Chapter 2

Fundamental Theory for Chemical
Dissolution-Front Instability Problems
in Fluid-Saturated Porous Media

When fresh pore-fluid enters a solute-saturated porous medium, where the con-
centration of the solute (i.e. aqueous mineral) reaches its equilibrium concentra-
tion, the concentration of the aqueous mineral is diluted so that the solid part of the
solute (i.e. solid mineral) is dissolved to maintain the equilibrium state of the
solution. This chemical dissolution process can result in the propagation of a
dissolution front within the fluid-saturated porous medium. Due to the dissolution
of the solid mineral, the porosity of the porous medium is increased behind the
dissolution front. Since a change in porosity can cause a remarkable change in
permeability, there is a feedback effect of the porosity change on the pore-fluid
flow, according to Darcy’s law. Because pore-fluid flow plays an important role in
the process of reactive chemical-species transport, a change in pore-fluid flow can
cause a considerable change in the chemical-species concentration within the
porous medium (Steefel and Lasage 1990, 1994; Yeh and Tripathi 1991;
Raffensperger and Garven 1995; Schafer et al. 1998a, b; Xu et al. 1999, 2004;
Ormond and Ortoleva 2000; Chen and Liu 2002; Zhao et al. 2005, 2006a). This
means that the problem associated with the propagation of a dissolution front is a
fully coupled nonlinear problem between porosity, pore-fluid pressure and reactive
chemical-species transport within the fluid-saturated porous medium. If the fresh
pore-fluid flow is slow, the feedback effect of the porosity change is weak so that
the dissolution front is stable. However, if the fresh pore-fluid flow is fast enough,
the feedback effect of the porosity change becomes strong so that the dissolution
front becomes unstable. In this case, a new morphology (i.e. dissipative structure)
of the dissolution front can emerge due to the self-organization of this coupled
nonlinear system. This leads to an important scientific problem, known as the
chemical dissolution front instability problem (Zhao et al. 2008a, b), which is
closely associated with mineral dissolution in a fluid-saturated porous medium.
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This kind of chemical dissolution-front instability problem exists ubiquitously
in many scientific and engineering fields. For example, in geo-environmental
engineering, the rehabilitation of contaminated sites using fresh water to wash the
sites involves the propagation problem of the removed contaminant material front
in a water-saturated porous medium. In mineral mining engineering, the extraction
of minerals in the deep Earth using the in-situ leaching technique may result in the
propagation problem of the dissolved mineral front in a fluid-saturated porous
medium. In the petroleum industry, the secondary recovery of oil by acidifying the
oil field to uniformly increase porosity and hence the yield of oil is associated with
the propagation of the acid-dissolved material front in porous rocks. More
importantly, due to the ever-increasing demand for mineral resources and the
likelihood of the exhaust of the existing ore deposits, it is imperative to develop
advanced techniques to explore for new ore deposits. Towards this goal, there is a
definite need to understand the important physical and chemical processes that
control ore body formation and mineralization in the deep Earth (Raffensperger
and Garven 1995; Zhao et al. 1998, 1999, 2001a, b, 2003, 2006b, 2007, 2008c;
Gow et al. 2002; Schaubs and Zhao 2002). According to modern mineralization
theory, ore body formation and mineralization is mainly controlled by pore-fluid
flow focusing and the equilibrium concentration gradient of the concerned min-
erals (Phillips 1991; Zhao et al. 1998). Since the chemical dissolution front can
create porosity and therefore can locally enhance the pore-fluid flow, it becomes a
potentially powerful mechanism to control ore body formation and mineralization
in the deep Earth.

Although analytical solutions can be obtained for some reactive transport
problems with simple geometry, it is very difficult, if not impossible, to predict
analytically the complicated morphological evolution of a chemical dissolution
front in the case of the chemical dissolution system becoming supercritical. As an
alternative, numerical methods are suitable to overcome this difficulty. Since
numerical methods are approximate solution methods, they must be validated
before they are used to solve any new type of scientific and engineering problem.
For this reason, it is necessary to derive the analytical solution for the propagation
of a planar dissolution front within a benchmark problem, the geometry of which
can be accurately simulated using numerical methods such as the finite element
method (Zienkiewicz 1977; Lewis and Schrefler 1998) and the finite difference
method. This makes it possible to compare the numerical solution obtained from
the benchmark problem with the derived analytical solution so that the proposed
numerical procedure can be verified for simulating the chemical dissolution-front
propagation problem in a fluid-saturated porous medium.
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2.1 Mathematical Theory for Simulating Chemical
Dissolution-Front Instability Problems
in Fluid-Saturated Porous Media

2.1.1 A General Case of Reactive Multi-Chemical-Species

Transport with Consideration of Porosity/Permeability
Feedback

For a pore-fluid-saturated porous medium, Darcy’s law can be used to describe
pore-fluid flow and Fick’s law can be used to describe mass transport phenomena
respectively. If both the porosity change of the porous medium is caused by
chemical dissolution of soluble solid minerals within the porous medium and the
feedback effect of such a change on the variation of permeability and diffusivity
are taken into account, the governing equations of the coupled nonlinear problem
between porosity, pore-fluid flow and reactive multi-chemical-species transport in
the pore-fluid-saturated porous medium can be expressed as follows:

0
5 (pfd)) +V- (pfd)ﬁlinear) = O, (21)
17 = ¢ﬁlinear = — MV[), (22)
u
%(qscl) + V. (¢Ciﬁlinear) =V. [(bD,(qb)VC,] + Ri (l = 1,2, .. .,N),

where ;.. is the averaged linear velocity vector within the pore space of the
porous medium; i is the Darcy velocity vector within the porous medium; p and C;
are pressure and the concentration (moles/pore-fluid volume) of chemical species
i; p is the dynamic viscosity of the pore-fluid; ¢ is the porosity of the porous
medium; D;(¢) is the diffusivity of chemical species i; py is the density of the
pore-fluid; N is the total number of all the chemical species to be considered in the
system; R; is the source/sink term of chemical species i due to the dissolution/
precipitation of solid minerals within the system; k(¢) is the permeability of the
porous medium.

It is noted that in Eqgs. (2.1)—(2.3), the chemical species concentration, the fluid
density and averaged linear velocity of the pore-fluid are defined in the pore space,
while the source/sink term and the Darcy velocity of the pore fluid are defined in
the whole medium space (Phillips 1991; Nield and Bejan 1992; Zhao et al. 1994).

Since the diffusivity of each chemical species is considered as a function of
porosity, a common phenomenological relation can be used for describing this
function (Bear 1972; Chadam et al. 1986; Zhao et al. 2008a).
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Di(¢) = Dpidp? (3 <g<3), (24)

where Dy; is the diffusivity of chemical species i in pure water.

To consider the permeability change caused by a change in porosity, an
equation is needed to express the relationship between permeability and porosity.
In this regard, Detournay and Cheng (1993) stated that “The intrinsic permeability
k is generally a function of the pore geometry. In particular, it is strongly
dependent on porosity ¢. According to the Carman-Kozeny law (Scheidegger
1974) which is based on the conceptual model of packing of spheres, a power law

relation of k x q§3 / (1-— q5)2 exists. Other models based on different pore geom-

etry give similar power laws. Actual measurements on rocks, however, often yield
power law relations with exponents for ¢ significantly larger than 3.” In addition,
Nield and Bejan (1992) stated that “The Carman-Kozeny law is widely used since
it seems to be the best simple expression available.” For these reasons, the Car-
man-Kozeny law will be used to calculate permeability &, for a given porosity ¢.

ko(1 = ¢)*9’
k =
) $o(1—¢)°

where ¢, and ko are the initial reference porosity and permeability of the porous
medium respectively.

The source/sink term of chemical species i due to the dissolution/precipitation
of solid minerals within the system can be determined in the following manner
(Chadam et al. 1986; Zhao et al. 2008a). At the particle level, it is assumed that the
average volume of soluble grains is V,, and that the density of the soluble grains is
D,, which is defined as the number of the soluble gains per unit medium volume. If
the volume fraction of insoluble gains is denoted by ¢, b then the final (i.e.
maximum) porosity of the porous medium can be denoted by ¢r = 1 — @ 501upe-
In this case, the average volume of soluble grains can be expressed as follows:

: (2.5)

(2.6)

At the particle level, the rate of grain-volume change due to chemical (pre-
cipitation) reaction is denoted by R, so that the rate of porosity change can be
expressed as:

% _ _pr

ot - PP (27)

Without loss of generality, it is assumed that the solid grains are dissolved
according to the following formula:
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N
Solid = 1:Xi, (2.8)

i=1

where y; is the stoichiometric coefficient of the ith chemical species; X; represents
chemical species i in the pore-fluid.

It is commonly assumed that the rate of grain-volume change due to a chemical
reaction can be expressed as follows (Chadam et al. 1986):

1 T
Rp = ; kchemicalAp ( H C,X‘ - Keq) (29)

s i=1

where A, is the averaged surface area of soluble grains; K¢jemicar and Keq are the
conventional rate constant and equilibrium constant of the chemical reaction
respectively; p, is the molar density (i.e. moles per volume) of the soluble grains.

The source/sink term of chemical species i due to the dissolution/precipitation
of solid minerals within the system can be expressed as follows:

R;

N
_XikChemicaleAl,< Cle _ Keq>
i=1

A A
_Xikchemical‘—/_z ((/)f - ¢) (H Cill - Keq) : (2-10)

i=1

2.1.2 A Particular Case of Reactive Single-Chemical-Species
Transport with Consideration of Porosity/Permeability
Feedback

As a particular case, reactive transport involving single chemical-species disso-
lution in a fluid-saturated porous medium is first considered in this subsection. If
the pore-fluid is incompressible, the governing equations of the reactive single-
chemical-species transport problem in the fluid-saturated porous medium can be
written as follows:

O Y W =0, 1)

2 (9C) ~ V- [BD(B)VC+ CUP)T] + pksenica 5 (95— B)(C — Ceg) =0,
p

(2.12)

% + kEchemicali ((pf - ¢)(C - Ceq) = 07 (213>

ot Vp
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k()

Y(p)=——, (2.14)
I
kchemical
kEchemical == 2.15
PsCeq ( )

where C and C,, are the concentration and equilibrium concentration of the single
chemical species; kgcpemicai 1S the comprehensive rate constant of the chemical
reaction in the single chemical-species dissolution system. Other quantities in Eqs.
(2.11)—(2.15) are of the same meanings as those defined in Eqgs. (2.1)—(2.3) and
2.9).

In Eq. (2.15), kcpemicar 1s the conventional rate constant with the unit of
mol/(m2 -'s), while p; and C,, have the unit of mol/m>, kEchemicas has the unit of
m4/(m01 - s). Note that Eqgs. (2.11) and (2.12) can be derived by substituting the
linear average velocity into Egs. (2.1) and (2.3) with consideration of a single-
chemical species.

For this single-chemical-species system, it is very difficult, even if not impos-
sible, to obtain a complete set of analytical solutions for the pore-fluid pressure,
chemical species concentration and porosity within the fluid-saturated porous
medium. However, in some special cases, it is possible to obtain analytical solutions
for some variables involved in this single-chemical-species system. The first special
case to be considered is a problem, in which a planar dissolution front propagates in
the full space. Since the chemical dissolution front is of a planar shape, the problem,
which is described by Eqgs. (2.11)-(2.13) degenerates into a one-dimensional
problem. For this particular case, analytical solutions can be obtained for both the
propagation speed of the dissolution front and the downstream pressure gradient of
the pore-fluid. The second special case to be considered is an asymptotic problem, in
which the solid molar density greatly exceeds the equilibrium concentration of the
chemical species, implying that the region of a considerable porosity change
propagates very slowly within the fluid-saturated porous medium. In this particular
case, it is possible to derive a complete set of analytical solutions for the pore-fluid
pressure, chemical species concentration and porosity within the fluid-saturated
porous medium. In addition, it is also possible to investigate the chemical dissolu-
tion-front instability in this particular case (Chadam et al. 1986; Zhao et al. 2008a).

2.1.2.1 The First Special Case

In this special case, the planar dissolution front is assumed to propagate in the
positive x direction, so that all quantities are independent of the transverse coor-
dinates y and z. For this reason, Eqgs. (2.11)—(2.13) can be rewritten as follows:

¢ o o]
2o o 210
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0 0 oC 9 A
a (¢C) - a ¢D(¢) a + Clﬁ((f)) a_i + pskEchemicalV_Z (d)f - ¢)(C - Ceq) = 0»
(2.17)
0 A
g + kEchemiculV*Z (¢f - ¢)(C - Ceq) =0. (218)

If the chemical species is initially in an equilibrium state and fresh pore-fluid is
injected at the location of x approaching negative infinity, then the boundary
conditions of this special problem are expressed as

op(x, 1)

lim C(x, 1) =0, lim ——==pj (upstream boundary), ~ (2.19)
X——00 X——00 X
9 t

lim C(x, 1) = Coq,  lim % =p,, (downstream boundary),  (2.20)

where p}x is the pore-fluid pressure gradient as x approaching negative infinity in
the upstream of the pore-fluid flow; pj, is the unknown pore-fluid pressure gradient
as x approaching positive infinity in the downstream of the pore-fluid flow. Since
p}x drives the pore-fluid flow continuously along the positive x direction, it has a
negative algebraic value (i.e. p}x <0) in this analysis.

The initial condition for this theoretical problem is: ¢(x, 0) = ¢, expect at the
negative infinity, where lim; ., ¢(x, 0) = ¢,. Note that ¢, is the initial porosity
of the porous medium.

If the propagation speed of the planar dissolution front is denoted by v, then it
is possible to transform a moving boundary problem of the dissolution front (in an
x — t coordinate system) into a steady-state boundary problem of the dissolution
front (in an & — ¢ coordinate system) using the following coordinate mapping:

& =X — Voont. (2.21)

It is necessary to relate partial derivatives with respect to ¢ and ¢ to those with
respect to x and ¢ (Turcotte and Schubert 1982).

d o\ oox [ d
Oy _(8) 3 _(d g 222
(ar) . (at)f %o (a:)x”f"’"’ % (222)

@) @)

where derivatives are taken with x or 7 held constant as appropriate.
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Since the transformed system in the £ — ¢ coordinate system is in a steady state,
the following equations can be derived from Egs. (2.22) and (2.23).

0 0
(&) X: —Vfront a_f ) (224)

(-3,

Substituting Eqgs. (2.24) and (2.25) into Egs. (2.16)—(2.18) yields the following
equations:

% {W(‘/’) %lg + Vfronl¢:| - 0, (226)

2 ac op -
o0+ v Lrvmic-p)] <0 )
Vfront% - kchemical?/_: (¢f - ¢)<C - Ceq) =0. (228>

Integrating Eqs. (2.26) and (2.27) from negative infinity to positive infinity and
using the boundary conditions [i.e. Egs. (2.19) and (2.20)] yields the following
equations:

Ceq‘ﬁ(‘bo)l’:)x + VironPo(Ceq — p5) + Vfront¢fps =0, (2.29)
W(%)Plox + Vfront¢0 - W(¢f)l?}x - Vfront¢f =0. (230)

Solving Egs. (2.29) and (2.30) simultaneously results in the following analyt-
ical solutions:

) _ 71//(¢0)p6xceq _ quCeq
Vront ¢0Ceq T (¢f — ¢0)Ps ¢0Ceq T (¢f — ¢>0)ps’ (2.31)
o V(@) PCeq + (P — ¢o)py] o (2.32)

Por = (00)[$0Coq + (B — o) (9 + Cog)) 2

where u, is the Darcy velocity in the far downstream of the flow as x approaches
positive infinity. Using Darcy’s law, ug, can be expressed as

- $oCeq + (d’f — o) ps »
o $oCeq + (r — bo)(ps + Ceq) w

(2.33)
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where uy, is the Darcy velocity in the far upstream of the flow as x approaches
negative infinity.

If the finite element method is used to solve this special problem, the accuracy
of the finite element simulation can be conveniently evaluated by comparing the
numerical solutions with the analytical ones for both the propagation speed of the
planar dissolution front (i.e. V) and the Darcy velocity in the far downstream of
the flow as x approaches positive infinity (i.e. ug,).

2.1.2.2 The Second Special Case (Base Solutions for a Stable State)

Since the solid molar density greatly exceeds the equilibrium concentration of the
chemical species, a small parameter, which is called the mineral dissolution ratio
(Zhao et al. 2010), can be defined as follows:

C
e=—2<1. (2.34)
Ps

To facilitate the theoretical analysis in the limit case of ¢ approaching zero, the
following dimensionless parameters and variables can be defined for a two-
dimensional problem.

=2 =2
r=2, y=2 (2.35)
_ C 2 T)
C: D = — = — .
Co? i=-2, (2.36)
t
T=—¢, (2.37)

where 7 is a slow dimensionless time to describe the slowness of the chemical
dissolution that takes place in the system. Other characteristic parameters used in
Eqgs. (2.35)—(2.37) can be expressed as follows:

Vp
SRS, 7R .
kEchemicalApCeq (’bf (¢f) ( )

b= ¢rD(¢r) u ‘lst(d’f)’ (239)

Yigy) Lx

() = 22O gy - VD)

4, D(d;) (2.40)
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Substituting Egs. (2.35)-(2.40) into Egs. (2.11)—(2.13) yields the following
dimensionless equations:

229 ()ve] =0, @.41)

a a * a RNE = ad)
P2 (90) V- D OVE+CY (O)VF - 2 —0,  (242)
g%ﬂ(pf—qa)(c— 1) =o. (2.43)

Similarly, the boundary conditions for this special case can be expressed in a
dimensionless form as follows:

op(x, )
X

lim C(x, ) =1, lim =Py, (downstream boundary), (2.44)

X—00 X—00
) 61_7()_6, T) _pl

X——00 X——00 X fx

lim C(x,7)=0, lim (upstream boundary). (2.45)
In this case, the initial condition for this theoretical problem is: ¢(x, 0) = ¢,
expect at the negative infinity, where limz_,_, ¢(%, 0) = oy

It is noted that the propagation front due to chemical dissolution divides the
problem domain into two regions, an upstream region and a downstream region,
relative to the propagation front. Across this propagation front, the porosity under-
goes a jump from its initial value into its final value. Thus, this dissolution-front
propagation problem can be considered as a Stefan moving boundary problem
(Chadam et al. 1986; Zhao et al. 2008a). In the limit case of ¢ approaching zero, the
corresponding governing equations for the dimensionless variables of the problem in
both the downstream region and the upstream region can be expressed below:

C=1, V*»=0, ¢=4¢, (inthe downstream region), (2.46)
V- (VC+CVp)=0, V*p=0, ¢=d¢; (in the upstream region). (2.47)

If the chemical dissolution front is denoted by S(x, ) = 0, then the dimen-
sionless pressure, chemical species concentration and mass fluxes of both the
chemical species and the pore-fluid should be continuous on S(X, 7) = 0. This
leads to the following interface conditions for this moving-front problem:

Jig €= Jim . Jimp=linp 248
_oC . _Y(¢o) . O
Sllr(r)l, a - V.frunt(¢f - ¢0)’ Sllr(r)l, & - l//(d)f) SILI(I)IJF 57 (249>
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where n = n/L*; n is the normal vector of the propagating planar chemical dis-
solution-front; vy, is the dimensionless propagation speed of the planar chemical
dissolution-front.

When the planar dissolution front is under stable conditions, the base solutions
for this special problem can be derived from Eqgs. (2.46) and (2.47) with the related
boundary and interface conditions [i.e. Egs. (2.44), (2.45), (2.48) and (2.49)]. The
resulting base solutions are expressed as follows:

C&) =1, p(&) =pyé+pc, ¢=d¢, (inthe downstream region), (2.50)
C(&) = exp(—ppé), p(&) =pRé+Dpc2, ¢ =, (in the upstream region),
(2.51)

where pc and pcy are two constants to be determined. For example, pc; can be
determined by setting dimensionless pressure p(&) to be a constant at a prescribed
location of the downstream region, while p¢» can be determined using the pressure
continuity condition at the interface between the upstream and downstream
regions. Other parameters are defined below:

_ (b)), ﬁ}x

¢=x— VrontT, ]_jé)x = mpfx’ Vfront = — m (252)

Therefore, if the finite element method is used to solve the second special
problem, the accuracy of the finite element simulation can be conveniently evaluated
by comparing the numerical solutions with a complete set of analytical solutions
including porosity, the location of the chemical dissolution front, the dimensionless
chemical-species concentration and the dimensionless pore-fluid pressure.

2.1.2.3 The Second Special Case (Perturbation Solutions
for an Unstable State)

When a reactive transport system represented by the above-mentioned second
special problem is stable, the planar dissolution front remains planar, even though
both small perturbations of the dissolution front and the feedback effect of
porosity/permeability change are simultaneously considered in the analysis.
However, when the reactive transport system is unstable, the planar dissolution
front can change from a planar shape into a complicated one. The instability of the
above-mentioned second special problem can be determined using a linear stability
analysis (Chadam et al. 1986, 1988; Ortoleva et al. 1987; Zhao et al. 2008a). The
main purpose of conducting such a linear stability analysis is to determine the
critical condition under which the chemical dissolution front of the reactive
transport system becomes unstable.
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If a small time-dependent perturbation is added to the planar dissolution front,
then the total solution of the system is equal to the summation of the base solution
and the perturbed solution of the system.

S(¢&, ¥, 1) = & — dexp(@t) cos(my), (2.53)
Prowat(&, Y, ) = p(&, 1) + 6 p(&) exp(@r) cos(my), (2.54)
Croat(€, 3, T) = C(&, T) + 6 C(&) exp(@r) cos(my), (2.55)

where @ is the dimensionless growth rate of the perturbation; m is the dimen-
sionless wavenumber of the perturbation; ¢ is the amplitude of the perturbation and
0 < 1 by the definition of a linear stability analysis.

Since S(¢, y, 1) is a function of coordinates S(&, y, 7) and y, the following
derivatives exist mathematically:

(2)-(3),

It is noted that the total solutions expressed in Egs. (2.54) and (2.55) must
satisfy the governing equations that are expressed in Eqgs. (2.46) and (2.47). With
consideration of Eq. (2.59), the first-order perturbation equations of this system
can be expressed as

X *p
C=0, 6; — m*p+m?*py, =0 (in the downstream region), (2.60)
*C _, oC s op

o2 TP m*C — m*ply exp(—pj&) — pj, exp(—pj<) =0

p+m"p;, =0 (in the upstream region). (2.61)
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2.1
The corresponding boundary conditions of the first-order perturbation problem
are:
N op
C(&) =0, lim (o) =0 (downstream boundary), (2.62)
E—o0 65
(2.63)

b
lim C(¢) =0, lim %—(5):0 (upstream boundary).
E——o0

{——0
Similarly, the interface conditions for this first-order perturbation problem can

be expressed as follows:
€=0, limp= Slg(r)gp, (2.64)
ac . Yldy) . 0P
— lim — = lim —. 2.65
=0l = b i =Yg s on 263)

Solving Eqs. (2.60) and (2.61) with the boundary and interface conditions [i.e
Egs. (2.62)—(2.65)] yields the following analytical results:

C=0, p(& p()x[ %exp(ﬂmé)} (in the downstream region)
(2.66)

"ﬁexpurn|—14»é1},

Cc(é) = —p;x{exp(—p}xé) I iﬁexp(of) 1 o
p(&) = }x{ + %expﬂmﬁ)] (in the upstream region) (2.67)
(2.68)

where
Y(do) _ k()

mZ
(7h)" +4 pf" (2.69)

g = )

Substituting Eq. (2.67) into Eq. (2.65) yields the following equation for the

dimensionless growth rate of the small perturbation

—Ph — {—p}x @) + A+ (1 /g)m|>. (2.70)

O = T Py =
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Equation (2.70) clearly indicates that the planar dissolution front of the reactive
transport system, which is described by the above-mentioned second special
problem, is stable to short wavelength (i.e. large dimensionless wavenumber 1)
perturbations but it is unstable to long wavelength (i.e. small dimensionless
wavenumber i) perturbations.

Letting w(m) =0 yields the following critical condition, under which the
reactive transport system can become unstable.

_ B-pU+p
critical 2(1 — ﬁ) ’

=/

Pp

(2.71)

where ﬁ}x is the critical value of the generalized dimensionless pressure
critical

gradient in the far upstream direction as x approaching negative infinity (Zhao

et al. 2008a). Since ﬁ}x

is usually of a negative value, the following critical
critical
Zhao number is defined to judge the instability of the reactive transport system:

I _B=p+p)
Zheriical = P writieal W (2.72)

Thus, the Zhao number of the reactive transport system can be defined as follows:

p}xL* _ (¢f )L*pfx Vilow
p* ¢f :uD d)f / ¢fD kEchemtcalAp Ceq

Zh:_p}x:_

where vg,,, is the Darcy velocity of the injected pore-fluid flow; ¢ is the porosity
when the dissolvable minerals are completely dissolved; D(¢;) is the molecular

diffusivity of the solute in the mineral completely-dissolved region; V, is the
average volume of soluble grains; A, is the averaged surface area of soluble grains;
C,q is the equilibrium concentration of the dissolvable mineral; kgchemicar 1s the
equivalent rate constant of the chemical reaction in the single chemical-species
dissolution system [as defined in Eq. (2.15)].

Using Egs. (2.72) and (2.73), a criterion can be established to judge the
instability of a chemical dissolution front associated with the particular chemical
system in this investigation. If Zh > Zh,,i;cq;, then the chemical dissolution front of
the reactive transport system becomes unstable, while if Zh <Zh,i;cq;, then the
chemical dissolution front of the reactive transport system is stable. The case of
Zh = Zhriricar TEPresents a situation where the chemical dissolution front of the
reactive transport system is neutrally unstable, implying that the introduced small
perturbation can be maintained but it does not grow in the corresponding reactive
transport system.

Clearly, Eq. (2.73) indicates that for the reactive chemical-species transport
considered in this investigation, the dissolution-enhanced permeability destabilizes
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the instability of the chemical dissolution front, while the dissolution-enhanced
diffusivity stabilizes the instability of the chemical dissolution front. If the shape
factor of soluble grains is represented by 0 =V, /A,,, then an increase in the shape
factor of soluble grains can destabilize the instability of the chemical dissolution
front, indicating that the instability likelihood of a porous medium comprised of
irregular grains, is higher than that of a porous medium comprised of regular
spherical grains. Similarly, an increase in either the equilibrium concentration of
the chemical species or the chemical reaction constant of the dissolution reaction
can cause the stabilization of the chemical dissolution front, for the reactive
chemical-species transport considered in this investigation.

To understand the physical meanings of each term in the Zhao number,
Eq. (2.73) can be rewritten in the following form:

Zh = FAdvectionFDiJj"fusionFChemicalFShapea (274)

where Fagveciion 18 @ term to represent the solute advection; Fpgision 1S a term to
represent the solute diffusion/dispersion; Fepemicar 1S @ term to represent the
chemical kinetics of the dissolution reaction; Fjqp. is a term to represent the shape
factor of the soluble mineral in the fluid-rock interaction system. These terms can
be expressed as follows:

Frdvection = Velow (275>
1
FDi[ﬁlsit)n =T (276)
\/ ¢rD(¢yr)

1

Fchemicat = |7~ 2.1
“ ! kchemical Ceq ( )
F = l 2.78
Shape — A . ( . )

P

Equations (2.74)—(2.78) clearly indicate that the Zhao number is a dimen-
sionless number that can be used to represent the geometrical, hydrodynamic,
thermodynamic and chemical kinetic characteristics of a fluid-rock system in a
comprehensive manner. This dimensionless number reveals the intimate interac-
tion between solute advection, solution diffusion/dispersion, chemical kinetics and
mineral geometry in a reactive transport system.
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2.2 Computational Theory for Simulating
the Morphological Evolution of a Chemical
Dissolution Front

Although analytical solutions can be obtained for the above-mentioned special
cases, it is very difficult, if not impossible, to predict analytically the complicated
morphological evolution process of a planar dissolution front in the case of the
chemical dissolution system becoming supercritical. As an alternative, numerical
methods are suitable to overcome this difficulty. Since numerical methods are
approximate solution methods, they must be validated before they are used to
solve any new type of scientific and engineering problem. For this reason, the main
purpose of this section is to propose a numerical procedure for simulating how a
planar dissolution front evolves into a complicated morphological front. To verify
the accuracy of the numerical solution, a benchmark problem is constructed from
the theoretical analysis in Sect. 2.1.2.2. As a result, the numerical solution
obtained from the benchmark problem can be compared with the corresponding
analytical solution. After the proposed numerical procedure is verified, it will be
used to simulate the complicated morphological evolution process of a planar
dissolution front in the case of the chemical dissolution system becoming
supercritical.

2.2.1 Formulation of the Segregated Algorithm
Jor Simulating the Evolution of Chemical
Dissolution Fronts

In this section, Egs. (2.41)—(2.43) are solved using the proposed numerical pro-
cedure, which is a combination of both the finite element method and the finite
difference method. The finite element method is used to discretize the geometrical
shape of the problem domain, while the finite difference method is used to dis-
cretize the dimensionless time. Since the system described by these equations is
highly nonlinear, the segregated algorithm, in which Eqs. (2.41)—(2.43) are solved
separately in a sequential manner, is used to derive the formulation of the proposed
numerical procedure.

For a given dimensionless time-step, © + Az, the porosity can be denoted by
Orine = G + Ad,p,, Where ¢, is the porosity at the previous time-step and
A, 4, is the porosity increment at the current time-step. Using the backward
difference scheme, Eq. (2.43) can be written as follows:

[i + (1 — C1+Ar) A¢T+Ar = (d)f - d)r)(] — C1+Ar), (279)
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where C. ; is the dimensionless concentration at the current time-step; At is the
dimensionless time increment at the current time-step.

Mathematically, there exist the following relationships in the finite difference
sense:

0 C A T+AT — A AT A e
€ (g’TC) . (¢T+ZTTC tAc) eCo pe d)A;A n 8¢T+Af(+f), (2.80)
0 A _
86_(‘?:6%: (1 _CT+AT)(¢f_¢T+Ar)7 (281)
V- [D*(¢)VC] = V - [D* (11 2.)VCorad, (2.82)

V- [CY(¢)Vp] = CV - [ (¢)Vp] + Vp - [V (¢)VC]
= Cr+Arv ' W*(ff’wm)vﬁwm] + VI_)T+AT : [w*(¢T+AT)VCT+AT]'
(2.83)

Substituting Egs. (2.80)—(2.83) into Eq. (2.42) yields the following finite dif-
ference equation:

I3 1 _

At ¢‘L’+A‘E + g (¢f - ¢1+Ar) Crine — V- [D*(¢1+A1)VCT+AT]

1 (2.84)
- VpT+AT : [lp*(qb‘H—AT)VCTJrAT] = é(pr-{—ArCT + E ((l’)f - ¢T+AI)'

Similarly, Eq. (2.41) can be rewritten in the following discretized form:

V- [W*((b)vp] =V [W*((errAr)vprJrAr] = (1 - Cr+Ar)(¢f - ¢7+Ar)' (285)

To derive the finite element equations of the problem, the corresponding finite
difference equations can be summarized as follows:

|:Ai‘[ + (l B CH_AT)] A¢T+AT = (d)f - ¢r)(1 - CT+AZ)7 (286)

€

1 _ _
|:E ¢I+A‘E + Z (¢f - ¢‘L’+A‘E):| CT+A‘C -V [ *(¢T+AT)VCT+AT] (287)

_ " - & — 1
- VpT+AT . [W (d)‘H»AI)VC‘hLAT] = A__Cd)IJrArCT + ; ((rbf - ¢1+Ar)7

VW (VP = V- [ (deiad) VPrrad = (1 = Copac) (dp — hriad)- (2.88)
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2.2.2 Derivation of the Finite Element Equations of the Problem

Although the finite element method has been broadly used for solving many different
types of scientific and engineering problems, the finite element equations related to
the chemical dissolution-front propagation problem need to be given blow.

To derive the finite element equations of the problem, three unknown variables
involved in the finite difference equations [i.e. Eqs. (2.86)—(2.88)] are defined as
follows:

Ul = A¢T+AT7 UZ = Cr+Au U3 :pr+Ar- (289)

By using these new definitions, Eqgs. (2.86)—(2.88) can be written in the fol-
lowing forms:

finlh = fer, (2.90)
fiUs =¥ (o) (Vs VU2) = V- [0 () VU] =feo, (291)
VI (s VU] = s, (2.92)
where
fir =fn(Csn) = =+ (1= Copa), (2.93)
for =fer (Cevnes §) = (8 = $)(1 = Corno), (2.94)
for = fr(ne) = v+ (b — ey (2.95)
for = fer i C) = 5o beonCot (b~ dn)s (296)
fos = fes(Dnner Cora) = (1= Coon) by — den). (297)

Based on the finite element method, the distribution of the above-mentioned
three unknown variables in a finite element can be described as follows:

Uy = [N[{A1}, (2.98)
U; = [N[{A:}", (2.99)
Us = [N[{A;3}°, (2.100)

where Uf, U5 and U3 are the distribution fields of the three unknown variables
within the finite element; {A;}°, {A;}° and {A;}° are the corresponding nodal
vectors of the element; [N] is the shape function matrix of the element.
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If the finite element under consideration has Q nodes, then the following
expressions exist for this element:

{A})'={Un Un ... Uio }, (2.101)

(A ={Un Un ... Uy}, (2.102)

{As})'={Us Un ... U}, (2.103)

[INl=[Ni N, ... Ngpl, (2.104)

where N; (i = 1, 2, ..., Q) is the shape function of node i; Uy;, Uy; and Us; (i = 1,

2, ..., Q) are the nodal values of the unknown variables for the finite element under
consideration.

Using the Galerkin weighted-residual method, Egs. (2.90)-(2.92) can be
rewritten, at the element level, as follows:

(//A[N]Tfm [N]dA) (A = //A[N]TfadA, (2.105)
(// 1" fua N dA){Az} - (/ U (Berad) IN (VDerac - V[N])dA){Aﬂf

~(J] w0 esavivDan ) ) = [ W
(2.106)

< // A[N]TV-(lﬁ*(d)rJrAr) [N }dA){Ag} = // 1" fesdA, (2.107)

where A is the area of the element.
Note that the following expressions exist mathematically:

( J V-0 sv H)dA>{Az}e: / INTD* (9 ar) V(NI {A2))dS

(// VNI (D" (e VIN) dA) (M),

(2.108)
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(J] 079 00 svivpan ) 2y = / N0 (6.,0) W(N{A} )

- ( / / AV[NJT : (w*(quATW[N])dA) (A5},
(2.109)

where S is the length of the element boundary.
Substituting Egs. (2.108) and (2.109) into Egs. (2.106) and (2.107) yields the
following expressions:

(] rrniian ) 1aay =[] 0o (Vs VD ) 5}
# (] T 0 era VINDAA ) (22
— || WFeada+ [ W7D (9. s VI8 (2.110)

S

(] 70" 0" Gca SIopan 125y
— —//A[N]chsdA +/[NW*(d)HAT)V([N]{Ag}“)ds.

N

(2.111)

Consideration of Egs. (2.105), (2.110) and (2.111) leads to the discretized
equations of the finite element as follows:

M (A} = {P1}, (2.112)
(M2]* = [H]* + [Ki]){ A2} = {P2}", (2.113)
(K] {As} = {P5}", (2.114)

where [M1], [My]°, [H]°, [Ki]° and [K;]® are the property matrices of the finite
element; {P;}°, {P,}° and {P3}* are the “load” vectors of the finite element.
These matrices and vectors can be expressed as follows:

2 //A[N]Tfm[N]dA, (2.115)

[M,)° = / / A[N]TfUZ[N]dA, (2.116)
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HE = [[ (G N (Ve VINDaa (2117)
K // VNI - (D* (¢, a0 VIN])dA, (2.118)
[Kzr://AV[N]T-(fUW[N])dA, (2.119)
{Pl}e=//A[N]ch1dA, (2.120)

(Po) = [ Wttt + [ INTD (6o VN8

s (2.121)

— [ W'feada+ [ 97D (6. ¥ Corne) s
S

(Pa) == [ Wi cada + [ 870 (B a0 DN} )

s (2.122)

[ a7 G Voreaoas,
N

where V(Cyrya;) and V(pyia.)¢ are the dimensionless chemical-species concen-
tration-gradient and pore-fluid pressure-gradient at the boundary, S, of the finite
element.

Assembling the property matrices and vectors of all the elements in a system
yields the following discretized governing equations of the system:

M {A} = {P1}, (2.123)
(Ma] — [H] + [Ki]){A2} = {P2}, (2.124)
[K2{As} = {P3}, (2.125)

where [M], [M3], [M3], [H], [K1] and [K;] are the global property matrices of the
system; {P;}, {P>} and {P5} are the global “load” vectors of the system; {A;},
{A,} and {A3} are the corresponding global vectors of the system.

Clearly, Eqgs. (2.123), (2.124) and (2.125) can be solved separately and sequen-
tially for the porosity, dimensionless concentration and dimensionless pore-fluid
pressure at the current time-step. Note that when Eq. (2.123) is solved using the finite
element method, the dimensionless concentration at the current time-step is not
known. Similarly, when Eq. (2.124) is solved using the finite element method, the
dimensionless pore-fluid pressure at the current time-step remains unknown. This
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indicates that these three equations are fully coupled so that an iteration scheme
needs to be used to solve them sequentially. At the first iteration step, the dimen-
sionless concentration at the previous time-step is used as a reasonable guess of the
dimensionless concentration at the current time-step when Eq. (2.123) is solved for
the porosity. In a similar way, the dimensionless pore-fluid pressure at the previous
time-step is used as a reasonable guess for the current time-step when Eq. (2.124) is
solved for the dimensionless concentration. The resulting approximate porosity and
dimensionless concentration can be used when Eq. (2.125) is solved for the
dimensionless pore-fluid pressure. At the second iteration step, the same procedure as
used in the first iteration step is followed, so that the following convergence criterion
can be established after the second iteration step.

Ny N¢ N;

— k k—1 2 ~k Ak—1 2 —k —k—1 2 =

E = Max Z ( iT+AT T i;:+Ar) ’ Z (C[.r+Ar - Ci.r+Ar) ’ Z (Pi.r+Ar - pi.r+A1) <E,
i=1

i=1 i=1

(2.126)

where E and E are the maximum error at the k-th iteration step and the allowable
error limit; Ny, N¢ and N;; are the total numbers of the degrees-of-freedom for the
porosity, dimensionless concentration and dimensionless pore-fluid pressure
respectively; k is the index number at the current iteration step and k — 1 is the

index number at the previous iteration step; ¢f‘r Sy Ct. At

porosity, dimensionless concentration and dimensionless pore-fluid pressure of

node i at both the current time-step and the current iteration step; qﬁf;i Ar> Cl’.‘;l Ar

and ﬁfﬁ;l A are the porosity, dimensionless concentration and dimensionless pore-
fluid pressure of node i at the current time-step but at the previous iteration step. It
is noted that k >2 in Eq. (2.126).

The convergence criterion is checked after the second iteration step. If the con-
vergence criterion is not met, then the iteration is repeated at the current time-step.
Otherwise, the convergence solution is obtained at the current time-step and the
solution procedure goes to the next time-step until the final time-step is reached.

—k
and p; ., are the

2.3 Verification of the Proposed Numerical Algorithm
for Simulating the Evolution of Chemical Dissolution
Fronts

The main and ultimate purpose of a numerical simulation is to provide numerical
solutions for practical problems in a real world. These practical problems are
impossible and impractical to solve analytically. Since numerical methods are the
basic foundation of a numerical simulation, only an approximate solution can be
obtained from a computational model, which is the discretized description of a
continuum mathematical model. Due to inevitable round-off errors in computation
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Fig. 2.1 Geometry and boundary conditions of the chemical dissolution problem

and discretized errors in temporal and spatial variables, it is necessary to verify the
proposed numerical procedure so that meaningful numerical results can be obtained
from a discretized computational model. For this reason, a benchmark problem, for
which the analytical solutions are available, is considered in this subsection.
Figure 2.1 shows the geometry and boundary conditions of the coupled problem
between porosity, pore-fluid pressure and reactive chemical-species transport
within a fluid-saturated porous medium. For this benchmark problem, the
dimensionless-pressure gradient (i.e. f’;x = —1) is applied on the left boundary,
implying that there is a horizontal throughflow from the left to the right of the
computational model. In this case, the Zhao number of the reactive transport
system is unity. The dimensionless height and width of the computational model
are 5 and 10 respectively. Except for the left boundary, the initial porosity of the
porous medium is 0.1, while the initial dimensionless-concentration is one within
the computational domain. The final porosity after depletion of the soluble mineral
is 0.2. This final porosity is applied on the left boundary as a boundary condition of
the computational domain. The permeability of the porous medium is calculated
using the Carman-Kozeny formula, which has the power of 3 in the power law.
The diffusivity of chemical species is calculated using the power law, which has
the power of 2. Both the top and the bottom boundaries are assumed to be
impermeable for the pore-fluid and chemical species. The mineral dissolution ratio
of the chemical dissolution system is assumed to be 0.01, while the dimensionless
time-step length is set to be 0.005 in the computation. Since the computational
domain of the benchmark problem is of finite size, a time-dependent-dimension-
less-concentration boundary condition [i.e. C(t) = exp(ﬁ}xvfmmr)] needs to be
applied on the left boundary so that the numerical solutions can be compared with
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the analytical solutions derived in the previous section. Using the above-men-
tioned parameters, the critical Zhao number of the system is approximately equal
to 1.77. Since the Zhao number of the system is greater than its critical value, the
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Fig. 2.4 Comparison of
numerical solutions with
analytical ones at different
time instants (dimensionless
pore-fluid pressure): the thick
line shows the numerical
results, while the thin line
shows the corresponding
analytical solutions
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coupled system considered in this subsection is sub-critical so that a planar dis-
solution front remains planar during its propagation within the system. The
dimensionless speed of the dissolution front propagation is equal to 10, which is
determined using Eq. (2.52). To simulate appropriately the propagation of the
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dissolution front, the whole computational domain is simulated by 19701 four-
node rectangular elements of 20,000 nodal points in total.

Figures 2.2, 2.3, and 2.4 show the comparison of numerical solutions with
analytical ones for the porosity, dimensionless concentration and dimensionless
pore-fluid pressure distributions within the computational domain at three different
time instants. In these figures, the thick line shows the numerical results, while the
thin line shows the corresponding analytical solutions, which can be determined
from Egs. (2.50) and (2.51) with the boundary condition of p(L,,t) = 100 at the
right boundary of the computational model. The resulting analytical solutions are
expressed as follows:

Cx1)=1, ¢Xx1)=0¢y (&> Vom1), (2.127)
p(x,7) = —po(Ly —X) + 100 (X > VyromT), (2.128)
C(x,7) = exp[—Pp(X — Vpon?)], (X, 7) = by (X <VfromT), (2.129)

P(E,7) = Pl (X = VromT) — P (L — VprowT) +100 (X <VfromT) . (2.130)

From these results, it can be observed that the numerical solutions agree very well
with the analytical solutions, indicating that the proposed numerical procedure is
capable of simulating the planar dissolution-front propagation within the fluid-
saturated porous medium. As expected, the porosity propagation front is the
sharpest one among the three propagation fronts, namely a porosity propagation
front, a dimensionless-concentration propagation front and a dimensionless-
pressure propagation front, in the computational model. Clearly, the dimension-
less-pressure propagation front has the widest bandwidth, implying that it is the
least sharp front in the computational model. Although there are some smoothing
effects on the numerically-simulated propagation fronts as a result of numerical
dispersion, the propagation speed of the numerically-simulated propagation front
is in good coincidence with that of the analytically-predicted propagation front.
For this benchmark problem, the overall accuracy of the numerical results is
indicated by the dimensionless pore-fluid pressure. The maximum relative error of
the numerically-simulated dimensionless pore-fluid pressure is 2.2, 4.6 and 5.8 %
for dimensionless times of 0.25, 0.625 and 0.8 respectively. If both a small mesh
size and a small time-step length are used, then the maximum relative error can be
further reduced in the numerical simulation. This quantitatively demonstrates that
the proposed numerical procedure can produce accurate numerical solutions for
the planar dissolution-front propagation problem within a fluid-saturated porous
medium.
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Fig. 2.5 Porosity distributions due to morphological evolution of the chemical dissolution front
in the fluid-saturated porous medium

2.4 An Application Example for Simulating
the Morphological Evolution of Chemical
Dissolution Fronts

In this section, the proposed numerical procedure is used to simulate the mor-
phological evolution of a chemical dissolution front in a supercritical system. For
this purpose, a dimensionless-pressure gradient (i.e. ﬁ}x = —10) is applied on the
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Fig. 2.6 Dimensionless concentration distributions due to morphological evolution of the
chemical dissolution front in the fluid-saturated porous medium

left boundary of the computational domain so that the dimensionless speed of the
dissolution front propagation is equal to 100. This means that the dissolution front
propagates much faster than it does within the system considered in the previous
section. Due to this change, the mineral dissolution ratio of the chemical disso-
lution system is assumed to be 0.001, while the dimensionless time-step length is
also assumed to be 0.001 in the computation. The Zhao number of the system is
increased to 10, which is greater than the critical Zhao number (i.e. approximately
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Fig. 2.7 Dimensionless pore-fluid pressure distributions due to morphological evolution of the
chemical dissolution front in the fluid-saturated porous medium

1.77) of the system. The values of other parameters are exactly the same as those
used in the previous section. Since the Zhao number of the system is smaller than
its critical value, the coupled system considered in this section is supercritical so
that a planar dissolution front evolves into a complicated morphology during its
propagation within the system. In order to simulate the instability of the chemical
dissolution front, a small perturbation of 1 % initial porosity is randomly added to
the initial porosity field in the computational domain.

Figure 2.5 shows the porosity distributions due to the morphological evolution
of the chemical dissolution front in the fluid-saturated porous medium, while
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Fig. 2.8 Streamline distributions due to morphological evolution of the chemical dissolution
front in the fluid-saturated porous medium
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Fig. 2.6 shows the dimensionless concentration distributions due to the morpho-
logical evolution of the chemical dissolution front within the computational
domain. It is observed that for the values of the dimensionless time greater than
0.03, the initial planar dissolution-front gradually changes into an irregular one.
With a further increase of the dimensionless time, the amplitude of the resulting
irregular dissolution-front increases significantly, indicating that the chemical
dissolution front is morphologically unstable during its propagation within the
computational model. Although both the porosity and the dimensionless concen-
tration have a similar propagation front, the distribution of their maximum values
along the dissolution front is clearly different. The peak value of the porosity is in
good correspondence with the trough value of the dimensionless concentration due
to the chemical dissolution in the system. This demonstrates that the proposed
numerical procedure is capable of simulating the morphological instability of the
chemical dissolution front in a fluid-saturated porous medium in the case of the
coupled system being supercritical.

It is interesting to investigate how the dimensionless pore-fluid pressure and
pore-fluid flow evolve with time during the propagation of the unstable dissolution
front in the computational model. Figure 2.7 shows the dimensionless pore-fluid
pressure distributions during the morphological evolution of the chemical disso-
Iution front. It is noted that although the dimensionless pore-fluid pressure is
continuous, there exists a clear transition for the dimensionless pressure-gradient
distribution in the computational model. This phenomenon can be clearly seen at
the late stages of the numerical simulation such as when the dimensionless time is
equal to 0.06 and 0.07. The fluid-flow pattern evolution during the propagation of
the unstable dissolution front is exhibited by the streamline evolution in the
computational model. Figure 2.8 shows the streamline distributions during the
morphological evolution of the chemical dissolution front within the coupled
system between porosity, pore-fluid pressure and reactive chemical-species
transport. Due to the growth of the amplitude of the irregular dissolution front,
pore-fluid flow focusing takes place in the peak range of the porosity, which can be
observed from the streamline density (in Fig. 2.8). It is noted that the width of the
flow focusing zone is closely associated with the peak and trough values of the
irregular dissolution front in the computational model. Since both the porosity
generation and the pore-fluid flow focusing play an important role in ore body
formation and mineralization, the proposed numerical procedure can provide a
useful tool for simulating the related physical and chemical processes associated
with the generation of giant ore deposits within the upper crust of the Earth.
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