Chapter 2
Life Histories: Real and Synthetic

2.1 Introduction

Life history data are generally incomplete. Usually, they do not cover for each
individual in the study the entire life span or the life segment of interest. If data are
collected retrospectively, observation ends at interview date, and no information is
available on events and experiences after the date. Data collected prospectively are
incomplete because events and other experiences are recorded during a limited
period of time only. To deal with data limitations, models are introduced. The
model that is considered in this chapter describes life histories. The model is based
on the premise that life histories are realisations of a continuous-time Markov
process. A Markov process is a stochastic process that describes a system with
multiple states and transitions between the states. The time at which a transition
occurs is random but the distribution of the time to transition is known. In the
continuous-time Markov process, the transition time has an exponential distribu-
tion. The rate of transition out of the current state (exit rate) is the parameter of the
exponential distribution. It depends on the current state only and is independent of
the history of the stochastic process. In a system with multiple states, an individual
who leaves the current state may enter one of several states. In competing risks
models, states in the state space are viewed as competing destinations and transition
rates are destination-specific. The Markov process is a first-order process: the
destination state depends on the current state only and is independent of states
occupied previously.

The Markov model predicts' the probability that an individual of a given age
occupies a given state. The Markov model may also be used to predict the number
of transitions during a given interval and the number of times an individual

! Prediction is used in the statistical meaning. Prediction is a statement about an outcome. A model
is often used to predict an outcome, e.g. an event that occurs in a population or that is experienced
by an individual in a population. The parameter(s) of the model are estimated from observations on
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occupies a given state. The stochastic process that describes the transition counts or
the state occupancy counts is a Markov counting process (see below). It belongs to
the class of counting processes. The most elementary counting process is the
Poisson process. It is a stochastic process that counts the number of transitions
without considering origin and destination states. In a Poisson process, the time
between two consecutive transitions has an exponential distribution.

The parameters of the Markov model are estimated from data. By pooling data
on different but similar individuals, models can be estimated that describe the entire
life histories. The life history that is based on pooled data is a synthetic life history.
It is a virtual life historys; it is not observed. It does not say anything about a specific
individual in a sample but tells something about the sample the individual is part
of. A synthetic biography summarises information on several individuals. It is the
life course that would result if an individual lives a life prescribed by the collective
experience of similar individuals under observation. The collective experience is
summarised in transition rates. These rates play a key role in generating synthetic
biographies. Transition rates are estimated from life history data and used to
generate synthetic biographies. Maximum likelihood estimates of transition rates
are used to generate expected life histories and expected values of life history
indicators. Individual life histories are distributed randomly around an expected life
path. Microsimulation is used to generate individual life histories from empirical
transition rates.

In life history analysis and life history modelling, age is the main time scale. Age
is a proxy for stage of life. Other useful time scales are calendar time and time since
a reference event. Birth, marriage, labour market entry and entry into observation
are examples of reference events. The standard approach in survival analysis is to
use time since the baseline survey or (first) entry into the study (time-on-study).
Time-on-study has no explanatory power, which is acceptable if time dependence
of a transition rate is not of interest, such as in the Cox model with free baseline
hazard. Korn et al. (1997) argue that time-on-study is not appropriate for predicting
transition rates. They recommend age as the time scale (see also Pencina et al. 2007
and Meira-Machado et al. 2009). Rates of transition between states generally vary
with age. The Markov process that accommodates changing rates is the time-
inhomogeneous Markov process. The model of that process is discussed in this
chapter.

To characterise life histories, a set of indicators is usually used, including state
occupancies at consecutive ages, durations of stages of life and ages at significant
transitions. The indicators are sometimes combined in a table, known as the
multistate life table. The multistate life table originated in demography (Rogers
1975), but it is currently used across disciplines. The model that produces the values
of the indicators summarised in the multistate life table is the Markov process
model.

a selection of individuals. Prediction is part of statistical inference. It should not be confused with
forecasting.



2.1 Introduction 9

Two examples may clarify the concept of synthetic biography. The first relates to
the length of life and the second to marriage and fertility:

(a) Suppose we are interested in the life expectancy of a 60-year-old. The empirical
evidence consists of a 10-year follow-up of 1,000 individuals aged 60 and over.
At the beginning of the observation period, some individuals are relatively
young (60 years, say), while others are already old (over 90, say). During the
observation period of 10 years, some individuals die. The oldest old are more
likely to die than other individuals under observation. To determine the
expected remaining lifetime for a 60-year-old, one could calculate the mean
age at death of those who die during the observation interval. The observed
mean age at death provides a wrong answer, however. It depends on the age
composition of the population under observation. If the group under observa-
tion consists of many old persons, the mean age at death will be higher than for
a group that consists mainly of persons in their sixties and seventies. To remove
the effect of the age composition, death rates are calculated by age. The
distribution of ages at death is obtained by applying a piecewise exponential
survival model, with parameters the age-specific mortality rates. The expected
age at death is 60 plus the expected remaining lifetime or life expectancy. The
life expectancy of a 60-year-old is the number of years that the individual may
expect to live if at each age over 60 he experiences the age-specific mortality
rate estimated during the 10-year follow-up of 1,000 individuals. At young
ages, he experiences the mortality rates of individuals who were 60 recently. At
older ages, the mortality rates are from old persons who turned 60 many years
ago. The life expectancy is adequate if the age-specific mortality rates do not
vary in time.

(b) The second illustration considers marriage and fertility. Suppose we want to
know at what age women start marriage and at what duration of marriage they
have their first child. It is not possible to follow all women until they have their
first child since some will remain childless. Suppose the data are from a 5-year
follow-up survey of girls and women aged 15-35 at the onset of observation. At
the end, they are 20—40. During the follow-up, the age at marriage and the age
at birth of the first child are recorded. At the start of observation, some
individuals are already married. Other individuals remain unmarried during
the entire period of observation. They may marry after observation is ended or
they may not marry at all. To determine the age at marriage and the duration of
marriage at time of birth of the first child, marriage and childbirth are described
by a continuous-time Markov process with transition rates the empirical mar-
riage rates and marital first birth rates. The model describes the marriage and
first birth behaviour of hypothetical and identical individuals of age 15 assum-
ing that at consecutive ages, they experience the empirical rates of marriage and
first birth. Transition rates may depend on covariates and other factors.

This chapter consists of two parts. The first part (Sect. 2.2) is devoted to the
estimation of transition rates from data. The second part (Sects. 2.3, 2.4 and 2.5)
focuses on life histories derived from transition rates. Section 2.3 shows how



10 2 Life Histories: Real and Synthetic

transition probabilities and state occupation probabilities are computed from tran-
sition rates. The computation of expected occupation times is covered in Sect. 2.4.
The generation of synthetic life histories is discussed in Sect. 2.5. Section 2.6 is the
conclusion.

The methods presented in this chapter are illustrated using employment data
from a subsample of 201 respondents of the German Life History Survey (GLHS)
(see Chap. 1). Two states are distinguished: employed (Job) and not employed
(Nojob). Transitions are from employed to not employed (JN) and from not
employed to employed (NJ). Dates of transition are given in months; it is assumed
that transitions occur at the beginning of a month. In the chapter, references are
made to R packages for multistate modelling and analysis, in particular mvna
(Allignol 2013; Allignol et al. 2008), etm (Allignol 2014; Allignol et al. 2011),
msm (Jackson 2011, 2014a), mstate (Putter et al. 2011; de Wreede et al. 2010,
2011), dynpred (Putter 2011b), ELECT (van den Hout 2013) and Biograph
(Willekens 2013a).

2.2 Transition Rates

Transition rates are the parameters of the Markov process that underlies the
multistate life history model. In this section, two broad approaches for estimating
transition rates are covered. Age, which is the time scale, is treated as a continuous
variable. Transitions may occur at any age. Transition rates are estimated by
relating transitions to exposures. In the first approach, transition rates may vary
freely with age. The age profile is not constrained in any way. In the second
approach, transition rates are restricted to follow an age profile described by a
parametric model. The first approach is non-parametric; the second is parametric.
The two approaches are covered by, e.g. Aalen et al. (2008).

In the non-parametric analysis of life history data, cumulative transition rates are
estimated for ages at which transitions occur. Without any parametric assumptions,
the transition rate can be any nonnegative function, and this makes it difficult to
estimate. The cumulative transition rate is easy to estimate. This is akin to estimat-
ing the cumulative distribution function, which is easier than estimating the density
function (Aalen et al. 2008, p. 71). At ages at which transitions occur, the cumu-
lative transition rate jumps to a higher value. Therefore, the function that describes
cumulative transition rates is a step function. It implies that between observations,
the cumulative transition rate is the one estimated at the last observation. The shape
of the function is entirely free, not influenced by an imposed age dependence. The
cumulative transition rate is said to be empirical. In the second approach, the age
dependence is restricted to follow an imposed pattern. A convenient and simple
restriction is a constant transition rate. If the transition rate is constant, the cumu-
lative transition rate increases linearly with age and the survival function is expo-
nential. The restriction of constant rate may be relaxed by keeping the rate constant
within relatively narrow age intervals and let the rate vary freely between age
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intervals. Because of the imposed age dependence, there is no need to estimate the
cumulative transition rate each age a transition occurs. It suffices to estimate the
cumulative transition rate at the end of each age interval. The cumulative hazard
function is not a step function. It is a piecewise linear function: linear within age
intervals with slopes varying between intervals. The two approaches differ, but at
the limit when the age interval becomes infinitesimally small, they coincide. The
first approach is common in biostatistics, while the second is common in the life
table method of demography, epidemiology and actuarial science. Covariates may
be introduced in each approach. The cumulative transition rates may be estimated at
each level of covariate or a regression model may be used. A (piecewise) constant
transition rate is only one of the many possible restrictions imposed on the age
dependence of transition rates. In demography, biostatistics, epidemiology and
other fields, a large number of models are used to describe age dependencies of
rates. These models are beyond the scope of this chapter.

A few software packages in R implement the non-parametric method. They include
mvna and mstate. The packages eha, msm and Biograph implement the parametric
method, more particularly the piecewise constant transition rate model: the transition
rate varies freely between age intervals and is constant within age intervals.

Transition rates are estimated by relating transitions to exposures. At a given
age, the rate of transition is estimated by dividing the number of transitions and the
risk set, which is the population under observation and at risk just before a transition
occurs. In multistate modelling, a risk set is the number of individuals under
observation and occupying a given state. That basic principle allows complex
observation schemes. Individuals may be at risk but not under observation. It is
not practical to track every individual from birth to death to record occurrences and
monitor risk sets and periods at risk. When the period of observation does not cover
the entire life span, observations are incomplete. Individuals may enter and leave
the population at risk during the observation period. They may leave the population
at risk because the transition of interest occurs or another, unrelated, transition
removes them from the population at risk. Individuals who leave the population at
risk may return later and be at risk again. Counting transitions and tracking
exposures necessarily take place during periods of observation. Transitions and
exposures outside the observation period are not recorded. The nonoccurrence of a
transition during a period of observation to persons at risk of that transition is
however useful information that should not be omitted. The proportion of individ-
uals under observation and at risk that experiences a transition is an estimator of the
likelihood of a transition. The proportion that does not experience a transition is an
estimator of the survival probability.

Dates of transition are usually measured in the Gregorian calendar. For reasons
of computation, calendar dates are often converted into Julian dates, which are days
since a reference date. Sometimes, calendar months are coded as number of months
since a reference month. The Century Month Code (CMC) is a coding scheme with
reference month January 1900. The reference month is month 1. In life history
analysis, dates are often replaced by ages. In this chapter, dates (in CMC) and ages
are used, but age is the main time scale. Hence, most of the time reference is made
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to age. Transitions may occur at any time and age. Hence, time at transition and age
at transition are random variables. T will be used to denote time and age, and X will
be used to denote age only. A realisation of T is ¢ and a realisation of X is x.
Continuous time is approximated by dividing a period in very small time intervals.
A small interval following t is denoted by [f+df), where df is the length of the
interval. The brackets indicate the type of interval: [ means that t is not included in
the interval and ) means that 7+dt is included in the interval. A small interval
following age x is [x, x+dx). When is an interval small? An interval is considered
small when at most one transition occurs in the interval.

In the employment data used for illustrative purposes (GLHS), two states are
distinguished (J and N) and two transitions: NJ and JN. In this chapter, transitions
between jobs are not considered. Individuals in state N are at risk of the NJ
transition and individuals in J are at risk of the JN transition. Labour market entry
(first jobs) is selected as onset of the observation. The original GLHS data include
transitions between jobs, and dates at transition are expressed in CMC. Two
Biograph functions are used to prepare the desired data file from the original
data. The function Remove. intrastate is used to remove transitions between
jobs. The function ChangeObservationWindow. e is used to select observa-
tion periods between labour market entry and survey date. Table 2.1 shows the data
for a selection of ten respondents. Two variants are presented. The first shows
calendar dates at transition. The second shows ages, except for the birth date, which
is given in CMC. Calendar dates and ages are derived from CMC using Biograph’s
date_b function.

d <- Remove.intrastate (GLHS)

dd <- ChangeObservationWindow.e (Bdata=d,
entrystate="J",
exitstate=NA)

d3.a <- date b (Bdata=dd,
selectday=1,
format.out="age")

The ten individuals experience 33 episodes (20 job episodes and 13 episodes
without a job). They experience 23 transitions during the observation period (13 JN
transitions and 10 NJ transitions). Individual 2 is born in September 1929 and enters
the labour market (first job) in May 1949 at age 19. She leaves the first job in May
1974 at age 44 and remains without a paid job until the end of the observation
period in November 1981, when she is at age 52. Individuals 1, 5 and 7 are
employed throughout the observation period. They move between jobs, but they
do not experience a period without a job. Individuals 3, 4, 6, 8, 9 and 10 have
several jobs, separated by periods without a job. Observation periods differ between
individuals. In this chapter, we estimate transition rates for the JN and NJ transi-
tions, transition probabilities, state occupation probabilities and expected state
occupation times for the subsample of 201 respondents. For illustrative purpose, a
selection of the ten respondents shown in Table 2.1 is also used. The focus is on the
method and not on the application.
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Table 2.1 Subsample of German Life History Survey (GLHS)

a. Calendar dates

ID born start end sex path Trl Tr2 Tr3 Tr4
1 Mar29 Mar46 Nov81l Male J <NA> <NA> <NA> <NA>
2 Sep29 May49 Nov8l Female JN May74 <NA> <NA> <NA>
67 Dec39 Feb55 Nov8l Female JNJN Sep58 Aug70 Mar80 <NA>
76 Jun51 Oct69 Nov8l Male JNJNJ Apr70 May72 Jan76 Apr76

Jun51 Aug74 Nov8l Female J <NA> <NA> <NA> <NA>
96 Feb39 Apr57 Nov8l Female JNJNJ Apr62 Apr64 Feb65 Nov68
99 May40 Sep58 Nov8l Male J <NA> <NA> <NA> <NA>

180 Aug40 Aug54 Nov8l Male JNJNJ Apr56 Apr59 Jul6l Jan63
200 Nov50 Sep68 Dec8l Male JNJNJ Apr70 Jan72 Jan74 Jan79
0 208 May40 Jul59 Nov8l Female JNJN May6l Nov6l Dec62 <NA>

H 0o U WwN
©
N

180 488 14.000 41.250 Male JNJNJ 15.667 18.667 20.917 22.417
200 611 17.833 31.083 Male JNJNJ 19.417 21.167 23.167 28.167
0 208 485 19.167 41.500 Female JNJN 21.000 21.500 22.583 NA

b. Ages

ID born start end sex path Trl Tr2 Tr3 Tr4
1 1 351 17.000 52.667 Male J NA NA NA NA
2 2 357 19.667 52.167 Female JN 44.667 NA NA NA
3 67 480 15.167 41.917 Female JNJN 18.750 30.667 40.250 NA
4 76 618 18.333 30.417 Male JNJNJ 18.833 20.917 24.583 24.833
5 82 618 23.167 30.417 Female J NA NA NA NA
6 96 470 18.167 42.750 Female JNJNJ 23.167 25.167 26.000 29.750
7 99 485 18.333 41.500 Male J NA NA NA NA
8
9
1

Individual 4 (with ID 76) will be singled out for a detailed description. He gets
his first job in October 1969 at age18 and remains employed until April 1970. He is
not employed for about 2 years, until he gets another job in May 1972. From
January to April 1976, he experiences another period without employment. At the
end of the observation, i.e. at survey date, the person is 30 years of age and
employed. The employment career is JNJNJ. The lifeline is shown in Fig. 2.1.
The figure is a Lexis diagram, which is a diagram with calendar time on the x-axis
and age on the y-axis. The transitions are displayed, as well as the job and no job
episodes. The Lexis diagram is discussed in detail in Chap. 5. During the observa-
tion period, the individual experiences the JN transition two times, in April 1970 at
age 18 and in January 1976 at age 24. Transitions are assumed to occur at the
beginning of a month. From 1 October 1969 to 31 March 1970, he is at risk of the
first occurrence of the JN transition, and from 1 May 1972 to 31 December 1975, he
is at risk of the second occurrence. From 1 April 1976, he is at risk of a third
occurrence but does not experience the JN transition before the end of the obser-
vation on 1 November 1981. The individual experiences three job episodes, two end
in a JN transition and one ends because observation is terminated (censored). In
addition, the respondent experiences two episodes without a job. They end with a
new job.

The estimation of transition rates involves counting transitions and persons at
risk. Let k& denote an individual. Transitions are denoted by origin state and
destination state. The number of states is / and any two states are denoted by
i and j. Let (N;(t,,t,) denote the number of (i,j)-transitions individual k experiences
during a period of observation from ¢, to #,. Without loss of generality, in this
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Fig. 2.1 Employment career of respondent with ID 76

section, I assume that #{ =0 and represent ¢, by ¢. The observation interval is
therefore from O to ¢. The variable V;;(0, #) is denoted by (/V,;(f). Data on numbers
of transitions are count data. Transition counts cannot be predicted with certainty;
hence, (V;(?) is arandom variable. The distribution of transition counts is described
by a stochastic process model. A widely used model is the Poisson process model,
where changes (‘jumps’) occur randomly and are independent of each other (Cinlar
1975). The sequence of random variables {V;i(f); t>0} is a random process,
known as a counting process (Aalen et al. 2008, p. 25). The counting process is a
continuous process. The increment in (N;(#) during the small interval between f and
t+dr is denoted by diN;(¢r). It is a binary variable with possible values
0 (no transition) and 1 (transition). Individual counting processes are aggregated
to obtain the aggregated process: Ny(t) =YK, «Vij(1), where K is the number of
individuals in a (sample) population. If dr is sufficiently small to make the counting
process absolutely continuous, at most, one transition occurs in the interval dz.

A main issue in survival analysis, and in multistate modelling in particular, is to
determine who is at risk or exposed at time (age) ¢ and who is not. Individuals may
experience a transition between ¢ and ¢+ d¢ if and only if they are at risk at ¢, i.e. just
before the interval [z, t+d¢). If individual i is at risk at ¢, he/she is at risk during the
infinitesimally small interval from ¢ to 7+ dt. To be at risk of the (i,j)-transition, an
individual should be in state i. Let ;Y ,(¢) be a binary variable, which takes the value
of 1 if individual & is in state i at ¢ and O if the individual is not. The binary random
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variable ;Y;(¢) indicates the exposure status. The number of individuals in state i just
before ¢, and at risk of the (i,j)-transition, is Y;(f) =, kK: 1Y (). It is the risk set. The
sequence of risk sets{Y;(¢), t > 0} is the at risk process or exposure process. The risk
set in state i at time (age) ¢, Y;(¢), changes when an individual enters state i or leaves
the state and when the observation starts or ends. In many studies, Y,(¢) is large
relative to the numbers of (i,j)-transitions. That empirical observation will be used
for estimating the variance of the transition rate.

During the observation period from O to ¢, individual £ is at risk of experiencing
the (i,j)-transition during the time (age) segments he occupies state i. The state
occupation time measures the duration at risk. It is ;L; = jgkYi(r) dr. The total
duration at risk may be spread over multiple ‘at risk’ episodes. This approach, in
which a counting process and an at risk process are distinguished, is known as the
counting process approach to the study of life histories and event histories. The
approach is very flexible. It allows late entry, exit and re-entry in state i during the
observation period.

The counting process is a random process. It can be modelled by a Poisson
process. The parameter of the model is the transition rate. The transition rate in the
small time (age) interval [¢, ¢+ d¢) is referred to as the instantaneous transition rate
and is denoted by wu;/(f). The counting process approach to the Poisson process
describes the intensity of the process in terms of the instantaneous transition rate
and exposure status. It adds exposure status to the conventional description of the
Poisson process in probability theory. Aalen et al. (2008) write the intensity at ¢ as
the product of the instantaneous transition rate and the indicator function Y(),
which is equal to 1 if individual & is at risk just before ¢t and O otherwise:
wAif(D) = kit (DY (1). The intensity function is the transition rate function weighted
by the exposure status. If individual £ is not at risk at #, the intensity is zero although
the transition rate may be positive. The product (4,{(#)dt is the probability that
individual k£ experiences the (i,j)-transition during the small time (age) interval
from ¢ to t+dt, provided that just prior to the interval k is at risk of the (i,j)-
transition, i.e. is in state i. It is the product of the intensity and the length of the
interval. The probability is conditioned on being at risk. In survival analysis, that
condition is usually imposed by the statement ‘provided that the event has not
occurred yet’. That condition applies in case of a single event because an individual
is at risk as long as (1) the event has not occurred yet and (2) the individual is under
observation. In the case of repeatable transitions or different types of transitions, an
individual may be under observation but not at risk. In the example of employment,
an individual in state N is under observation but not at risk of the JN transition.

If at most one transition occurs during the interval d¢, the probability of
occurrence may be expressed in different but equivalent ways. It is the probability
that ;N;(r) changes to (N;(f)+1; the probability that the transition occurs at ¢,
Pr(diN; (t)=1) and the probability that the transition time (age) I} is in the
[, t+dr) interval: Pr(z <,T;;<t+df). The probability that dV;(f) is one,
Pr(diN; (1)=1), is equal to the expected value of diN;(t), hence ;4;(?)
dt = E[dN;{(1)]. Note that ;N;;(t) and its increment d,/N;(¢) are observations, whereas
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w4j(t) is a model of the increment diV;/(f) (Poisson process model that satisfies the
two conditions listed above). ;4;(t) is the intensity process of the counting process
Vi@,

If individuals are independent of each other, the intensity process of the aggre-
gated counting process N(f) is A;(t) =3 f: 1x44(8). If in addition all individuals are
assumed to have the same hazard rate, i.e. wu;;(t) = p;/(?) for all k, then the survival
times are independent and identically distributed. The aggregate intensity process
may be written as 4;(¢) = Zf: LA () = pi(t) Y kK: WY i() = pii(t) Yi(t), where Y () is
the number of individuals in state i just before ¢. It is the population at risk. The
model 2;(t) = p;/(t) Y,(t) is the multiplicative intensity model for a counting process
(Aalen et al. 2008, p. 34). In the multiplicative intensity model, the at risk process
Y(#) does not depend on unknown parameters (Aalen et al. 2008, p. 77). That
condition is satisfied if the population at risk is large relative to the number of
transitions. The same condition was introduced by Holford (1980) and Laird and
Olivier (1981) in the context of estimating (piecewise constant) transition rates with
log-linear models. The transition rates () are key model parameters, and a main
aim of statistical analysis is to determine how they vary over time (age) and depend
on covariates.

The observed increment dN;(¢) of the counting process N;(¢) generally differs
from the model estimate 4;(f)d¢ because observations do not meet the conditions
imposed by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as
noise and to the probability of a transition during the interval dt as signal. The noise
cumulated up to time (age) ¢ is the martingale M,,(¢), and dM;(?) is the increment in
noise during the small interval following t: dM;;(t) = dN;;(f)—A,/(?) dz. The intensity
process and the noise process are stochastic processes, whereas N(f) represents
observations. Note that Ny = [{dN;(z), AyO=][{ Ayr) dr and
Mij(t):j{) dM;{(r), where A;(¢) is the cumulative intensity process, that is, the
expected number of transitions up to ¢, predicted by the Poisson model. The
martingale is the difference between the counting process and the cumulative
intensity process. It can be interpreted as cumulative noise. The intensity process
is central to the statistical modelling of event occurrences and transitions between
states. Note that the intensity process depends on the transition rate and the at risk
process.

A frequently used measure in multistate modelling is the cumulative hazard
A= J hdA; (), where dA;(7) is equal to the increment in the cumulative hazard
during an infinitesimally small interval. In case of a continuous process,
dA;(7) = p;(r) dr. The reason for using the cumulative hazard is given above.
The transition rates u;(#) and the cumulative transition rates A;(f) are estimated
from the data. The estimation method is determined by the assumed underlying
stochastic process. In this chapter, two methods are described. In the first method,
no assumption is made about the process. The method is known as the
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non-parametric method because of the absence of a parametric model that describes
the time (age) dependence of transition rates. The second method assumes that
transition rates are (piecewise) constant. As a consequence, the duration to the next
transition and the time between two consecutive transitions follow a (piecewise)
exponential distribution. In the remainder of this chapter, I use age as time scale.

(a) Non-parametric Method

Recall that N;i(#) is the number of (i,j)-transitions experienced by individuals in
the (sample) population during the observation interval from O to z, and T}; is the age
at an (ij)-transition. For the estimation of empirical transition rates
(non-parametric), transitions are ordered by age of occurrence. Let T7; denote the
age of the n-th occurrence of the (i,j)-transition experienced in the (sample)
population. The number of individuals at risk just before T} is Y,(T7;). Consider
the age interval [z, z+d¢). If in a population no event occurs in the interval, the
natural estimate of y;(¢) dt is zero. If a transition is recorded during the interval, the
natural estimate is 1 divided by the number of individuals at risk, that is, 1/Y;(¢) or
the proportion of individuals at risk that experiences a transition. Aggregating these
contributions over all age intervals at which transitions occur, up to age ¢, gives

the estimator A ii(t) of A;(). A natural estimator of the cumulative transition rate

. " dN(T

atage ris A ;(t) = J Y IE(>), where numerator and denominator are aggregations
o 1il7

over all individuals. If transition ages are T}, then the estimator is

Ay(t) = ZT”Q#, where T7; is the age at the n-th occurrence of the (iyj)-
()
transition. The estimator is known as the Nelson-Aalen estimator. The estimator
was initially developed by Nelson and extended to event history models and
Markov processes by Aalen, who adopted a counting process formulation (see
Aalen et al. 2008, pp. 70ff). The Nelson-Aalen estimator corresponds to the
cumulative hazard of a discrete distribution, with all its probability mass concen-
trated at the observed ages at transition. The matrix A () is a matrix of step
functions with jumps at ages at transition.

. . N 1
The variance of the Nelson-Aalen estimator is &2(f) = ZT”<1

i ij—= n 2
(7))
(Aalen variance). The variance increases with ¢ The increment is

Aafj (Tl’j’) = W In large samples, the Nelson-Aalen estimator at age ¢ is
i(T§

approximately normally distributed. Therefore, the 95 % confidence interval is

A (1) £ 1.96 6 (1). If the sample size is small, the approximation to the normal
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distribution is improved by using a log-transformation giving the confidence inter-
val exp[InA (1) £ 1.96 6 ;(1)/ A ;(1)] (Aalen et al. 2008, p. 72).

Consider the employment careers of the ten individuals, shown in Table 2.1. To
track individuals at risk, ages at entry into observation and exit from observation
and ages at transition should be ordered. Individual 8 enters observation at age
14.00, followed by individual 3 at age 15.16. The first transition occurs at age 15.67
when individual 8 enters a period without a job. At that age, 2 individuals are at risk
of the JN transition (3 and 8). The Nelson-Aalen estimator of the cumulative
transition rate at that age is 2. The next event is at age 17.00 when individual
1 enters observation. Just before that age, individual 3 is at risk in J and individual
8 in N. At age 17.00, individual 1 joins 3 in J. The next event is at age 17.83 when
individual 9 enters observation. When individual 6 enters observation at age 18.17,
three individuals are in J and one in N. Individuals 4 and 7 enter observation at age
18.33. At age 18.67, individual 8 enters J again. Just before that age, he is the only
person in N and at risk of the NJ transition, while 6 individuals are in J. Hence, the
estimator of the hazard is 1. The next event is at age 18.75, when individual 3 leaves
J and enters a period without a job. At that age 7 individuals are in J and at risk of
the JN transition (1, 3, 4, 6, 7, 8, 9). The cumulative JN transition rate 1/2+
1/7=0.64. The Aalen variance is (1/2)2+ (1/7)220.270. At that age, three indi-
viduals have not yet entered observation and do not contribute to the cumulative
hazard estimation (2, 5 and 10). The cumulative transition rate increases to age
44.67 when individual 3 enters a period without a job. At that age, the cumulative
transition rate is 2.696 and the Aalen variance is 0.764. Table 2.2 shows the Nelson-
Aalen estimator based on data of the ten respondents. The columns are: (1) age at
entry into observation, exit from observation or transition, (2) the population at risk
just prior to the transition (nrisk), (3) occurrence of a transition (nevent),
(4) censoring (ncens), (5) the Nelson-Aalen estimator of the cumulative transition
rate (cumhaz) at the indicated age, (6) the Aalen estimator of the variance (var)
and (7) increment in the cumulative hazard (delta). The information is shown
each time a transition occurs or a respondent enters or leaves observation. The
number of events is less than the number of entries (10) + the number of exits (10)
+the number of JN transitions (13)+the number of NJ transitions (10), because
individuals 3 and 7 enter observation at the same time, individual 5 enters obser-
vation when individuals 6 and 9 experience a JN transition, and individuals 4 and
5 leave observation at the same age, as do individuals 7 and 10. The table is
produced by the mvna function of the mvna package. The last column is produced
by the etm function of the efm package (see below). The object d.10 is the
Biograph object for a selection of ten respondents, and D$D is an object with data
of ten respondents in mvna format. The following code is used:
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# Select 10 respondents and create Biograph object
idd <- ¢(1,2,67,76,82,96,99,180,200,208)

d.10 <- d3.a[d3.a$ID%in%idd, ]

D<- Biograph.mvna (d.10)

library (mvna)

library (etm)

tra <- matrix(ncol=2,nrow=2, FALSE)

tral[l, 2] <- TRUE

tral2,1] <- TRUE

na <- mvna (data=D$D,c("J","N"),tra, "cens")

etm.0 <- etm(data=DS$D,c("J","N"),tra,"cens",s=0)

gg.l <- data.frame (
round (na$"J N"$time, 4),
na$n.risk([,1],
unname (aperm(nas$n.event,c(3,2,1))I[,2,11),
nas$n.cens[,1],
round (na$"J N"S$na, 4),
round (na$"J N"S$var.aalen, 3),
round (aperm (etm.0S$delta.na,c(3,2,1))I[,2,11,4)

dimnames (gg.l) <- list

(1:37,c("age", "nrisk", "nevent", "ncens", "cumhaz", "var", "delta

"))

gg.2 <- data.frame (
round (na$"N J"S$time, 4),
naS$n.risk[,2] [naStime %in% na$"N J"Stime],
unname (aperm(nas$n.event,c(3,2,1))[,1,2]) [naStime %$in%
na$"N J"Stime],
nas$n.cens[,2] [na$time %in% na$"N J"Stime],
round (na$"N J"$na, 4),
round (na$"N J"S$var.aalen, 3),
round (aperm (etm.0S$delta.na,c(3,2,1))[,1,2] [na$time %in%
na$"N J"Stimel, 4))

dimnames (gg.2) <- list

(l:nrow(gg.2),c("age","nrisk", "nevent", "ncens", "cumhaz", "var

", "delta™))

The ten respondents enter observation at ages 14.00 (ID 180), 15.67 (ID 67),
17.00 (ID 1), 17.83 (ID 200), 18.17 (ID 96), 18.83 (ID 99), 19.17 (ID 208), 19.67
(ID 2) and 23.17 (ID 82) (see Table 2.1). They experience 13 JN transitions and
10 NJ transitions. At time of survey, 7 respondents had a job and 3 were without a
job. The youngest age at job exit is 15.67 years (ID 180). The youngest age at
survey is 30.42 (ID 76 and 82) and the highest is 52.67 (ID 1). Two respondents are
41.50 years at survey date, one (ID 99) has a job and one (ID 208) is without a job.

The time-continuous model of the counting process {N(t), >0} assumes that
not more than one transition occurs in an interval. In practice and in particular in
large samples, more than one individual may experience a transition in the same
time interval (e.g. same day). If multiple transitions occur in the same interval, their
times of occurrence are referred to as tied transition times. Tied transition times
may be a consequence of (a) grouping and rounding or (b) time (age) intervals that
are genuinely discrete. For instance, if instead of days or months, seconds are used
as time units, it is unlikely that more than one transition occurs at the same time
(age). If tied transition times are due to grouping and rounding, the interval may be
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Table 2.2 Nelson-Aalen estimator and Aalen variance of cumulative transition rates. GLHS,
subsample of ten respondents

Transition JN

age nrisk nevent ncens cumhaz var delta
1 14.0000 1 0 0 0.0000 0.000 0.0000
2 15.1667 1 0 0 0.0000 0.000 0.0000
3 15.6667 2 1 0 0.5000 0.250 0.5000
4 17.0000 1 0 0 0.5000 0.250 0.0000
5 17.8333 2 0 0 0.5000 0.250 0.0000
6 18.1667 3 0 0 0.5000 0.250 0.0000
7 18.3333 4 0 0 0.5000 0.250 0.0000
8 18.6667 6 0 0 0.5000 0.250 0.0000
9 18.7500 7 1 0 0.6429 0.270 0.1429
10 18.8333 6 1 0 0.8095 0.298 0.1667
11 19.1667 5 0 0 0.8095 0.298 0.0000
12 19.4167 6 1 0 0.9762 0.326 0.1667
13 19.6667 5 0 0 0.9762 0.326 0.0000
14 20.9167 6 1 0 1.1429 0.354 0.1667
15 21.0000 6 1 0 1.3095 0.382 0.1667
16 21.1667 5 0 0 1.3095 0.382 0.0000
17 21.5000 6 0 0 1.3095 0.382 0.0000
18 22.4167 7 0 0 1.3095 0.382 0.0000
19 22.5833 8 1 0 1.4345 0.397 0.1250
20 23.1667 7 2 0 1.7202 0.438 0.2857
21 24.5833 6 1 0 1.8869 0.466 0.1667
22 24.8333 5 0 0 1.8869 0.466 0.0000
23 25.1667 6 0 0 1.8869 0.466 0.0000
24 26.0000 7 1 0 2.0298 0.486 0.1429
25 28.1667 6 0 0 2.0298 0.486 0.0000
26 29.7500 7 0 0 2.0298 0.486 0.0000
27 30.4167 8 0 2 2.0298 0.486 0.0000
28 30.6667 6 0 0 2.0298 0.486 0.0000
29 31.0833 7 0 1 2.0298 0.486 0.0000
30 40.2500 6 1 0 2.1964 0.514 0.1667
31 41.2500 5 0 1 2.1964 0.514 0.0000
32 41.5000 4 0 1 2.1964 0.514 0.0000
33 41.9167 3 0 0 2.1964 0.514 0.0000
34 42.7500 3 0 1 2.1964 0.514 0.0000
35 44.6667 2 1 0 2.6964 0.764 0.5000
36 52.1667 1 0 0 2.6964 0.764 0.0000
37 52.6667 1 0 1 2.6964 0.764 0.0000
Transition NJ

age nrisk nevent ncens cumhaz var delta
1 17.0000 1 0 0 0.0000 0.000 0.0000
2 17.8333 1 0 0 0.0000 0.000 0.0000
3 18.1667 1 0 0 0.0000 0.000 0.0000
4 18.3333 1 0 0 0.0000 0.000 0.0000
5 18.6667 1 1 0 1.0000 1.000 1.0000
6 18.8333 1 0 0 1.0000 1.000 0.0000
7 19.1667 2 0 0 1.0000 1.000 0.0000
8 19.4167 2 0 0 1.0000 1.000 0.0000
9 19.6667 3 0 0 1.0000 1.000 0.0000
10 20.9167 3 1 0 1.3333 1.111 0.3333
11 21.0000 3 0 0 1.3333 1.111 0.0000
12 21.1667 4 1 0 1.5833 1.174 0.2500
13 21.5000 3 1 0 1.9167 1.285 0.3333
14 22.4167 2 1 0 2.4167 1.535 0.5000
15 22.5833 1 0 0 2.4167 1.535 0.0000
16 23.1667 2 0 0 2.4167 1.535 0.0000
17 24.5833 4 0 0 2.4167 1.535 0.0000
18 24.8333 5 1 0 2.6167 1.575 0.2000
19 25.1667 4 1 0 2.8667 1.637 0.2500
20 26.0000 3 0 0 2.8667 1.637 0.0000
21 28.1667 4 1 0 3.1167 1.700 0.2500
22 29.7500 3 1 0 3.4500 1.811 0.3333
23 30.4167 2 0 0 3.4500 1.811 0.0000
24 30.6667 2 1 0 3.9500 2.061 0.5000
25 31.0833 1 0 0 3.9500 2.061 0.0000
26 40.2500 1 0 0 3.9500 2.061 0.0000
27 41.2500 2 0 0 3.9500 2.061 0.0000
28 41.5000 2 0 1 3.9500 2.061 0.0000
29 41.9167 1 0 1 3.9500 2.061 0.0000
30 52.1667 1 0 1 3.9500 2.061 0.0000
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divided in even smaller intervals and the transition times (ages) ordered. The
increment in the Nelson-Aalen estimator of the cumulative hazard at age Tj; may
dy—1 1
k=0

" vi(ry) -~k
intervals are genuinely discrete, the increment in the Nelson-Aalen estimator at age

. ~ _d, . . . . .

T is AA u(Tz’;) =y where Y,(T7) is the population at risk just prior to the
interval and d, is the number of transitions recorded at age T7. In the presence of

be written as A A i (T,’]’ ) = (Aalen et al. 2008, p. 84). If the age

tied transition times, the variance of the Nelson-Aalen estimator needs to be
adjusted. When tied event times are a consequence of grouping or rounding, the

. . . . . d,—1 1
increment in the variance is Acsl-zj(T") = E —————— In case of

TR )

discrete age intervals, the increment in the variance is estimated by

A&%(T{}) = W Aalen et al. (2008, p. 85) report that the numerical
difference between the two approaches to tie correction is usually quite small,
and it is not very important which of the two one adopts.

(b) Parametric Method: Exponential and Piecewise Exponential Models

The Nelson-Aalen estimator is non-parametric. The shape of the hazard function
is not constrained in any way. In a parametric counting process model, the age
dependence of the transition rate is constrained, and consequently the waiting times
to a transition are constrained. It is assumed that there is a continuous-time process
underlying the data. In addition, the transition rate may depend on covariates.
Covariates are not considered in this chapter. Two models are considered in this
chapter. The first is the exponential model, which imposes a constant transition rate
and an exponential waiting time distribution. The second model is a piecewise
exponential model, which imposes piecewise constant transition rates. Transitions
rates are assumed to be constant in age intervals of usually 1 year. The transition
rates of consecutive age groups are unrelated, i.e. no restrictions are imposed on
how the piecewise constant rates vary with age. The estimation method therefore
combines a parametric approach (within intervals) and a non-parametric approach
(between intervals). Individuals are assumed to be independent and to have the
same instantaneous transition rate. In other words, transition times of the individ-
uals in the (sample) population are assumed to be independent and identically
distributed. The estimation of piecewise exponential models and occurrence-
exposure rates received considerable attention in the literature (see, e.g. Hoem
and Funck Jensen 1982; Tuma and Hannan 1984; Hougaard 2000; Blossfeld and
Rohwer 2002; Aalen et al. 2008; Van den Hout and Matthews 2008; Li et al. 2012).
Mamun (2003) and Reuser (2010), who study the effect of covariates on disability
and mortality, impose the restriction that the piecewise constant transition rates
(occurrence-exposure rates) increase exponentially with age. The result is a
Gompertz model with piecewise constant transition rates. The choice of model is
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determined by the age profile of transition rates (exponential increase) and data
limitations. Parametric models of transition rates covering the entire age range in
multistate models have been estimated too. Van den Hout and Matthews (2008)
estimate a multistate model in which the age dependence of transition rates is
described by a Weibull model, and Van den Hout et al. (2014) use a Gompertz
model. In demography, a variety of models are specified to describe age profiles of
transition rates in multistate models. For an overview of models, see Rogers (1986).

In the counting process approach, the likelihood function is written in terms of
the counting process (V;;(f) and the intensity process ;4;(f), where ¢ represents age.
The intensity process at age ? is 44;;(f) = yp;i(t) Y (¢). The indicator function ;Y (¢) is
1 if individual & is under observation and in state i at ¢ and O otherwise. The total
occupation time in state 7 is ;Y; = f{‘)’ «Yi(7) dz, with @ the highest age. If individuals
are independent, the intensity process at age 7 is 4;/(f) = ZkK: 1k4i(1), and A;(2)dt is
the number of (i,j)-transitions between ¢ and ¢+ dt, given the instantaneous transi-
tion rate and the exposure function. If in addition all individuals have the same
hazard rate, i.e. yu;;(t) = p;(?) for all k, then the survival times are independent and
identically distributed. The aggregate intensity process may be written as
Aij(t)=Zf:1k/1ij(t) = p;i(t) ZlekY,-(t) = p;i(1) Yi(t), where Y(f) is the number of
individuals under observation and in state i just before z. If the transition rate is
constant, then yu;;(f) = yu;; for all ¢ and the intensity process at ¢ is ;A;;(t) = g;; (Y ().
If the transition rate is piecewise constant during the age interval from x to x + 1,
if(t) = gyi(x) for x <t < x+ 1 and the intensity process at ¢ is A;;(f) = y;(x) 1Yi(£)
for x <t < x+ 1. The intensity of leaving state i at age ¢, irrespective of destination,
is pAi()=2;2i 1Ay{), which may be written as A,(t) =u(t) Yi(?), with
i) =3 j 2 i whi(D)-

Let @ denote the highest age in the study. A transition is observed if it occurs
before w. Individual k experiences V(@) occurrences of the (i,j)-transition from
0 to w. In addition, the observation is censored in state i or in another state. Hence,
the number of episodes of exposure is the number of transitions plus one. The
contribution of individual £ to the likelihood function is:

Ny @) s n{ . 2.
[H;_/l A (le-j) exp {_Jo A (T)dr” exp [—JO s (r)dr}

where ;T is the age at the n-th occurrence of the (7,j)-transition. Since the intensity
depends on the instantaneous transition rate and exposure, the likelihood function is
written in terms of the counting process ;N ;;(f) and its intensity process ;1;(¢) (Aalen
et al. 2008, p. 210). Notice that k/lg-(kTg-) = Ujj kY;’(kT;;-), with the at risk function
equal to one if individual £ is in state 7 just before the transition and O otherwise, and
A7 (1) = p; (Y7 (), with the at risk function equal to one if k is in i at 7. The last term
is the probability of surviving in state i between the age at last entry and age at
censoring. The intensity A{(7) depends on the instantaneous rate of leaving i/ and
the at risk function, which is zero except for 7 larger than or equal to the age of the
last transition and less than the age at censoring. In the traditional approach,
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integration is from the beginning of the period during which individual & is at risk of
the (i,j)-transition to the end of that period. In the first term, the end is the age at the
next occurrence; in the last term, it is the age at censoring. Hougaard (2000, p. 181)
derives the likelihood function following the traditional approach:

Nij(w)+1 n n ’\'53
|:Hf1/l i (kaj) }GXP [_J

0

[0

i (f)df}

where ;5}; is one if the at risk period ends in an (i,j)-transition and zero if it ends

because the observation is discontinued (censored). The counting process approach
to the likelihood function is (Aalen et al. 2008, p. 210):

[ s> exp || e

with (AN;(?) the increment of ;N;; at age ¢.
The full likelihood is

{H/:; [H0§[<m Mt/(f)AkNm} } exp [Jw A (T)df}

0

with 1,(7) the intensity process of the aggregated process N,(¢).
The log-likelihood is l(u;) =Y K_| 3% (ANi(t) In[i A (D] — [ § A7) dz. The

=
maximum likelihood estimator of y;; is the value of u;; for which the score function

o0
allzj

maximising the likelihood that the model predicts the data. In the exponential
model, 4;(f) = p;; 1 Y(t) and the first term of the log-likelihood is

In(u;) Y ,’f: 1 22 AN (D) = In(uy) Nijfw). The second  term is
,ul-j-jg)Y () dr=p;; R{w), with R(w) the total exposure time in state i for all
individuals in the (sample) population. The score function is
U(uy) = Ma(:”) = w — Ri(w). The solution of the equation U(u;;) =0 gives the

ij ij

maximum likelihood estimator of the transition rate: j; = N;(w)/R;(w). The

is zero: U (ﬂl,) = = 0. The score function is the first-order condition for

estimator is the observed number of transitions (occurrences) divided by the total
duration at risk (exposure). The estimator is an occurrence-exposure rate.

In large samples, the estimator f ; is approximately normally distributed around
the true value of y;;, with the variance estimator ﬂiiz/N,'j(a)) = jt;;/Ri(®). To
improve the distribution for i ;, the logarithmic transformation is used. Only ten
transitions are needed for ln( i l-j) to be approximately normally distributed around
In(y;;) with variance estimator 1/N;{(w) (Aalen et al. 2008, p. 215).

The cumulative transition rate under the exponential model (occurrence-
exposure rate) increases linearly with duration. The empirical cumulative transition
rate (Nelson-Aalen estimator) is a step function (Andersen and Keiding 2002,
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p- 100). The two estimators are usually close. To improve the approximation, the
age interval from O to @ may be partitioned in subintervals and the occurrence-
exposure rate estimated for each subinterval. The exponential model turns into a
piecewise exponential model with piecewise constant transition rates. That is the
common approach in demography, where an age interval is usually 1 year. The
estimator of the transition rate and the variance, given above, is applied to each
subinterval. Consider the aggregate counting processes N;(f) and Y,(t) and sub-
intervals from exact age x to exact age y (y not included). Age intervals are usually
1 year, but a more general interval is chosen here. The transition rate, which
is constant in the interval, is denoted by pu;(x,y). The observed number of
(i,j)-transitions during the interval is N;(x,y), and the observed exposure time in
state i is R;(x,y). Following Aalen et al. (2008, pp. 220ff), the score function is

. . 00| p;i(x, (x.
solved. The score function is U [p;(x,y)] = g%’((\}y))] = I:fféx yy))

Nif(x,y) = J"{‘)’I,:,-(T)le-j(T)dT and R;(x,y)= jg’l,:,-(f)Y {(t)dr with I;(r) an indicator
function taking the value of one in the interval from x to y and a value of zero
otherwise.

The maximum likelihood estimator of the transition rate from i to j during the
interval from x to y is the occurrence-exposure rate f ;(x,y) = Ny(x,y)/Ri(x,y).
Occurrence-exposure rates are approximately independent and normally
distributed around their true values, and the variance of /i ;(x, y) can be estimated by

— R;(x,y), where

fi ;j(x,y)/Ri(x, ) or the logarithmic transformation var{ In[ /i ;(x,y)] } = 1/N;(x,y).
In demography, epidemiology and actuarial science, transition rates are usually
occurrence-exposure rates and are determined by dividing occurrences by expo-
sures. In the absence of exposure data, exposure is approximated by the product
of the mid-period population and the length of the period, a method also used by
Aalen et al. (2008, p. 222).

By way of illustration of the method, aggregate transition rates and age-specific
transition rates are estimated from the subsample of 201 individuals, entering
observation at labour market entry. The analysis focuses on transitions between
job episodes and episodes without a job. Transitions between jobs are omitted.
Biograph and some additional calculations produced the main results reported in
this section. The results are compared to those generated by the msm package for
multistate modelling. The 201 individuals experience 504 episodes (323 job epi-
sodes and 181 episodes without a job). The total observation time between first job
entry and survey is 4,668 person-years (3,397 person-years in J and 1,271 person-
years in ). The sample population experienced 303 transitions during the obser-
vation period (181 JN transitions and 122 NJ transitions). The JN transition rate is
181/3,397 =0.0533 per year and the NJ transition rate is 122/1,271 =0.0960
per year. To determine the 95 % confidence interval of the occurrence-exposure
rate, the log-transformation of the estimator is used: exp [ln( i ,J) +1.96 \/1/Nj|.

The confidence interval around the JN transition rate is
exp [1n(0.0533) +1.96 \/1/181], which is (0.0461, 0.0617). The confidence
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interval around the NJ transition rate is exp [In(0.096) +1.96%+/1/ 122} , which is

(0.0804, 0.1146). Bootstrapping, i.e. sampling the original 201 observations with
replacement, with 100 bootstrap samples, produces a JN transition rate of 0.0535
with confidence interval (0.0452, 0.0636) and a NIJ transition rate of 0.0977 with
confidence interval (0.0701, 0.1264). Five hundred bootstrap samples yield a JN
transition rate of 0.0534 with confidence interval (0.0.0451, 0.0629) and a NJ
transition rate of 0.0973 with confidence interval (0.0729, 0.1254). Bootstrapping
produces confidence intervals that are somewhat larger than the analytical method.

The package msm produces the same estimates and confidence intervals. The
code is:

library (msm)
d <- Remove.intrastate (GLHS)
dd <- ChangeObservationWindow.e
(Bdata=d,entrystate="J",exitstate=NA)
data <- date_b (Bdata=dd, selectday=1, format.out="age",
covs=c ("marriage", "LMentry"))
Dmsm <- Biograph.msm(data)
twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2))
crudeinits.msm(state ~ date, ID, data=Dmsm,
gqnatrix=twoway2.q)
GLHS.msm.y <- msm( state ~ date,
subject=ID,
data = Dmsm,
use.deriv=TRUE,
exacttimes=TRUE,
gqmatrix = twoway2.q,
obstype=2,
control=1list (trace=2,REPORT=1,
abstol=0.0000005),
method="BFGS")

The first line removes transitions between jobs. The second line changes the
observation window: observation starts at labour market entry (first job) and ends at
interview. The third line converts dates in CMC into ages. The fourth line converts
the Biograph object data to the long format required by the msm package. The
fifth and sixth lines generate initial values for transition rates. The next line calls the
msm function for estimating the transition rates. Object GLHS . msm. y contains the
estimates and the 95 % confidence intervals, with the row variable denoting origin
and the column variable destination. State 1 is J and state 2 is N.

State 1 State 2
State 1 -0.05328 (-0.06164,-0.04606) 0.05328 (0.04606,0.06164)
State 2 0.09602 (0.08041,0.1147) -0.09602 (-0.1147,-0.08041

As expected, the 95 % confidence intervals produced by the msm package are the
same as computed above. The msm package includes a function (boot) that uses
bootstrapping to produce estimates, standard errors and confidence intervals.
Bootstrapping, with 100 bootstrap samples, produces the following estimates and
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confidence intervals: 0.0532 for the JN transition rate, with 95 % confidence
interval (0.0453, 0.0621), and 0.0988 for the NJ transition rate, with 95 % confi-
dence interval (0.0755, 0.1294).

Consider the piecewise constant exponential model with age intervals of 1 year.
The input data are transition counts (occurrences) and exposures by single year of
age for the 201 respondents. Transition counts and exposure times are shown in
Table 2.3. Column JN shows the number of transitions from J to N and PY is the
exposure time. The table also shows the state occupancies at birthdays (Occup)
and the number of observations censured by age (cens). The estimate of the
transition rate is r.est and the 95 % confidence interval is (r.L95, r.U95).
The estimate and the confidence interval are obtained using the analytical method.
Bootstrapping produces the estimate b. est and the confidence interval (b.L95,
b.U95). The cumulative transition rate is cumrate. Consider age 30. Of the
201 individuals, 198 are under observation at that age; 138 have a job on their 30th
birthday and 60 are without a job. For 3 individuals, the information is missing.
Two did not reach age 30 yet when observation ended at age at interview (ID 45 and
115) and one entered labour force and observation after age 30 (ID 49). Together,
the individuals spent 127.75 years in state J and 56.58 years in state N between the
30th and 3 1st birthdays. Notice that an individual in state J on his 30th birthday may
spend some time in state N before reaching age 31. At age 30, 2 individuals
experienced a JN transition and 3 an NJ transition. At that age, the JN transition
rate is 2/127.75=0.0157 and the NJ transition rate is 3/60.25=0.0530. In
Table 2.3, r . est denotes the estimator of the transition rate. The 95 % confidence

interval around the JN transition rate at age 30 is exp [1n(0.0157) +1.96%+/1/ 2] ,
which is (0.0039, 0.0626). The confidence around the NJ transition rate at age 30 is
exp [111(0.0530) +1.96 % /1 /3}, which is (0.0171,0.1644). In the table, r.L95

denotes the lower bound and r.U95 the upper bound. The table also shows
estimated transition rates (b.est) and confidence intervals (b.L95 and b.U95)
obtained by bootstrapping with 100 bootstrap samples. The bootstrap standard
errors are generally larger than the asymptotic standard errors, but it is not always
the case in the table because of the relatively small number of bootstrap samples.

The cumulative JN transition rate at age 30 is 1.3455, and the cumulative NJ
transition rate is 3.2957.

Biograph produced several of the figures in Table 2.3. The state occupancies at
birthday are produced by the Occup function, the transitions by the Trans
function and the transition rates and cumulative rates by the Rates . ac function.

Biograph tracks individual transitions and state occupancies (exposure times).
The purpose of tracking individuals is to show an individual’s contribution to
transition counts and exposure times. Consider individual with ID 76. The data
are shown in Table 2.1 and the employment career in Fig. 2.1. Table 2.4 shows the
states occupied at all birthdays between first job and survey date and the exposure
times by age. At exact age 18, the individual is not under observation yet (state -).
He enters observation at age 18.333, when he gets his first job. Between the 18th



2.2 Transition Rates

27

Table 2.3 Piecewise constant exponential model: occurrences, exposures and transition rates.
GLHS, 201 respondents

State J
Occup

13 0
14 6
15 28
16 37
17 52
18 95
19 123
20 146
21 138
22 141
23 151
24 151
25 143
26 135
27 129
28 135
29 134
30 138
31 120
32 102
33 84
34 86
35 84
36 87
37 86
38 88
39 90
40 88
41 74
42 62
43 53
44 53
45 51
46 52
47 52
48 52
49 52
50 51
51 24
52 7
53 0
State N

Occup

13 0
14 0
15 2
16 5
17 9
18 7
19 13
20 14
21 32
22 38
23 38
24 42
25 51
26 59
27 67
28 64
29 66
30 60
31 53
32 45
33 46
34 44
35 46
36 43
37 44
38 42
39 40
40 41
41 33
42 28
43 22
44 22
45 24
46 23
47 23
48 23
49 23
50 22
51 13
52 5
53 0
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Table 2.4 State occupancies and state occupation times. Individual with ID 76

- JN + - J N +
181 00 0 0.333 0.500 0.167 0.000
190 010 0.000 0.000 1.000 0.000
2000 01 0 0.000 0.083 0.917 0.000
2101 0 0 0.000 1.000 0.000 0.000
2201 00 0.000 1.000 0.000 0.000
23 01 00 0.000 1.000 0.000 0.000
24 01 0 0 0.000 0.750 0.250 0.000
25 01 0 0 0.000 1.000 0.000 0.000
26 01 0 0 0.000 1.000 0.000 0.000
2701 0 0 0.000 1.000 0.000 0.000
28 01 00 0.000 1.000 0.000 0.000
2901 0 0 0.000 1.000 0.000 0.000
3001 00 0.000 0.417 0.000 0.583
31 0001 0.000 0.000 0.000 1.000

and 19th birthday, respondent with ID 76 spends 0.333 years before observation
(in state -), 0.5 years in J and 0.167 years in N. At age 30, he spends 0.417 years in J
and 0.583 years in the state ‘censored’. The tracking of individual transitions and
exposures is necessary for a correct estimation of transition rates and is a central
aspect of the counting process approach. If ;(x) is an estimate of the rate of
transition from 7 to j between exact ages x and x+ 1, then the contribution of the
individual to the likelihood function is 7 ;(x) exp|[—7n;(x)] if the individual
experiences a transition between x and x+ 1 and exp[— rh,-j(x)] if he experiences
no transition. The best estimate of m;;(x) is the one that maximises the likelihood
function for all individuals combined.

2.3 Transition Probabilities and State Occupation
Probabilities

In multistate modelling, distinct types of probabilities have been identified (see,
e.g. Schoen 1988, pp. 81ff). Survival probabilities, transition probabilities and state
occupation probabilities are well known. They relate to the state occupied at a given
age or at given ages. An event probability is the probability that a given transition
occurs at least once during a given period. The cumulative incidence, which is
frequently used in epidemiology and health sciences, is an event probability. If the
destination state is an absorbing state, e.g. dead, the transition probability and the
event probability are the same. Otherwise they differ. The probability types are
discussed in some detail. In this section and the following sections, age is denoted
by x and y. State and transition probabilities are denoted by p and event probabilities
by z. The matrix of transition probabilities between ages x and y is P(x,y), and the
vector of state probabilities at x is p(x). The probability of a continuous stay in a
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state between ages x and y will be denoted by S(x,y). It is the survival probability in
the state; it is the probability of nonoccurrence of an event (exit from the state).

The survival probability at age x is the probability of being alive at that age. In
some fields, such as demography, dead is usually not a separate state in the state
space. It is an absorbing state that is integrated in the diagonal of the transition
matrix. The probability of being alive is the probability of being in any of the states
of the state space. In medical statistics, the absorbing state of dead is usually a
separate state of the state space. In that case, the survival probability is the
probability of being in a transient state. Unless specified otherwise, the state
occupation probability at age x is the probability of occupying a given state at
age x, conditional on being in any of the states of the state space at x, i.e. conditional
on still being part of the population. The transition probability is the probability of
occupying a given state at age y, conditional on occupying a given state at age
x with y >x. All probabilities are derived from transition rates. Before deriving
probabilities from rates, probability types are discussed. Probabilities are defined
for periods. A period may be delineated by two ages, two transitions or by an age
and a transition. The delineation results in periods of fixed or variable length.
Probabilities may be conditional on being in a given state or having experienced
a transition.

Probabilities are computed at a reference age. The reference age indicates the
position of the observer in the life course. The reference age is particularly relevant
in the presence of mortality or when the probability is conditional on the state
occupied at the reference age. For instance, the probability of experiencing a period
without a job between ages 30 and 40 is likely to differ between persons employed
at age 30 and persons employed at age 25, but not necessarily at age 30. At age
30, the latter category may have a job or may be without a job. The difference is due
to competing events between ages 25 and 30. In medical statistics, the reference age
x from which a transition probability is estimated is known as the landmark time
point or age and the method to select a range of reference ages as the landmark
method. Individuals who experience the transition of interest before the landmark
time point or who leave the population at risk for another reason (e.g. censoring)
are removed from the data (Van Houwelingen and Putter 2008; Beyersmann
et al. 2012, p. 187). The landmark method is used for dynamic prediction (van
Houwelingen and Putter 2011). The central idea of dynamic prediction is that, by
increasing the reference age, time-varying covariates may be updated with more
recent values and predictions adjusted.

If a period is delineated by two ages, the first age is denoted by x and the second
by y (y > x). The probability of a transition, an event or a continuous stay in a given
state between ages x and y depends on competing events before and during the
period. To exclude the effect of competing events before x, the probability is
computed at age x. If the impact of competing events before x needs to be accounted
for, the probability is computed at an age lower than x. For instance, the probability
of impairment after age 65 depends on the likelihood of surviving to 65. It is higher
if computed at 65 than at age zero. Probabilities are computed for individual &, but
the reference to & is omitted for convenience.
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The probability that an individual who is in state i on his x-th birthday will be in
state j at age y is the transition probability p;(x, y). It may be written as p;;(x,y) = Pr
(X(y) =jl1X(x) =1), where X(x) is a random variable denoting the state occupied at
age x. The transition probability depends on the life history. If the life history is
represented by ©, that dependence is denoted by p;;(x,y) =Pr(X(y) = jIX(x) =i, ©).
That dependence is omitted in this section on the derivation of probabilities.
The time scale is continuous (¢ is a continuous variable). The process is time-
homogeneous if the transition probability p;i(x, y) only depends on the age differ-
ence y—x and not on age x. In life history data analysis with age as the time scale,
the process is time-inhomogeneous. Age matters. Transition probabilities defined
for the age interval from x to y are combined in a matrix of transition probabilities:

pu(xy) palx,y) . . pu(xy)

Pi2(%,y) pnl%y) - . pplxy)
P(x,y) = ) ) .o .

Pu(;fa)’) P21(;C7)’) P11(;Ca)’)

where p;;(x, y) is the probability that an individual who is in state i at age x will also
be in state i at age y. Between x and y, the individual may move out of i and return
later but before y. The reason for using matrices is that, except for a few simple
cases, transition probabilities depend on all transition intensities and that requires
systems of equations, which are conveniently written as matrix equations.

The interval from x to y may be partitioned into smaller intervals:
X=Xx9<X; <Xy ... < xp=Yy. The transition probability matrix P(x,y) may be
written as a matrix product:

P(x,y) = P(xo,x1) P(x1,x2) P(x2,x3) .. .. P(xp_1,xp)

The equation is the Chapman-Kolmogorov equation for the Markov process. If the
number of time points increases and the distance between them goes to zero in a
uniform way, the matrix product approaches a limit termed a (matrix-valued)
product integral. The product integral is a counterpart of the usual integral in
classical calculus.

State occupation probabilities at age y are derived from transition probabilities
P(x,y) and state probabilities at age x. Let p(x) denote the vector of state probabil-
ities at exact age x. The state probabilities at age y are P(x,y) p(x).

To show the link between transition probability and (cumulative) transition rate,
consider the infinitesimally small interval from 7 to 7+dz with x <7 <y. The
transition probability may be expressed in terms of increments of cumulative
transition rates. The cumulative transition rates at age ¢ may be arranged in a
matrix:
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A]l(T) _A2I(T) . . —A]l(T)

—A12(T) Azz (T) . . —Au (T)
A7) =

—Au(e) —Am(e) . . Aulx)

An element A;(7) denotes the cumulative rate at age 7 of the transition from i to j.
The diagonal element A;(r) is the cumulative rate at age 7 of leaving i:
A;(t) =3 j+; A;(r). The cumulative transition rate can be a step function, with a
jump at each age a transition occurs, or a continuous function. The increment of
A;(r) during the interval from 7 to t+dr is dA;(r). The probability that the
individual who is in i at 7 will be in j at 7+dz is p;(r,7+dr)~dA;(r). The
probability that an individual who is in i at z will be in i at 7 +dr is p;(z,7+d7r) =
1 =% ;2pi(r,7+dr)~1~3 ;. dA;(r). The matrix of transition probabilities
between ages x and y, expressed in terms of the transition probabilities in small
subintervals, is

P(x,y) = HXSTQVP(T, T4 dr) & H&q [ — dA(7)]

The equation is the solution to the Chapman-Kolmogorov equation. No assumption
is made on the nature of the distribution of the transition probability (Aalen
et al. 2008, p. 470). The distribution can be discrete or continuous. The product
integral is a restatement of the Chapman-Kolmogorov equation.

If transition rates are continuous functions of age, then dA;(r) = u;(r)dr and
dA(z) = p(r)dr. The quantity p;i(7)dr is the probability that an individual who is in
i at 7 will move to j during the interval of length dz p;(z, v + dr) = p;/(r)dz. Since the
interval is sufficiently small to ensure not more than one transition, a move from i to
J implies that the individual will be in j at 7+ dz. The probability of remaining in
i during the interval of length dr is p;(r,7+dr)=1—73 ;. u;(r)dr. The matrix
expression linking the matrix of transition probabilities during the interval from 7 to
7+dr to the matrix of instantaneous transition rates is P(z,7z+d7r) =1— p(r)dr,
where I is the identity matrix and

pi(t)  —pu(z) - . —up(e)

—pia(7)  pp(7) . . —pp(7)
n(r) =

un®) (@) .. (o)

with p;i(z) =3 ;. (7). If the instantaneous transition rates are continuous func-
tions of age, P(x,y) =[] v <. <,(I — p(r)dr]

In the literature, the instantaneous transition rate matrix has different configura-
tions. The configuration used in this chapter is common in demography. The first
subscript denotes the origin and the second the destination. In statistics, the
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off-diagonal element is the transition rate instead of minus the transition rate, and
the matrix is the transpose of the matrix shown here. The reasons for choosing the
configuration become clear later.

If the transition probability is a continuous function of age, a system of differ-
ential equations links transition probabilities and transition rates. The differential
equations are derived from the Chapman-Kolmogorov equation. Recall that we
may write

P(x,y) = P(x,7) P(z,y)
Subtraction of P(z, y) from both sides of the equation and dividing by z—x yields

P(xvy) - P(Tvy) [P<x’ T) B I]P(T,y)

T—X T—X
and
P(x,y) — P P(x,7) — I|P(z,
i POoy) —P(ry) o [Plx7) —1]P(zy)
T—X T—X T—X T—X
Since lim,_., P(’;f“)xfl = —p(x), we obtain the differential equation
dP
") P

The differential equation describes continuous-time nonhomogeneous Markov
processes. In physics, the equation is known as the master equation. In the social
sciences, the master equation is less well known, but some important applications
(under that name) exist (see, e.g. Weidlich and Haag 1983, 1988; Aoki 1996;
Helbing 2010). Aoki summarises the significance of the master equation as follows:
‘The master equations describe time evolution of probabilities of states of dynamic
processes in terms of probability transition rates and state occupancy probabilities’
(Aoki 1996, p. 116).

To solve the matrix differential equation, we may try to generalise the solution of
d;zfx) _

X

the scalar differential equation —u(x) p(x). The solution, given the interval
from x to y, is p(x, y) = exp[— | Ju(7)dz], with p(x,y) the probability that an individ-
ual who is alive at age x will be alive at age y and u(7) the instantaneous death rate at
age 7. The generalisation P(x,y) = exp[— [Yp(r)dz] does usually not work, how-
ever. It works only if the matrices of instantaneous transition rates commute, i.e. if
the matrix multiplication p(z)pu(z +dr) = p(r + dr)p(r) for all 7.

To solve the system of differential equations, it is replaced by a system of
integral equations:
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P(x,y)=1- Jy n(z)P(x,7)de

X

This equation is essentially a system of flow equations of the multistate model. The
element p;(x, y) of P(x,y) is:

y

y
DI T D SIS

pij(x,y) = pyj(x,x) — Zq#- djg(r. 7 +d7) + Zq#- dy(z, 7 +dr)

szj(an) = pij(xvx) - J

i (x, y) represents the number of moves or direct transitions from state j to state
g between the ages x and y by an individual in state i at exact age x. The sum is the
number of exits from state j by persons in i at x. The last term is the number of
entries into state j by persons in 7 at x.

To derive an expression involving transition rates during the interval from x to y,
we write

P(x,y)=1- Uyu(T)P(x, T)dT:| UyP(x,T)dr}l UyP(x,T)dT}

X X

P(Xay) =I- m(xvy)L(Xay)

where m(x,y) is the matrix of transition rates. An element m;(x,y) (j#i) is the
average transition rate during the interval from x to y and the diagonal element is the
rate of leaving i: m;(x,y) =7 ;. m;{(x,y). Schoen (1988, p. 66) shows the same
matrix equation and points to the link with the flow equations commonly used in
demography.

Transition probabilities serve as input in the computation of state occupation
probabilities. Let p,(y) denote the probability that an individual who is alive at age
y is in state i at that age and let p(y) denote the vector of state occupation
probabilities at age y. The state probabilities at age y depend on state probabilities
at an earlier age and transition probabilities, e.g. p(y) =P(x, y) p(x). This equation
may be applied recursively to determine state occupancies at consecutive ages.
Consider age intervals of 1 year. If the state occupation probabilities at birth are
given and the transition probabilities P(x,x+ 1) are known for 0 <x <z—1, with
z the start of the highest, open-ended age group, then a recursive application of
p(x+1)=P(x,x+1) p(x) with 0 <x < z—1 produces state occupation probabilities
by single years of age from birth to the highest age.

The estimation of transition probabilities from data relies on the Nelson-Aalen
estimator if the waiting time distribution of a transition is not constrained and on the
occurrence-exposure rate if the waiting time distribution is (piecewise) exponential.
The two approaches are considered in the remainder of this section. Some packages
for multistate modelling, e.g. etm and mstate, adopt the non-parametric method
assuming that the multistate survival function is a step function and estimate the
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empirical transition matrix, while other packages, e.g. msm and Biograph, adopt the
parametric method assuming that the underlying multistate process is continuous
but transition rates are (piecewise) constant.

(a) Non-parametric Method

A logical estimator of P(xy) is P (x,y) = H [I—dA(r)}. Since the

x<t<y
estimator A (7) is a matrix of step functions with a finite number of increments in
the (x,y)-interval, the product integral is the finite matrix product:

P(x,y) = ngn<y [1-AA(T,)]

The matrix P (x,y) is the empirical transition matrix, often denoted as the Aalen-
Johansen estimator. It is a non-parametric estimator, which generalises the Kaplan-
Meier estimator to Markov chains (Aalen et al. 2008, p. 122). The diagonal element
is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is
the probability that an individual who is in i at age x will also be in i at age y. The
state may be left and re-entered during the interval. The Kaplan-Meier estimator is
an estimator of the probability that an individual who is in i at age x will remain in
i at least until age y. The state may not be left during the interval. The Kaplan-Meier

Zj#iANU(T’l)

estimator is ng”q 1—- W .

For the covariance of the empirical transition matrix, see Aalen et al. (2008).

Consider the selection of the GLHS data on ten individuals. The Aalen-Johansen
estimator of the transition probabilities are derived from the Nelson-Aalen estima-
tor of the cumulative transition rates shown in Table 2.2. Consider the transition
probability between ages 14 and 18.833. At age 14, individual 8 (ID = 180) enters
his first job and enters observation. He leaves the first job at age 15.667 (see
Table 2.1, JN transition). At that age, individual 3 (ID = 67) had entered observa-
tion (at age 15.167). The empirical probability of transition from J to N between
ages 14 and 15.667 is (1—1/2) =0.5. The probability that the individual is without a
job at age 18.833 is 28.57 %. It is computed by the matrix multiplication:

[ — dA(15.667)] * [I — dA(18.167)] * [I — dA(18.750)] * [I — dA(18.833)] =
0500 07 [1 177[0.857 0][0833 0] [0.714 0714
0500 1] [0 0] [0.143 1] [0.167 1] [0.286 0.286

Table 2.5 shows the results. The column etm.est gives the probability of an
occurrence before ¢ and etm.var gives the variance. The probability of no
occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator
of the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier
estimator are discrete distributions with their probability mass concentrated at the
observed event times. The link between the cumulative hazard estimator and the
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Kaplan-Meier estimator relies on the approximation of the product integral. The
product integration is the key to understanding the relation between the Nelson-
Aalen and the Kaplan-Meier estimators (Aalen et al. 2008, p. 99 and p. 458). The
column delta shows the increments of the cumulative hazard. The probability
that an individual who is in state J at age 14 will be in state N at age 25 is 43.27 %.
The estimate is based on all transitions before age 25, the last one at age 24.833. The
probability of being in J at age 25 is the same as the probability of being in J at age
24.833, since in the sample population no transition occurred between ages 24.833
and 25. Recall that the elements of the empirical transition matrix are step functions
with constant values between transition times. The probability that a 20-year-old
individual who is in state J will be in N at age 25 is 41.52 %.

The etm function of the etm package computes the Aalen-Johansen estimator of
the transition probability matrix of any multistate model. The entries of the Aalen-
Johansen estimator are empirical probabilities. The etm package is used to produce
the results shown in Table 2.5. The results are for a selection of the ten respondents
used for illustration of the Nelson-Aalen estimator. The code is:

library (etm)

D<- Biograph.mvna (d.10)

tra <- attr(D$D,"param")Strans possible

etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)

The covariance matrix of the empirical transition matrix is derived using mar-
tingale theory (Aalen et al. 2008, pp. 124ff). The Aalen-Johansen estimator along
with event counts, risk set, variance of the estimator and confidence intervals can be
obtained through the summary function of the etm package:

summary (etm.0) $"J N"
summary (etm.0) $"N J"

The confidence interval is computed without transformation of the data. Trans-
formations can be specified, however (see Beyersmann et al. 2012, p. 185).

Respondents enter observation when they start their first job. The probability of
being employed at the highest age in the sample population (53) depends on the
employment status at lower ages. An individual with a job at age 14 has a 37 %
chance of also having a job at age 53. The percentage is the same for a person with a
job at age 18. An individual with a job at age 30 has a 42 % chance of having a job at
age 53. Because employment status varies with age the probability of being in a
given state at a given higher age varies with age too. By varying the reference age,
the changes in probabilities can be assessed. The selection of a range of reference
ages is the basic idea of the landmark method. In this example, the end state is a
transient state. In the landmark method, the end state is an absorbing state. In
multistate life table analysis, the method of selecting different reference ages and to
estimate transition probabilities conditional on states occupied at a reference age is
known as the status-based life table (Willekens 1987).
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Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of ten individuals

JN transition

age nrisk nevent etm.est etm.var surv
1 14.00000 1 0 0.0000000 0.000000000 1.0000000
2 15.16667 1 0 0.0000000 0.000000000 1.0000000
3 15.66667 2 1 0.5000000 0.125000000 0.5000000
4 17.00000 1 0 0.5000000 0.125000000 0.5000000
5 17.83333 2 0 0.5000000 0.125000000 0.5000000
6 18.16667 3 0 0.5000000 0.125000000 0.5000000
7 18.33333 4 0 0.5000000 0.125000000 0.5000000
8 18.66667 6 0 0.0000000 0.000000000 1.0000000
9 18.75000 7 1 0.1428571 0.017492711 0.8571429
10 18.83333 6 1 0.2857143 0.029154519 0.7142857
11 19.16667 5 0 0.2857143 0.029154519 0.7142857
12 19.41667 6 1 0.4047619 0.032056473 0.5952381
13 19.66667 5 0 0.4047619 0.032056473 0.5952381
14 20.91667 6 1 0.3690476 0.028351420 0.6309524
15 21.00000 6 1 0.4742063 0.028903785 0.5257937
16 21.16667 5 0 0.3556548 0.026799238 0.6443452
17 21.50000 6 0 0.2371032 0.021280425 0.7628968
18 22.41667 7 0 0.1185516 0.012347346 0.8814484
19 22.58333 8 1 0.2287326 0.020075818 0.7712674
20 23.16667 7 2 0.4490947 0.027585427 0.5509053
21 24.58333 6 1 0.5409123 0.026181931 0.4590877
22 24.83333 5 0 0.4327298 0.026119191 0.5672702
23 25.16667 6 0 0.3245474 0.023469628 0.6754526
24 26.00000 7 1 0.4210406 0.025223801 0.5789594
25 28.16667 6 0 0.3157805 0.022498163 0.6842195
26 29.75000 7 0 0.2105203 0.017385650 0.7894797
27 30.41667 8 0 0.2105203 0.017385650 0.7894797
28 30.66667 6 0 0.1052602 0.009886262 0.8947398
29 31.08333 7 0 0.1052602 0.009886262 0.8947398
30 40.25000 6 1 0.2543835 0.025396927 0.7456165
31 41.25000 5 0 0.2543835 0.025396927 0.7456165
32 41.50000 4 0 0.2543835 0.025396927 0.7456165
33 41.91667 3 0 0.2543835 0.025396927 0.7456165
34 42.75000 3 0 0.2543835 0.025396927 0.7456165
35 44.66667 2 1 0.6271917 0.075842235 0.3728083
36 52.16667 1 0 0.6271917 0.075842235 0.3728083
37 52.66667 1 0 0.6271917 0.075842235 0.3728083
NJ transition

age nrisk nevent etm.est etm.var surv
1 14.00000 0 0 0.0000000 0.000000000 1.0000000
2 15.16667 0 0 0.0000000 0.000000000 1.0000000
3 15.66667 0 0 0.0000000 0.000000000 1.0000000
4 17.00000 1 0 0.0000000 0.000000000 1.0000000
5 17.83333 1 0 0.0000000 0.000000000 1.0000000
6 18.16667 1 0 0.0000000 0.000000000 1.0000000
7 18.33333 1 0 0.0000000 0.000000000 1.0000000
8 18.66667 1 1 1.0000000 0.000000000 0.0000000
9 18.75000 0 0 0.8571429 0.017492711 0.1428571
10 18.83333 1 0 0.7142857 0.029154519 0.2857143
11 19.16667 2 0 0.7142857 0.029154519 0.2857143
12 19.41667 2 0 0.5952381 0.032056473 0.4047619
13 19.66667 3 0 0.5952381 0.032056473 0.4047619
14 20.91667 3 1 0.6309524 0.028351420 0.3690476
15 21.00000 3 0 0.5257937 0.028903785 0.4742063
16 21.16667 4 1 0.6443452 0.026799238 0.3556548
17 21.50000 3 1 0.7628968 0.021280425 0.2371032
18 22.41667 2 1 0.8814484 0.012347346 0.1185516
19 22.58333 1 0 0.7712674 0.020075818 0.2287326
20 23.16667 2 0 0.5509053 0.027585427 0.4490947
21 24.58333 4 0 0.4590877 0.026181931 0.5409123
22 24.83333 5 1 0.5672702 0.026119191 0.4327298
23 25.16667 4 1 0.6754526 0.023469628 0.3245474
24 26.00000 3 0 0.5789594 0.025223801 0.4210406
25 28.16667 4 1 0.6842195 0.022498163 0.3157805
26 29.75000 3 1 0.7894797 0.017385650 0.2105203
27 30.41667 2 0 0.7894797 0.017385650 0.2105203
28 30.66667 2 1 0.8947398 0.009886262 0.1052602
29 31.08333 1 0 0.8947398 0.009886262 0.1052602
30 40.25000 1 0 0.7456165 0.025396927 0.2543835
31 41.25000 2 0 0.7456165 0.025396927 0.2543835
32 41.50000 2 0 0.7456165 0.025396927 0.2543835
33 41.91667 1 0 0.7456165 0.025396927 0.2543835
34 42.75000 0 0 0.7456165 0.025396927 0.2543835
35 44.66667 0 0 0.3728083 0.075842235 0.6271917
36 52.16667 1 0 0.3728083 0.075842235 0.6271917
37 52.66667 0 0 0.3728083 0.075842235 0.6271917
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The following code computes the Aalen-Johansen estimators of the transition
probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al. 2012,
p. 187):

age. points <- c¢(18,25,30,35)
landmark.etm <- lapply (age.points,
function (reference.age)
{etm(data=D$D,
state.names=c ("J","N"),
tra=tra, "cens",
s=reference.age) })

The landmark method is also implemented in the dynpred package (Putter,
2011Db). It is the companion package of Van Houwelingen and Putter (2011).

State occupation probabilities are derived from transition probabilities. Because
all individuals are initially in J, the probability of being in state N is the transition
probability JN with the youngest age as reference age (compare with Beyersmann
et al. 2012, p. 190). In the subsample of ten individuals, the probability of
occupying state J at age 30 is 78.95 %, and the probability of being in N is
21.05 % (Table 2.5). The 95 % confidence intervals are (0.531, 1.000) (0.7895

£1.96/0.017 ) and (0.000, 0.469) (0.2105 + 1.964/0.017 ), respectively. The
following code produces these results:

dd=Biograph.mvna (d.10)
etm(data=dd$D,c("J","N"), tra, "cens", s=0)
summary (etm.0) $"J N"[26, c("P","lower", "upper")
summary (etm.0) $"N J"[26, c("P","lower", "upper")

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the
age index associated with the age at the last transition before 30 (age 29.75).

Consider now the subsample of 201 respondents. Of the 201 respondents,
160 enter the labour market (first job) before age 20 and 41 enter after age 20.
The ages at labour market entry are obtained by the code:

table (trunc(d3.a$start))

Of those who entered the labour market before age 20, 146 are in state J (91 %)
and 14 in state N (9 %) at age 20. In the observation plan considered, they are under
observation at age 20. Some entered observation at young ages, while others
entered just before age 20. The empirical transition probabilities take into account
durations under observation and durations spent in J and N. The transition proba-
bilities condition the state occupancy on the state occupied at a reference age. A
person with a job at age 14 (lowest age) has an 85.6 % chance of having a job at age
20 and 14.4 % chance of having no job. A person without a job at age 14 has a
probability of 75.1 % to have a job at age 20 and 24.9 % to have no job at that age.
The state probabilities at age 20 are produced by the code:
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D=Biograph.mvna (d3.a)
tra <- Parameters (d3.a)Strans possible
etm.0 <- etm(data=D$D,c("J","N"),tra, "cens",s=0,t=20)

where d3 . a is the Biograph object with ages at transition.
To display the results for age 20, use the code:

summary (etm.0) $"J N"[81:84,]
summary (etm.0) $"N J"[81:84, ]

The state probabilities at age 30 are obtained from the state probabilities at age
20 and the empirical transition probabilities between ages 20 and 30, P (20,30)

0.6952 0.6135| [ 0.856| | 0.6835
0.3048 0.3865| | 0.144| — [ 0.3165 |

The following code produces the transition matrix P (20, 30):

etm.20 30 <-
etm(data=D$D,c("J","N"), tra, "cens", s=20, t=30)

The product of P (20,30) and p (20) is:

t(etm.20 30Sest[,,99])%*%
t (etm.0Sest[,,dim(etm.0Sest) [3]1]) [, 1]

The state occupation probabilities at age 30 p (30) can be obtained by the code:
etm(data=D$D,c ("J","N"), tra, "cens",s=0,t=30)

The probability of being employed at age 30 is 68.5 % if the person is employed
at the lowest age and 67.5 % if the person is not employed. Table 2.6 shows the state
probabilities at selected ages. The table shows the probabilities of occupying state J
(J_est) and state N (N_est) at selected ages and the 95 % confidence intervals
(J_lower, J_upper) and (N_lower, N_upper) for individuals who are
employed at the lowest age. The confidence intervals are computed by the sum-
mary . etm function of the etm package.

Table 2.6 Probabilities of being with/without a job at selected ages: non-parametric method.
GLHS, 201 respondents

age J lower J est J upper N lower N _est N _upper
1 15 0.827 0.926 1.000 0.000 0.074 0.173
2 20 0.786 0.856 0.926 0.074 0.144 0.214
3 25 0.641 0.707 0.774 0.226 0.293 0.359
4 30 0.618 0.684 0.749 0.251 0.316 0.382
5 40 0.624 0.699 0.774 0.226 0.301 0.376
6 50 0.600 0.688 0.775 0.225 0.312 0.400
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(b) Parametric Method: Piecewise Exponential Model

If the instantaneous transition rates are constant, the distribution of the waiting
time to the next transition is exponential. Assume that the instantaneous transition
rates are constant in the age interval from x to y: p;(7) = m;i(x,y) for x <7 <y, with
m{(x,y) the transition rate during the (x,y)-interval. The matrix of transition prob-
abilities is P(x, y) =exp[—(y —x)m(x, y)]. If transition rates are age-specific with
age intervals of 1 year, then the transition probabilities between reference age x and
age y are obtained by the matrix expression

P(x,y) =Plx,x+ 1) P(x+ 1,x+2)...P(y — 1,y)
with P(x, x+ 1) =exp[—m(x, x + 1)].

To determine the value of exp[—m(x,y)], I use the Taylor series expansion. Note
that for matrix A, exp(A) may be written as a Taylor series expansion:

exp(A) =T+ A + %A2 + %AMM
Hence,
2
em%@—ﬂmwdﬂ=1-@—@mwwﬁ-@;ﬁ[mwwf
(y—x)3 [m( 3
3 0y~ +

(see also Schoen 1988, p. 72).
The estimator of the transition matrix is P (x,y) = exp[—(y — x) m (x,y)] with
m (x,y) the matrix of empirical occurrence-exposure rates in the (x,y)-interval:
mij(x,y) = Nij(x,y)/Ri(x,y), where N;(x,y) is the observed number of moves from
i to j during the interval and R,(x,y) is the exposure time in i.
In case of two states, the rate equation may be written as follows:
M (x,y) _’hZI(xay):| _ {Nn()f,)’) _NZI(xvy):| [RI(X»)’) 0 -
—m(x,y) Aan(x,y) —Ni2(x,y) Naa(x,y) 0 Ra(x,y)

where 7y1(x,y) = ma(x,y) and man(x,y) = Mmoi(x,y). In matrix notation:
m (x,y) = N(x,) [R(x,y)] "'

Consider the example with 201 respondents. The age-specific transition rates are
shown in Table 2.3. The first state is J and the second N. The JN transition rate for
18-year-old individuals is 0.0806 and the NI transition rate is 0.3024. They are
obtained by dividing the number of transitions by the exposure time in each state
between ages 18 and 19. The 1-year transition probability matrix is:
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- N 0.0806 —0.3024
P (18,19) = exp[— m (18,19)] = exp [— [—0.0806 0.3004 ”

~10.9330 0.2512
~10.0670 0.7488

The probability that an individual in the sample population who on his 18th
birthday has a job will be without a job on his 19th birthday is 6.7 %. The
probability that an 18-year-old without a job will be with a job 1 year later is
25.1 %. Bootstrapping is used to generate confidence intervals. The mean transition
probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with
95 % confidence interval (0.0294, 0.1043), and 0.2583 for the NJ transition, with
95 % confidence interval (0.0000, 0.4611). The retention probabilities are 0.9335
for J, with confidence interval (0.8957, 0.9706), and 0.7417 for N, with confidence
interval (0.5389, 1.0000).

The state occupation probabilities at age 30 are obtained as the product of
the transition probability matrix P (20,30) and the state probabilities p (20).
In the subsample, 86 % is employed at age 20 and 14 % is without a job

(Table 2.6). The state probabilities at age 30 are P (30) = P(20,30)
p (20) = P(29,30) P (28,27) --- P(20,21) p(20). It is equal to

[0.6970 0.6144} [0.8646]

0.6858
0.3030 0.3856 | | 0.1354 ’

0.3142

The 95 % confidence intervals of the state occupation probabilities at age
30, obtained from 100 bootstrap samples, are (0.6173, 0.7556) for J and (0.2444,
0.3827) for N. The estimates and their confidence interval are close to the figures
produced by the non-parametric method (Table 2.6).

2.4 Expected Waiting Times and State Occupation Times

State occupation times, also denoted as sojourn times and exposure times, are
durations of stay in a state or stage during a given period. They indicate the lengths
of episodes and are expressed in days, weeks, months or years if measured for a
single individual or in person-days to person-years if measured for a population.
Observed sojourn times are used to determine the exposure to the risk of a
transition. In this section, the focus is on expected sojourn times. The fundamental
question is: Given a set of transition rates, what is the expected sojourn time in a
state? Questions on durations of stay are omnipresent. What is the expected lifetime
(life expectancy)? What is the health expectancy, i.e. how many years may a person
expect to live healthy? What is the expected age at disability for those who ever
become disabled? What is the expected duration of marriage at time of divorce?
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What is the expected duration of unemployment for someone who becomes unem-
ployed? What is the expected number of years of working life for persons who retire
early? What these questions have in common is that they are about the length of
periods between two reference points. The reference points may be transitions such
as in the question on duration of marriage at divorce. Marriage and divorce are the
two transitions. The reference point may be any point in time. When the second
reference point is a transition, the expected sojourn time is equivalent to the
expected waiting time to the transition.

Expected occupation times depend on transition rates between two reference
ages. They also depend on the location of the observer. Suppose we want to know
the number of years a person may expect to live with cardiovascular disease
between ages 60 and 80. It depends on the transition rates between ages 60 and
80, including rates of death from cardiovascular disease or other causes. It also
depends on the reference age because the reference age introduces dependencies on
intervening transitions. The expected number of years with the disease is larger for
60-year-old individuals than for O-year-old children because the latter category may
not reach age 60.

The sojourn time between ages x and y spent in each state of the state space by
state occupied at age x is L(x,y) = fﬁP(x, 7) dz. The configuration of \L(x,y) is:

1L1(x,y) 2L1(x,y) LR ILl(xvy)

1L2(x7y) 2L2(x7y) CE ILZ(xvy)
Lx,y) =

Li(oy) oLi(oy) . - LiGoy)

The marginal state occupation times give the total expected sojourn time in the
system by state occupied at age x (column total).

The time spent in state j between ages x and y by an individual who is in state 7 at
exact age x is

WLi(x,y) = Uj py(x, t)dz]

and for all states of origin and states of destination: ,L(x,y) = f'y‘,P(x, 7)dr

In the above formulation, the expected occupation time in state j is conditional
on being in state i at age x. The occupation time is said to be status-based; it is
estimated for individuals in a given state at the reference age x. The population-
based occupation time is the expected occupation time in state j beyond age x,
irrespective of the state occupied at age x. It is the sum of status-based occupation
times between x and y, weighted by state probabilities at age x:

«Li(x, y) =2 ilpix) Jj'y‘.p,-j(x, 7)dr] =3 pi(x) iL;j(x,y), where p,(x) is the probabil-
ity that an individual is in state 7 at age x.
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The expected state occupation times are derived from transition rates. Two
approaches are considered: the non-parametric approach and the (piecewise con-
stant) exponential model.

(a) Non-parametric Approach

Beyersmann and Putter (2014) present a non-parametric method for estimating
the expected state occupation time. Divide the period between age 0 and the highest
age o in intervals. Intervals of 1 year are considered, but the method can be applied
to intervals of any length. Let p;(x) denote the state occupation probability at age x.
A natural estimate of the expected occupation time in i beyond age x, irrespective of
the state occupied at age x, is:

Liey) =3 - =) pi) =30 h)

The method assumes that an individual who is in state i at age x stays in i during the
entire year preceding x, and an individual who leaves i between x—1 and x leaves at
the beginning of the interval (at x—1). The assumption can be relaxed by reducing
the length of the interval or by making alternative assumptions about ages at entry
and exit. A plausible assumption is that transitions take place in the middle of the
interval. That assumption is valid if the interval is sufficiently short so that at most
one transition occurs during the interval. Multiple transitions during an interval
(tied transitions) require an assumption about the sequence of transitions.

(b) Parametric Approach: Exponential Model

A distinction is made between expected state occupation times between two ages
(closed interval) and expected state occupation times beyond a given age (open
interval). The reference age may be any age at or before the start of the interval. For
instance, the expected number of years in good health beyond age 65 may be
computed for persons aged 65 or for persons of an age below 65, e.g. at birth or
at labour market entry. The expected state occupation time may be conditioned on
the state occupied (and other characteristics) at the reference age or the first age of
the closed or open interval. The expected state occupation time may also be
conditioned on a future transition. Consider an employment career. The age at
which a person may experience a first episode without work after a period with
employment is lower for those who will ever experience an episode without work
than for the average population. The expected occupation time during an age
interval, conditioned on a transition occurring with certainty during that interval,
is less than the expected occupation time that is not conditioned on a transition
occurring. For instance, the expected duration of marriage at divorce is lower for
those who ever divorce than for the average married population. The latter includes
those who never divorce.

The time spent in state j between ages x and y by an individual who is in state 7 at
exact age xis L(x,y) = [BP(x, 1)dt], where an element ;,L;(x, y) denotes the time an
individual in i at age x may expect to spend in j between ages x and y. If the
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transition rates are constant in the (x,y)-age interval (exponential model), the
integration of the equation leads to

Lx,y) = Jy P(x,r)dt = Jy exp[—(r — x)m(x, 1)] dr,

X

which is equal to

(Lx,y) = [m(e,y)] ™ 1= exp[—(y —x) m(x,y)]]

provided m(x,y) is not singular. The expression is also shown by Namboodiri and
Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If m(x,y)
is singular, a very small value may be added to the diagonal elements of the matrix.
Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state
(death), suggest to replace by one the zero diagonal element corresponding to the
absorbing state. I choose to add a small value (10™°) to the diagonal. It may be
viewed as a rate of a fictitious attrition. It is too small to occur between x and y but it
is large enough to make m(x,y) non-singular.

Taylor series expansion of exp[—(y — x) m(x, y)] results in the following equiv-
alent expression for the state occupation times (Schoen 1988, p. 73):

2 3
L) = 09 [1- 2 I )+ U )2 - O e 4
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When the interval is short, the sojourn time may be approximated by the linear
integration hypothesis, which implies the assumption of uniform distribution of
events (linear model):

y—x

Ley) =1 T4 Pey)

The linear method is usually used in demography and actuarial science. It is
often referred to as the actuarial method.

The reference age may be any age at or before the start of the interval. Consider
the reference age zero. The expected time newborns may expect to spend in each
state between ages x and y, by state at birth, is

OL (x,y) = ,\'L(x7y) P<07x)

where P(0,x) represents the transition probabilities between ages 0 and x. When the
reference age changes from age 0 to age x, the expected length of stay in the various
states between ages x and y changes from an unconditional measure to a conditional
measure. It becomes conditional on being present in the population at x. The
measure is
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xL(x,y) =,L (xay) [P(va)]_l7

provided the inverse of P(0,x) exists. The state occupation times between ages x and
y, a newborn may expect, irrespective of the state occupied at birth is L(x, y)p(0).

The estimation of the expected state occupation times beyond a given age
requires the state occupation time beyond the highest age group. If at high ages
few transitions occur, the ages are often collapsed in an open-ended age group with
constant transition rates. Demographers use that approach to close the life table. Let
z denote the first age of the highest open-ended age group. The sojourn time in the
various states beyond age z by individuals present at z is ,L(z, co) = [m(z, oo)]fl,
where co denotes infinity.

The life expectancy at age x is the number of years an individual aged x may
expect to spend in each state beyond age x, by state occupied at x or irrespective of
the state occupied at x. It is ,e(x,00) = [f;?oP(x, )dt]. An element ;.e;(x,00) of
e(x, 00) is the number of years an individual who is in state i at age x may expect
to spend in state j beyond age x. .e(x, 00) is a matrix with the state at age x as the
column variable and the state occupied beyond age x the row variable. It gives the
expected remaining lifetime conditional on the state occupied at age x. In multistate
demography, it is known as the status-based life expectancy at age x. The popula-
tion-based life expectancy is the time an individual aged x may expect to spend in
each of the states beyond age x, irrespective of the state occupied at age x. It is
+e(x, 00) multiplied by the vector of state occupation probabilities at age x.

If transition rates are age-specific, i.e. piecewise constant, and the length of an
age interval is 1 year, then the expected state occupation times at reference age x is

ce(x,00) = Z;ZL’VL(T,T +1) + L(z,00)
with ,L(z,7+ 1) = [m(z, 7+ 1)] "' [exp[m(z, 7+ 1)] — I] and .L(z, 00) = [m(z, 00)] " ".
The expected occupation time in state i depends on the rate of leaving i. If the
exit rate between ages x and y is zero, an individual in / at age x will remain in i at
least until age y. If a departure from i occurs during the (x,y)- interval, it will occur
at an occupation time which is less than the expected occupation time. In other
words, the expected occupation time, conditioned on a transition occurring, is less
than the expected occupation time that is not conditioned on a transition occurring.
Consider an individual in state i at age x. The expected waiting time to leaving
i between x and y consists of two parts. The first is the state occupation time for
stayers. It is equal to y — x. The probability of staying in i during the entire interval
from x to y is the survival probability ;S;(y) = exp[—ﬂ, ui(r)dr]. The second part is
the waiting time to an exit from i that occurs before y. It is denoted by L;(x, y).
Hence, the occupation time equation is ;L(x,y)=(Q —x)uS(y) + ¥Li(x,y)
ixLi(xa y) — (y - x)thl(y)
1 - nSl(y )
aged x in i spends in i on a continuous basis before leaving, provided the exit occurs
before y. The occupation time equation distinguishes stayers and leavers.

[1—;,S{y)]and {Li(x,y) = . It is the time an individual
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The fraction of an interval spent in a given state if a transition occurs with
certainty is frequently referred to as Chiang’s ‘a’, after the statistician Chiang who
introduced it. Chiang, who developed the measure in the context of mortality, called
‘a’ the fraction of the last year of life (Chiang 1968, pp. 190ff, 1984, pp. 142ff).
Schoen (1988, p. 8 and p. 71) uses the concept of mean duration at transfer to
denote the expected number of years before the transition. It is the product of
Chiang’s ‘a’ (fraction of the interval) and the length of the interval. If transitions are
uniformly distributed during the interval, the survival function is linear, and ‘a’ is
half the length of the interval. If the transition rate is constant during an interval, the
waiting time to the event is exponentially distributed. Consequently, the expected
time to an event that occurs with certainty is less than half the interval length. The
probability that an exit from state i during the (x,y)-interval occurs during the first
half of the interval, provided it occurs with certainty during the interval, is a ratio of

- exp L5 (e )]

I —exp[—(y — x)m;(x,y)]”
Consider the 201 respondents and age 18. The expected occupation times in each
of the states of the state space (J and N) by state on the 18th birthday is:

two distribution functions:

<L (18,19) = H 0.0806 —0.3024”1 Hl o] B [0.9330 0.2512”

—0.0806  0.3024 0 1 0.0670 0.7488

109644 0.1336
~10.0356 0.8664

A person of exact age 18 with employment may expect to spend 0.036 years (less
than half a month) without employment before reaching age 19. The 95 % confi-
dence interval, produced by bootstrapping, is (0.0136, 0.0635). A person of the
same age without a job may expect to be employed during 0.134 years (1.6 months)
before his 19th birthday, with confidence interval (0.0323, 0.2663). A small figure
(10~®) has been added to the diagonal to prevent m(18,19) from being singular. A
person aged 18 with employment, who leaves employment before age 19, may
0.9644 — 0.9330

1 —-0.933
The Taylor series expansion gives about the same result. A sum of four terms plus
0.9644 0.1336
0.0356 0.8664} '

The number of years between the lowest age (14) and the highest age (54) is
40 years. Since states J and N are transient states, the total numbers of years spent in
the employment career between ages 14 and 54 is 40. If a hypothetical individual
starts at age 14 with a job and the employment career is governed by the
occurrence-exposure rates estimated from the GLHS subsample of 201 subjects,
then the expected number of years with a job is 28.66, and the number of years
without a job is 11.34. The average of the 100 bootstrap samples is 28.55 and 11.45,
respectively. The 95 % confidence intervals are (26.65, 30.28) and (9.72, 13.35).

expect to leave employment after = (0.4687 years or 5.6 months.

the identity matrix gives [
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2.5 Synthetic Life Histories

The methods presented in the previous sections produce state probabilities and
expected occupation times that are consistent with empirical transition rates. The
state probabilities and the occupation times describe the expected life history, given
the data. The confidence intervals around the expected values indicate the degree of
uncertainty in the data. Transition rates are differentiated by age to capture the age
patterns of transitions. In this section, age-specific transition rates are considered,
with age intervals of 1 year. Transition rates are piecewise constant: they vary
between age groups, but they are constant within age groups. Individual life
histories differ from the expected life history because of observed differences
between individuals with different personal attributes, unobserved differences and
chance. The chance mechanism is the subject of this section. Observed and
unobserved differences are disregarded because they are beyond the scope of this
chapter. Synthetic individual life histories are generated using longitudinal
microsimulation (Willekens 2009; Zinn 2011, 2014; Zinn et al. 2013). The method
is consistent with discrete event simulation (DEV) methods.

To explain the chance mechanism, a single transition rate will do, and to explain
the basic principle of generating synthetic biographies, a single transition rate
matrix is sufficient. To generate more realistic synthetic biographies, age-specific
transition rates are used. Consider the 201 respondents of the GLHS sample and the
observation period between labour market entry and survey date. In Sect. 2.2, the
aggregate NJ transition rate was estimated at 0.096 per year (using msm). An
individual who previously had a job (the nature of the sample) and who is currently
without a job may expect to get another job in 10.4 years (1/0.096) on average. The
expected waiting time during the first year is (1/0.096)[1 — exp(—0.096)] = 0.9534
years. It is high because at the time the data were collected a relatively large number
of respondents, in particular women, left the labour force and did not return. The
probability of experiencing the event in the first year is 9.154 % [100*(1—exp
(—0.096))]. An individual without a job, who gets a job within 1 year, waits
0.4920 years, on average. This is a little less than 6 months. Individual waiting
times are random variables; the values are distributed around these expected value.
Since the transition rate is constant at 0.096, individual waiting times are exponen-
tially distributed with a mean of 10.4 years and a variance of 108 years, assuming
no competing transition intervenes in the labour market transitions. The median
waiting time is 7.2 years [In(2)]/0.096.

To obtain individual waiting times that are consistent with these expected
values, waiting times are drawn randomly from an exponential distribution with a
hazard rate 0.096 or, alternatively, a mean waiting time of 10.4 years. A random
draw is implemented in two steps. First, a random number is drawn from the
standard uniform continuous distribution U[0,1]. Every value between zero and
one is equally likely to occur. The random number drawn represents the probability
that the waiting time to the transition is less than or equal to ¢, where ¢ needs to be
determined. Let o denote the probability. Hence, o =1 — exp[—0.096¢]. Suppose
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a=0.54. The value of ¢ is derived from the inverse distribution function of the
exponential distribution. Itist = — m(f});g )= _ 1"%58'654) = 8.09 years. n draws from
the uniform distribution result in n individual waiting times. If n is sufficiently
large, the sample mean is close to the expected value of 10.4 years, and the sample
variance is close to 108 years. One experiment of 1,000 draws resulted in a mean
waiting time of 10.11 years and a variance of 116.5 years. Another experiment
resulted in a mean waiting time of 9.89 years and a variance of 87.4 years.

The transition rate estimated from data, in this example 0.096, is subject to
sample variation. The rate is itself a random variable. If the number of observations
is sufficiently large, the rate is a normally distributed random variable with the
expected value as its mean. The 95 % confidence interval of the NJ transition
rate was estimated at (0.0804, 0.1146). To incorporate the degree of uncertainty in
the data in the generation of synthetic life histories, a transition rate may be drawn
from a normal distribution with mean In(0.096) and standard deviation

v/ 1/122 =0.0905. The standard deviation of the NJ transition rate was computed
in Sect. 2.2 of this chapter. If the value drawn from a normal distribution is denoted
by m, then the transition rate is exp(m). An alternative to drawing a transition rate
from a normal distribution is to resample the data (with replacement) and to
estimate the transition rate from the new sample. In this approach, the distribution
of the transition rate is the distribution generated by bootstrap samples. Consider
100 bootstrap samples and 100 transition rates, one from each sample. Each of these
transition rates is used to generate 1,000 individual waiting times. The collection of
waiting time incorporates the effects of sample variation and the exponential
distribution of waiting times. For a person without a job, the overall average waiting
time to a job is 10.54 years, and the variance is 115.00 years. The NJ transition rates
estimated in the bootstrap samples vary from 0.073 to 0.140, with mean rate 0.0967.

The aggregate transition rates may be used to generate employment histories.
The JN transition rate is 0.0533 and the NJ transition rate is 0.0960. Recall that
observations started at labour market entry (first job). Hence, N refers to being
without a job, after having had at least one job. The transition rate matrix is
m = _000353;3 70(?'00996600 . Everyone starts the employment history in J. The
starting time is zero, meaning that the time is measured as time elapsed since labour
market entry. The employment history is simulated for 30 years (simulation stop
time). The transition rates are assumed to remain constant during that period. In this
example, employment histories are sequences of transitions and waiting times to
transitions. They are assumed to be outcomes of a continuous-time Markov model
with constant rates. The simulation runs as follows. Let t denote time. An individual
starts in J at time 0. A random number is drawn from an exponential distribution
with transition rate 0.0533 to determine the time to transition from J to N. One draw
results in a transition at t = 8.29 years. To determine how long the individual stays
in N, a random number is drawn from an exponential distribution with transition
rate 0.096. The randomly selected time to NJ transition is 4.30 years. Hence, the
individual starts a second job 12.59 years after labour market entry (8.29 +4.30).
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A new random waiting time is drawn from an exponential distribution with
transition rate 0.0533 to determine the time at the second JN transition. The number
is 24.00, which means that the transition would occur 36.59 years after labour
market entry. The transition time exceeds the time horizon of 30 years and is not
considered. When the simulation is discontinued, the individual is in state J. The
function sim.msm of the msm package is used to generate the life history of a
single individual. The code is

m <- array(c(0.0533,-0.0533,-0.096,0.096),
dim=c(2,2),dimnames=1list (destination=c ("J", "N"),
origin=c("J","N")))

bio <= sim.msm (-t (m),mintime=0,maxtime=30,start=1)

where m is the transition rate matrix shown above, mint ime is the starting time of
the simulation, maxtime is the ending time and start is the starting state (J is
state 1 and N is state 2). The object bio has two components. The first contains the
state sequence and the second the transition times.

The distribution of employment histories that are consistent with the transition
rates may be obtained by simulating a large number of employment histories. In this
simple illustration, the transition rates are assumed not to depend on age and to
remain constant during the period of 30 years. Simulation of 1,000 employment
histories results in the distribution shown in Table 2.7. The most frequent trajectory
is JNJ, about one third of all trajectories. The trajectories JN and J cover about one
fifth each. These 3 trajectories account for 68 % of all trajectories during a period of
30 years. For each trajectory, the median ages at transition are also shown. The table
is produced by the Sequences function of Biograph. The results of the simulation
are stored in a Biograph object, which facilitates analysis of the simulated life
histories.

Constant transition rates have been used for illustrative purposes only. Usually,
age-specific transition rates are used to generate synthetic life histories. Suppose an
individual enters his first job at age 21.3 (decimal year). He experiences the
employment exit rate from age 21.3 onwards until (a) he enters a period without
a job, (b) he experiences a competing transition, or (c) the ‘observation’ is censored,
i.e. simulation is discontinued. In this illustration, no competing transition is
considered. Hence, the waiting time to the JN transition depends on the
age-specific transition rates between age 21.3 and the age at which simulation is
discontinued, which in the sample of 201 respondents is 52. Age-specific transition
rates are weighted by exposure time. The transition rate at age 21 is multiplied by

Table 2.7 Employment histories in virtual population, based on GLHS aggregate transition rates

ncase % cum$% path trl tr2 tr3 tr4d
1 305 30.5 30.5 JNJ  9.12>N 19.95>J
2 194 19.4 49.9 JN 20.35>N
3 185 18.5 68.4 J
4 130 13.0 81.4 JNJNJ 4.81>N 10.42>J 18.86>N 24.91>J
5 121 12.1 93.5 JNJN 6.53>N 13.28>J 25.83>N
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the duration of exposure, which is 0.7 years (22.0—21.3). The transition rates at age
22 and higher are multiplied by one. The sum of the age-specific transition rates
beyond age 21 is the cumulative transition rate, computed at age 21. The waiting
time to the JN transition is determined by a random draw from an exponential
waiting time distribution associated with the cumulative transition rate computed at
age at labour market entry. The age at the JN transition is the current age plus the
waiting time to the JN transition. Suppose a waiting time of 3.4 years is drawn. The
individual will enter a period without a job at age 24.4. If the waiting time is such
that the age at transition exceeds the highest age in the observation scheme, then the
observation is censored at the highest age.

If the number of states exceeds two, the destination state must be determined in
addition to the time to transition. A multinomial distribution is used. The distribu-
tion is derived from the origin-destination-specific transition rates. If m;;(x,y) is the
(i,j)-transition rate between ages x and y, then the probability of selecting state j,
conditional on leaving i, is ,gj(x,y) = —) with > iqix,y)=1. The

j#imij ()C Y )
probability is an event probability, not a transition probability. The probabilities
are used to partition the interval between the minimum probability (0) and the
maximum probability (1): {0, ;q1, q1+:92, ig1+:192+iq3 - - - , 1}. A random
number is drawn from a standard uniform distribution, and the interval that corre-
sponds to its value determines the destination state. The method is implemented in
the msm package.

The method of estimating time to transition and destination state consists of two
steps. The first uses the exit rate from the current state, i say, to determine the time
to transition (exit from 7). The exit rate is taken from the diagonal of the transition
rate matrix. The second step is to determine the destination, conditional on leaving
the current state. This method was suggested by Wolf (1986). An alternative but
equivalent method relies on the destination-specific transition rates. Consider an
individual in state i at age x. For each possible destination j random waiting
times are drawn from exponential distributions with parameters the cumulative
(i,j)-transition rates between x and the highest age: A;(x, ) = jfﬂij(r)dr. If transi-
tion rates are piecewise constant (age-specific), the cumulative hazard is piecewise
linear. The smallest random waiting time determines the destination. The two
methods rely on the theory of competing risks and assume that the waiting times
corresponding to the distinct destinations are independent. Zinn (2011, pp. 177ff)
shows that the two methods give similar results. Notice that the two methods are
also consistent with discrete event simulation (DEVS), although only the second
method stores randomly drawn waiting times in event queues before selecting the
shortest waiting time. The LifePaths (Statistics Canadaz) and MicMac
microsimulation models (Gampe et al. 2009) use event queues. The msm package
uses exit rates and conditional destination probabilities.

For illustrative purposes, the transition rates in Table 2.3 are used to generate
synthetic employment histories for 2010 individuals, 10 for each observation in the

2 http://www.statcan.gc.ca/microsimulation/lifepaths/lifepaths-eng.htm
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GLHS subsample of 201 respondents. For each individual in the GLHS sample,
10 employment histories are simulated to reduce the Monte Carlo variation. The
employment career is simulated between a low age and a high age. The ages are
determined by individual observation periods in the GLHS subsample of
201 respondents. For instance, individual 1 enters the labour market at age 17 and
is 52 at interview. In the virtual population, ten individuals enter the labour market
atage 17 and are interviewed at age 52. Individual 4 is 22 at labour market entry and
31 at interview. The ages of labour market entry and interview of that respondent
are imposed on ten individuals in the virtual population. The simulated employment
histories cover the same age intervals as the observed employment histories.
Differences between simulated and observed employment trajectories are due to
sample variation affecting the estimated transition rates and Monte Carlo variation
in the simulation. Table 2.8 shows the main employment trajectories in the

Table 2.8 Employment histories in observed population and virtual population, based on
age-specific GLHS transition rates

A. Observed trajectories: males and females combined

ncase % cum$% case trl tr2 tr3 tréd
67 33.33 33.33 J
54 26.87 60.20 JNJ 21.71>N 26.17>J
44 21.89 82.09 JN 24.88>N

16 7.96 90.05 JNJNJ 20.83>N 23.96>J 25.62>N 29.62>J
10 4.98 95.02 JNJN 20.12>N 21.21>J 29.62>N

G W N e

B. Simulated trajectories: males and females combined
ncase % cum% case trl tr2 tr3 trd
627 31.19 31.19 J
531 26.42 57.61 JNJ 22.99>N 27.33>J
294 14.63 72.24 JN  27.2>N
245 12.19 84.43 JNJN 21.21>N 24.3>J 30.31>N
218 10.85 95.27 NJINJ 20.66>N 22.31>J 26.92>N 32.43>J

G W N e

C. Observed trajectories: males

ncase % cum% case trl tr2 tr3 trd tr5 tre
1 52 49.06 49.06 J
2 41 38.68 87.74 JNJ 21.92>N 25.33>J
3 6 5.66 93.40 JNJNJ 18.42>N 20.17>J 22.71>N 24.04>J
4 3 2.83 96.23 JN  27.5>N
5 3 2.83 99.06 JNJNJNJ 18.17>N 19.67>J 21.5>N 22.08>J 33.17>N 35.75>J

D. Simulated trajectories: males

ncase % cum%¥ case trl tr2 tr3 trd tr5 tr6
1 518 48.87 48.87 J
2 314 29.62 78.49 JNJ 21.5>N 24.93>J
3 131 12.36 90.85 JNJNJ 20.54>N 22.54>J 26.81>N 28.85>J
4 35 3.30 94.15 JNJN  21.3>N 23.37>J 34.4>N
5 23 2.17 96.32 JNJNJINJ  20.4>N 21.65>J 22.52>N 23.85>J 28.4>N 30.62>J
E. Observed trajectories: females
ncase % cum% case trl tr2 tr3 trd trb tré
1 41 43.16 43.16 JN 24.67>N
2 15 15.79 58.95 J
3 13 13.68 72.63 JNJ 21.5>N 29.58>J
4 10 10.53 83.16 JNJN 20.12>N 21.21>J 29.62>N
5 10 10.53 93.68 JNJINJ 23.21>N 26.29>J 27.62>N 32.25>J
6 5 5.26 98.95 JNJNJN 18.5>N 19.67>J 27.17>N 28.42>J 32.58>N
7 1 1.05 100.00 JNJNJNJ 21.92>N 22.08>J 33.83>N 35.08>J 39.83>N 40.17>J
F. Simulated trajectories: females
ncase % cum$ case trl tr2 tr3 trd
1 337 35.47 35.47 JN 25.32>N
2 183 19.26 54.74 JNJN 21.13>N 25.5>J 30.11>N
3 174 18.32 73.05 JNJ 24.43>N 31.99>J
4 139 14.63 87.68 J
5 62 6.53 94.21 JNJNJ 20.91>N 24.31>J 28.8>N 37.05>J
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observed and the simulated population. For a given trajectory, the number of
simulated trajectories should be about 10 times the observed trajectories because
10 simulations were performed for each observation. The table also shows the
median ages at transition. The results differ considerably because in the GLHS,
which was organised in 1981, women and men report very different employment
histories, and the transition rates are not differentiated by sex. If the transition rates
are estimated separately for males and females and employment trajectories are
produced for the two sexes separately, the simulated trajectories are much closer to
the observations (Table 2.8). Among females, JN is the most frequent trajectory,
whereas it is quite rare among males. For both men and women, the model
accurately estimates the proportion of persons employed continuously throughout
the observation period. For women, it underestimates permanent withdrawal from
the labour market after a single employment episode and overestimates re-entry.
That may be due to a cohort effect with younger cohorts more likely to re-enter the
job market after a period of absence. The sample size is too small to estimate
age-specific transition rates by sex and birth cohort.

2.6 Conclusion

Life histories are operationalised as state and event sequences. Synthetic life
histories describe sequences that would result if individual life courses are
governed by transition rates estimated from life history data. Transition rates link
real and synthetic life histories. If transition rates are accurate, synthetic biogra-
phies mimic observed life paths. Life history data are generally incomplete. They
do not cover the entire life span. By combining data from similar individuals, the
transition rates may cover the entire life span. The estimation of transition rates
is crucial. In this chapter, two estimation methods are described. The first is
non-parametric and the second is parametric, or more appropriate, partial paramet-
ric. The non-parametric approach is common in biostatistics. The Nelson-Aalen
estimator of transition rates is distribution-free; it does not rely on an assumption
that the data are drawn from an underlying probability distribution. The partial
parametric method is common in demography, epidemiology and actuarial science.
The occurrence-exposure rate computed for an age interval assumes that the
transition rate is constant within the interval. Occurrence-exposure rates vary freely
between intervals. The two methods converge when the interval gets infinitesimally
small.

Transition rates are used to generate synthetic biographies. Synthetic biogra-
phies describe life histories in terms of state occupation probabilities and expected
state occupation times. Life expectancies, healthy life expectancies and active life
expectancies are examples of state occupation times. Life histories generated by the
most likely transition rates, given the data, are expected life histories. They apply to
a population. Few individuals have a life path that coincides with the expected life
history. Microsimulation is used to determine the distribution of individual life
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histories around expected life histories. The method presented in this chapter
involves drawing individual waiting times to transitions from piecewise exponen-
tial waiting time distributions. Sequences of waiting times are obtained by joining
randomly drawn waiting times. The method, which is referred to as longitudinal
microsimulation, is described in the chapter. The added value of synthetic individ-
ual life paths is the information they provide on the distribution of (1) state and
event sequences and (2) state occupation times around expected values. Synthetic
individual biographies describe life paths in a virtual population. The virtual
population closely resembles the real population if (1) transition rates are accurately
estimated and (2) the observation plan applied to the real population is also applied
to the virtual population, i.e. simulated life segments fully coincide with observed
life segments.

The variation of individual life histories indicates uncertainties in the data and
uncertainties associated with drawing random numbers from probability distribu-
tions. The uncertainties translate into uncertainties in transition rates, transition and
state probabilities and expected state occupation times. Uncertainties in transition
rates can be measured assuming that transition rates or transformations of transition
rates are normally distributed (asymptotic theory). The distributions of probabilities
and occupation times are more complicated and cannot always be expressed
analytically. In the chapter, bootstrapping is used to estimate the uncertainties in
transition probabilities, state probabilities and occupation times. If the cohort
biography (expected life path) is computed for each bootstrap sample, the distribu-
tion of cohort biographies can be determined. By combining bootstrapping and
longitudinal microsimulation, synthetic individual biographies can be produced
that incorporate uncertainties in the data and uncertainties introduced by the
microsimulation (Monte Carlo variation). The latter results from drawing random
numbers from probability distributions. The precision of the method of computing
synthetic biographies from real data is measured by comparing summary statistics
of virtual and real populations.

The methods described in this chapter are implemented in Biograph and other
packages discussed in this book. The packages have in common that they adopt a
counting process point of view (Aalen et al. 2008).
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