 1 -Nfy) 2.17)

whenever x and y are in R" and A € [0, 1]. If a strict inequality holds in (2.17) for
all z,y € R" such that x # y and A\ € (0, 1), the function f is said to be strictly
convex. A function f:R" — R is (strictly) concave if — f is (strictly) convex (see
Fig. 2.10).

Next we give an equivalent definition of a convex function.

Theorem 2.21 (Jensen’s inequality) A function f:R"™ — R is convex if and only if
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(a) (b)

X X X

Fig. 2.10 Examples of different functions. (a) Convex. (b) Concave. (¢) Neither convex or concave

f (i /\m) < i Aif (i), (2.18)
i=1 i=1

whenever x; € R", \; € [0, 1] foralli =1,...,mand > ;- \i = L.
Proof Follows by induction from the definition of convex function. (I
Next we show that a convex function is always locally Lipschitz continuous.

Theorem 2.22 Let f:R" — R be a convex function. Then for any x in R", f is
locally Lipschitz continuous at x.

Proof Let u € R" be arbitrary. We begin by proving that f is bounded on a neigh-
borhood of u. Let € > 0 and define the hypercube

Se={yeR" ||y, —u;| <eforalli=1,...,n}.
Letuy, ..., u,, denote the m = 2" vertices of S and let
M :=max{f(u;) |i=1,...,m}.

Sinceeachy € S. canbeexpressedasy = > /" | Aju; with \; > Oand > | N\ = 1,
by Theorem 2.21. we obtain

fy) = f(z)\iui) <D Nif(u) <MD N=M.
i=1 i=1 i=1

Since B(u; e) C S;, we have an upper bound M of f on an e-neighborhood of wu,
that is
f@y<M forall x' € B(u;e).

Now let x € R"”, choose p > 1 and y € R" so that y = px. Define
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A:=1/p and
Vi={v|v=>10-N(& —u)+x, wherex' € B(u; ¢)}.

The set V is a neighborhood of & = Ay with radius (1 — \)e. By convexity one has
forallv eV

f) = f((1 =N (x —u) + \y)
= f((1 =Nz + Ay +u — Tu))
<A =Nf@)+ M (y+u—fu).

Now f(z') < M and f(y +u — %u) = constant =: K and thus
f(v) <M+ \K.
In other words, f is bounded above on a neighborhood of x.
Let us next show that f is also bounded below. Let z € B(x; (1 — A)e) and define
2z :=2x — z. Then
12—zl = |z — 2| < (1 = Ne.
Thus 2z’ € B(x; (1 — Me) and = (z + 2’)/2. The convexity of f implies that
f@) = f((z+2)/2) < 3f(2) + 3 (=),

and
f(z)=2f(@) — f(z) =2f(@x) — M — K

so that f is also bounded below on a neighborhood of x. Thus we have proved that
f is bounded on a neighborhood of x.
Let N > 0 be a bound of | f| so that
|f(x)] <N forall ' e B(x;20),
where § > 0, and let x|, x; € B(x; d) with | # x,. Define

x3 1= x2 + (§/)(x2 — T1),

where « := ||@> — x]|. Then
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lzs — x|l = lx2 + (6/) (2 — 1) — ||
<llz2 —z| + (6/) |x2 — 1]
lz2 — 1|

|z — 1|
= 26,

thus @3 € B(x; 20). Solving for x, gives

6$+
ato VT age

T =
and by the convexity we get

1)
f@n) = —fla)+ a%(sf(wz).
Then
fla2) — f(x)) < aiw[fm) — f(z)]
< §|f<m3> — f(@)]

< S(f @)+ If @)
Since x1, 3 € B(x; 20) we have | f(x3)| < N and |f(x)| < N, thus
J(@2) — f(x1) = %Ilwz -zl
By changing the roles of | and x> we have
F@) — )l = 2 s — il

showing that the function f is locally Lipschitz continuous at x.

35
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Fig. 2.11 Absolute-value

function f(z) = |z| f(X)A
3
2 \//\*\
;\(%
1
|
-3 -2 -1 1 2 3 X

The simplest example of nonsmooth function is the absolute-value function on
reals (see Fig. 2.11).

Example 2.8 (Absolute-value function). Let us consider the absolute-value
function

f(@) = ||
on reals.
The gradient of function f is
1, when z > 0,
\V4 =
f@ {—1, when z < 0.

Function f is not differentiable at z = 0.
We now show that function f is both convex and (locally) Lipschitz con-
tinuous. Let A € [0, 1] and z, y € R. By triangle inequality we have

JOz+ 0 =Ny = Az + (1 = Nyl
< |Az| + [(1 = Ny
= [Allz] + 11 = Allyl
= Az| + (1 = Vlyl
=A@ + (1 =N f(y).

Thus, function f is convex. Furthermore, by triangle inequality we also have

If @) = f@l = llz] = Iyl < |z -yl
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for all z, y € R. In space R, the right-hand side equals to the norm ||z — y|.
Thus, we have the Lipschitz constant X = 1 > 0 and function f is Lipschitz
continuous.

2.2.1 Level Sets and Epigraphs

Next we consider two sets, namely level sets and epigraphs, closely related to convex
functions.

Definition 2.13 The level set of a function f:R" — R with a parameter o € R is
defined as
levy fi={z e R" | f(x) < a).

We have the following connection between the convexity of functions and level
sets.

Theorem 2.23 [f f:R" — R is a convex function, then the level set lev,, f is a
convex set for all o € R.

Proof If ¢,y € lev, f and A € [0, 1] we have f(x) < « and f(y) < «. Let
z:= Az + (1 — A)y with some A € [0, 1]. Then the convexity of f implies that
J@ =A@+ A =Nf(y) <Aa+ (1 -Na=aqa,

in other words z € lev, f and thus lev, f is convex. O

The previous result can not be inverted since there exist nonconvex functions with
convex level sets (see Fig. 2.12). The equivalence can be achieved by replacing the
level set with the so called epigraph being a subset of R" x R (see Fig. 2.13).

Fig. 2.12 Nonconvex func-
tion with convex level sets
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Fig. 2.13 Epigraph of the fx)
function

epif

Definition 2.14 The epigraph of a function f:R"™ — R is the following subset of
R™ x R:

epi f:={(x,7) e R" xR | f(x) <r}. (2.19)

Theorem 2.24 The function f:R"™ — R is convex if and only if the epigraph epi f
is a convex set.

Proof Exercise. U

Notice, that we have the following connection between the epigraph and level sets
of a function f:R"” — Ratx € R"

levi@) [ ={y e R" | (y, f(®)) €epi f}.

2.2.2 Subgradients and Directional Derivatives

In this section we shall generalize the classical notion of gradient for convex but not
necessarily differentiable functions. Before that we consider some properties related
to the directional derivative of convex functions.

Theorem 2.25 If f:R" — R is a convex function, then the directional derivative
[ (x; d) exists in every direction d € R" and it satisfies

. f@+td) — f(o)
inf .
t>0 t

f(x; d) =

(2.20)

Proof Let d € R" be an arbitrary direction. Define o: R — R by

d) —
oy = LT D~ I@
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We begin by proving that ¢ is bounded below at ¢ when ¢ | 0. Let ¢ > 0 and let
constants ¢ and ¢, be such that 0 < t; < ¢, < . By the convexity of f we have

1
o(t2) — o(t1) = E[tlf(w +t2d) —taf(x+t1d) + (t2 — t1) f(2)]

1
=4

t1 t1
—~ f(g(w +trd) + (1 — 5)3:)}

ZO?

¢ ¢
{(if(:c ttad)+ (1 — é)f(a:))

thus the function ¢(t) decreases as ¢ | 0. Then for all 0 < ¢ < € one has

Jf@+td) + 5@+ Lf@—5d) + (11— DHf(x) —2f(x)

p(t) — p(=¢/2)

t/2
_yf@4id+5f@—5d) — @)
- t/4
> M — 0’

= 4

which means that the function ¢ is bounded below for 0 < ¢ < ¢. This implies that
there exists the limit

lfiﬁ)l o) = f'(x;d) forall deR"

and since the function ¢(t) decreases as ¢ | 0 we deduce that

f(@: d) = inf ot t‘? —f@ 0

Theorem 2.26 Let f:R" — R be a convex function with a Lipschitz constant K at
x € R™ Then the function d — [’ (x; d) is positively homogeneous and subadditive
on R" with

If'(xz; d)| < K||d].

Proof We start by proving the inequality. From the Lipschitz condition we obtain

|f(x+td) — f(z)]
t
. K|x+td—=x|
<lm——
t,0 t
< K|d]|.

"(x; d)| < 1i
If'(x )I_tlfg
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Next we show that f/(x; -) is positively homogeneous. To see this, let A > 0. Then

f@x+tAd) — f(x)

"(x; \d) = li
f(x; Ad) tlir{)l

t
. f(x+tAd) — f(x)
=lim A\ -
t10 tA
. f®+tAd) — f(x)
= \-lim
t}0 tA
=\ f/(z; d).

We turn now to the subadditivity. Let d, p € R" be arbitrary directions, then by
convexity

f'(x; d + p) = lim f@+td+p) - f=)

t
i JG@H2td) + 5@+ 2tp) — f@)
o tlﬁ)l t
< lim fx+2td) — f(x) + lim f(x+2tp) — f(x)
tl0 2t tl0 2t

= f'(z; d) + f'(x; p).

Thus d — f'(x; d) is subadditive. O
From the previous theorem we derive the following consequence.

Corollary 2.3 If f:R"™ — R is a convex function, then the function d — f'(x; d)
is convex, its epigraph epi f'(x; -) is a convex cone and we have

fl(x; —d) > —f'(x;d) forallz e R".

Proof Exercise. O

Next we define the subgradient and the subdifferential of a convex function. Note
the analogy to the smooth differential theory, namely if a function f:R" — R is
both convex and differentiable, then for all y € R" we have

f@) = f@) + Vi@ (y— ).

Figure 2.14 illustrates the meaning of the definition of the subdifferential.

Definition 2.15 The subdifferential of a convex function f:R" — R at x € R" is
the set J.f (x) of vectors & € R" such that

Ocf@) = [€ R | f@) = f@) + €' (y — @) forall y € R"}.
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Fig. 2.14 Subdifferential

>

Each vector &€ € O, f(x) is called a subgradient of f at x.

Example 2.9 (Absolute-value function). As noted in Example 2.8 function
f(x) = |z| is convex and differentiable when 2 # 0. By the definition of
subdifferential we have

£€0.f(0) <> |yl > 0] +&-(y—0) forally e R
— |yl =€ -y forally e R
<—¢<1 and &> —1.

Thus, 9,f(0) = [—1, 1].

Theorem 2.27 Let f:R" — R be a convex function with a Lipschitz constant K at
x* € R"™. Then the subdifferential O.f(x*) is a nonempty, convex, and compact set
such that

Ocf(x*) € B(0; K).

Proof We show first that there exists a subgradient £ € O.f(x*), in other words
O.f(x*)isnonempty. By Theorem 2.24 epi f isaconvex setand by Theorem 2.22 and
Exercise 2.29 it is closed. Since (z*, f(x*)) € epi f itis also nonempty, furthermore
we have (x*, f(x*)) € bd epi f. Then due to Theorem 2.7 there exists a hyperplane
supporting epi f at (z*, f(x*)). In other words there exists (£, 1) # (0, 0) where
&* € R" and p € R such that for all (x, r) € epi f we have

& " (@, r) — @, f@) = €)' (@ -z + pr - f@)) <0. 221)
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In the above inequality  can be chosen as large as possible, thus ;2 must be nonpos-
itive. If 4 = 0 then (2.21) reduces to

€)@ —a*) <0 forallz € R".
If we choose @ := x* 4 £* we get (£*)T¢* = ||€*||? < 0. This means that £* = 0,
which is impossible because (€%, 1) # (0, 0), thus we have 1 < 0. Dividing the
inequality (2.21) by |u| and noting & := £*/|u| we get
@ —a*)—r+ f(@*) <0 forall (z,r) € epi f.
If we choose now 1 := f(x) we get

f(x) > f(z*) + & (@ — x*) forallz € R,

which means that £ € 0, f (*).
To see the convexity let £, &, € O.f(x*) and A € [0, 1]. Then we have

fy) = f@) + &y —x*) forally e R" and
f) = f@) + &y —a*) forally e R"

Multiplying the above two inequalities by A and (1 — \), respectively, and adding
them together, we obtain

F@) = f@)+ (A& + (1= N&) (y—a*) forally € R”,

in other words

A+ (1= Mg € 0.f(ah)

and thus O, f (™) is convex.
If d € R" we get from the definition of the subdifferential

pt) = fa@+ tc? — /@ > £Titd) =¢T'd forall € € O.f(x").
Since p(t) — f'(x*; d) when t | 0 we obtain
fl@*; d) > ¢''d forall & € O.f(x¥). (2.22)
Thus for an arbitrary £ € J.f(x*) we get
€I = 1671 < If @ &) < K€l
by Theorem 2.26. This means that J, f (x*) is bounded and we have

d.f(x*) € BO; K).
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Thus, for compactness it suffices to show that d.f(x*) is closed. To see this let
(&) C O.f(x*) such that £, — £. Then for all y € R™ we have

f@)—f@) =& y—z) - ¢ y—m),
whenever i — o0, thus & € 0. f(x*) and 0. f (x*) is closed. O

The next theorem shows the relationship between the subdifferential and the
directional derivative. It turns out that knowing f’(x; d) is equivalent to knowing
Theorem 2.28 Let f:R"™ — R be a convex function. Then for all x € R"

(i) O.f(x)=1{& eR"| f'(x.d) > & dforall d € R"}, and
(i) f'(x;d) =max{¢'d | & € .f(x)} forany d € R™.

Proof (i) Set
S:={¢ eR"| fl(x;d) > ¢"dforalld e R"

and let & € S be arbitrary. Then it follows from convexity that, for all d € R", we
have

¢hd < f'(@: d)
f(A =tz +tx+d) — f(x)

= lim

t,0 t
<1 (1 -=Df(@) +tf(x+d) — f(x)
< lim

t,0 t

= f®+d) — f(x),

whenever ¢t < 1. By choosing d := y — « we derive & € 0. f(x). On the other hand,
if £ € 0. f(x) then due to (2.22) we have

f'(x;d) > £'d foralld e R".

Thus & € S, which establishes (i).

(ii) First we state that since the subdifferential is compact and nonempty set
(Theorem 2.27) the maximum of the linear function d — £Td is well-defined due
to the Weierstrass” Theorem 1.1. Again from (2.22) we deduce that for each d € R"
we have

fl(@; d) > max {¢7d | € € O.f()}.
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Suppose next that there were d* € R" for which

fl@; d*) > max (7d* | € € 0.f (@)). (2.23)
By Corollary 2.3 function d + f’(x; d) is convex and thus by Theorem 2.24
epi f'(x; -) is a convex set and by Theorem 2.22 and Exercise 2.29 it is closed.
Since (d*, f'(x; d*)) € epi f/(x; -) it is also nonempty, furthermore we have
(d*, f'(x; d*)) € bd epi f'(x; -). Then due to Theorem 2.7 there exists a hyper-
plane supportingepi f'(x; -) at (d*, f'(x; d*)), in other words there exists (£*, ) #
(0, 0) where £&* € R™ and i € R such that for all (d, ) € epi f'(x; -) we have

&, wh(d.r — @, f(x;d)) = €)' d—d) +puer — f(x: d)) (2.24)
<0.

Just like in the proof of Theorem 2.27 we can deduce that ;1 < 0. Again dividing the
inequality (2.24) by |u| and noting € := £€*/|u| we get

eNd—d*) —r+ f'(x; d*) <0 forall (d,r) € epi f'(x; -).
If we choose now r := f/(x; d) we get
(@ d) — f'(z: d) > €7(d — d*) foralld € R". (2.25)
Then from the subadditivity of the directional derivative (Theorem 2.26) we obtain
fl(x;d—d*) > €7(d—d*) foralld e R",

which by assertion (i) means that £ € 0. f(x). On the other hand from Egs. (2.25)
and (2.23) we get

fl@:d)—€Td > f(x; d*) — €Td* >0 foralld € R,
in other words we have
fl(x;d) > ¢'d foralld € R".

Now by choosing d := 0 we get ‘0 > 0’, which is impossible, thus by the contra-
diction (2.23) is wrong and we have the equality

f(x;d) =max (£7d | € € 8.f(x)} foralld e R"

and the proof is complete. O
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Example 2.10 (Absolute-value function). By Theorem 2.28 (i) we have
£€0:.f(0) & f(0,d) > - d foralld € R.

Now

0+td — 0] . td|
e T lim =

"0, d) =l d
£10,d) =lim ; im == = ld|

and, thus,

£€0.f(0) &= |d| >€-d foralld e R
— fe[-1,1].

The next theorem shows that the subgradients really are generalizations of the clas-
sical gradient.

Theorem 2.29 If f:R" — R is convex and differentiable at x € R", then

Ocf (@) ={V [(2)}. (2.26)
Proof According to Theorem 2.25 the directional derivative f’(x; d) of a convex
function exists in every direction d € R". From the definition of differentiability we
have
f'(@;d) =Vf@)'d foralld e R,

which implies, by Theorem 2.28 (i) that V f(x) € J.f(x). Suppose next that there
exists another £ € O, f(x) such that £ # V f(x). Then by Theorem 2.28 (i) we have

¢7d < f'(x:d) = Vf(x)'d foralld e R,

in other words
(€& —=Vf@)'d<0 foralldeR"

By choosing d := £ — V f(x) we get
I€ = Vf@)l* <0,

implying that £ = V f(x), which contradicts the assumption. Thus

O f(x) ={Vf(@)}. O
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Example 2.11 (Absolute-value function). Let us define the whole subdifferen-
tial Of (z) of the function f(x) = |z|. Function f is differentiable in every-
where except in z = 0, and

1, whenz > 0

—1, whenz < 0.

Vi) =|

In Examples 2.9 and 2.10, we have computed the subdifferential at x = 0, that
is, 0. f(0) = [—1, 1]. Thus, the subdifferential of f is
{—1}, whenz <0
df(x) =1 [-1, 1], whenz =0
{1}, whenz > 0

(see also Fig.2.15).

We are now ready to present a very useful result in developing optimization methods.
It gives a representation to a convex function by using subgradients.

Theorem 2.30 If f:R" — R is convex then for all y € R"
f@) =max{f@) +&"(y—=z) |z eR", £ €0.f(@) (2.27)
Proof Suppose that y € R" is an arbitrary point and ¢ € Jf(y). Let
S:={f@ +€ (y—) | £ def(@), xeR").
By the definition of subdifferential of a convex function we have

f@) = f@) + & (y—x) forallz € R"and € € 0.f(x)

Fig. 2.15 Subdifferential
0. (@) of f(x) = |z| J\

-3 -2 -1 1 2 3 X
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implying that the set S is bounded from above and

sup S < f(y).

On the other hand, we have

f) =fa+¢fy—y es,

which means that f(y) < sup S. Thus

fy) =max(f(x) + & (y—x) | € € O f(x), ® € R"}. O

2.2.3 e-Subdifferentials

In nonsmooth optimization, so called bundle methods are based on the concept of
e-subdifferential, which is an extension of the ordinary subdifferential. Therefore we
now give the definition of e-subdifferential and present some of its basic properties.

We start by generalizing the ordinary directional derivative. Note the analogy with
the property (2.20).

Definition 2.16 Let f:R" — R be convex. The e-directional derivative of f at x
in the direction d € R" is defined by

fl(x; d) = inf flx “d)t— f@+e

(2.28)

Now we can reach the same results as in Theorem 2.26 and Corollary 2.3 also for
the e-directional derivative.

Theorem 2.31 Let f:R" — R be a convex function with a Lipschitz constant K at
x € R". Then the function d — fl(z; d) is

(1) positively homogeneous and subadditive on R™ with
|fi(z; d)| < K|d],
(i) convex, its epigraph epi fl(x; -) is a convex cone and
fi(x; —d) > —fl(x; d) forall x € R".

Proof These results follow immediately from Theorem 2.26, Corollary 2.3 and the
fact that for all ¢ > 0 we have inf;.g e/t = 0. U
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Fig. 2.16 Tllustration of e- Jx)
subdifferential

As before we now generalize the subgradient and the subdifferential of a convex
function. We illustrate the meaning of the definition in Fig. 2.16.

Definition 2.17 Let ¢ > 0, then the e- subdifferential of the convex function
fiR" - Ratx € R" is the set

O-f(@)={EeR"| f(&) > f(x)+ & (@ —x) —e forall =’ € R"}. (2.29)

Each element & € 0. f () is called an e-subgradient of f at x.
The following summarizes some basic properties of the e-subdifferential.

Theorem 2.32 Let f:R™ — R be convex function with a Lipschitz constant K at
x € R"™. Then

1) dof(x) = O.f ().
(i) Ifer < ey, then O, f(x) € O, f(x).
(iii) O-f(x) is a nonempty, convex, and compact set such that 0- f (x) € B(0; K).
(iv) O-f(x) ={€ eR" | fl(z; d) > &ld for all d € R™).
) fix;d) =max{€'d | & € 0.f(x)) forall d € R".

Proof The definition of the e-subdifferential implies directly the assertions (i) and
(ii) and the proofs of assertions (iv) and (v) are the same as for ¢ = 0 in The-
orem 2.28 (i) and (ii), respectively. By Theorem 2.27 O, f(x) is nonempty which
implies by assertion (i) that O- f (x) is also nonempty. The proofs of the convexity
and compactness are also same as in Theorem 2.27. (]

The following shows that the e-subdifferential contains in a compressed form the
subgradient information from the whole neighborhood.

Theorem 2.33 Let f:R"™ — R be convex with Lipschitz constant K at x. Then for
all e > 0 we have

O.f(y) CO-f(x) forall ye B (a:; ﬁ) . (2.30)
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Proof Let& € O.f(y) andy € B (ac; %) Then for all z € R" it holds

f(2) = fy) + €1 (z—y)
=f@+&(z-x) — (f@) - f)+€&(z—x)— &' (z—y)

and, using the Lipschitz condition and Theorem 2.27 we calculate

1f(@) — f+€T(z —x) — &' (2 — )|
<|f@ - fl+ 1€z —2) — £ (z — )
<Klz—yl+ €l lz -yl
<2K ||z - yl|

<K —¢
2K

which gives € € 0. f(x). O

2.3 Links Between Geometry and Analysis

In this section we are going to show that the analytical and geometrical concepts
defined in the previous sections are actually equivalent. We have already showed that
the level sets of a convex function are convex, the epigraph of the directional derivative
is a convex cone and a function is convex if and only if its epigraph is convex. In
what follows we give some more connections, on the one hand, between directional
derivatives and contingent cones, and on the other hand, between subdifferentials
and normal cones in terms of epigraph, level sets and the distance function.

2.3.1 Epigraphs

The next two theorems describe how one could equivalently define tangents and
normals by using the epigraph of a convex function (see Figs. 2.17 and 2.18). First
result show that the contingent cone of the epigraph is the epigraph of the directional
derivative.

Theorem 2.34 [f the function f:R" — R is convex, then

Kepi f(x, f(@)) =epi f'(; ). (2.31)

Proof Suppose first that (d, 1) € Kep; r(x, f(x)). By the definition of the contingent
cone there exist sequences (d;, ;) — (d, r) and ¢; | 0 such that
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Fig. 2.17 Contingent cone of fix)
epif(x)

the epigraph

Fig. 2.18 Normal cone of the fix)
epigraph

(x, f(x)) +tj(dj,rj) €epi f forall jeN,

in other words
flx+ tjdj) < f(x) + tir;.

Now by using (2.20) we can calculate

. ff(a:—i—td)—f(a:)

o = inf S
~ lim f(x+t;d;) — f(x)
j—00 t;

< lim r; =7,
j—o0o

which implies that (d, r) € epi f'(x; -).
Suppose, next, that (d, ) € epi f’(x; -), which means that

@ td) - f@) _
t <

"(x; d) = li
[ d) lim
Then there exists a sequence ¢; |, 0 such that

f@rtd —f@ 1
t; - j’
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which yields
1
f@+td) < f(@) +t(r + ;)

and thus (z, f(z))+t;(d, r+ %) € epi f. This and the fact that (d, r + %) — (d,r)
shows that (d, r) € Kep; ¢(x, f(x)) and we obtain the desired conclusion. [l

Next we show that the subgradient is essentially a normal vector of the epigraph.

Theorem 2.35 [f the function f:R" — R is convex, then

Ocf(x) =1{§ € R" | (§, —1) € Nepi f(x, f())}. (2.32)
Proof By Theorem 2.28 (i) we know that & € O, f(x) if and only if for any d € R"
we have f/(x; d) > éTd. This is equivalent to the condition that for any d € R" and
r > f'(x; d) we have r > STd, that is, for any d € R" and r > f’(x; d) we have
& -n"d,n <o
By the definition of the epigraph and Theorem 2.34 we have (d, ) € epi f'(z; -) =

Kepi f(z; f(x)). This and the last inequality means, by the definition of the normal
cone, that (§, —1) lies in Nep; r(x; f()). O

2.3.2 Level Sets

In the following theorem we give the relationship between the directional derivative
and the contingent cone via the level sets.

Theorem 2.36 If the function f:R" — R is convex, then

Kiev gy £ (@) S levo f'(x; ). (2.33)
If; in addition, 0 ¢ O.f(x), then

Kiev 0, £ (@) = levo f'(@; ), (2.34)

Proof Suppose first that d € Kiey,, f(x). By the definition of the contingent cone
there exist sequences d; — d and t; | 0 such that

T +tjdj elevyy) f forall jeN,

in other words
flx+t;dy) < f(x).

Now by using (2.20) we can calculate
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. f@ttd) — f(x)
inf

[z, d) = Inf ;
~ lim [(x+t;dj) — f(x)
j—00 t;

< lim r; =7,

]—>00
which implies that d € levg f'(x; ).

Suppose, next, that 0 ¢ O.f(x) and d € levy f'(x; -), which means that
f/(x; d) <0.Since 0 ¢ 9.f(x) by Theorem 2.28 (i) we have

fx+td) — f(=)
7 <

0.

"(z; d) =i
[ d) im

Then there exists a sequence t; | 0 such that

f@+td) — f@) _
tj B

)

which yields
flx+t;d) < f(x)

and thus x + ¢;d € levy(g) f. This means that d € Kiev ,, f(x) and the proof is
complete. (]

Next theorem shows the connection between subgradients and normal vectors of
the level sets.

Theorem 2.37 If the function f:R" — R is convex, then
Nlevjv@) f(x) 2 ray Ocf ().

If, in addition, 0 ¢ O, f (x), then

Nler(w) f(w) = ray a(.f(zc)

Proof If z € ray O.f(x) then z = A&, where A > 0 and £ € O.f(x). Let now
d € Kiey e £, which means due to Theorem 2.36 that d € levg f/(x; -). Then
using Theorem 2.28 (i) we get

ZT'd=xe"d < \f'(x:; d) <0,

in other words z € Ny @ r(@).

Suppose next that 0 ¢ O.f(x) and there exists z € Nyey o | (x) such that z ¢
ray O.f(x). According to Theorem 2.27 J. f (x) is a convex and compact set. Since
0 ¢ O.f(x) Theorems 2.11 and 2.12 implies that ray O, f(x) is closed and convex,
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respectively. As a cone it is nonempty since 0 € ray 0. f(x). Then by Theorem 2.4
there exists a hyperplane separating {z} and ray J.f(x), in other words there exist
p # 0 and « € R such that

y'p<a forall ye ray O.f(x) (2.35)
and
sz > a. (2.36)

Since ray O, f () is cone the components of y can be chosen as large as possible in
(2.35), thus v < 0. On the other hand 0 € ray 0,.f(x) implying o > p’ 0 = 0, thus
a = 0. Since O, f(x) C ray O.f(x) Theorem 2.28 (ii) and (2.35) imply

fl;p)= max &'p< max y'p<O

€€l f(x) - yeray O.f(z)

This means that p € levg f'(x; -) and thus due to Theorem 2.36 we have p €
Kievj,, f(@). Since z € Niey,, (@) it follows from the definition of the normal
cone that

sz <0

contradicting with inequality (2.36). Thus, z € ray O0.f(x) and the theorem is
proved. O

2.3.3 Distance Function

Finally we study the third link between analysis and geometry, namely the distance
function defined by (2.2). First we give some important properties of the distance
function.

Theorem 2.38 If S C R" is a nonempty set, then the distance function dg is Lip-
schitz continuous with constant K = 1, in other words

lds(@) — ds(y)| < |l —y| forall = yeR" (2.37)

If in addition the set S is convex then the function dg is also convex.

Proof Letany € > 0 and y € R” be given. By definition, there exists a point z € S
such that

ds(y) = lly — zll —e.

Now we have
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ds(x) < lz—z|| < llz -yl + ly — z|
<llze—-yll+ds(y) +¢

which establishes the Lipschitz condition as € > 0 is arbitrary.
Suppose now that S is a convex set and let x, y € R, A € [0, 1] and € > O be
given. Choose points 2z, 2y € S such that
lze — x|l =ds(x)+c and |zy — x| <ds(y) +¢

and define z := (1 — M)z + Azy € S. Then

ds((1 =Nz + A\y) < le— (1 =Nz — Ayl
< (I =Nllze — | + Mlzy — yll
< —=MNds(x)+ \ds(y) +¢.

Since ¢ is arbitrary, dg is convex. O

Lemma 2.6 IfS C R" is closed, then
reS < dg(x) =0. (2.38)
Proof Let x € Z be arbitrary. Then
0=<ds(@) <|lx—z|=0

and thus dg(x) = 0.
On the other hand if dg(a) = 0, then there exists a sequence (yj) C S such that

le—y;ll <1/j — 0, when j — oo.

Thus, the sequence (y;) convergesto z and x € ¢l S = 5. (]

The next two theorems show how one could equivalently define tangents and
normals by using the distance function.

Theorem 2.39 The contingent cone of the convex set S at * € S can also be
written as

Ks(@) ={y e R" | dg(z: y) = 0} (2.39)
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Proof Let Z := {y € R" | dg(x;y) = 0} and let y € Kg(x) be arbitrary. Then
there exist sequences (y;) C R" and (f;) C R such thaty; — y,t; | 0 and
x +tjy; € Sforall j € N.Itis evident that d'y(x; y) is always nonnegative thus it
suffices to show that dg(; y) < 0. Since x € S we have

ds(x +ty) — ds(x)

'«(x; y) = lim
sz y) t]w

t
y infzes{lle + ty — 2|}
= lim
t40 t
. infzes{lle + ty; — 2|1} + Ity — ty;ll
< lim
10 t

and
t t
inf {||x +ty;, — z||} = inf{||(1 — —)x+ —(x+t;y;,) — cl}.
zeS{” +ty; I} Zes{ll( tj) + t]‘( +tjy;) —cll}
Sincex € S, x +tjy; € Sandt/t; € [0, 1] whenever 0 < ¢ < ¢;, the convexity of
S implies that

1 - tij):c + tij(w +1ty;) €5,
and thus . "
Zirelg (1 — t—j)az + t—j(w +ty;) — 2| =0.
Therefore

ds(x; y) < tly —y;| — 0,

when j — oo. Thus dg(z; y) = 0 and K5(x) € Z.

For the converse let y € Z and (t;) C R be such that ¢; | 0. By the definition of
Z we get

ds(x +t;y)
m ——22 =
10 t;

dg(z;y) =1 0.
tj
By the definition of ds we can choose points z; € .S such that

t:
|z +tjy — zll <ds(x+tjy) + 7J

By setting

we have
Zj — X

z+iljy;=x+i =z;€8

J
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and

Zj — X

ly —y,ll=ly— I
tj
e+ tjy — =zl
tj
d t; 1

tj J

asj — 00. Thus y € Kg(x) and Z = Kg(x). U

Theorem 2.40 The normal cone of the convex set S at x € S can also be written as

Ng(x) = cl ray O.dg(x). (2.40)
Proof First, let z € 0.dg(x). Then by Theorem 2.28 (i)

2Ty < dy(z;y) forall yeR™
If one has y € Kg(x) then by Theorem 2.39 dg(a:; y) = 0. Thus zTy < 0 for all
y € Kg(x) whichimplies that z € Ng(x). By Theorem 2.27 0.dg(x) is a convex set
and then by Theorem 2.11 ray J.dg(x) is a convex cone. Furthermore, by Theorem
2.10 ray O.dg(x) is the smallest cone containing J.dg(x). Then, because Ng(x) is
also a convex cone (Theorem 2.18), we have
ray Ocdg(x) € Ng(x).

On the other hand, if Ng(x) = {0} we have clearly Ng(x) C ray O.ds(x).
Suppose next that Ng(x) 7# {0} and let z € Ng(a)\{0} be arbitrary. Since S is
convex due to Theorem 2.19 we have

2l(y—a)<0 forall yesS
and hence S € H ™ (z, zlx). Since ds(y) > 0 for all y € R" we have

)\zT(y —x)<0<dg(y) forall ye H (z, zTa:) and A > 0.

Suppose next that y € H*(z, zTx). Since S € H™(z, z''x) we have clearly
dH_(z,sz) (y) < dg(y) for all y € R™. On the other hand (see Exercise 2.3)

1
dH_(z ZTI)(y) = WZT(y —a) forall ye HY(z, zTa:).
’ z

Thus, forany y € R" = H (z, zTx) U HT (2, zT ) we have
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1
MZT(y —x) < ds(y) = ds(y) — ds(z).

Then the definition of subdifferential of convex function and the convexity of dg
imply that

1
mz € 8Cds($),

thus Ng(x) C ray O.ds(x) and the proof is complete. U

Note that since Ng(x) is always closed, we deduce that also ray d.dg () is closed
if S is convex.

2.4 Summary

This chapter contains the basic results from convex analysis. First we have concen-
trated on geometrical concepts and started by considering convex sets and cones. The
main results are the existence of separating and supporting hyperplanes (Theorems
2.4,2.7 and 2.8). We have defined tangents and normals in the form of contingent
and normal cones. Next we moved to analytical concepts and defined subgradients
and subdifferentials of convex functions. Finally we showed that everything is one
by connecting these geometrical and analytical concepts via epigraphs, level sets and
the distance functions. We have proved, for example, that the contingent cone of the
epigrapf is the epigrapf of the directional derivative (Theorem 2.34), the contingent
cone of the zero level set is zero level set of the directional derivative (Theorem 2.36),
and the contigent cone of a convex set consist of the points where the directional
derivative of the distance function vanish (Theorem 2.39).

Exercises

2.1 Show that open and closed balls and halfspaces are convex sets.

2.2 (Lemma 2.1) Prove that if S C R", then conv S is a convex set and .S is convex
if and only if S = conv S.

2.3 Letp € R", p #0and a € R. Prove that

1
A= (p.oy(¥) = ||IT”(ioTy —a) forall ye H'(p,a).

2.4 (Farkas’ Lemma) Let A € R"*" and ¢ € R". Prove that either

Ax <0 and ¢’z >0 forsomez € R”
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or
ATy=¢c and y >0 forsomey e R".

2.5 (Gordan’s Lemma) Let A € R™*". Prove that either

T

Ax <0 and c¢'z >0 forsomex € R"

or
ATy =0 and 0#y >0 forsomey e R"

2.6 Show that closed halfspaces H* (p, 0) and H ™ (p, 0), the nonnegative orthant
R} ={z € R" | 7; > 0, i = 1...,n} and halflines starting from the origin are
closed convex cones.

2.7 (Lemma 2.3) Prove that if S € R", then ray S is a cone and C' C R" is cone
if and only if C' =ray C.

2.8 (Lemma 2.4) Prove that if S C R", then cone S is a convex cone and C C R"
is convex cone if and only if C' = cone C.

2.9 (Corollary 2.2) Prove that if S € R", then cone S = conv ray S.
2.10 Show that S7 € S; implies S5 C S7.

2.11 (Lemma 2.5) Prove that if S C R", then S° is a closed convex cone and
S C §°°.

2.12 Specify the sets conv S, ray S, cone S and S° when

(@ S={,1D}
(b) S={(1,1),(1,2), 2, 1)}
(¢) S =int R U{(0,0)}.

2.13 Let C' € R" be a closed convex cone. Show that K (0) = C.

2.14 (Theorem 2.16) Prove that the cone of global feasible directions Gg(x) of the
nonempty convex set S at € S is a convex cone.

2.15 Let S € R" be convex. Show that Kg(x) = Ng(x)°.
2.16 Specify the sets KRi (0) and NRi 0).

2.17 Let .S € R" be convex and « € int S. Show that Kg(x) = R" and Ng(x) =
@.
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2.18 Let S, S2 € R™ be convex and & € S1 N S>. Show that
(a) KSmSz(m) - KSI (.’13) N KSz(m)7
(b) Ngins,(x) 2 Ng, () + Ng, ().

2.19 (Theorem 2.20) Prove that if .S is a nonempty convex set such thatQ € S, then

(a) Gs(0) =ray S,
(b) Ks() =clray S,
(¢) Ng(0) = S°.

2.20 Show that the function f: R — R defined by
f@) ="

is convex.

2.21 By exploiting Exercise 2.20 show that for all z, y > 0 we have

2.22 (Theorem 2.24) Prove that the function f: R"” — R is convex if and only if its
epigraph epi f is a convex set.

2.23 How should the concept of a ‘concave set’ to be defined?

2.24 (Corollary 2.3) Prove thatif f: R” — R is aconvex function, then the function
d — f'(x; d) is convex, its epigraph epi f’(x; -) is a convex cone and we have

fl(x; —d) > —f'(x;d) forallz € R".
2.25 Show that the function f: R — R defined by
f(@) := max{|z], 2°)

is convex. Calculate f/(1; &=1) and 9, f(1).

2.26 Let f:R? — R be such that
f(z,y) := max {— max {—x, y}, y — x}.

Calculate 0. f(0, 0).
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2.27 Let f:R" — Rbesuchthat f(x) := ||| and g: R — Rsuchthat g(z) := z°.
Calculate 0. f(0) and 0.g(f(0)).

2.28 Let f:R™ — R be convex. Show that the mapping « — O, f (x) is monotonic,
in other words for all , y € R" we have

€z — &) (@—y) =0 forall &, €d.f(x). & € def(y).

2.29 Prove that if f: R — R is continuous, then epi f and lev,, f are closed for
all o € R.

2.30 Let the functions f;:R” — R be convex for all ¢ = 1,...,m and define
f:R" > R by
f(x) =max{fi(®)|i=1,...,m}.

Show that

(@) lev f=N",lev fi,
(b) epi f =L, epi fi.

2.31 Show that the equality does not hold in Theorem 2.36 without the extra assump-
tion 0 ¢ O, f(x). In other words, if the function f: R"™ — R is convex, then

K]CVf(z) f(lE) 2 levo f/(wa ).

(Hint: Consider the function f(x) := ||z|?).

2.32 Let S € R” convex and x € S. Show that if 0 ¢ J.dg(x), then

(a) KS(iL') = KlevdS@) dS (w) n Klev,ds(m) —ds (33),
(@) N§(@) = Niey, ) ds ().

2.33 Let
S={xeR?| x% <xpand |z1| < z2}.

Calculate Kg((1, 1)) and Ng((1, 1)).

2.34 Let
S={xeR? |z <2, 21 > -2z and z; > 212}

Calculate Kg((0,0)) and Ng((0, 0)).
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