
Chapter 2

Life Histories: Real and Synthetic

2.1 Introduction

Life history data are generally incomplete. Usually, they do not cover for each

individual in the study the entire life span or the life segment of interest. If data are

collected retrospectively, observation ends at interview date, and no information is

available on events and experiences after the date. Data collected prospectively are

incomplete because events and other experiences are recorded during a limited

period of time only. To deal with data limitations, models are introduced. The

model that is considered in this chapter describes life histories. The model is based

on the premise that life histories are realisations of a continuous-time Markov

process. A Markov process is a stochastic process that describes a system with

multiple states and transitions between the states. The time at which a transition

occurs is random but the distribution of the time to transition is known. In the

continuous-time Markov process, the transition time has an exponential distribu-

tion. The rate of transition out of the current state (exit rate) is the parameter of the

exponential distribution. It depends on the current state only and is independent of

the history of the stochastic process. In a system with multiple states, an individual

who leaves the current state may enter one of several states. In competing risks

models, states in the state space are viewed as competing destinations and transition

rates are destination-specific. The Markov process is a first-order process: the

destination state depends on the current state only and is independent of states

occupied previously.

The Markov model predicts1 the probability that an individual of a given age

occupies a given state. The Markov model may also be used to predict the number

of transitions during a given interval and the number of times an individual

1 Prediction is used in the statistical meaning. Prediction is a statement about an outcome. A model

is often used to predict an outcome, e.g. an event that occurs in a population or that is experienced

by an individual in a population. The parameter(s) of the model are estimated from observations on
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occupies a given state. The stochastic process that describes the transition counts or

the state occupancy counts is a Markov counting process (see below). It belongs to

the class of counting processes. The most elementary counting process is the

Poisson process. It is a stochastic process that counts the number of transitions

without considering origin and destination states. In a Poisson process, the time

between two consecutive transitions has an exponential distribution.

The parameters of the Markov model are estimated from data. By pooling data

on different but similar individuals, models can be estimated that describe the entire

life histories. The life history that is based on pooled data is a synthetic life history.
It is a virtual life history; it is not observed. It does not say anything about a specific

individual in a sample but tells something about the sample the individual is part

of. A synthetic biography summarises information on several individuals. It is the

life course that would result if an individual lives a life prescribed by the collective

experience of similar individuals under observation. The collective experience is

summarised in transition rates. These rates play a key role in generating synthetic

biographies. Transition rates are estimated from life history data and used to

generate synthetic biographies. Maximum likelihood estimates of transition rates

are used to generate expected life histories and expected values of life history

indicators. Individual life histories are distributed randomly around an expected life

path. Microsimulation is used to generate individual life histories from empirical

transition rates.

In life history analysis and life history modelling, age is the main time scale. Age

is a proxy for stage of life. Other useful time scales are calendar time and time since

a reference event. Birth, marriage, labour market entry and entry into observation

are examples of reference events. The standard approach in survival analysis is to

use time since the baseline survey or (first) entry into the study (time-on-study).

Time-on-study has no explanatory power, which is acceptable if time dependence

of a transition rate is not of interest, such as in the Cox model with free baseline

hazard. Korn et al. (1997) argue that time-on-study is not appropriate for predicting

transition rates. They recommend age as the time scale (see also Pencina et al. 2007

and Meira-Machado et al. 2009). Rates of transition between states generally vary

with age. The Markov process that accommodates changing rates is the time-

inhomogeneous Markov process. The model of that process is discussed in this

chapter.

To characterise life histories, a set of indicators is usually used, including state

occupancies at consecutive ages, durations of stages of life and ages at significant

transitions. The indicators are sometimes combined in a table, known as the

multistate life table. The multistate life table originated in demography (Rogers

1975), but it is currently used across disciplines. The model that produces the values

of the indicators summarised in the multistate life table is the Markov process

model.

a selection of individuals. Prediction is part of statistical inference. It should not be confused with

forecasting.

8 2 Life Histories: Real and Synthetic



Two examples may clarify the concept of synthetic biography. The first relates to

the length of life and the second to marriage and fertility:

(a) Suppose we are interested in the life expectancy of a 60-year-old. The empirical

evidence consists of a 10-year follow-up of 1,000 individuals aged 60 and over.

At the beginning of the observation period, some individuals are relatively

young (60 years, say), while others are already old (over 90, say). During the

observation period of 10 years, some individuals die. The oldest old are more

likely to die than other individuals under observation. To determine the

expected remaining lifetime for a 60-year-old, one could calculate the mean

age at death of those who die during the observation interval. The observed

mean age at death provides a wrong answer, however. It depends on the age

composition of the population under observation. If the group under observa-

tion consists of many old persons, the mean age at death will be higher than for

a group that consists mainly of persons in their sixties and seventies. To remove

the effect of the age composition, death rates are calculated by age. The

distribution of ages at death is obtained by applying a piecewise exponential

survival model, with parameters the age-specific mortality rates. The expected

age at death is 60 plus the expected remaining lifetime or life expectancy. The

life expectancy of a 60-year-old is the number of years that the individual may

expect to live if at each age over 60 he experiences the age-specific mortality

rate estimated during the 10-year follow-up of 1,000 individuals. At young

ages, he experiences the mortality rates of individuals who were 60 recently. At

older ages, the mortality rates are from old persons who turned 60 many years

ago. The life expectancy is adequate if the age-specific mortality rates do not

vary in time.

(b) The second illustration considers marriage and fertility. Suppose we want to

know at what age women start marriage and at what duration of marriage they

have their first child. It is not possible to follow all women until they have their

first child since some will remain childless. Suppose the data are from a 5-year

follow-up survey of girls and women aged 15–35 at the onset of observation. At

the end, they are 20–40. During the follow-up, the age at marriage and the age

at birth of the first child are recorded. At the start of observation, some

individuals are already married. Other individuals remain unmarried during

the entire period of observation. They may marry after observation is ended or

they may not marry at all. To determine the age at marriage and the duration of

marriage at time of birth of the first child, marriage and childbirth are described

by a continuous-time Markov process with transition rates the empirical mar-

riage rates and marital first birth rates. The model describes the marriage and

first birth behaviour of hypothetical and identical individuals of age 15 assum-

ing that at consecutive ages, they experience the empirical rates of marriage and

first birth. Transition rates may depend on covariates and other factors.

This chapter consists of two parts. The first part (Sect. 2.2) is devoted to the

estimation of transition rates from data. The second part (Sects. 2.3, 2.4 and 2.5)

focuses on life histories derived from transition rates. Section 2.3 shows how
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transition probabilities and state occupation probabilities are computed from tran-

sition rates. The computation of expected occupation times is covered in Sect. 2.4.

The generation of synthetic life histories is discussed in Sect. 2.5. Section 2.6 is the

conclusion.

The methods presented in this chapter are illustrated using employment data

from a subsample of 201 respondents of the German Life History Survey (GLHS)

(see Chap. 1). Two states are distinguished: employed (Job) and not employed

(Nojob). Transitions are from employed to not employed (JN) and from not

employed to employed (NJ). Dates of transition are given in months; it is assumed

that transitions occur at the beginning of a month. In the chapter, references are

made to R packages for multistate modelling and analysis, in particular mvna
(Allignol 2013; Allignol et al. 2008), etm (Allignol 2014; Allignol et al. 2011),

msm (Jackson 2011, 2014a), mstate (Putter et al. 2011; de Wreede et al. 2010,

2011), dynpred (Putter 2011b), ELECT (van den Hout 2013) and Biograph
(Willekens 2013a).

2.2 Transition Rates

Transition rates are the parameters of the Markov process that underlies the

multistate life history model. In this section, two broad approaches for estimating

transition rates are covered. Age, which is the time scale, is treated as a continuous

variable. Transitions may occur at any age. Transition rates are estimated by

relating transitions to exposures. In the first approach, transition rates may vary

freely with age. The age profile is not constrained in any way. In the second

approach, transition rates are restricted to follow an age profile described by a

parametric model. The first approach is non-parametric; the second is parametric.

The two approaches are covered by, e.g. Aalen et al. (2008).

In the non-parametric analysis of life history data, cumulative transition rates are

estimated for ages at which transitions occur. Without any parametric assumptions,

the transition rate can be any nonnegative function, and this makes it difficult to

estimate. The cumulative transition rate is easy to estimate. This is akin to estimat-

ing the cumulative distribution function, which is easier than estimating the density

function (Aalen et al. 2008, p. 71). At ages at which transitions occur, the cumu-

lative transition rate jumps to a higher value. Therefore, the function that describes

cumulative transition rates is a step function. It implies that between observations,

the cumulative transition rate is the one estimated at the last observation. The shape

of the function is entirely free, not influenced by an imposed age dependence. The

cumulative transition rate is said to be empirical. In the second approach, the age

dependence is restricted to follow an imposed pattern. A convenient and simple

restriction is a constant transition rate. If the transition rate is constant, the cumu-

lative transition rate increases linearly with age and the survival function is expo-

nential. The restriction of constant rate may be relaxed by keeping the rate constant

within relatively narrow age intervals and let the rate vary freely between age
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intervals. Because of the imposed age dependence, there is no need to estimate the

cumulative transition rate each age a transition occurs. It suffices to estimate the

cumulative transition rate at the end of each age interval. The cumulative hazard

function is not a step function. It is a piecewise linear function: linear within age

intervals with slopes varying between intervals. The two approaches differ, but at

the limit when the age interval becomes infinitesimally small, they coincide. The

first approach is common in biostatistics, while the second is common in the life

table method of demography, epidemiology and actuarial science. Covariates may

be introduced in each approach. The cumulative transition rates may be estimated at

each level of covariate or a regression model may be used. A (piecewise) constant

transition rate is only one of the many possible restrictions imposed on the age

dependence of transition rates. In demography, biostatistics, epidemiology and

other fields, a large number of models are used to describe age dependencies of

rates. These models are beyond the scope of this chapter.

A few software packages in R implement the non-parametricmethod. They include

mvna and mstate. The packages eha, msm and Biograph implement the parametric

method, more particularly the piecewise constant transition rate model: the transition

rate varies freely between age intervals and is constant within age intervals.

Transition rates are estimated by relating transitions to exposures. At a given

age, the rate of transition is estimated by dividing the number of transitions and the

risk set, which is the population under observation and at risk just before a transition

occurs. In multistate modelling, a risk set is the number of individuals under

observation and occupying a given state. That basic principle allows complex

observation schemes. Individuals may be at risk but not under observation. It is

not practical to track every individual from birth to death to record occurrences and

monitor risk sets and periods at risk. When the period of observation does not cover

the entire life span, observations are incomplete. Individuals may enter and leave

the population at risk during the observation period. They may leave the population

at risk because the transition of interest occurs or another, unrelated, transition

removes them from the population at risk. Individuals who leave the population at

risk may return later and be at risk again. Counting transitions and tracking

exposures necessarily take place during periods of observation. Transitions and

exposures outside the observation period are not recorded. The nonoccurrence of a

transition during a period of observation to persons at risk of that transition is

however useful information that should not be omitted. The proportion of individ-

uals under observation and at risk that experiences a transition is an estimator of the

likelihood of a transition. The proportion that does not experience a transition is an

estimator of the survival probability.

Dates of transition are usually measured in the Gregorian calendar. For reasons

of computation, calendar dates are often converted into Julian dates, which are days

since a reference date. Sometimes, calendar months are coded as number of months

since a reference month. The Century Month Code (CMC) is a coding scheme with

reference month January 1900. The reference month is month 1. In life history

analysis, dates are often replaced by ages. In this chapter, dates (in CMC) and ages

are used, but age is the main time scale. Hence, most of the time reference is made
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to age. Transitions may occur at any time and age. Hence, time at transition and age

at transition are random variables. T will be used to denote time and age, and X will

be used to denote age only. A realisation of T is t and a realisation of X is x.
Continuous time is approximated by dividing a period in very small time intervals.

A small interval following t is denoted by [t+ dt), where dt is the length of the

interval. The brackets indicate the type of interval: [ means that t is not included in

the interval and ) means that t+ dt is included in the interval. A small interval

following age x is [x, x+ dx). When is an interval small? An interval is considered

small when at most one transition occurs in the interval.

In the employment data used for illustrative purposes (GLHS), two states are

distinguished (J and N) and two transitions: NJ and JN. In this chapter, transitions

between jobs are not considered. Individuals in state N are at risk of the NJ

transition and individuals in J are at risk of the JN transition. Labour market entry

(first jobs) is selected as onset of the observation. The original GLHS data include

transitions between jobs, and dates at transition are expressed in CMC. Two

Biograph functions are used to prepare the desired data file from the original

data. The function Remove.intrastate is used to remove transitions between

jobs. The function ChangeObservationWindow.e is used to select observa-

tion periods between labour market entry and survey date. Table 2.1 shows the data

for a selection of ten respondents. Two variants are presented. The first shows

calendar dates at transition. The second shows ages, except for the birth date, which

is given in CMC. Calendar dates and ages are derived from CMC using Biograph’s
date_b function.

d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e (Bdata=d,

entrystate="J",
exitstate=NA)

d3.a <- date_b (Bdata=dd,
selectday=1,
format.out="age")

The ten individuals experience 33 episodes (20 job episodes and 13 episodes

without a job). They experience 23 transitions during the observation period (13 JN

transitions and 10 NJ transitions). Individual 2 is born in September 1929 and enters

the labour market (first job) in May 1949 at age 19. She leaves the first job in May

1974 at age 44 and remains without a paid job until the end of the observation

period in November 1981, when she is at age 52. Individuals 1, 5 and 7 are

employed throughout the observation period. They move between jobs, but they

do not experience a period without a job. Individuals 3, 4, 6, 8, 9 and 10 have

several jobs, separated by periods without a job. Observation periods differ between

individuals. In this chapter, we estimate transition rates for the JN and NJ transi-

tions, transition probabilities, state occupation probabilities and expected state

occupation times for the subsample of 201 respondents. For illustrative purpose, a

selection of the ten respondents shown in Table 2.1 is also used. The focus is on the

method and not on the application.
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Individual 4 (with ID 76) will be singled out for a detailed description. He gets

his first job in October 1969 at age18 and remains employed until April 1970. He is

not employed for about 2 years, until he gets another job in May 1972. From

January to April 1976, he experiences another period without employment. At the

end of the observation, i.e. at survey date, the person is 30 years of age and

employed. The employment career is JNJNJ. The lifeline is shown in Fig. 2.1.

The figure is a Lexis diagram, which is a diagram with calendar time on the x-axis

and age on the y-axis. The transitions are displayed, as well as the job and no job

episodes. The Lexis diagram is discussed in detail in Chap. 5. During the observa-

tion period, the individual experiences the JN transition two times, in April 1970 at

age 18 and in January 1976 at age 24. Transitions are assumed to occur at the

beginning of a month. From 1 October 1969 to 31 March 1970, he is at risk of the

first occurrence of the JN transition, and from 1 May 1972 to 31 December 1975, he

is at risk of the second occurrence. From 1 April 1976, he is at risk of a third

occurrence but does not experience the JN transition before the end of the obser-

vation on 1 November 1981. The individual experiences three job episodes, two end

in a JN transition and one ends because observation is terminated (censored). In

addition, the respondent experiences two episodes without a job. They end with a

new job.

The estimation of transition rates involves counting transitions and persons at

risk. Let k denote an individual. Transitions are denoted by origin state and

destination state. The number of states is I and any two states are denoted by

i and j. Let kNij(t1,t2) denote the number of (i,j)-transitions individual k experiences
during a period of observation from t1 to t2. Without loss of generality, in this

Table 2.1 Subsample of German Life History Survey (GLHS)

a. Calendar dates
ID  born start   end    sex  path   Tr1   Tr2   Tr3   Tr4

1    1 Mar29 Mar46 Nov81   Male     J  <NA>  <NA>  <NA>  <NA>
2    2 Sep29 May49 Nov81 Female  JN May74  <NA>  <NA>  <NA>
3   67 Dec39 Feb55 Nov81 Female  JNJN Sep58 Aug70 Mar80  <NA>
4   76 Jun51 Oct69 Nov81   Male JNJNJ Apr70 May72 Jan76 Apr76
5   82 Jun51 Aug74 Nov81 Female     J  <NA>  <NA>  <NA>  <NA>
6   96 Feb39 Apr57 Nov81 Female JNJNJ Apr62 Apr64 Feb65 Nov68
7   99 May40 Sep58 Nov81   Male     J  <NA>  <NA>  <NA>  <NA>
8  180 Aug40 Aug54 Nov81   Male JNJNJ Apr56 Apr59 Jul61 Jan63
9  200 Nov50 Sep68 Dec81   Male JNJNJ Apr70 Jan72 Jan74 Jan79
10 208 May40 Jul59 Nov81 Female  JNJN May61 Nov61 Dec62  <NA>

b. Ages
ID born  start    end    sex  path    Tr1    Tr2    Tr3    Tr4

1    1  351 17.000 52.667   Male     J     NA     NA     NA     NA
2    2  357 19.667 52.167 Female    JN 44.667     NA     NA     NA
3   67  480 15.167 41.917 Female JNJN 18.750 30.667 40.250     NA
4   76  618 18.333 30.417   Male JNJNJ 18.833 20.917 24.583 24.833
5   82  618 23.167 30.417 Female     J     NA     NA     NA     NA
6   96  470 18.167 42.750 Female JNJNJ 23.167 25.167 26.000 29.750
7   99  485 18.333 41.500   Male     J     NA     NA     NA     NA
8  180  488 14.000 41.250   Male JNJNJ 15.667 18.667 20.917 22.417
9  200  611 17.833 31.083   Male JNJNJ 19.417 21.167 23.167 28.167
10 208  485 19.167 41.500 Female  JNJN 21.000 21.500 22.583     NA
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section, I assume that t1¼ 0 and represent t2 by t. The observation interval is

therefore from 0 to t. The variable kNij(0, t) is denoted by kNij(t). Data on numbers

of transitions are count data. Transition counts cannot be predicted with certainty;

hence, kNij(t) is a random variable. The distribution of transition counts is described

by a stochastic process model. A widely used model is the Poisson process model,

where changes (‘jumps’) occur randomly and are independent of each other (Çinlar

1975). The sequence of random variables {kNij(t); t� 0} is a random process,

known as a counting process (Aalen et al. 2008, p. 25). The counting process is a

continuous process. The increment in kNij(t) during the small interval between t and
t+ dt is denoted by dkNij(t). It is a binary variable with possible values

0 (no transition) and 1 (transition). Individual counting processes are aggregated

to obtain the aggregated process: Nij(t)¼∑ K
k¼ 1kNij(t), where K is the number of

individuals in a (sample) population. If dt is sufficiently small to make the counting

process absolutely continuous, at most, one transition occurs in the interval dt.
A main issue in survival analysis, and in multistate modelling in particular, is to

determine who is at risk or exposed at time (age) t and who is not. Individuals may

experience a transition between t and t+ dt if and only if they are at risk at t, i.e. just
before the interval [t, t+ dt). If individual i is at risk at t, he/she is at risk during the

infinitesimally small interval from t to t+ dt. To be at risk of the (i,j)-transition, an
individual should be in state i. Let kYi(t) be a binary variable, which takes the value
of 1 if individual k is in state i at t and 0 if the individual is not. The binary random

Fig. 2.1 Employment career of respondent with ID 76
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variable kYi(t) indicates the exposure status. The number of individuals in state i just

before t, and at risk of the (i,j)-transition, is Yi(t)¼∑ K
k¼ 1kYi(t). It is the risk set. The

sequence of risk sets{Yi(t), t� 0} is the at risk process or exposure process. The risk
set in state i at time (age) t, Yi(t), changes when an individual enters state i or leaves
the state and when the observation starts or ends. In many studies, Yi(t) is large

relative to the numbers of (i,j)-transitions. That empirical observation will be used

for estimating the variance of the transition rate.

During the observation period from 0 to t, individual k is at risk of experiencing

the (i,j)-transition during the time (age) segments he occupies state i. The state

occupation time measures the duration at risk. It is kLi¼
Ð
t
0kYi(τ) dτ. The total

duration at risk may be spread over multiple ‘at risk’ episodes. This approach, in

which a counting process and an at risk process are distinguished, is known as the

counting process approach to the study of life histories and event histories. The

approach is very flexible. It allows late entry, exit and re-entry in state i during the

observation period.

The counting process is a random process. It can be modelled by a Poisson

process. The parameter of the model is the transition rate. The transition rate in the

small time (age) interval [t, t+ dt) is referred to as the instantaneous transition rate

and is denoted by kμij(t). The counting process approach to the Poisson process

describes the intensity of the process in terms of the instantaneous transition rate

and exposure status. It adds exposure status to the conventional description of the

Poisson process in probability theory. Aalen et al. (2008) write the intensity at t as
the product of the instantaneous transition rate and the indicator function kYi(t),
which is equal to 1 if individual k is at risk just before t and 0 otherwise:

kλij(t)¼ kμij(t)kYi(t). The intensity function is the transition rate function weighted

by the exposure status. If individual k is not at risk at t, the intensity is zero although
the transition rate may be positive. The product kλij(t)dt is the probability that

individual k experiences the (i,j)-transition during the small time (age) interval

from t to t+ dt, provided that just prior to the interval k is at risk of the (i,j)-
transition, i.e. is in state i. It is the product of the intensity and the length of the

interval. The probability is conditioned on being at risk. In survival analysis, that

condition is usually imposed by the statement ‘provided that the event has not

occurred yet’. That condition applies in case of a single event because an individual

is at risk as long as (1) the event has not occurred yet and (2) the individual is under

observation. In the case of repeatable transitions or different types of transitions, an

individual may be under observation but not at risk. In the example of employment,

an individual in state N is under observation but not at risk of the JN transition.

If at most one transition occurs during the interval dt, the probability of

occurrence may be expressed in different but equivalent ways. It is the probability

that kNij(t) changes to kNij(t) + 1; the probability that the transition occurs at t,
Pr(dkNij (t)¼ 1) and the probability that the transition time (age) kTij is in the

[t, t+ dt) interval: Pr(t� kTij< t+ dt). The probability that dkNij(t) is one,

Pr(dkNij (t)¼ 1), is equal to the expected value of dkNij(t), hence kλij(t)
dt¼E[dkNij(t)]. Note that kNij(t) and its increment dkNij(t) are observations, whereas
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kλij(t) is a model of the increment dkNij(t) (Poisson process model that satisfies the

two conditions listed above). kλij(t) is the intensity process of the counting process

kNij(t).
If individuals are independent of each other, the intensity process of the aggre-

gated counting process Nij(t) is λij(t)¼∑ K
k¼ 1kλij(t). If in addition all individuals are

assumed to have the same hazard rate, i.e. kμij(t)¼ μij(t) for all k, then the survival

times are independent and identically distributed. The aggregate intensity process

may be written as λij(t)¼∑ K
k¼ 1kλij(t)¼ μij(t) ∑ K

k¼ 1kYi(t)¼ μij(t) Yi(t), where Yi(t) is
the number of individuals in state i just before t. It is the population at risk. The

model λij(t)¼ μij(t) Yi(t) is the multiplicative intensity model for a counting process

(Aalen et al. 2008, p. 34). In the multiplicative intensity model, the at risk process

Yi(t) does not depend on unknown parameters (Aalen et al. 2008, p. 77). That

condition is satisfied if the population at risk is large relative to the number of

transitions. The same condition was introduced by Holford (1980) and Laird and

Olivier (1981) in the context of estimating (piecewise constant) transition rates with

log-linear models. The transition rates μij(t) are key model parameters, and a main

aim of statistical analysis is to determine how they vary over time (age) and depend

on covariates.

The observed increment dNij(t) of the counting process Nij(t) generally differs

from the model estimate λij(t)dt because observations do not meet the conditions

imposed by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as

noise and to the probability of a transition during the interval dt as signal. The noise
cumulated up to time (age) t is the martingaleMij(t), and dMij(t) is the increment in

noise during the small interval following t: dMij(t)¼ dNij(t)�λij(t) dt. The intensity
process and the noise process are stochastic processes, whereas Nij(t) represents

observations. Note that Nij(t)¼
Ð
t
0dNij(τ), Λij(t)¼

Ð
t
0 λij(τ) dτ and

Mij(t)¼
Ð
t
0 dMij(τ), where Λij(t) is the cumulative intensity process, that is, the

expected number of transitions up to t, predicted by the Poisson model. The

martingale is the difference between the counting process and the cumulative

intensity process. It can be interpreted as cumulative noise. The intensity process

is central to the statistical modelling of event occurrences and transitions between

states. Note that the intensity process depends on the transition rate and the at risk

process.

A frequently used measure in multistate modelling is the cumulative hazard

Aij(t)¼
Ð
t
0dAij(τ), where dAij(τ) is equal to the increment in the cumulative hazard

during an infinitesimally small interval. In case of a continuous process,

dAij(τ)¼ μij(τ) dτ. The reason for using the cumulative hazard is given above.

The transition rates μij(t) and the cumulative transition rates Aij(t) are estimated

from the data. The estimation method is determined by the assumed underlying

stochastic process. In this chapter, two methods are described. In the first method,

no assumption is made about the process. The method is known as the
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non-parametric method because of the absence of a parametric model that describes

the time (age) dependence of transition rates. The second method assumes that

transition rates are (piecewise) constant. As a consequence, the duration to the next

transition and the time between two consecutive transitions follow a (piecewise)

exponential distribution. In the remainder of this chapter, I use age as time scale.

(a) Non-parametric Method

Recall that Nij(t) is the number of (i,j)-transitions experienced by individuals in

the (sample) population during the observation interval from 0 to t, and Tij is the age
at an (i,j)-transition. For the estimation of empirical transition rates

(non-parametric), transitions are ordered by age of occurrence. Let Tnij denote the

age of the n-th occurrence of the (i,j)-transition experienced in the (sample)

population. The number of individuals at risk just before Tnij is Yi(T
n
ij). Consider

the age interval [t, t+ dt). If in a population no event occurs in the interval, the

natural estimate of μij(t) dt is zero. If a transition is recorded during the interval, the
natural estimate is 1 divided by the number of individuals at risk, that is, 1/Yi(t) or
the proportion of individuals at risk that experiences a transition. Aggregating these

contributions over all age intervals at which transitions occur, up to age t, gives

the estimator Â ij tð Þ of Aij(t). A natural estimator of the cumulative transition rate

at age t is Â ij tð Þ ¼
ð t

0

dNij τð Þ
Yi τð Þ , where numerator and denominator are aggregations

over all individuals. If transition ages are Tnij, then the estimator is

Â ij tð Þ ¼
X

T n
ij�t

1

Yi T n
ij

� �, where Tnij is the age at the n-th occurrence of the (i,j)-

transition. The estimator is known as the Nelson-Aalen estimator. The estimator

was initially developed by Nelson and extended to event history models and

Markov processes by Aalen, who adopted a counting process formulation (see

Aalen et al. 2008, pp. 70ff). The Nelson-Aalen estimator corresponds to the

cumulative hazard of a discrete distribution, with all its probability mass concen-

trated at the observed ages at transition. The matrix Â tð Þ is a matrix of step

functions with jumps at ages at transition.

The variance of the Nelson-Aalen estimator is σ̂ 2
ij tð Þ ¼

X
T n
ij�t

1

Yi T n
ij

� �h i 2

(Aalen variance). The variance increases with t. The increment is

Δσ2ij T n
ij

� �
¼ 1

Yi T n
ijð Þ½ � 2. In large samples, the Nelson-Aalen estimator at age t is

approximately normally distributed. Therefore, the 95 % confidence interval is

Â ij tð Þ � 1:96 σ̂ ij tð Þ. If the sample size is small, the approximation to the normal
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distribution is improved by using a log-transformation giving the confidence inter-

val exp ln Â ij tð Þ � 1:96 σ̂ ij tð Þ= Â ij tð Þ
� �

(Aalen et al. 2008, p. 72).

Consider the employment careers of the ten individuals, shown in Table 2.1. To

track individuals at risk, ages at entry into observation and exit from observation

and ages at transition should be ordered. Individual 8 enters observation at age

14.00, followed by individual 3 at age 15.16. The first transition occurs at age 15.67

when individual 8 enters a period without a job. At that age, 2 individuals are at risk

of the JN transition (3 and 8). The Nelson-Aalen estimator of the cumulative

transition rate at that age is ½. The next event is at age 17.00 when individual

1 enters observation. Just before that age, individual 3 is at risk in J and individual

8 in N. At age 17.00, individual 1 joins 3 in J. The next event is at age 17.83 when

individual 9 enters observation. When individual 6 enters observation at age 18.17,

three individuals are in J and one in N. Individuals 4 and 7 enter observation at age

18.33. At age 18.67, individual 8 enters J again. Just before that age, he is the only

person in N and at risk of the NJ transition, while 6 individuals are in J. Hence, the

estimator of the hazard is 1. The next event is at age 18.75, when individual 3 leaves

J and enters a period without a job. At that age 7 individuals are in J and at risk of

the JN transition (1, 3, 4, 6, 7, 8, 9). The cumulative JN transition rate 1/2 +

1/7¼ 0.64. The Aalen variance is (1/2)2 + (1/7)2¼ 0.270. At that age, three indi-

viduals have not yet entered observation and do not contribute to the cumulative

hazard estimation (2, 5 and 10). The cumulative transition rate increases to age

44.67 when individual 3 enters a period without a job. At that age, the cumulative

transition rate is 2.696 and the Aalen variance is 0.764. Table 2.2 shows the Nelson-

Aalen estimator based on data of the ten respondents. The columns are: (1) age at

entry into observation, exit from observation or transition, (2) the population at risk

just prior to the transition (nrisk), (3) occurrence of a transition (nevent),
(4) censoring (ncens), (5) the Nelson-Aalen estimator of the cumulative transition

rate (cumhaz) at the indicated age, (6) the Aalen estimator of the variance (var)
and (7) increment in the cumulative hazard (delta). The information is shown

each time a transition occurs or a respondent enters or leaves observation. The

number of events is less than the number of entries (10) + the number of exits (10)

+ the number of JN transitions (13) + the number of NJ transitions (10), because

individuals 3 and 7 enter observation at the same time, individual 5 enters obser-

vation when individuals 6 and 9 experience a JN transition, and individuals 4 and

5 leave observation at the same age, as do individuals 7 and 10. The table is

produced by the mvna function of the mvna package. The last column is produced

by the etm function of the etm package (see below). The object d.10 is the

Biograph object for a selection of ten respondents, and D$D is an object with data

of ten respondents in mvna format. The following code is used:
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# Select 10 respondents and create Biograph object
idd <- c(1,2,67,76,82,96,99,180,200,208)
d.10 <- d3.a[d3.a$ID%in%idd,]
D<- Biograph.mvna (d.10)
library (mvna)
library (etm)
tra <- matrix(ncol=2,nrow=2,FALSE)
tra[1, 2] <- TRUE
tra[2,1] <- TRUE
na <- mvna(data=D$D,c("J","N"),tra,"cens")
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)

gg.1 <- data.frame (
round(na$"J N"$time,4),
na$n.risk[,1],
unname(aperm(na$n.event,c(3,2,1))[,2,1]),
na$n.cens[,1],
round(na$"J N"$na,4), 
round(na$"J N"$var.aalen,3),
round(aperm (etm.0$delta.na,c(3,2,1))[,2,1],4))

dimnames (gg.1) <- list
(1:37,c("age","nrisk","nevent","ncens","cumhaz","var","delta
"))
gg.2 <- data.frame (

round(na$"N J"$time,4),
na$n.risk[,2][na$time %in% na$"N J"$time],
unname(aperm(na$n.event,c(3,2,1))[,1,2])[na$time %in% 
na$"N J"$time],
na$n.cens[,2][na$time %in% na$"N J"$time],
round(na$"N J"$na,4), 
round(na$"N J"$var.aalen,3),
round(aperm (etm.0$delta.na,c(3,2,1))[,1,2][na$time %in% 
na$"N J"$time],4))

dimnames (gg.2) <- list
(1:nrow(gg.2),c("age","nrisk","nevent","ncens","cumhaz","var
","delta"))

The ten respondents enter observation at ages 14.00 (ID 180), 15.67 (ID 67),

17.00 (ID 1), 17.83 (ID 200), 18.17 (ID 96), 18.83 (ID 99), 19.17 (ID 208), 19.67

(ID 2) and 23.17 (ID 82) (see Table 2.1). They experience 13 JN transitions and

10 NJ transitions. At time of survey, 7 respondents had a job and 3 were without a

job. The youngest age at job exit is 15.67 years (ID 180). The youngest age at

survey is 30.42 (ID 76 and 82) and the highest is 52.67 (ID 1). Two respondents are

41.50 years at survey date, one (ID 99) has a job and one (ID 208) is without a job.

The time-continuous model of the counting process {Nij(t), t� 0} assumes that

not more than one transition occurs in an interval. In practice and in particular in

large samples, more than one individual may experience a transition in the same

time interval (e.g. same day). If multiple transitions occur in the same interval, their

times of occurrence are referred to as tied transition times. Tied transition times

may be a consequence of (a) grouping and rounding or (b) time (age) intervals that

are genuinely discrete. For instance, if instead of days or months, seconds are used

as time units, it is unlikely that more than one transition occurs at the same time

(age). If tied transition times are due to grouping and rounding, the interval may be
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Table 2.2 Nelson-Aalen estimator and Aalen variance of cumulative transition rates. GLHS,

subsample of ten respondents

Transition JN
age nrisk nevent ncens cumhaz   var  delta

1  14.0000     1      0     0 0.0000 0.000 0.0000
2  15.1667     1      0     0 0.0000 0.000 0.0000
3  15.6667     2      1     0 0.5000 0.250 0.5000
4  17.0000     1      0     0 0.5000 0.250 0.0000
5  17.8333     2      0     0 0.5000 0.250 0.0000
6  18.1667     3      0     0 0.5000 0.250 0.0000
7  18.3333     4      0     0 0.5000 0.250 0.0000
8  18.6667     6      0     0 0.5000 0.250 0.0000
9  18.7500     7      1     0 0.6429 0.270 0.1429
10 18.8333     6      1     0 0.8095 0.298 0.1667
11 19.1667     5      0     0 0.8095 0.298 0.0000
12 19.4167     6      1     0 0.9762 0.326 0.1667
13 19.6667     5      0     0 0.9762 0.326 0.0000
14 20.9167     6      1     0 1.1429 0.354 0.1667
15 21.0000     6      1     0 1.3095 0.382 0.1667
16 21.1667     5      0     0 1.3095 0.382 0.0000
17 21.5000     6      0     0 1.3095 0.382 0.0000
18 22.4167     7      0     0 1.3095 0.382 0.0000
19 22.5833     8      1     0 1.4345 0.397 0.1250
20 23.1667     7      2     0 1.7202 0.438 0.2857
21 24.5833     6      1     0 1.8869 0.466 0.1667
22 24.8333     5      0     0 1.8869 0.466 0.0000
23 25.1667     6      0     0 1.8869 0.466 0.0000
24 26.0000     7     1     0 2.0298 0.486 0.1429
25 28.1667     6      0     0 2.0298 0.486 0.0000
26 29.7500     7      0     0 2.0298 0.486 0.0000
27 30.4167     8      0     2 2.0298 0.486 0.0000
28 30.6667     6      0     0 2.0298 0.486 0.0000
29 31.0833     7      0    1 2.0298 0.486 0.0000
30 40.2500     6      1     0 2.1964 0.514 0.1667
31 41.2500     5      0     1 2.1964 0.514 0.0000
32 41.5000     4      0     1 2.1964 0.514 0.0000
33 41.9167     3      0     0 2.1964 0.514 0.0000
34 42.7500     3      0     1 2.1964 0.514 0.0000
35 44.6667     2      1     0 2.6964 0.764 0.5000
36 52.1667     1      0     0 2.6964 0.764 0.0000
37 52.6667     1      0     1 2.6964 0.764 0.0000

Transition NJ
age nrisk nevent ncens cumhaz   var  delta

1  17.0000     1      0 0 0.0000 0.000 0.0000
2  17.8333     1      0     0 0.0000 0.000 0.0000
3  18.1667     1      0     0 0.0000 0.000 0.0000
4  18.3333     1      0     0 0.0000 0.000 0.0000
5  18.6667     1      1     0 1.0000 1.000 1.0000
6  18.8333     1      0     0 1.0000 1.000 0.0000
7  19.1667     2      0     0 1.0000 1.000 0.0000
8  19.4167     2      0     0 1.0000 1.000 0.0000
9  19.6667     3      0     0 1.0000 1.000 0.0000
10 20.9167     3      1     0 1.3333 1.111 0.3333
11 21.0000     3      0     0 1.3333 1.111 0.0000
12 21.1667     4      1     0 1.5833 1.174 0.2500
13 21.5000     3      1     0 1.9167 1.285 0.3333
14 22.4167     2      1     0 2.4167 1.535 0.5000
15 22.5833     1      0     0 2.4167 1.535 0.0000
16 23.1667     2      0     0 2.4167 1.535 0.0000
17 24.5833     4      0     0 2.4167 1.535 0.0000
18 24.8333     5      1     0 2.6167 1.575 0.2000
19 25.1667     4      1     0 2.8667 1.637 0.2500
20 26.0000     3      0     0 2.8667 1.637 0.0000
21 28.1667     4      1     0 3.1167 1.700 0.2500
22 29.7500     3      1     0 3.4500 1.811 0.3333
23 30.4167     2      0     0 3.4500 1.811 0.0000
24 30.6667     2      1     0 3.9500 2.061 0.5000
25 31.0833     1      0     0 3.9500 2.061 0.0000
26 40.2500     1      0     0 3.9500 2.061 0.0000
27 41.2500     2      0     0 3.9500 2.061 0.0000
28 41.5000     2      0     1 3.9500 2.061 0.0000
29 41.9167     1      0     1 3.9500 2.061 0.0000
30 52.1667     1      0     1 3.9500 2.061 0.0000
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divided in even smaller intervals and the transition times (ages) ordered. The

increment in the Nelson-Aalen estimator of the cumulative hazard at age Tnij may

be written asΔ Â ij T n
ij

� �
¼

Xdn�1

k¼0

1

Yi T n
ij

� �
� k

(Aalen et al. 2008, p. 84). If the age

intervals are genuinely discrete, the increment in the Nelson-Aalen estimator at age

Tnij is Δ Â ij T n
ij

� �
¼ dn

Yi T n
ijð Þ, where Yi(T

n
ij) is the population at risk just prior to the

interval and dn is the number of transitions recorded at age Tnij. In the presence of

tied transition times, the variance of the Nelson-Aalen estimator needs to be

adjusted. When tied event times are a consequence of grouping or rounding, the

increment in the variance is Δ σ̂ 2
ij T n

ij

� �
¼

Xdn�1

k¼0

1

Yi T n
ij

� �
� k

h i 2
. In case of

discrete age intervals, the increment in the variance is estimated by

Δ σ̂ 2
ij T n

ij

� �
¼ Yi T n

ijð Þ�dn½ � dn
Yi T n

ijð Þ½ � 3 . Aalen et al. (2008, p. 85) report that the numerical

difference between the two approaches to tie correction is usually quite small,

and it is not very important which of the two one adopts.

(b) Parametric Method: Exponential and Piecewise Exponential Models

The Nelson-Aalen estimator is non-parametric. The shape of the hazard function

is not constrained in any way. In a parametric counting process model, the age

dependence of the transition rate is constrained, and consequently the waiting times

to a transition are constrained. It is assumed that there is a continuous-time process

underlying the data. In addition, the transition rate may depend on covariates.

Covariates are not considered in this chapter. Two models are considered in this

chapter. The first is the exponential model, which imposes a constant transition rate

and an exponential waiting time distribution. The second model is a piecewise

exponential model, which imposes piecewise constant transition rates. Transitions

rates are assumed to be constant in age intervals of usually 1 year. The transition

rates of consecutive age groups are unrelated, i.e. no restrictions are imposed on

how the piecewise constant rates vary with age. The estimation method therefore

combines a parametric approach (within intervals) and a non-parametric approach

(between intervals). Individuals are assumed to be independent and to have the

same instantaneous transition rate. In other words, transition times of the individ-

uals in the (sample) population are assumed to be independent and identically

distributed. The estimation of piecewise exponential models and occurrence-

exposure rates received considerable attention in the literature (see, e.g. Hoem

and Funck Jensen 1982; Tuma and Hannan 1984; Hougaard 2000; Blossfeld and

Rohwer 2002; Aalen et al. 2008; Van den Hout and Matthews 2008; Li et al. 2012).

Mamun (2003) and Reuser (2010), who study the effect of covariates on disability

and mortality, impose the restriction that the piecewise constant transition rates

(occurrence-exposure rates) increase exponentially with age. The result is a

Gompertz model with piecewise constant transition rates. The choice of model is
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determined by the age profile of transition rates (exponential increase) and data

limitations. Parametric models of transition rates covering the entire age range in

multistate models have been estimated too. Van den Hout and Matthews (2008)

estimate a multistate model in which the age dependence of transition rates is

described by a Weibull model, and Van den Hout et al. (2014) use a Gompertz

model. In demography, a variety of models are specified to describe age profiles of

transition rates in multistate models. For an overview of models, see Rogers (1986).

In the counting process approach, the likelihood function is written in terms of

the counting process kNij(t) and the intensity process kλij(t), where t represents age.
The intensity process at age t is kλij(t)¼ kμij(t) kYi(t). The indicator function kYi(t) is
1 if individual k is under observation and in state i at t and 0 otherwise. The total

occupation time in state i is kYi¼
Ð
ω
0 kYi(τ) dτ, with ω the highest age. If individuals

are independent, the intensity process at age t is λij(t)¼∑ K
k¼ 1kλij(t), and λij(t)dt is

the number of (i,j)-transitions between t and t+ dt, given the instantaneous transi-

tion rate and the exposure function. If in addition all individuals have the same

hazard rate, i.e. kμij(t)¼ μij(t) for all k, then the survival times are independent and

identically distributed. The aggregate intensity process may be written as

λij(t)¼∑ K
k¼ 1kλij(t)¼ μij(t) ∑ K

k¼ 1kYi(t)¼ μij(t) Yi(t), where Yi(t) is the number of

individuals under observation and in state i just before t. If the transition rate is

constant, then kμij(t)¼ kμij for all t and the intensity process at t is kλij(t)¼ kμij kYi(t).
If the transition rate is piecewise constant during the age interval from x to x + 1,

kμij(t)¼ kμij(x) for x� t< x + 1 and the intensity process at t is kλij(t)¼ kμij(x) kYi(t)
for x� t< x+ 1. The intensity of leaving state i at age t, irrespective of destination,
is kλi(t)¼∑ j 6¼ i kλij(t), which may be written as kλi(t)¼ kμi(t) kYi(t), with

kμi(t)¼∑ j 6¼ i kμij(t).
Let ω denote the highest age in the study. A transition is observed if it occurs

before ω. Individual k experiences kNij(ω) occurrences of the (i,j)-transition from

0 to ω. In addition, the observation is censored in state i or in another state. Hence,

the number of episodes of exposure is the number of transitions plus one. The

contribution of individual k to the likelihood function is:

Y
kNij ωð Þ
n¼1 kλ

n
ij kT

n
ij

� �
exp �

ð ω

0
kλ

n
i τð Þdτ

� �� �
exp �

ð ω

0
kλ

c
i τð Þdτ

� �

where kT
n
ij is the age at the n-th occurrence of the (i,j)-transition. Since the intensity

depends on the instantaneous transition rate and exposure, the likelihood function is

written in terms of the counting process kNij(t) and its intensity process kλij(t) (Aalen
et al. 2008, p. 210). Notice that kλnij(kT

n
ij)¼ μij kY

n
i (kT

n
ij), with the at risk function

equal to one if individual k is in state i just before the transition and 0 otherwise, and

kλni (τ)¼ μi kYni (τ), with the at risk function equal to one if k is in i at τ. The last term
is the probability of surviving in state i between the age at last entry and age at

censoring. The intensity kλci (τ) depends on the instantaneous rate of leaving i and
the at risk function, which is zero except for τ larger than or equal to the age of the

last transition and less than the age at censoring. In the traditional approach,
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integration is from the beginning of the period during which individual k is at risk of
the (i,j)-transition to the end of that period. In the first term, the end is the age at the

next occurrence; in the last term, it is the age at censoring. Hougaard (2000, p. 181)

derives the likelihood function following the traditional approach:

Y
kNij ωð Þþ1

n¼1 kλ
n
ij kT

n
ij

� �
kδ

n
ij

� �
exp �

ð ω

0
kλi τð Þdτ

� �

where kδnij is one if the at risk period ends in an (i,j)-transition and zero if it ends

because the observation is discontinued (censored). The counting process approach

to the likelihood function is (Aalen et al. 2008, p. 210):

Y
0�t<ω kλij tð Þk

ΔNij tð Þh i
exp �

ð ω

0
kλi τð Þdτ

� �

with kΔNij(t) the increment of kNij at age t.
The full likelihood is

YK

k¼1

Y
0�t<ω kλij tð Þ

ΔkNij tð Þh in o
exp �

ð ω

0

λi τð Þdτ
� �

with λi(τ) the intensity process of the aggregated process Ni(t).

The log-likelihood is ‘(μij)¼∑ K
k¼ 1 ∑

ω
t¼ 0ΔkNij(t) ln[kλij(t)]�

Ð
ω
0 λi(τ) dτ. The

maximum likelihood estimator of μij is the value of μij for which the score function

is zero: U μij
� 	 ¼ ∂‘

∂μij
¼ 0. The score function is the first-order condition for

maximising the likelihood that the model predicts the data. In the exponential

model, kλij(t)¼ μij kYi(t) and the first term of the log-likelihood is

ln(μij)∑ K
k¼ 1 ∑

ω
t¼ 0ΔkNij(t)¼ ln(μij) Nij(ω). The second term is

μij
Ð
ω
0 Yi(τ) dτ¼ μij Ri(ω), with Ri(ω) the total exposure time in state i for all

individuals in the (sample) population. The score function is

U μij
� 	 ¼ ∂‘ μijð Þ

∂μij
¼ Nij ωð Þ

μij
� Ri ωð Þ. The solution of the equation U(μij)¼ 0 gives the

maximum likelihood estimator of the transition rate: μ̂ ij ¼ Nij ωð Þ=Ri ωð Þ. The
estimator is the observed number of transitions (occurrences) divided by the total

duration at risk (exposure). The estimator is an occurrence-exposure rate.

In large samples, the estimator μ̂ ij is approximately normally distributed around

the true value of μij, with the variance estimator μ̂ ij
2=Nij ωð Þ ¼ μ̂ ij=Ri ωð Þ. To

improve the distribution for μ̂ ij, the logarithmic transformation is used. Only ten

transitions are needed for ln μ̂ ij

� 	
to be approximately normally distributed around

ln(μij) with variance estimator 1/Nij(ω) (Aalen et al. 2008, p. 215).

The cumulative transition rate under the exponential model (occurrence-

exposure rate) increases linearly with duration. The empirical cumulative transition

rate (Nelson-Aalen estimator) is a step function (Andersen and Keiding 2002,
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p. 100). The two estimators are usually close. To improve the approximation, the

age interval from 0 to ω may be partitioned in subintervals and the occurrence-

exposure rate estimated for each subinterval. The exponential model turns into a

piecewise exponential model with piecewise constant transition rates. That is the

common approach in demography, where an age interval is usually 1 year. The

estimator of the transition rate and the variance, given above, is applied to each

subinterval. Consider the aggregate counting processes Nij(t) and Yi(t) and sub-

intervals from exact age x to exact age y (y not included). Age intervals are usually
1 year, but a more general interval is chosen here. The transition rate, which

is constant in the interval, is denoted by μij(x, y). The observed number of

(i,j)-transitions during the interval is Nij(x, y), and the observed exposure time in

state i is Ri(x, y). Following Aalen et al. (2008, pp. 220ff), the score function is

solved. The score function is U μij x; yð Þ� � ¼ ∂‘ μij x;yð Þ½ �
∂μij x;yð Þ ¼ Nij x;yð Þ

μij x;yð Þ � Ri x; yð Þ, where
Nij(x, y)¼

Ð
ω
0 Iij(τ)dNij(τ)dτ and Ri(x, y)¼

Ð
ω
0 Iij(τ)Yi(τ)dτ with Iij(τ) an indicator

function taking the value of one in the interval from x to y and a value of zero

otherwise.

The maximum likelihood estimator of the transition rate from i to j during the

interval from x to y is the occurrence-exposure rate μ̂ ij x; yð Þ ¼ Nij x; yð Þ=Ri x; yð Þ.
Occurrence-exposure rates are approximately independent and normally

distributed around their true values, and the variance of μ̂ ij x; yð Þ can be estimated by

μ̂ ij x; yð Þ=Ri x; yð Þor the logarithmic transformationvar ln μ̂ ij x; yð Þ� �
 � ¼ 1=Nij x; yð Þ.
In demography, epidemiology and actuarial science, transition rates are usually

occurrence-exposure rates and are determined by dividing occurrences by expo-

sures. In the absence of exposure data, exposure is approximated by the product

of the mid-period population and the length of the period, a method also used by

Aalen et al. (2008, p. 222).

By way of illustration of the method, aggregate transition rates and age-specific

transition rates are estimated from the subsample of 201 individuals, entering

observation at labour market entry. The analysis focuses on transitions between

job episodes and episodes without a job. Transitions between jobs are omitted.

Biograph and some additional calculations produced the main results reported in

this section. The results are compared to those generated by the msm package for

multistate modelling. The 201 individuals experience 504 episodes (323 job epi-

sodes and 181 episodes without a job). The total observation time between first job

entry and survey is 4,668 person-years (3,397 person-years in J and 1,271 person-

years in N ). The sample population experienced 303 transitions during the obser-

vation period (181 JN transitions and 122 NJ transitions). The JN transition rate is

181/3,397¼ 0.0533 per year and the NJ transition rate is 122/1,271¼ 0.0960

per year. To determine the 95 % confidence interval of the occurrence-exposure

rate, the log-transformation of the estimator is used: exp ln μ̂ ij

� 	� 1:96
ffiffiffiffiffiffiffiffiffiffiffi
1=Nij

p� �
.

The confidence interval around the JN transition rate is

exp ln 0:0533ð Þ � 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=181

ph i
, which is (0.0461, 0.0617). The confidence
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interval around the NJ transition rate is exp ln 0:096ð Þ � 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=122

ph i
, which is

(0.0804, 0.1146). Bootstrapping, i.e. sampling the original 201 observations with

replacement, with 100 bootstrap samples, produces a JN transition rate of 0.0535

with confidence interval (0.0452, 0.0636) and a NJ transition rate of 0.0977 with

confidence interval (0.0701, 0.1264). Five hundred bootstrap samples yield a JN

transition rate of 0.0534 with confidence interval (0.0.0451, 0.0629) and a NJ

transition rate of 0.0973 with confidence interval (0.0729, 0.1254). Bootstrapping

produces confidence intervals that are somewhat larger than the analytical method.

The package msm produces the same estimates and confidence intervals. The

code is:

The first line removes transitions between jobs. The second line changes the

observation window: observation starts at labour market entry (first job) and ends at

interview. The third line converts dates in CMC into ages. The fourth line converts

the Biograph object data to the long format required by the msm package. The

fifth and sixth lines generate initial values for transition rates. The next line calls the

msm function for estimating the transition rates. Object GLHS.msm.y contains the

estimates and the 95 % confidence intervals, with the row variable denoting origin

and the column variable destination. State 1 is J and state 2 is N.

State 1                      State 2 
State 1 -0.05328 (-0.06164,-0.04606) 0.05328 (0.04606,0.06164)  
State 2 0.09602 (0.08041,0.1147)     -0.09602 (-0.1147,-0.08041)

As expected, the 95 % confidence intervals produced by themsm package are the

same as computed above. The msm package includes a function (boot) that uses
bootstrapping to produce estimates, standard errors and confidence intervals.

Bootstrapping, with 100 bootstrap samples, produces the following estimates and

library (msm)
d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e 

(Bdata=d,entrystate="J",exitstate=NA)
data <- date_b (Bdata=dd,selectday=1,format.out="age",

covs=c("marriage","LMentry"))
Dmsm <- Biograph.msm(data)   
twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2)) 
crudeinits.msm(state ~ date, ID, data=Dmsm, 

qmatrix=twoway2.q) 
GLHS.msm.y <- msm( state ~ date, 

subject=ID, 
data = Dmsm,
use.deriv=TRUE,
exacttimes=TRUE,
qmatrix = twoway2.q, 
obstype=2,
control=list(trace=2,REPORT=1,

abstol=0.0000005),
method="BFGS")
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confidence intervals: 0.0532 for the JN transition rate, with 95 % confidence

interval (0.0453, 0.0621), and 0.0988 for the NJ transition rate, with 95 % confi-

dence interval (0.0755, 0.1294).

Consider the piecewise constant exponential model with age intervals of 1 year.

The input data are transition counts (occurrences) and exposures by single year of

age for the 201 respondents. Transition counts and exposure times are shown in

Table 2.3. Column JN shows the number of transitions from J to N and PY is the

exposure time. The table also shows the state occupancies at birthdays (Occup)
and the number of observations censured by age (cens). The estimate of the

transition rate is r.est and the 95 % confidence interval is (r.L95, r.U95).
The estimate and the confidence interval are obtained using the analytical method.

Bootstrapping produces the estimate b.est and the confidence interval (b.L95,
b.U95). The cumulative transition rate is cumrate. Consider age 30. Of the

201 individuals, 198 are under observation at that age; 138 have a job on their 30th

birthday and 60 are without a job. For 3 individuals, the information is missing.

Two did not reach age 30 yet when observation ended at age at interview (ID 45 and

115) and one entered labour force and observation after age 30 (ID 49). Together,

the individuals spent 127.75 years in state J and 56.58 years in state N between the

30th and 31st birthdays. Notice that an individual in state J on his 30th birthday may

spend some time in state N before reaching age 31. At age 30, 2 individuals

experienced a JN transition and 3 an NJ transition. At that age, the JN transition

rate is 2/127.75¼ 0.0157 and the NJ transition rate is 3/60.25¼ 0.0530. In

Table 2.3, r.est denotes the estimator of the transition rate. The 95 % confidence

interval around the JN transition rate at age 30 is exp ln 0:0157ð Þ � 1:96 � ffiffiffiffiffiffiffiffi
1=2

ph i
,

which is (0.0039, 0.0626). The confidence around the NJ transition rate at age 30 is

exp ln 0:0530ð Þ � 1:96 � ffiffiffiffiffiffiffiffi
1=3

ph i
, which is (0.0171,0.1644). In the table, r.L95

denotes the lower bound and r.U95 the upper bound. The table also shows

estimated transition rates (b.est) and confidence intervals (b.L95 and b.U95)
obtained by bootstrapping with 100 bootstrap samples. The bootstrap standard

errors are generally larger than the asymptotic standard errors, but it is not always

the case in the table because of the relatively small number of bootstrap samples.

The cumulative JN transition rate at age 30 is 1.3455, and the cumulative NJ

transition rate is 3.2957.

Biograph produced several of the figures in Table 2.3. The state occupancies at

birthday are produced by the Occup function, the transitions by the Trans
function and the transition rates and cumulative rates by the Rates.ac function.

Biograph tracks individual transitions and state occupancies (exposure times).

The purpose of tracking individuals is to show an individual’s contribution to

transition counts and exposure times. Consider individual with ID 76. The data

are shown in Table 2.1 and the employment career in Fig. 2.1. Table 2.4 shows the

states occupied at all birthdays between first job and survey date and the exposure

times by age. At exact age 18, the individual is not under observation yet (state -).

He enters observation at age 18.333, when he gets his first job. Between the 18th
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Table 2.3 Piecewise constant exponential model: occurrences, exposures and transition rates.

GLHS, 201 respondents

State J
Occup     PY JN cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate
13     0   1.83  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
14     6 20.42  2    0 0.0245 0.0979 0.3916 0.0000 0.0941 0.2255  0.0000
15    28  33.83  3    0 0.0286 0.0887 0.2750 0.0254 0.0893 0.2043  0.0979
16    37  43.17  6    0 0.0624 0.1390 0.3094 0.0480 0.1494 0.2830  0.1866
17    52  78.25  1    0 0.0018 0.0128 0.0907 0.0000 0.0125 0.0438  0.3256
18    95 111.67  9    0 0.0419 0.0806 0.1549 0.0344 0.0828 0.1332  0.3384
19   123 137.83 11    0 0.0442 0.0798 0.1441 0.0299 0.0763 0.1273  0.4190
20   146 138.17 24    0 0.1164 0.1737 0.2592 0.1022 0.1739 0.2409  0.4988
21 138 143.42 17    0 0.0737 0.1185 0.1907 0.0629 0.1157 0.1696  0.6725
22   141 150.17  9    0 0.0312 0.0599 0.1152 0.0294 0.0618 0.0933  0.7910
23   151 151.33 10    0 0.0356 0.0661 0.1228 0.0279 0.0669 0.1049  0.8510
24   151 145.00 15    0 0.0624 0.1034 0.1716 0.0536 0.1095 0.1668  0.9170
25   143 139.00 11    0 0.0438 0.0791 0.1429 0.0374 0.0811 0.1292  1.0205
26   135 134.25 14    0 0.0618 0.1043 0.1761 0.0588 0.1050 0.1660  1.0996
27   129 131.58  6    0 0.0205 0.0456 0.1015 0.0142 0.0453 0.0831  1.2039
28   135 133.75  8    0 0.0299 0.0598 0.1196 0.0264 0.0594 0.1062  1.2495
29   134 138.08  5    2 0.0151 0.0362 0.0870 0.0069 0.0343 0.0682  1.3093
30   138 127.75  2   19 0.0039 0.0157 0.0626 0.0000 0.0143 0.0335  1.3455
31   120 108.83  5   18 0.0191 0.0459 0.1104 0.0088 0.0483 0.0926  1.3612
32   102  90.33  4   14 0.0166 0.0443 0.1180 0.0104 0.0461 0.0977  1.4071
33    84  85.08  3    0 0.0114 0.0353 0.1093 0.0052 0.0335 0.0688  1.4514
34    86  84.83  3    0 0.0114 0.0354 0.1097 0.0000 0.0379 0.0915 1.4867
35    84  86.08  1    0 0.0016 0.0116 0.0825 0.0000 0.0138 0.0424  1.5220
36    87  86.83  1    0 0.0016 0.0115 0.0818 0.0000 0.0103 0.0368  1.5337
37    86  87.58  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5452
38    88  88.08  2    0 0.0057 0.0227 0.0908 0.0000 0.0241 0.0573  1.5452
39    90  89.75  1    1 0.0016 0.0111 0.0791 0.0000 0.0101 0.0361  1.5679
40    88  83.17  1   17 0.0017 0.0120 0.0854 0.0000 0.0120 0.0448  1.5790
41    74  68.08  0   12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5910
42    62  57.17  2    8 0.0087 0.0350 0.1399 0.0000 0.0406 0.1301  1.5910
43    53  53.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6260
44    53  52.00  2    0 0.0096 0.0385 0.1538 0.0000 0.0415 0.1085  1.6260
45    51  52.33  1 0 0.0027 0.0191 0.1357 0.0000 0.0180 0.0595  1.6645
46    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
47    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
48    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
49    52  51.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
50    51  37.25  2   26 0.0134 0.0537 0.2147 0.0000 0.0544 0.1249  1.6836
51    24  15.67  0   17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373
52     7   3.33  0    7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373
53     0   0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373

State N
Occup    PY NJ cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate
13     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
14     0  0.33  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
15     2  3.67  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
16     5  8.25  2    0 0.0606 0.2424 0.9693 0.0000 0.2412 0.6905  0.0000
17   9  8.08  3    0 0.1197 0.3713 1.1512 0.0000 0.4121 1.0889  0.2424
18     7  9.92  3    0 0.0975 0.3024 0.9377 0.0000 0.2947 0.6461  0.6137
19    13 13.67 10    0 0.3936 0.7315 1.3596 0.3920 0.7578 1.1739  0.9161
20    14 26.83  6    0 0.1005 0.2236 0.4978 0.0928 0.2296 0.4226  1.6477
21    32 33.50 11    0 0.1818 0.3284 0.5929 0.1760 0.3322 0.5461  1.8713
22    38 33.75  9    0 0.1387 0.2667 0.5125 0.1203 0.2764 0.4944  2.1996
23    38 41.17  6    0 0.0655 0.1457 0.3244 0.0455 0.1488 0.2946  2.4663
24    42 48.92  6    0 0.0551 0.1226 0.2730 0.0421 0.1317 0.2440  2.6121
25    51 55.00  3    0 0.0176 0.0545 0.1691 0.0000 0.0564 0.1292  2.7347
26    59 60.42  6    0 0.0446 0.0993 0.2210 0.0449 0.1014 0.1646  2.7892
27    67 65.17  9    0 0.0719 0.1381 0.2654 0.0648 0.1457 0.2569  2.8886
28    64 66.00  6    0 0.0408 0.0909 0.2024 0.0297 0.0911 0.1569  3.0267
29    66 61.75 11    0 0.0987 0.1781 0.3217 0.0882 0.1783 0.2794  3.1176
30    60 56.58  3    6 0.0171 0.0530 0.1644 0.0000 0.0523 0.1221  3.2957
31    53 50.83  4    9 0.0295 0.0787 0.2097 0.0198 0.0824 0.1614  3.3487
32    45 45.75  0    3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.4274
33    46 44.92  5    0 0.0463 0.1113 0.2674 0.0281 0.1060 0.1873  3.4274
34    44 45.17  1    0 0.0031 0.0221 0.1572 0.0000 0.0219 0.0730  3.5387
35    46 43.92  4    0 0.0342 0.0911 0.2427 0.0203 0.0917 0.2204  3.5609
36    43 43.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.6519
37    44 42.42  2    0 0.0118 0.0471 0.1885 0.0000 0.0458 0.1160  3.6519
38    42 41.92  4    0 0.0358 0.0954 0.2542 0.0085 0.0938 0.2038  3.6991
39    40 40.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.7945
40    41 36.25  4    5 0.0414 0.1103 0.2940 0.0263 0.1130 0.2514  3.7945
41    33 30.50  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9048
42    28 24.50  1    7 0.0057 0.0408 0.2898 0.0000 0.0463 0.1723  3.9048
43    22 22.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457
44    22 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457
45    24 22.67  2    0 0.0221 0.0882 0.3528 0.0000 0.1051 0.3614  3.9457
46    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
47    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
48    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
49    23 22.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
50    22 17.92  1   10 0.0079 0.0558 0.3962 0.0000 0.0570 0.1755  4.0339
51    13  8.83  0    8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
52     5  2.00  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
53     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
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and 19th birthday, respondent with ID 76 spends 0.333 years before observation

(in state -), 0.5 years in J and 0.167 years in N. At age 30, he spends 0.417 years in J

and 0.583 years in the state ‘censored’. The tracking of individual transitions and

exposures is necessary for a correct estimation of transition rates and is a central

aspect of the counting process approach. If m̂ ij xð Þ is an estimate of the rate of

transition from i to j between exact ages x and x+ 1, then the contribution of the

individual to the likelihood function is m̂ ij xð Þ exp � m̂ ij xð Þ� �
if the individual

experiences a transition between x and x+ 1 and exp � m̂ ij xð Þ� �
if he experiences

no transition. The best estimate of mij(x) is the one that maximises the likelihood

function for all individuals combined.

2.3 Transition Probabilities and State Occupation

Probabilities

In multistate modelling, distinct types of probabilities have been identified (see,

e.g. Schoen 1988, pp. 81ff). Survival probabilities, transition probabilities and state

occupation probabilities are well known. They relate to the state occupied at a given

age or at given ages. An event probability is the probability that a given transition

occurs at least once during a given period. The cumulative incidence, which is

frequently used in epidemiology and health sciences, is an event probability. If the

destination state is an absorbing state, e.g. dead, the transition probability and the

event probability are the same. Otherwise they differ. The probability types are

discussed in some detail. In this section and the following sections, age is denoted

by x and y. State and transition probabilities are denoted by p and event probabilities
by π. The matrix of transition probabilities between ages x and y is P(x,y), and the

vector of state probabilities at x is p(x). The probability of a continuous stay in a

Table 2.4 State occupancies and state occupation times. Individual with ID 76

- J N +     - J     N     +
18 1 0 0 0 0.333 0.500 0.167 0.000
19 0 0 1 0 0.000 0.000 1.000 0.000
20 0 0 1 0 0.000 0.083 0.917 0.000
21 0 1 0 0 0.000 1.000 0.000 0.000
22 0 1 0 0 0.000 1.000 0.000 0.000
23 0 1 0 0 0.000 1.000 0.000 0.000
24 0 1 0 0 0.000 0.750 0.250 0.000
25 0 1 0 0 0.000 1.000 0.000 0.000
26 0 1 0 0 0.000 1.000 0.000 0.000
27 0 1 0 0 0.000 1.000 0.000 0.000
28 0 1 0 0 0.000 1.000 0.000 0.000
29 0 1 0 0 0.000 1.000 0.000 0.000
30 0 1 0 0 0.000 0.417 0.000 0.583
31 0 0 0 1 0.000 0.000 0.000 1.000
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state between ages x and y will be denoted by S(x,y). It is the survival probability in
the state; it is the probability of nonoccurrence of an event (exit from the state).

The survival probability at age x is the probability of being alive at that age. In

some fields, such as demography, dead is usually not a separate state in the state

space. It is an absorbing state that is integrated in the diagonal of the transition

matrix. The probability of being alive is the probability of being in any of the states

of the state space. In medical statistics, the absorbing state of dead is usually a

separate state of the state space. In that case, the survival probability is the

probability of being in a transient state. Unless specified otherwise, the state

occupation probability at age x is the probability of occupying a given state at

age x, conditional on being in any of the states of the state space at x, i.e. conditional
on still being part of the population. The transition probability is the probability of

occupying a given state at age y, conditional on occupying a given state at age

x with y� x. All probabilities are derived from transition rates. Before deriving

probabilities from rates, probability types are discussed. Probabilities are defined

for periods. A period may be delineated by two ages, two transitions or by an age

and a transition. The delineation results in periods of fixed or variable length.

Probabilities may be conditional on being in a given state or having experienced

a transition.

Probabilities are computed at a reference age. The reference age indicates the

position of the observer in the life course. The reference age is particularly relevant

in the presence of mortality or when the probability is conditional on the state

occupied at the reference age. For instance, the probability of experiencing a period

without a job between ages 30 and 40 is likely to differ between persons employed

at age 30 and persons employed at age 25, but not necessarily at age 30. At age

30, the latter category may have a job or may be without a job. The difference is due

to competing events between ages 25 and 30. In medical statistics, the reference age

x from which a transition probability is estimated is known as the landmark time

point or age and the method to select a range of reference ages as the landmark

method. Individuals who experience the transition of interest before the landmark

time point or who leave the population at risk for another reason (e.g. censoring)

are removed from the data (Van Houwelingen and Putter 2008; Beyersmann

et al. 2012, p. 187). The landmark method is used for dynamic prediction (van

Houwelingen and Putter 2011). The central idea of dynamic prediction is that, by

increasing the reference age, time-varying covariates may be updated with more

recent values and predictions adjusted.

If a period is delineated by two ages, the first age is denoted by x and the second
by y (y> x). The probability of a transition, an event or a continuous stay in a given
state between ages x and y depends on competing events before and during the

period. To exclude the effect of competing events before x, the probability is

computed at age x. If the impact of competing events before x needs to be accounted
for, the probability is computed at an age lower than x. For instance, the probability
of impairment after age 65 depends on the likelihood of surviving to 65. It is higher

if computed at 65 than at age zero. Probabilities are computed for individual k, but
the reference to k is omitted for convenience.
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The probability that an individual who is in state i on his x-th birthday will be in
state j at age y is the transition probability pij(x, y). It may be written as pij(x, y)¼ Pr

(X(y)¼ j|X(x)¼ i), where X(x) is a random variable denoting the state occupied at

age x. The transition probability depends on the life history. If the life history is

represented by Θ, that dependence is denoted by pij(x, y)¼ Pr(X(y)¼ j|X(x)¼ i,Θ).
That dependence is omitted in this section on the derivation of probabilities.

The time scale is continuous (t is a continuous variable). The process is time-

homogeneous if the transition probability pij(x, y) only depends on the age differ-

ence y�x and not on age x. In life history data analysis with age as the time scale,

the process is time-inhomogeneous. Age matters. Transition probabilities defined

for the age interval from x to y are combined in a matrix of transition probabilities:

P x; yð Þ ¼

p11 x; yð Þ p21 x; yð Þ : : pI1 x; yð Þ
p12 x; yð Þ p22 x; yð Þ : : pI2 x; yð Þ

: : : : :
: : : : :

p1I x; yð Þ p2I x; yð Þ : : pII x; yð Þ

2
66664

3
77775

where pii(x, y) is the probability that an individual who is in state i at age x will also
be in state i at age y. Between x and y, the individual may move out of i and return

later but before y. The reason for using matrices is that, except for a few simple

cases, transition probabilities depend on all transition intensities and that requires

systems of equations, which are conveniently written as matrix equations.

The interval from x to y may be partitioned into smaller intervals:

x¼ x0< x1< x2 . . . < xP¼ y. The transition probability matrix P(x,y) may be

written as a matrix product:

P x; yð Þ ¼ P x0; x1ð Þ P x1; x2ð Þ P x2; x3ð Þ : : : : P xP�1; xPð Þ

The equation is the Chapman-Kolmogorov equation for the Markov process. If the

number of time points increases and the distance between them goes to zero in a

uniform way, the matrix product approaches a limit termed a (matrix-valued)

product integral. The product integral is a counterpart of the usual integral in

classical calculus.

State occupation probabilities at age y are derived from transition probabilities

P(x,y) and state probabilities at age x. Let p(x) denote the vector of state probabil-
ities at exact age x. The state probabilities at age y are P(x,y) p(x).

To show the link between transition probability and (cumulative) transition rate,

consider the infinitesimally small interval from τ to τ + dτ with x� τ< y. The
transition probability may be expressed in terms of increments of cumulative

transition rates. The cumulative transition rates at age τ may be arranged in a

matrix:
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A τð Þ ¼

A11 τð Þ �A21 τð Þ : : �AI1 τð Þ
�A12 τð Þ A22 τð Þ : : �AI2 τð Þ

: : : : :
: : : : :

�AiI τð Þ �A2I τð Þ : : AII τð Þ

2
66664

3
77775

An element Aij(τ) denotes the cumulative rate at age τ of the transition from i to j.
The diagonal element Aii(τ) is the cumulative rate at age τ of leaving i:
Aii(τ)¼∑ j 6¼ i Aij(τ). The cumulative transition rate can be a step function, with a

jump at each age a transition occurs, or a continuous function. The increment of

Aij(τ) during the interval from τ to τ + dτ is dAij(τ). The probability that the

individual who is in i at τ will be in j at τ + dτ is pij(τ, τ + dτ)� dAij(τ). The
probability that an individual who is in i at τ will be in i at τ + dτ is pii(τ, τ + dτ)¼
1�∑ j 6¼ ipij(τ, τ + dτ)� 1�∑ j 6¼ idAij(τ). The matrix of transition probabilities

between ages x and y, expressed in terms of the transition probabilities in small

subintervals, is

P x; yð Þ ¼
Y

x�τ<y
P τ, τ þ dτð Þ �

Y
x�τ<y

I� dA τð Þ½ �

The equation is the solution to the Chapman-Kolmogorov equation. No assumption

is made on the nature of the distribution of the transition probability (Aalen

et al. 2008, p. 470). The distribution can be discrete or continuous. The product

integral is a restatement of the Chapman-Kolmogorov equation.

If transition rates are continuous functions of age, then dAij(τ)¼ μij(τ)dτ and

dA(τ)¼ μ(τ)dτ. The quantity μij(τ)dτ is the probability that an individual who is in

i at τ will move to j during the interval of length dτ pij(τ, τ + dτ)¼ μij(τ)dτ. Since the
interval is sufficiently small to ensure not more than one transition, a move from i to
j implies that the individual will be in j at τ + dτ. The probability of remaining in

i during the interval of length dτ is pii(τ, τ + dτ)¼ 1�∑ j 6¼ iμij(τ)dτ. The matrix

expression linking the matrix of transition probabilities during the interval from τ to
τ + dτ to the matrix of instantaneous transition rates is P(τ, τ + dτ)¼ I�μ(τ)dτ,
where I is the identity matrix and

μ τð Þ ¼

μ11 τð Þ �μ21 τð Þ : : �μI1 τð Þ
�μ12 τð Þ μ22 τð Þ : : �μI2 τð Þ

: : : : :
: : : : :

�μ1I τð Þ �μ2I τð Þ : : μII τð Þ

2
66664

3
77775

with μii(τ)¼∑ j 6¼ iμij(τ). If the instantaneous transition rates are continuous func-

tions of age, P(x, y)¼∏ x� τ<y[I�μ(τ)dτ]
In the literature, the instantaneous transition rate matrix has different configura-

tions. The configuration used in this chapter is common in demography. The first

subscript denotes the origin and the second the destination. In statistics, the
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off-diagonal element is the transition rate instead of minus the transition rate, and

the matrix is the transpose of the matrix shown here. The reasons for choosing the

configuration become clear later.

If the transition probability is a continuous function of age, a system of differ-

ential equations links transition probabilities and transition rates. The differential

equations are derived from the Chapman-Kolmogorov equation. Recall that we

may write

P x; yð Þ ¼ P x; τð Þ P τ; yð Þ

Subtraction of P(τ, y) from both sides of the equation and dividing by τ�x yields

P x; yð Þ � P τ; yð Þ
τ � x

¼ P x; τð Þ � I
�
P
�
τ, y

� 	
τ � x

and

lim
τ!x

P x; yð Þ � P τ; yð Þ
τ � x

¼ lim
τ!x

P x; τð Þ � I
�
P
�
τ, y

� 	
τ � x

Since limτ!x
P x;τð Þ�I

τ�x ¼ �μ xð Þ, we obtain the differential equation

dP xð Þ
dx

¼ �μ xð ÞP xð Þ:

The differential equation describes continuous-time nonhomogeneous Markov

processes. In physics, the equation is known as the master equation. In the social

sciences, the master equation is less well known, but some important applications

(under that name) exist (see, e.g. Weidlich and Haag 1983, 1988; Aoki 1996;

Helbing 2010). Aoki summarises the significance of the master equation as follows:

‘The master equations describe time evolution of probabilities of states of dynamic

processes in terms of probability transition rates and state occupancy probabilities’

(Aoki 1996, p. 116).

To solve the matrix differential equation, we may try to generalise the solution of

the scalar differential equation
dp xð Þ
dx ¼ �μ xð Þ p xð Þ. The solution, given the interval

from x to y, is p(x, y)¼ exp[�Ð
y
xμ(τ)dτ], with p(x,y) the probability that an individ-

ual who is alive at age xwill be alive at age y and μ(τ) the instantaneous death rate at
age τ. The generalisation P(x, y)¼ exp[�Ð

y
xμ(τ)dτ] does usually not work, how-

ever. It works only if the matrices of instantaneous transition rates commute, i.e. if

the matrix multiplication μ(τ)μ(τ + dτ)¼μ(τ + dτ)μ(τ) for all τ.
To solve the system of differential equations, it is replaced by a system of

integral equations:
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P x; yð Þ ¼ I�
ð y

x

μ τð ÞP x; τð Þdτ

This equation is essentially a system of flow equations of the multistate model. The

element pij(x, y) of P(x, y) is:

pij x; yð Þ ¼ pij x; xð Þ �
ð y

x

X
q6¼j

μjq τð Þpij x; τð Þdτ þ
ð y

x

X
q 6¼j

μqj τð Þpiq x; τð Þdτ

pij x; yð Þ ¼ pij x; xð Þ �
X

q 6¼j i
djq τ, τ þ dτð Þ þ

X
q6¼j i

dqj τ, τ þ dτð Þ

idjq(x, y) represents the number of moves or direct transitions from state j to state

q between the ages x and y by an individual in state i at exact age x. The sum is the

number of exits from state j by persons in i at x. The last term is the number of

entries into state j by persons in i at x.
To derive an expression involving transition rates during the interval from x to y,

we write

P x; yð Þ ¼ I�
ð y

x

μ τð ÞP x; τð Þdτ
� � ð y

x

P x; τð Þdτ
� ��1 ð y

x

P x; τð Þdτ
� �

P x; yð Þ ¼ I�m x; yð ÞL x; yð Þ

where m(x,y) is the matrix of transition rates. An element mij(x,y) ( j 6¼ i) is the

average transition rate during the interval from x to y and the diagonal element is the

rate of leaving i: mii(x, y)¼∑ j 6¼ imij(x, y). Schoen (1988, p. 66) shows the same

matrix equation and points to the link with the flow equations commonly used in

demography.

Transition probabilities serve as input in the computation of state occupation

probabilities. Let pi(y) denote the probability that an individual who is alive at age

y is in state i at that age and let p(y) denote the vector of state occupation

probabilities at age y. The state probabilities at age y depend on state probabilities

at an earlier age and transition probabilities, e.g. p(y)¼P(x, y) p(x). This equation
may be applied recursively to determine state occupancies at consecutive ages.

Consider age intervals of 1 year. If the state occupation probabilities at birth are

given and the transition probabilities P(x, x+ 1) are known for 0� x< z�1, with

z the start of the highest, open-ended age group, then a recursive application of

p(x+ 1)¼P(x, x + 1) p(x) with 0� x< z�1 produces state occupation probabilities

by single years of age from birth to the highest age.

The estimation of transition probabilities from data relies on the Nelson-Aalen

estimator if the waiting time distribution of a transition is not constrained and on the

occurrence-exposure rate if the waiting time distribution is (piecewise) exponential.

The two approaches are considered in the remainder of this section. Some packages

for multistate modelling, e.g. etm and mstate, adopt the non-parametric method

assuming that the multistate survival function is a step function and estimate the
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empirical transition matrix, while other packages, e.g.msm and Biograph, adopt the
parametric method assuming that the underlying multistate process is continuous

but transition rates are (piecewise) constant.

(a) Non-parametric Method

A logical estimator of P(x,y) is P̂ x; yð Þ ¼
Y

x�τ<y
I� d Â τð Þ� �

. Since the

estimator Â τð Þ is a matrix of step functions with a finite number of increments in

the (x,y)-interval, the product integral is the finite matrix product:

P̂ x; yð Þ ¼
Y

x�Tn<y
I� Δ Â Tnð Þ� �

The matrix P̂ x; yð Þ is the empirical transition matrix, often denoted as the Aalen-

Johansen estimator. It is a non-parametric estimator, which generalises the Kaplan-

Meier estimator to Markov chains (Aalen et al. 2008, p. 122). The diagonal element

is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is

the probability that an individual who is in i at age x will also be in i at age y. The
state may be left and re-entered during the interval. The Kaplan-Meier estimator is

an estimator of the probability that an individual who is in i at age x will remain in

i at least until age y. The state may not be left during the interval. The Kaplan-Meier

estimator is
Y

x�Tn<y
1�

X
j6¼i
ΔNij Tnð Þ

Yi Tnð Þ

2
4

3
5.

For the covariance of the empirical transition matrix, see Aalen et al. (2008).

Consider the selection of the GLHS data on ten individuals. The Aalen-Johansen

estimator of the transition probabilities are derived from the Nelson-Aalen estima-

tor of the cumulative transition rates shown in Table 2.2. Consider the transition

probability between ages 14 and 18.833. At age 14, individual 8 (ID¼ 180) enters

his first job and enters observation. He leaves the first job at age 15.667 (see

Table 2.1, JN transition). At that age, individual 3 (ID¼ 67) had entered observa-

tion (at age 15.167). The empirical probability of transition from J to N between

ages 14 and 15.667 is (1�1/2)¼ 0.5. The probability that the individual is without a

job at age 18.833 is 28.57 %. It is computed by the matrix multiplication:

I� dA 15:667ð Þ½ � � I� dA 18:167ð Þ½ � � I� dA 18:750ð Þ½ � � I� dA 18:833ð Þ½ � ¼
0:500 0

0:500 1

� �
1 1

0 0

� �
0:857 0

0:143 1

� �
0:833 0

0:167 1

� �
¼ 0:714 0:714

0:286 0:286

� �

Table 2.5 shows the results. The column etm.est gives the probability of an

occurrence before t and etm.var gives the variance. The probability of no

occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator

of the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier

estimator are discrete distributions with their probability mass concentrated at the

observed event times. The link between the cumulative hazard estimator and the
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Kaplan-Meier estimator relies on the approximation of the product integral. The

product integration is the key to understanding the relation between the Nelson-

Aalen and the Kaplan-Meier estimators (Aalen et al. 2008, p. 99 and p. 458). The

column delta shows the increments of the cumulative hazard. The probability

that an individual who is in state J at age 14 will be in state N at age 25 is 43.27 %.

The estimate is based on all transitions before age 25, the last one at age 24.833. The

probability of being in J at age 25 is the same as the probability of being in J at age

24.833, since in the sample population no transition occurred between ages 24.833

and 25. Recall that the elements of the empirical transition matrix are step functions

with constant values between transition times. The probability that a 20-year-old

individual who is in state J will be in N at age 25 is 41.52 %.

The etm function of the etm package computes the Aalen-Johansen estimator of

the transition probability matrix of any multistate model. The entries of the Aalen-

Johansen estimator are empirical probabilities. The etm package is used to produce

the results shown in Table 2.5. The results are for a selection of the ten respondents

used for illustration of the Nelson-Aalen estimator. The code is:

library (etm)
D<- Biograph.mvna (d.10)
tra <- attr(D$D,"param")$trans_possible
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)

The covariance matrix of the empirical transition matrix is derived using mar-

tingale theory (Aalen et al. 2008, pp. 124ff). The Aalen-Johansen estimator along

with event counts, risk set, variance of the estimator and confidence intervals can be

obtained through the summary function of the etm package:

summary(etm.0)$"J N"
summary(etm.0)$"N J"

The confidence interval is computed without transformation of the data. Trans-

formations can be specified, however (see Beyersmann et al. 2012, p. 185).

Respondents enter observation when they start their first job. The probability of

being employed at the highest age in the sample population (53) depends on the

employment status at lower ages. An individual with a job at age 14 has a 37 %

chance of also having a job at age 53. The percentage is the same for a person with a

job at age 18. An individual with a job at age 30 has a 42 % chance of having a job at

age 53. Because employment status varies with age the probability of being in a

given state at a given higher age varies with age too. By varying the reference age,

the changes in probabilities can be assessed. The selection of a range of reference

ages is the basic idea of the landmark method. In this example, the end state is a

transient state. In the landmark method, the end state is an absorbing state. In

multistate life table analysis, the method of selecting different reference ages and to

estimate transition probabilities conditional on states occupied at a reference age is

known as the status-based life table (Willekens 1987).
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Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of ten individuals

JN transition
age nrisk nevent   etm.est     etm.var      surv

1  14.00000     1      0 0.0000000 0.000000000 1.0000000
2  15.16667     1      0 0.0000000 0.000000000 1.0000000
3  15.66667     2      1 0.5000000 0.125000000 0.5000000
4  17.00000     1      0 0.5000000 0.125000000 0.5000000
5  17.83333     2      0 0.5000000 0.125000000 0.5000000
6  18.16667     3      0 0.5000000 0.125000000 0.5000000
7  18.33333     4      0 0.5000000 0.125000000 0.5000000
8  18.66667     6      0 0.0000000 0.000000000 1.0000000
9  18.75000     7      1 0.1428571 0.017492711 0.8571429
10 18.83333     6      1 0.2857143 0.029154519 0.7142857
11 19.16667     5      0 0.2857143 0.029154519 0.7142857
12 19.41667     6      1 0.4047619 0.032056473 0.5952381
13 19.66667     5      0 0.4047619 0.032056473 0.5952381
14 20.91667     6      1 0.3690476 0.028351420 0.6309524
15 21.00000     6      1 0.4742063 0.028903785 0.5257937
16 21.16667     5      0 0.3556548 0.026799238 0.6443452
17 21.50000     6      0 0.2371032 0.021280425 0.7628968
18 22.41667     7      0 0.1185516 0.012347346 0.8814484
19 22.58333     8      1 0.2287326 0.020075818 0.7712674
20 23.16667     7      2 0.4490947 0.027585427 0.5509053
21 24.58333     6      1 0.5409123 0.026181931 0.4590877
22 24.83333     5      0 0.4327298 0.026119191 0.5672702
23 25.16667     6      0 0.3245474 0.023469628 0.6754526
24 26.00000     7      1 0.4210406 0.025223801 0.5789594
25 28.16667     6      0 0.3157805 0.022498163 0.6842195
26 29.75000     7      0 0.2105203 0.017385650 0.7894797
27 30.41667     8      0 0.2105203 0.017385650 0.7894797
28 30.66667     6      0 0.1052602 0.009886262 0.8947398
29 31.08333     7      0 0.1052602 0.009886262 0.8947398
30 40.25000     6      1 0.2543835 0.025396927 0.7456165
31 41.25000     5      0 0.2543835 0.025396927 0.7456165
32 41.50000     4     0 0.2543835 0.025396927 0.7456165
33 41.91667     3      0 0.2543835 0.025396927 0.7456165
34 42.75000     3      0 0.2543835 0.025396927 0.7456165
35 44.66667     2      1 0.6271917 0.075842235 0.3728083
36 52.16667     1      0 0.6271917 0.075842235 0.3728083
37 52.66667     1      0 0.6271917 0.075842235 0.3728083

NJ transition
age nrisk nevent   etm.est     etm.var      surv

1  14.00000     0      0 0.0000000 0.000000000 1.0000000
2  15.16667     0      0 0.0000000 0.000000000 1.0000000
3  15.66667     0      0 0.0000000 0.000000000 1.0000000
4  17.00000     1      0 0.0000000 0.000000000 1.0000000
5  17.83333     1      0 0.0000000 0.000000000 1.0000000
6  18.16667     1      0 0.0000000 0.000000000 1.0000000
7  18.33333     1      0 0.0000000 0.000000000 1.0000000
8  18.66667     1      1 1.0000000 0.000000000 0.0000000
9  18.75000     0      0 0.8571429 0.017492711 0.1428571
10 18.83333     1      0 0.7142857 0.029154519 0.2857143
11 19.16667     2      0 0.7142857 0.029154519 0.2857143
12 19.41667     2      0 0.5952381 0.032056473 0.4047619
13 19.66667     3      0 0.5952381 0.032056473 0.4047619
14 20.91667     3      1 0.6309524 0.028351420 0.3690476
15 21.00000     3      0 0.5257937 0.028903785 0.4742063
16 21.16667     4      1 0.6443452 0.026799238 0.3556548
17 21.50000     3      1 0.7628968 0.021280425 0.2371032
18 22.41667     2      1 0.8814484 0.012347346 0.1185516
19 22.58333     1      0 0.7712674 0.020075818 0.2287326
20 23.16667     2      0 0.5509053 0.027585427 0.4490947
21 24.58333     4      0 0.4590877 0.026181931 0.5409123
22 24.83333     5      1 0.5672702 0.026119191 0.4327298
23 25.16667     4      1 0.6754526 0.023469628 0.3245474
24 26.00000     3      0 0.5789594 0.025223801 0.4210406
25 28.16667     4      1 0.6842195 0.022498163 0.3157805
26 29.75000     3      1 0.7894797 0.017385650 0.2105203
27 30.41667     2      0 0.7894797 0.017385650 0.2105203
28 30.66667     2      1 0.8947398 0.009886262 0.1052602
29 31.08333     1      0 0.8947398 0.009886262 0.1052602
30 40.25000     1      0 0.7456165 0.025396927 0.2543835
31 41.25000     2      0 0.7456165 0.025396927 0.2543835
32 41.50000     2      0 0.7456165 0.025396927 0.2543835
33 41.91667     1      0 0.7456165 0.025396927 0.2543835
34 42.75000     0      0 0.7456165 0.025396927 0.2543835
35 44.66667     0      0 0.3728083 0.075842235 0.6271917
36 52.16667     1      0 0.3728083 0.075842235 0.6271917
37 52.66667     0      0 0.3728083 0.075842235 0.6271917
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The following code computes the Aalen-Johansen estimators of the transition

probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al. 2012,

p. 187):

age. points <- c(18,25,30,35)
landmark.etm <- lapply (age.points, 

function (reference.age)
{etm(data=D$D,
state.names=c("J","N"),
tra=tra,"cens",
s=reference.age) })

The landmark method is also implemented in the dynpred package (Putter,

2011b). It is the companion package of Van Houwelingen and Putter (2011).

State occupation probabilities are derived from transition probabilities. Because

all individuals are initially in J, the probability of being in state N is the transition

probability JN with the youngest age as reference age (compare with Beyersmann

et al. 2012, p. 190). In the subsample of ten individuals, the probability of

occupying state J at age 30 is 78.95 %, and the probability of being in N is

21.05 % (Table 2.5). The 95 % confidence intervals are (0.531, 1.000) (0:7895

�1:96
ffiffiffiffiffiffiffiffiffiffiffi
0:017

p
) and (0.000, 0.469) ( 0:2105� 1:96

ffiffiffiffiffiffiffiffiffiffiffi
0:017

p
), respectively. The

following code produces these results:

dd=Biograph.mvna(d.10)
etm(data=dd$D,c("J","N"),tra,"cens",s=0)
summary(etm.0)$"J N"[26, c("P","lower","upper")]
summary(etm.0)$"N J"[26, c("P","lower","upper")]

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the

age index associated with the age at the last transition before 30 (age 29.75).

Consider now the subsample of 201 respondents. Of the 201 respondents,

160 enter the labour market (first job) before age 20 and 41 enter after age 20.

The ages at labour market entry are obtained by the code:

table (trunc(d3.a$start))

Of those who entered the labour market before age 20, 146 are in state J (91 %)

and 14 in state N (9 %) at age 20. In the observation plan considered, they are under

observation at age 20. Some entered observation at young ages, while others

entered just before age 20. The empirical transition probabilities take into account

durations under observation and durations spent in J and N. The transition proba-

bilities condition the state occupancy on the state occupied at a reference age. A

person with a job at age 14 (lowest age) has an 85.6 % chance of having a job at age

20 and 14.4 % chance of having no job. A person without a job at age 14 has a

probability of 75.1 % to have a job at age 20 and 24.9 % to have no job at that age.

The state probabilities at age 20 are produced by the code:
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D=Biograph.mvna(d3.a) 
tra <- Parameters (d3.a)$trans_possible
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0,t=20)

where d3.a is the Biograph object with ages at transition.

To display the results for age 20, use the code:

summary(etm.0)$"J N"[81:84,]
summary(etm.0)$"N J"[81:84,]

The state probabilities at age 30 are obtained from the state probabilities at age

20 and the empirical transition probabilities between ages 20 and 30, P̂ 20; 30ð Þ

0:6952 0:6135
0:3048 0:3865

� �
0:856
0:144

� �
¼ 0:6835

0:3165

� �
:

The following code produces the transition matrix P̂ 20; 30ð Þ:

etm.20_30 <-
etm(data=D$D,c("J","N"),tra,"cens",s=20,t=30)

The product of P̂ 20; 30ð Þ and p̂ 20ð Þ is:

t(etm.20_30$est[,,99])%*% 
t(etm.0$est[,,dim(etm.0$est)[3]])[,1]

The state occupation probabilities at age 30 p̂ 30ð Þ can be obtained by the code:

etm(data=D$D,c("J","N"),tra,"cens",s=0,t=30)

The probability of being employed at age 30 is 68.5 % if the person is employed

at the lowest age and 67.5 % if the person is not employed. Table 2.6 shows the state

probabilities at selected ages. The table shows the probabilities of occupying state J

(J_est) and state N (N_est) at selected ages and the 95 % confidence intervals

(J_lower, J_upper) and (N_lower, N_upper) for individuals who are

employed at the lowest age. The confidence intervals are computed by the sum-
mary.etm function of the etm package.

Table 2.6 Probabilities of being with/without a job at selected ages: non-parametric method.

GLHS, 201 respondents

age J_lower J_est J_upper N_lower N_est N_upper
1  15   0.827 0.926   1.000   0.000 0.074   0.173
2  20   0.786 0.856   0.926   0.074 0.144   0.214
3  25   0.641 0.707   0.774   0.226 0.293   0.359
4  30   0.618 0.684   0.749   0.251 0.316   0.382
5  40   0.624 0.699   0.774   0.226 0.301   0.376
6  50   0.600 0.688   0.775   0.225 0.312   0.400
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(b) Parametric Method: Piecewise Exponential Model

If the instantaneous transition rates are constant, the distribution of the waiting

time to the next transition is exponential. Assume that the instantaneous transition

rates are constant in the age interval from x to y: μij(τ)¼mij(x, y) for x� τ< y, with
mij(x,y) the transition rate during the (x,y)-interval. The matrix of transition prob-

abilities is P(x, y)¼ exp[�(y� x)m(x, y)]. If transition rates are age-specific with

age intervals of 1 year, then the transition probabilities between reference age x and
age y are obtained by the matrix expression

P x; yð Þ ¼ P x, xþ 1ð Þ P xþ 1, xþ 2ð Þ : : : P y� 1, yð Þ

with P(x, x+ 1)¼ exp[�m(x, x+ 1)].
To determine the value of exp[�m(x,y)], I use the Taylor series expansion. Note

that for matrix A, exp(A) may be written as a Taylor series expansion:

exp Að Þ ¼ I þ A þ 1

2!
A2 þ 1

3!
A3 þ 	 	 	

Hence,

exp � y� xð Þm x; yð Þ½ � ¼ I � y� xð Þm x; yð Þ þ y� xð Þ2
2!

m x; yð Þ½ � 2

� y� xð Þ3
3!

m x; yð Þ½ � 3 þ 	 	 	

(see also Schoen 1988, p. 72).

The estimator of the transition matrix is P̂ x; yð Þ ¼ exp � y� xð Þ m̂ x; yð Þ½ � with
m̂ x; yð Þ the matrix of empirical occurrence-exposure rates in the (x,y)-interval:
m̂ ij x; yð Þ ¼ Nij x; yð Þ=Ri x; yð Þ, where Nij(x,y) is the observed number of moves from

i to j during the interval and Ri(x,y) is the exposure time in i.
In case of two states, the rate equation may be written as follows:

m̂ 11 x; yð Þ � m̂ 21 x; yð Þ
� m̂ 12 x; yð Þ m̂ 22 x; yð Þ

� �
¼ N11 x; yð Þ �N21 x; yð Þ

�N12 x; yð Þ N22 x; yð Þ
� �

R1 x; yð Þ 0

0 R2 x; yð Þ
� ��1

where m̂ 11 x; yð Þ ¼ m̂ 12 x; yð Þ and m̂ 22 x; yð Þ ¼ m̂ 21 x; yð Þ. In matrix notation:

m̂ x; yð Þ ¼ N x; yð Þ R x; yð Þ½ ��1

Consider the example with 201 respondents. The age-specific transition rates are

shown in Table 2.3. The first state is J and the second N. The JN transition rate for

18-year-old individuals is 0.0806 and the NJ transition rate is 0.3024. They are

obtained by dividing the number of transitions by the exposure time in each state

between ages 18 and 19. The 1-year transition probability matrix is:
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P̂ 18; 19ð Þ ¼ exp � m̂ 18; 19ð Þ½ � ¼ exp � 0:0806 �0:3024
�0:0806 0:3024

� �� �

¼ 0:9330 0:2512
0:0670 0:7488

� �

The probability that an individual in the sample population who on his 18th

birthday has a job will be without a job on his 19th birthday is 6.7 %. The

probability that an 18-year-old without a job will be with a job 1 year later is

25.1 %. Bootstrapping is used to generate confidence intervals. The mean transition

probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with

95 % confidence interval (0.0294, 0.1043), and 0.2583 for the NJ transition, with

95 % confidence interval (0.0000, 0.4611). The retention probabilities are 0.9335

for J, with confidence interval (0.8957, 0.9706), and 0.7417 for N, with confidence

interval (0.5389, 1.0000).

The state occupation probabilities at age 30 are obtained as the product of

the transition probability matrix P̂ 20; 30ð Þ and the state probabilities p̂ 20ð Þ.
In the subsample, 86 % is employed at age 20 and 14 % is without a job

(Table 2.6). The state probabilities at age 30 are p̂ 30ð Þ ¼ P̂ 20; 30ð Þ
p̂ 20ð Þ ¼ P̂ 29; 30ð Þ P̂ 28; 27ð Þ 	 	 	 P̂ 20; 21ð Þ p̂ 20ð Þ. It is equal to

0:6970 0:6144
0:3030 0:3856

� �
0:8646
0:1354

� �
¼ 0:6858

0:3142

� �
:

The 95 % confidence intervals of the state occupation probabilities at age

30, obtained from 100 bootstrap samples, are (0.6173, 0.7556) for J and (0.2444,

0.3827) for N. The estimates and their confidence interval are close to the figures

produced by the non-parametric method (Table 2.6).

2.4 Expected Waiting Times and State Occupation Times

State occupation times, also denoted as sojourn times and exposure times, are

durations of stay in a state or stage during a given period. They indicate the lengths

of episodes and are expressed in days, weeks, months or years if measured for a

single individual or in person-days to person-years if measured for a population.

Observed sojourn times are used to determine the exposure to the risk of a

transition. In this section, the focus is on expected sojourn times. The fundamental

question is: Given a set of transition rates, what is the expected sojourn time in a

state? Questions on durations of stay are omnipresent. What is the expected lifetime

(life expectancy)? What is the health expectancy, i.e. how many years may a person

expect to live healthy? What is the expected age at disability for those who ever

become disabled? What is the expected duration of marriage at time of divorce?
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What is the expected duration of unemployment for someone who becomes unem-

ployed?What is the expected number of years of working life for persons who retire

early? What these questions have in common is that they are about the length of

periods between two reference points. The reference points may be transitions such

as in the question on duration of marriage at divorce. Marriage and divorce are the

two transitions. The reference point may be any point in time. When the second

reference point is a transition, the expected sojourn time is equivalent to the

expected waiting time to the transition.

Expected occupation times depend on transition rates between two reference

ages. They also depend on the location of the observer. Suppose we want to know

the number of years a person may expect to live with cardiovascular disease

between ages 60 and 80. It depends on the transition rates between ages 60 and

80, including rates of death from cardiovascular disease or other causes. It also

depends on the reference age because the reference age introduces dependencies on

intervening transitions. The expected number of years with the disease is larger for

60-year-old individuals than for 0-year-old children because the latter category may

not reach age 60.

The sojourn time between ages x and y spent in each state of the state space by

state occupied at age x is xL(x, y)¼
Ð
y
xP(x, τ) dτ. The configuration of xL(x, y) is:

xL x; yð Þ ¼
1L1 x; yð Þ 2L1 x; yð Þ : : IL1 x; yð Þ
1L2 x; yð Þ 2L2 x; yð Þ : : IL2 x; yð Þ

: : : : :
: : : : :

1LI x; yð Þ 2LI x; yð Þ : : ILI x; yð Þ

2
66664

3
77775

The marginal state occupation times give the total expected sojourn time in the

system by state occupied at age x (column total).

The time spent in state j between ages x and y by an individual who is in state i at
exact age x is

ixLj x; yð Þ ¼
ð y

x

pij x; tð Þdt
� �

and for all states of origin and states of destination: xL(x, y)¼
Ð
y
xP(x, τ) dτ

In the above formulation, the expected occupation time in state j is conditional
on being in state i at age x. The occupation time is said to be status-based; it is
estimated for individuals in a given state at the reference age x. The population-
based occupation time is the expected occupation time in state j beyond age x,
irrespective of the state occupied at age x. It is the sum of status-based occupation

times between x and y, weighted by state probabilities at age x:

xLj(x, y)¼∑ i[pi(x)
Ð
y
xpij(x, τ)dτ] ¼∑ ipi(x) ixLj(x, y), where pi(x) is the probabil-

ity that an individual is in state i at age x.
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The expected state occupation times are derived from transition rates. Two

approaches are considered: the non-parametric approach and the (piecewise con-

stant) exponential model.

(a) Non-parametric Approach

Beyersmann and Putter (2014) present a non-parametric method for estimating

the expected state occupation time. Divide the period between age 0 and the highest

age ω in intervals. Intervals of 1 year are considered, but the method can be applied

to intervals of any length. Let pi(x) denote the state occupation probability at age x.
A natural estimate of the expected occupation time in i beyond age x, irrespective of
the state occupied at age x, is:

x L̂ i x; yð Þ ¼
Xy�1

τ¼x
x� x� 1ð Þ	 p̂ i

�
x

� 	 ¼ Xy�1

τ¼x
p̂ i xð Þ

The method assumes that an individual who is in state i at age x stays in i during the
entire year preceding x, and an individual who leaves i between x�1 and x leaves at
the beginning of the interval (at x�1). The assumption can be relaxed by reducing

the length of the interval or by making alternative assumptions about ages at entry

and exit. A plausible assumption is that transitions take place in the middle of the

interval. That assumption is valid if the interval is sufficiently short so that at most

one transition occurs during the interval. Multiple transitions during an interval

(tied transitions) require an assumption about the sequence of transitions.

(b) Parametric Approach: Exponential Model

A distinction is made between expected state occupation times between two ages

(closed interval) and expected state occupation times beyond a given age (open

interval). The reference age may be any age at or before the start of the interval. For

instance, the expected number of years in good health beyond age 65 may be

computed for persons aged 65 or for persons of an age below 65, e.g. at birth or

at labour market entry. The expected state occupation time may be conditioned on

the state occupied (and other characteristics) at the reference age or the first age of

the closed or open interval. The expected state occupation time may also be

conditioned on a future transition. Consider an employment career. The age at

which a person may experience a first episode without work after a period with

employment is lower for those who will ever experience an episode without work

than for the average population. The expected occupation time during an age

interval, conditioned on a transition occurring with certainty during that interval,

is less than the expected occupation time that is not conditioned on a transition

occurring. For instance, the expected duration of marriage at divorce is lower for

those who ever divorce than for the average married population. The latter includes

those who never divorce.

The time spent in state j between ages x and y by an individual who is in state i at

exact age x is xL(x, y)¼ [
Ð
y
xP(x, t)dt], where an element ixLj(x, y) denotes the time an

individual in i at age x may expect to spend in j between ages x and y. If the
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transition rates are constant in the (x,y)-age interval (exponential model), the

integration of the equation leads to

xL x; yð Þ ¼
ð y

x

P x; tð Þdt ¼
ð y

x

exp � t� xð Þm x; tð Þ½ � dt,

which is equal to

xL x; yð Þ ¼ m x; yð Þ½ � -1 I� exp � y� xð Þ m x; yð Þ½ �½ �,

provided m(x,y) is not singular. The expression is also shown by Namboodiri and

Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If m(x,y)
is singular, a very small value may be added to the diagonal elements of the matrix.

Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state

(death), suggest to replace by one the zero diagonal element corresponding to the

absorbing state. I choose to add a small value (10�8) to the diagonal. It may be

viewed as a rate of a fictitious attrition. It is too small to occur between x and y but it
is large enough to make m(x,y) non-singular.

Taylor series expansion of exp[�(y� x) m(x, y)] results in the following equiv-

alent expression for the state occupation times (Schoen 1988, p. 73):

xL x;yð Þ¼ y� xð Þ I� y� xð Þ
2!

m x;yð Þþ y� xð Þ2
3!

m x;yð Þ½ � 2� y� xð Þ3
4!

m x;yð Þ½ �3þ		 	
" #

When the interval is short, the sojourn time may be approximated by the linear

integration hypothesis, which implies the assumption of uniform distribution of

events (linear model):

xL x; yð Þ ¼ y� x

2
Iþ P x; yð Þ½ �

The linear method is usually used in demography and actuarial science. It is

often referred to as the actuarial method.

The reference age may be any age at or before the start of the interval. Consider

the reference age zero. The expected time newborns may expect to spend in each

state between ages x and y, by state at birth, is

0L x; yð Þ ¼ xL x; yð ÞP 0; xð Þ

where P(0,x) represents the transition probabilities between ages 0 and x. When the

reference age changes from age 0 to age x, the expected length of stay in the various
states between ages x and y changes from an unconditional measure to a conditional

measure. It becomes conditional on being present in the population at x. The
measure is
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xL x; yð Þ ¼ 0L x; yð Þ P 0; xð Þ½ ��1
,

provided the inverse of P(0,x) exists. The state occupation times between ages x and
y, a newborn may expect, irrespective of the state occupied at birth is 0L(x, y)p(0).

The estimation of the expected state occupation times beyond a given age

requires the state occupation time beyond the highest age group. If at high ages

few transitions occur, the ages are often collapsed in an open-ended age group with

constant transition rates. Demographers use that approach to close the life table. Let

z denote the first age of the highest open-ended age group. The sojourn time in the

various states beyond age z by individuals present at z is zL(z,1)¼ [m(z,1)]�1,

where 1 denotes infinity.

The life expectancy at age x is the number of years an individual aged x may

expect to spend in each state beyond age x, by state occupied at x or irrespective of

the state occupied at x. It is xe(x,1)¼ [
Ð1
x P(x, t)dt]. An element ixej(x,1) of

xe(x,1) is the number of years an individual who is in state i at age x may expect

to spend in state j beyond age x. xe(x,1) is a matrix with the state at age x as the
column variable and the state occupied beyond age x the row variable. It gives the

expected remaining lifetime conditional on the state occupied at age x. In multistate

demography, it is known as the status-based life expectancy at age x. The popula-
tion-based life expectancy is the time an individual aged x may expect to spend in

each of the states beyond age x, irrespective of the state occupied at age x. It is

xe(x,1) multiplied by the vector of state occupation probabilities at age x.
If transition rates are age-specific, i.e. piecewise constant, and the length of an

age interval is 1 year, then the expected state occupation times at reference age x is

xe x;1ð Þ ¼
Xz�1

τ¼x xL τ, τ þ 1ð Þ þ xL z;1ð Þ

with xL(τ, τ + 1)¼ [m(τ, τ + 1)]�1 [exp[m(τ, τ + 1)]� I] and zL(z,1)¼ [m(z,1)]�1.

The expected occupation time in state i depends on the rate of leaving i. If the
exit rate between ages x and y is zero, an individual in i at age x will remain in i at
least until age y. If a departure from i occurs during the (x,y)- interval, it will occur
at an occupation time which is less than the expected occupation time. In other

words, the expected occupation time, conditioned on a transition occurring, is less

than the expected occupation time that is not conditioned on a transition occurring.

Consider an individual in state i at age x. The expected waiting time to leaving

i between x and y consists of two parts. The first is the state occupation time for

stayers. It is equal to y� x. The probability of staying in i during the entire interval

from x to y is the survival probability ixSi(y)¼ exp[�Ð
y
x μi(τ)dτ]. The second part is

the waiting time to an exit from i that occurs before y. It is denoted by oc
ix Li(x, y).

Hence, the occupation time equation is ixLi(x, y)¼ (y� x)ixSi(y) + oc
ix Li(x, y)

[1� ixSi(y)] and
oc
ix Li x; yð Þ ¼ ixLi x; yð Þ � y� xð ÞixSi yð Þ

1� ixSi yð Þ . It is the time an individual

aged x in i spends in i on a continuous basis before leaving, provided the exit occurs
before y. The occupation time equation distinguishes stayers and leavers.
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The fraction of an interval spent in a given state if a transition occurs with

certainty is frequently referred to as Chiang’s ‘a’, after the statistician Chiang who

introduced it. Chiang, who developed the measure in the context of mortality, called

‘a’ the fraction of the last year of life (Chiang 1968, pp. 190ff, 1984, pp. 142ff).

Schoen (1988, p. 8 and p. 71) uses the concept of mean duration at transfer to

denote the expected number of years before the transition. It is the product of

Chiang’s ‘a’ (fraction of the interval) and the length of the interval. If transitions are

uniformly distributed during the interval, the survival function is linear, and ‘a’ is

half the length of the interval. If the transition rate is constant during an interval, the

waiting time to the event is exponentially distributed. Consequently, the expected

time to an event that occurs with certainty is less than half the interval length. The

probability that an exit from state i during the (x,y)-interval occurs during the first

half of the interval, provided it occurs with certainty during the interval, is a ratio of

two distribution functions:
1� exp �y� x

2
mi x; yð Þ

h i
1� exp � y� xð Þmi x; yð Þ½ � :

Consider the 201 respondents and age 18. The expected occupation times in each

of the states of the state space (J and N) by state on the 18th birthday is:

18L 18; 19ð Þ ¼ 0:0806 �0:3024
�0:0806 0:3024

� �� ��1
1 0

0 1

� �
� 0:9330 0:2512

0:0670 0:7488

� �� �

¼ 0:9644 0:1336
0:0356 0:8664

� �

A person of exact age 18 with employment may expect to spend 0.036 years (less

than half a month) without employment before reaching age 19. The 95 % confi-

dence interval, produced by bootstrapping, is (0.0136, 0.0635). A person of the

same age without a job may expect to be employed during 0.134 years (1.6 months)

before his 19th birthday, with confidence interval (0.0323, 0.2663). A small figure

(10�8) has been added to the diagonal to prevent m(18,19) from being singular. A

person aged 18 with employment, who leaves employment before age 19, may

expect to leave employment after
0:9644� 0:9330

1� 0:933
¼ 0:4687 years or 5.6 months.

The Taylor series expansion gives about the same result. A sum of four terms plus

the identity matrix gives
0:9644 0:1336
0:0356 0:8664

� �
.

The number of years between the lowest age (14) and the highest age (54) is

40 years. Since states J and N are transient states, the total numbers of years spent in

the employment career between ages 14 and 54 is 40. If a hypothetical individual

starts at age 14 with a job and the employment career is governed by the

occurrence-exposure rates estimated from the GLHS subsample of 201 subjects,

then the expected number of years with a job is 28.66, and the number of years

without a job is 11.34. The average of the 100 bootstrap samples is 28.55 and 11.45,

respectively. The 95 % confidence intervals are (26.65, 30.28) and (9.72, 13.35).
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2.5 Synthetic Life Histories

The methods presented in the previous sections produce state probabilities and

expected occupation times that are consistent with empirical transition rates. The

state probabilities and the occupation times describe the expected life history, given

the data. The confidence intervals around the expected values indicate the degree of

uncertainty in the data. Transition rates are differentiated by age to capture the age

patterns of transitions. In this section, age-specific transition rates are considered,

with age intervals of 1 year. Transition rates are piecewise constant: they vary

between age groups, but they are constant within age groups. Individual life

histories differ from the expected life history because of observed differences

between individuals with different personal attributes, unobserved differences and

chance. The chance mechanism is the subject of this section. Observed and

unobserved differences are disregarded because they are beyond the scope of this

chapter. Synthetic individual life histories are generated using longitudinal

microsimulation (Willekens 2009; Zinn 2011, 2014; Zinn et al. 2013). The method

is consistent with discrete event simulation (DEV) methods.

To explain the chance mechanism, a single transition rate will do, and to explain

the basic principle of generating synthetic biographies, a single transition rate

matrix is sufficient. To generate more realistic synthetic biographies, age-specific

transition rates are used. Consider the 201 respondents of the GLHS sample and the

observation period between labour market entry and survey date. In Sect. 2.2, the

aggregate NJ transition rate was estimated at 0.096 per year (using msm). An
individual who previously had a job (the nature of the sample) and who is currently

without a job may expect to get another job in 10.4 years (1/0.096) on average. The

expected waiting time during the first year is (1/0.096)[1� exp(�0.096)]¼ 0.9534

years. It is high because at the time the data were collected a relatively large number

of respondents, in particular women, left the labour force and did not return. The

probability of experiencing the event in the first year is 9.154 % [100*(1�exp

(�0.096))]. An individual without a job, who gets a job within 1 year, waits

0.4920 years, on average. This is a little less than 6 months. Individual waiting

times are random variables; the values are distributed around these expected value.

Since the transition rate is constant at 0.096, individual waiting times are exponen-

tially distributed with a mean of 10.4 years and a variance of 108 years, assuming

no competing transition intervenes in the labour market transitions. The median

waiting time is 7.2 years [ln(2)]/0.096.

To obtain individual waiting times that are consistent with these expected

values, waiting times are drawn randomly from an exponential distribution with a

hazard rate 0.096 or, alternatively, a mean waiting time of 10.4 years. A random

draw is implemented in two steps. First, a random number is drawn from the

standard uniform continuous distribution U[0,1]. Every value between zero and

one is equally likely to occur. The random number drawn represents the probability

that the waiting time to the transition is less than or equal to t, where t needs to be

determined. Let α denote the probability. Hence, α¼ 1� exp[�0.096t]. Suppose
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α¼ 0.54. The value of t is derived from the inverse distribution function of the

exponential distribution. It is t ¼ � ln 1�αð Þ
0:096 ¼ � ln 1�0:54ð Þ

0:096 ¼ 8:09 years. n draws from

the uniform distribution result in n individual waiting times. If n is sufficiently

large, the sample mean is close to the expected value of 10.4 years, and the sample

variance is close to 108 years. One experiment of 1,000 draws resulted in a mean

waiting time of 10.11 years and a variance of 116.5 years. Another experiment

resulted in a mean waiting time of 9.89 years and a variance of 87.4 years.

The transition rate estimated from data, in this example 0.096, is subject to

sample variation. The rate is itself a random variable. If the number of observations

is sufficiently large, the rate is a normally distributed random variable with the

expected value as its mean. The 95 % confidence interval of the NJ transition

rate was estimated at (0.0804, 0.1146). To incorporate the degree of uncertainty in

the data in the generation of synthetic life histories, a transition rate may be drawn

from a normal distribution with mean ln(0.096) and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=122 ¼p

0:0905. The standard deviation of the NJ transition rate was computed

in Sect. 2.2 of this chapter. If the value drawn from a normal distribution is denoted

by m, then the transition rate is exp(m). An alternative to drawing a transition rate

from a normal distribution is to resample the data (with replacement) and to

estimate the transition rate from the new sample. In this approach, the distribution

of the transition rate is the distribution generated by bootstrap samples. Consider

100 bootstrap samples and 100 transition rates, one from each sample. Each of these

transition rates is used to generate 1,000 individual waiting times. The collection of

waiting time incorporates the effects of sample variation and the exponential

distribution of waiting times. For a person without a job, the overall average waiting

time to a job is 10.54 years, and the variance is 115.00 years. The NJ transition rates

estimated in the bootstrap samples vary from 0.073 to 0.140, with mean rate 0.0967.

The aggregate transition rates may be used to generate employment histories.

The JN transition rate is 0.0533 and the NJ transition rate is 0.0960. Recall that

observations started at labour market entry (first job). Hence, N refers to being

without a job, after having had at least one job. The transition rate matrix is

m̂ ¼ 0:0533 �0:0960
�0:0533 0:0960

� �
. Everyone starts the employment history in J. The

starting time is zero, meaning that the time is measured as time elapsed since labour

market entry. The employment history is simulated for 30 years (simulation stop

time). The transition rates are assumed to remain constant during that period. In this

example, employment histories are sequences of transitions and waiting times to

transitions. They are assumed to be outcomes of a continuous-time Markov model

with constant rates. The simulation runs as follows. Let t denote time. An individual

starts in J at time 0. A random number is drawn from an exponential distribution

with transition rate 0.0533 to determine the time to transition from J to N. One draw

results in a transition at t¼ 8.29 years. To determine how long the individual stays

in N, a random number is drawn from an exponential distribution with transition

rate 0.096. The randomly selected time to NJ transition is 4.30 years. Hence, the

individual starts a second job 12.59 years after labour market entry (8.29 + 4.30).
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A new random waiting time is drawn from an exponential distribution with

transition rate 0.0533 to determine the time at the second JN transition. The number

is 24.00, which means that the transition would occur 36.59 years after labour

market entry. The transition time exceeds the time horizon of 30 years and is not

considered. When the simulation is discontinued, the individual is in state J. The

function sim.msm of the msm package is used to generate the life history of a

single individual. The code is

m <- array(c(0.0533,-0.0533,-0.096,0.096),
dim=c(2,2),dimnames=list(destination=c("J","N"),
origin=c("J","N")))
bio <- sim.msm (-t(m),mintime=0,maxtime=30,start=1)

where m is the transition rate matrix shown above, mintime is the starting time of

the simulation, maxtime is the ending time and start is the starting state (J is

state 1 and N is state 2). The object bio has two components. The first contains the

state sequence and the second the transition times.

The distribution of employment histories that are consistent with the transition

rates may be obtained by simulating a large number of employment histories. In this

simple illustration, the transition rates are assumed not to depend on age and to

remain constant during the period of 30 years. Simulation of 1,000 employment

histories results in the distribution shown in Table 2.7. The most frequent trajectory

is JNJ, about one third of all trajectories. The trajectories JN and J cover about one

fifth each. These 3 trajectories account for 68 % of all trajectories during a period of

30 years. For each trajectory, the median ages at transition are also shown. The table

is produced by the Sequences function of Biograph. The results of the simulation

are stored in a Biograph object, which facilitates analysis of the simulated life

histories.

Constant transition rates have been used for illustrative purposes only. Usually,

age-specific transition rates are used to generate synthetic life histories. Suppose an

individual enters his first job at age 21.3 (decimal year). He experiences the

employment exit rate from age 21.3 onwards until (a) he enters a period without

a job, (b) he experiences a competing transition, or (c) the ‘observation’ is censored,

i.e. simulation is discontinued. In this illustration, no competing transition is

considered. Hence, the waiting time to the JN transition depends on the

age-specific transition rates between age 21.3 and the age at which simulation is

discontinued, which in the sample of 201 respondents is 52. Age-specific transition

rates are weighted by exposure time. The transition rate at age 21 is multiplied by

Table 2.7 Employment histories in virtual population, based on GLHS aggregate transition rates

ncase % cum% path tr1     tr2     tr3     tr4
1   305 30.5 30.5 JNJ  9.12>N 19.95>J                
2   194 19.4 49.9    JN 20.35>N                        
3   185 18.5 68.4     J                                
4   130 13.0 81.4 JNJNJ 4.81>N 10.42>J 18.86>N 24.91>J
5   121 12.1 93.5  JNJN  6.53>N 13.28>J 25.83>N        
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the duration of exposure, which is 0.7 years (22.0�21.3). The transition rates at age

22 and higher are multiplied by one. The sum of the age-specific transition rates

beyond age 21 is the cumulative transition rate, computed at age 21. The waiting

time to the JN transition is determined by a random draw from an exponential

waiting time distribution associated with the cumulative transition rate computed at

age at labour market entry. The age at the JN transition is the current age plus the

waiting time to the JN transition. Suppose a waiting time of 3.4 years is drawn. The

individual will enter a period without a job at age 24.4. If the waiting time is such

that the age at transition exceeds the highest age in the observation scheme, then the

observation is censored at the highest age.

If the number of states exceeds two, the destination state must be determined in

addition to the time to transition. A multinomial distribution is used. The distribu-

tion is derived from the origin-destination-specific transition rates. If mij(x,y) is the
(i,j)-transition rate between ages x and y, then the probability of selecting state j,

conditional on leaving i, is iqj x; yð Þ ¼ mij x;yð ÞX
j 6¼i
mij x; yð Þ, with ∑ jiqj(x, y)¼ 1. The

probability is an event probability, not a transition probability. The probabilities

are used to partition the interval between the minimum probability (0) and the

maximum probability (1): {0, iq1, iq1 + iq2, iq1 + iq2 + iq3 . . . , 1}. A random

number is drawn from a standard uniform distribution, and the interval that corre-

sponds to its value determines the destination state. The method is implemented in

the msm package.

The method of estimating time to transition and destination state consists of two

steps. The first uses the exit rate from the current state, i say, to determine the time

to transition (exit from i). The exit rate is taken from the diagonal of the transition

rate matrix. The second step is to determine the destination, conditional on leaving

the current state. This method was suggested by Wolf (1986). An alternative but

equivalent method relies on the destination-specific transition rates. Consider an

individual in state i at age x. For each possible destination j random waiting

times are drawn from exponential distributions with parameters the cumulative

(i,j)-transition rates between x and the highest age: Aij(x,ω)¼
Ð
ω
x μij(τ)dτ. If transi-

tion rates are piecewise constant (age-specific), the cumulative hazard is piecewise

linear. The smallest random waiting time determines the destination. The two

methods rely on the theory of competing risks and assume that the waiting times

corresponding to the distinct destinations are independent. Zinn (2011, pp. 177ff)

shows that the two methods give similar results. Notice that the two methods are

also consistent with discrete event simulation (DEVS), although only the second

method stores randomly drawn waiting times in event queues before selecting the

shortest waiting time. The LifePaths (Statistics Canada2) and MicMac
microsimulation models (Gampe et al. 2009) use event queues. The msm package

uses exit rates and conditional destination probabilities.

For illustrative purposes, the transition rates in Table 2.3 are used to generate

synthetic employment histories for 2010 individuals, 10 for each observation in the

2 http://www.statcan.gc.ca/microsimulation/lifepaths/lifepaths-eng.htm
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GLHS subsample of 201 respondents. For each individual in the GLHS sample,

10 employment histories are simulated to reduce the Monte Carlo variation. The

employment career is simulated between a low age and a high age. The ages are

determined by individual observation periods in the GLHS subsample of

201 respondents. For instance, individual 1 enters the labour market at age 17 and

is 52 at interview. In the virtual population, ten individuals enter the labour market

at age 17 and are interviewed at age 52. Individual 4 is 22 at labour market entry and

31 at interview. The ages of labour market entry and interview of that respondent

are imposed on ten individuals in the virtual population. The simulated employment

histories cover the same age intervals as the observed employment histories.

Differences between simulated and observed employment trajectories are due to

sample variation affecting the estimated transition rates and Monte Carlo variation

in the simulation. Table 2.8 shows the main employment trajectories in the

Table 2.8 Employment histories in observed population and virtual population, based on

age-specific GLHS transition rates

A. Observed trajectories: males and females combined
ncase     %   cum%   case     tr1     tr2     tr3     tr4 

1    67 33.33  33.33      J 
2    54 26.87  60.20    JNJ 21.71>N 26.17>J
3    44 21.89  82.09     JN 24.88>N   
4    16  7.96  90.05  JNJNJ 20.83>N 23.96>J 25.62>N 29.62>J
5    10  4.98  95.02   JNJN 20.12>N 21.21>J 29.62>N   

B. Simulated trajectories: males and females combined
ncase     %   cum% case     tr1     tr2     tr3     tr4

1    627 31.19  31.19     J  
2    531 26.42  57.61   JNJ 22.99>N 27.33>J
3    294 14.63  72.24    JN  27.2>N
4    245 12.19  84.43  JNJN 21.21>N  24.3>J 30.31>N
5    218 10.85  95.27  NJNJ 20.66>N 22.31>J 26.92>N 32.43>J 

C. Observed trajectories: males
ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5    tr6

1    52 49.06  49.06         J            
2    41 38.68  87.74       JNJ 21.92>N 25.33>J 
3     6  5.66  93.40     JNJNJ 18.42>N 20.17>J 22.71>N 24.04>J
4     3  2.83  96.23        JN  27.5>N 
5     3  2.83  99.06   JNJNJNJ 18.17>N 19.67>J  21.5>N 22.08>J 33.17>N 35.75>J

D. Simulated trajectories: males
ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5     tr6 

1   518 48.87  48.87         J
2   314 29.62  78.49       JNJ  21.5>N 24.93>J
3   131 12.36  90.85     JNJNJ 20.54>N 22.54>J 26.81>N 28.85>J 
4    35  3.30  94.15      JNJN  21.3>N 23.37>J  34.4>N
5    23  2.17  96.32   JNJNJNJ  20.4>N 21.65>J 22.52>N 23.85>J  28.4>N 30.62>J

E. Observed trajectories: females
ncase     %   cum%    case     tr1     tr2     tr3     tr4     tr5     tr6 

1    41 43.16  43.16      JN 24.67>N
2    15 15.79  58.95       J 
3    13 13.68  72.63     JNJ  21.5>N 29.58>J 
4    10 10.53  83.16    JNJN 20.12>N 21.21>J 29.62>N
5    10 10.53  93.68   JNJNJ 23.21>N 26.29>J 27.62>N 32.25>J
6     5  5.26  98.95  JNJNJN  18.5>N 19.67>J 27.17>N 28.42>J 32.58>N
7     1  1.05 100.00 JNJNJNJ 21.92>N 22.08>J 33.83>N 35.08>J 39.83>N 40.17>J

F. Simulated trajectories: females
ncase     %   cum%       case     tr1     tr2     tr3     tr4

1    337 35.47  35.47         JN 25.32>N 
2    183 19.26  54.74       JNJN 21.13>N  25.5>J 30.11>N
3    174 18.32  73.05        JNJ 24.43>N 31.99>J
4    139 14.63  87.68          J
5     62  6.53  94.21      JNJNJ 20.91>N 24.31>J  28.8>N 37.05>J
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observed and the simulated population. For a given trajectory, the number of

simulated trajectories should be about 10 times the observed trajectories because

10 simulations were performed for each observation. The table also shows the

median ages at transition. The results differ considerably because in the GLHS,

which was organised in 1981, women and men report very different employment

histories, and the transition rates are not differentiated by sex. If the transition rates

are estimated separately for males and females and employment trajectories are

produced for the two sexes separately, the simulated trajectories are much closer to

the observations (Table 2.8). Among females, JN is the most frequent trajectory,

whereas it is quite rare among males. For both men and women, the model

accurately estimates the proportion of persons employed continuously throughout

the observation period. For women, it underestimates permanent withdrawal from

the labour market after a single employment episode and overestimates re-entry.

That may be due to a cohort effect with younger cohorts more likely to re-enter the

job market after a period of absence. The sample size is too small to estimate

age-specific transition rates by sex and birth cohort.

2.6 Conclusion

Life histories are operationalised as state and event sequences. Synthetic life

histories describe sequences that would result if individual life courses are

governed by transition rates estimated from life history data. Transition rates link

real and synthetic life histories. If transition rates are accurate, synthetic biogra-

phies mimic observed life paths. Life history data are generally incomplete. They

do not cover the entire life span. By combining data from similar individuals, the

transition rates may cover the entire life span. The estimation of transition rates

is crucial. In this chapter, two estimation methods are described. The first is

non-parametric and the second is parametric, or more appropriate, partial paramet-

ric. The non-parametric approach is common in biostatistics. The Nelson-Aalen

estimator of transition rates is distribution-free; it does not rely on an assumption

that the data are drawn from an underlying probability distribution. The partial

parametric method is common in demography, epidemiology and actuarial science.

The occurrence-exposure rate computed for an age interval assumes that the

transition rate is constant within the interval. Occurrence-exposure rates vary freely

between intervals. The two methods converge when the interval gets infinitesimally

small.

Transition rates are used to generate synthetic biographies. Synthetic biogra-

phies describe life histories in terms of state occupation probabilities and expected

state occupation times. Life expectancies, healthy life expectancies and active life

expectancies are examples of state occupation times. Life histories generated by the

most likely transition rates, given the data, are expected life histories. They apply to

a population. Few individuals have a life path that coincides with the expected life

history. Microsimulation is used to determine the distribution of individual life
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histories around expected life histories. The method presented in this chapter

involves drawing individual waiting times to transitions from piecewise exponen-

tial waiting time distributions. Sequences of waiting times are obtained by joining

randomly drawn waiting times. The method, which is referred to as longitudinal

microsimulation, is described in the chapter. The added value of synthetic individ-

ual life paths is the information they provide on the distribution of (1) state and

event sequences and (2) state occupation times around expected values. Synthetic

individual biographies describe life paths in a virtual population. The virtual

population closely resembles the real population if (1) transition rates are accurately

estimated and (2) the observation plan applied to the real population is also applied

to the virtual population, i.e. simulated life segments fully coincide with observed

life segments.

The variation of individual life histories indicates uncertainties in the data and

uncertainties associated with drawing random numbers from probability distribu-

tions. The uncertainties translate into uncertainties in transition rates, transition and

state probabilities and expected state occupation times. Uncertainties in transition

rates can be measured assuming that transition rates or transformations of transition

rates are normally distributed (asymptotic theory). The distributions of probabilities

and occupation times are more complicated and cannot always be expressed

analytically. In the chapter, bootstrapping is used to estimate the uncertainties in

transition probabilities, state probabilities and occupation times. If the cohort

biography (expected life path) is computed for each bootstrap sample, the distribu-

tion of cohort biographies can be determined. By combining bootstrapping and

longitudinal microsimulation, synthetic individual biographies can be produced

that incorporate uncertainties in the data and uncertainties introduced by the

microsimulation (Monte Carlo variation). The latter results from drawing random

numbers from probability distributions. The precision of the method of computing

synthetic biographies from real data is measured by comparing summary statistics

of virtual and real populations.

The methods described in this chapter are implemented in Biograph and other

packages discussed in this book. The packages have in common that they adopt a

counting process point of view (Aalen et al. 2008).
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