
Chapter 2
A State of the Art Report on Multiple RGB-D
Sensor Research and on Publicly Available
RGB-D Datasets

Kai Berger

Abstract That theMicrosoft Kinect, an RGB-D sensor, transformed the gaming and
end consumer sector has been anticipated by the developers. That it also impacted
in rigorous computer vision research has probably been a surprise to the whole
community. Shortly before the commercial deployment of its successor, Kinect One,
the research literature fills with resumees and state-of-the art papers to summarize
the development over the past 3 years. This chapter describes significant research
projects which have built on sensoring setups that include two or more RGB-D
sensors in one scene and on RGB-D datasets captured with them which were made
publicly available.

2.1 Introduction

With the release of the Microsoft Kinect in November 2010, Microsoft predicted
a significant change in the use of gaming devices in the end consumer market.
After a preview at the E3 game convention in the Windows Media Centre Envi-
ronment, the selling in North America started at November 4, 2010 and up to today
more than 24 million units have been sold. With the release of an open-source SDK
named libfreenect by Hèctor Martìn that enables streaming both the depth and the
RGB or the raw infrared images via USB the attention of young researchers to use
the Microsoft Kinect sensor for their imaging and reconstruction applications has
gained. It was possible to stream 1, 200× 960 RGB and IR images at a frame rate of
30 Hz alongside computed depth estimates of the scene at a lower resolution. The IR
image featured the projected infrared pattern generated with an 830 nm laser diode,
which is distinctive and the same for each device. Shortly thereafter the proceedings
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and journals in the community included papers describing a broad range of setups
addressing well-known problems in computer vision in which the Microsoft RGB-D
sensor was employed. The projects ranged from simultaneous localization and map-
ping (SLAM) over 3D reconstruction over realtime face and hand tracking to motion
capturing and gait analysis. Counter-intuitively researchers became soon interested
in addressing the question if it is possible to employ several Microsoft Kinects, i.e.
RGB-D sensors, in one setup—and if so, how to mitigate interference errors in order
to enhance the signal. This idea is mainly counter-intuitive due to the fact, the each
device projects the same pattern at the same wavelength into the scene. Thus, one
would expect that the confusion in processing the raw IR-data rises quickly with the
amount of sensors installed in a scene, Fig. 2.1. In the following sections I give an
overview over several research projects published in the proceedings and journals
of the computer vision community that successfully overcome this preconception
and highlight their challenges as well as the benefit of each multiple RGB-D sen-
sor setup. In the second half I list the most prominent datasets, that are publicly
available, which were generated with RGB-D sensor setups. A tabular overview
about addressed papers is found in Table 2.1. This overview over the state-of-the-art
differs from other Kinect-realted overview reports in that it does neither include an
in-depth evaluation of Time-Of-Flight sensors [20] nor a detailed introduction into
the functionality of the sensor algorithm itself [14] nor does it focus on work cap-
turing faces and gestures only [56]. Instead it provides an overview over multiple
Kinect setups (Sects. 2.2–2.6) and publicly available databases generated with one
or multiple Kinects (Sects. 2.7–2.11).

2.2 Multiple Kinect-Setups: Method of Comparison

As this chapter is a state-of-the art report it explicitly provides no new research con-
tribution. Instead it shall be read as an overview and introduction to the work that
has been conducted in the subfield of multiple Kinect research. I want to provide

Fig. 2.1 A simple scene (left) captured with the depth camera of one (middle) and multiple con-
currently projecting kinects (right). The interference of more than one Kinect pattern results in
degradations in the captured depth image (white pixels denote invalid depth values). This state
of the art report lists significant papers that implemented setups albeit interference issues or to
specifically address and overcome these issues. Reproduced from Schroeder et al. [44]
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a comparative table, Table 2.2 for the reader to have a quick overview of exam-
ined papers and their properties. The table is sorted alphabetically for each research
field, i.e. Multiple RGB-D sensor Setups for Motion Estimation, Sect. 2.3, Multiple
RGB-D sensor Setups for Reconstruction, Sect. 2.4, Multiple RGB-D sensor Setups
for Recognition and Tracking, Sect. 2.5, and Interference in Multiple RGB-D sensor
Setups, Sect. 2.6. I compared the amount of Kinects installed in each capturing envi-
ronment (third column), and stated where the sources were available the measured
accuracy of the capturings. As the statements were not unified, I have to provide them
in different units to adhere to the source text. A slightly more detailed description is
given at the table caption. Finally I state if the capturing setup was externally cali-
brated to a common worldspace, usually performed with a checkerboard or moving
a marker around the scene.

2.3 Multiple RGB-D Sensor Setups for Motion Estimation

Santhanam et al. [40] describe a system to track neck and head movements with four
calibrated Kinects. Three Kinects are tracking the patient’s anatomy contour in depth
andRGB streamswhile the fourth camera detects the face of the patient. The detected
face region is used to guide the contour detection in the other three views.Thedetected
contours are then finally merged to to a 3D estimate of the pose of the anatomy. The
authors claim a precision of 3 mm at the expected 30 Hz. Wilson and Benko [53] use
three PrimeSense depth cameras which stream at 320× 240 px resolution and 30 Hz
for human interaction with an augmented reality table. They compare input depth
image streams against background depth images for each depth camera captured
when the room is empty to segment out the human user. While the authors do not
specify the accuracy, e.g. between the projected area and the captured area comprised
by a hand, they claim to robustly track all user actions in 10 cm volume above the
table. The depth cameras were placed next to each other and slanted such that each
camera captures a different angle in the room.However their viewing conesmay have
overlapped. Fuhrmann et al. [12] have employed a stage setup with three Kinects for
musical performances. They calibrated the cameras, which were observing the same
3 × 3 × 3m3 interaction volume from different angles, for each stage performance.
The tracking via OpenNI suffered only from latency between interframe capturing
times. The sensors were employed such that they did not interfere destructively.
Berger et al. [8] employ four Kinect sensors in a small 3×3×3m3 room to mitigate
shortcomings in the motion capturing capabilities of a single Kinect, Fig. 2.2 (left).
To overcome depth map degradation through interfering patterns they introduced
external hardware shutters. The idea was further evaluated by Zhang et al. [55] who
basically performed the same capturing only with two Kinect cameras. Interference
issues were circumvented by placing them opposite each other and assuming that
the human actor acts as a separation surface between both projection cones. The
authors claim a tracking accuracy of 20 cm. Their processing algorithm limits the
original capturing framerate of 30–15 Hz. Asteriadis et al. [4] included a treadmill to
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simulate partially occluded motion for three calibrated Kinect sensors placed evenly
in a quarter arc around the treadmill. Using a Fuzzy Inference system they were able
to robustly map the humanmotion. Although they do neither state reprojection errors
nor deviations from a reconstructed mesh they provide figures that the humanmotion
could be fitted by a skeleton in up to 95 % of the recorded frames. An approach to
analyse facial motion with two Kinects is presented by Hossny et al. [15]. They also
provide a smart algorithm to automatically calibrate one Kinect to another based one
rotation to zero angular positions. The processing of the depthmaps to the face is done
with geometric features that outperform conventional Haar features. They propose
to overcome interference difficulties with mutually rotated polarization filters but do
not state figures about the reprojection error. Very recently, Ye et al. [54] provided a
solution for capturing human motion with multiple moving Kinects. In their setup,
three Kinects were employed.

2.4 Multiple RGB-D Sensor Setups for Reconstruction

Alexiadis et al. [2] use four Kinect devices to reconstruct a single, full 3D textured
mesh of a human body from their depth data in realtime. The authors claim that
the re-projection error is less than 0.8 pixels. In a merging step redundant trian-
gles are clipped. Object boundary noise is removed with a distance-to-background
map. Rafibakhsh et al. [39] analyse construction site scenarios with two Kinects and
exhaustively search for optimal placement an angles, concluding that the two sen-
sors should not directly face each other. In their calibrated sensor setup they found
a scene accuracy of 3.49 cm. Sumar et al. [47] test the sensor interference for two
uncalibrated Kinect sensors in an indoor environment. They found, that in a marker
tracking task, where the markers are less than 3 m from the Kinect the error follows
a Gaussian distribution and does not deviate more than 5 pixels from the true cen-
tre of the marker. In ongoing work Pancham et al. [38] mount Kinects atop mobile
robots which move in an overcast outdoor environment in order to segment out mov-
ing objects from static scenery. In that context the Kinect is used for differentiation
between moving and stationary objects, and for map construction of the environ-
ment. They however do not state the accuracy of the reconstructed scene in relation
to the amount of Kinects employed. In a very interesting approach to enable HDR
scene capturing Lo et al. [24] place two Kinects atop each other and equip one with
a polarized neutral density filter. This results in accurate depth values for regions
that would have been overexposed in an unaltered Kinect capturing (The exposure
difference between both IR images is roughly 1 EV apart). They recognise the fact
that interference might occur but did not quantitatively evaluate that for their setup.
However, the reconstructed scenes bear more complete meshes under headlight than
with a single LDR capturing. Berger et al. [7] show in their paper the feasibility to use
three Kinects concurrently in a convergent setup for capturing non-opaque surfaces
like the interface between flowing propane gas in air. It is noteworthy that, although
the projectors are masked such that they project on mutually disjoint surface areas,
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the projection patterns do not interfere destructively with each other while passing
through the gas volume. Their approach has been altered such that an evaluation
based only on the high resolution IR stream is possible as well [6]. Olesen et al. [36]
show a system that involves up to three calibrated Kinects for texlet reconstruction.
They evaluate different angular settings for the multiple sensors but interestingly
conclude that the orientation does not significantly improve the capturing quality. In
industrial applications Macknojia et al. [28] place three Kinects on a straight line
next to each other while a fourth and a fifth Kinect are placed to the left and right
respectively in a convergent manner to provide a calibrated capturing volume with
a side length of 7 m in total, Fig. 2.2 (middle). Small projecting volumes overlap
while objects like cars are captured. The authors state a depth error of about 2.5 cm
at 3 m distance. Wang et al. [52] present work where two calibrated Kinects’ depth
maps are fused to reconstruct arbitrary scene content. The cameras are spaced 30 cm
apart and the viewing axes converge towards the scene centre. Inaccuracies due to
interference are handled in software by applying a his work Ahmed [1] provides a
scene reconstruction mainly of human bodies captured from 6 calibrated Kinects.
He deliberately excludes interference analysis from the discussion but mentioned
temporal drift if software synchronization is omitted. Interference issues are also
neglected by Nakazawa et al. [33] who placed four calibrated Kinects at the four
corners of a capturing room, but rotated them by 90◦ such that they would capture
a greater vertical range and a smaller horizontal range each. They concentrate on
aligning depth data captured asynchronously by applying a temporal calibration by
providing depth data at certain time instants. Tong et al. [51] reconstruct the human
body from a setup consisting of three Kinects mounted on two poles at different
heights. The subject is placed on a spinning turntable in the center of the poles. The
deviation in different biometrical measures is stated to be in 1.6–6.2 cm. In their
work Nakamura [32] place two Kinects in different angles between 10◦ and 180◦
from each other around the scene. The Kinects are not calibrated to a common world
space but placed at a fixed distance to the scene centre. In an evaluation of the mean
reprojection error for the varying angles they find that a spacing of 180◦ between
each Kinect results in the smallest error while a a spacing of 120◦ results in the
largest error, Fig. 2.2 (right). The Kinects do not project into each others sensor due
to the scene content.

Fig. 2.2 Five typical capturing setups featuringmultiple kinects.Multiple kinects are evenly placed
in a virtual circle around the scene centre (first), e.g. [7, 8, 19, 33, 36, 43, 52], multiple kinects are in
line to capture a volume with a large side length (second), e.g. [10, 24, 28, 29, 41], multiple kinects
juxtaposed and facing away from each other (third), e.g. [53], and two kinects face each other, but
are occluded by the scene content (fourth), e.g. [32]. Very recently work has been conducted with
multiple uncalibrated moving kinects (fifth), e.g. [38, 54]
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2.5 Multiple RGB-D Sensor Setups for Recognition
and Tracking

Satta et al. [42] present research to recognize and track people in an indoor environ-
ment surveyed by two Kinects relying on a combination of RGB texture and depth
information. It has to be noted, though, that the Kinects were installed facing away
from each other. Hence, they did not directly project into each other’s viewing frustra.
Interference is not discussed further. Satyavolu et al. [43] describe an experimen-
tal setup that consists of 5 Kinects. One camera was used for tracking IR markers
attached to a box, 4 others (evenly distributed around the scene centre) simulated
interference/noise. The authors report that the Kinect deviated by 3 cm on an average
from the actual position. Caon et al. [10] present an approach for tracking gestures
based on three calibrated Kinects placed in a 45◦ angle. They varied different config-
urations between the three Kameras and although they did not state figures about the
depth or tracking accuracy they do list the amount of invalid depth pixels for each
configuration. Susanto et al. [49] present an approach to detect objects from their
shape and depth profile generated when captured from several calibrated Kinects
and state that there is no degrading interference noticeable due to the fact the the
Kinects are placed at wide angles from each other. Although the paper focus on the
success rate of the recognition they briefly state that the setup might show depth
discrepancies of up to 13 cm. The tracking of humans in a room has been shown by
Saputra et al. [41] who placed two calibrated Kinects at 5 m distance next to each
other. Although the projection cones do not interfere with each other, the authors
provide a detection error of human position of 10 cm.

2.6 Interference in Multiple RGB-D Sensor Setups

Following the work of Berger et al. [8], where external hardware shutters are used
for mitigating interference between concurrently projecting sensors as described in
detail by Schroeder et al. [44], Maimone and Fuchs [29] introduce motion platforms
that pitch each Kinect with the Kinect that the own structured light pattern remains
crisp in the IR stream while the other patterns appear blurred due to the angular
motion of the camera. The depth map is realigned with the recorded egomotion from
the inertial sensors included in the Kinect. It is noteworthy that they also managed
to deblur the RGB-image using the Lucy-Richardson method. In a more generic
approach Butler et al. [9] vibrate the camera arbitrarily. In a rather invasive approach
Faion et al. [11] manage to toggle the projector subsystem to perform measurements
similar to Schroeder et al. [44]. They use Bayesian state estimator to intelligently
schedule which sensor is to be selected for the next time frame. Their maximal
reconstruction error denotes 21 mm. Kainz et al. [19] describe an elaborate setup for
eight Kinects mounted on vibrating rods and one freely moving Kinect suitable for
various applications, such as motion capturing and reconstruction. All vibrating rods
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Fig. 2.3 Acollage of the variety of benchmark datasets that are currently publicly available. Top left
depth images with annotated motion (reproduced from [48]), top middle external tracking of kinect
pose with markers (reproduced from [46]), top right tight mesh and skeleton alongside RGB-data
(reproduced from Barbosa et al. [5]). Bottom left depth images with objects annotated (reproduced
from [21]), bottom middle depth data with annotated hand movements (reproduced from [23]),
bottom right face capturings in RGB-D stream anotated (reproduced from Huynh et al. [16])

were administered by a parallel circuit at slightly different frequencies. They do not
give a quantitative analysis of the reconstruction error but provide qualitative figures
of the reconstructed mesh (Fig. 2.3).

2.7 RGB-D Datasets: Method of Comparison

In this part of the chapter it is attempted to provide an overview over the diverse set of
benchmarks that are publicly available for comparison of RGB-D based algorithms
The findings are summarized in an overview table, Table 2.2 and compared for
main distinguishable criteria. The table is sorted alphabetically for each research
field, i.e. SLAM, Sect. 2.9 and Object Recognition, Sect. 2.10. I evaluated if the
accelerometer of the Kinect was used (third column), if the data were annotated
and which type of ground truth has been made available (fourth column). Finally
I provided the link to the datasets (fifth columns). I tested the accessability in the
middle of August. Some datasets may require login data, which however can be
acquired by contacting the corresponding authors (instructions were published on
the corresponding website in that case). In Sect. 2.11 I provide a critical view onto
the diversity of the publicly available datasets and phrase suggestions for extending
the state of the art in benchmarks. Statistics about the volume and impact of each
dataset is provided in Fig. 2.4.
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Fig. 2.4 Left This semi-logarithmic bar chart depicts the size of each published dataset in terms
of absolute depth-images. The dataset presented by Silberman et al. [34] bears the most input
images. Right This chart depicts the impact of each published dataset in the community. It is sorted
alphabetically for each research field. The work by Lai et al. [21] has been considered most in the
community

2.8 Annotation for Ground Truth Retrieval

Most datasets exceed a feasible size to be handled by a single user for annotation.
Hence, with the increasing popoluratiy of internet freelance websites, most publica-
tions presented in this report have relied on Mechanical Turk, e.g. [18], for robust
annotation of the datasets. Some rely on additional sensors to provide the ground
truth, e.g. for the camera pose at a given frame [45, 46]. A sophisticated approach
transforms the labeling in another space: instead of letting the user annotate in image
space, the static scene captured with a moving Kinect is reconstructed in 3D and
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annotated in a 3D graphics tool once, e.g. [21]. The annotated point clouds are then
simply reprojected into the input stream using the camera pose for the Kinect sensor
at each frame.

2.9 SLAM

Highly accurate depth data are necessary for 3D reconstruction and simultaneous
reconstruction and SLAM applications, although the requirements for mapping or
localization can differ within the applicational context. It can be seen, that accuracy
and the running time/framerates trade each other off. TheKinect is the first device that
provides fast data acquisition at acceptable accuracy. In their work Sturm et al. [45,
46] release a 50 GB dataset conisisting of 39 RGB-D sequences captured with the
Microsoft Kinect including the recorded accelerometer data with the intention to test
SLAMalgorithms on the input data. The authors provide ground truth via external per
frame pose estimation of the Kinect within a global reference framework, which has
been computed from the capturing of markers that have been attached to the Kinect
beforehand. They used a MotionAnalysis capturing system at 100 Hz. Lieberknecht
et al. [22] create also a benchmark for localisation and provide video data, fromwhich
the RGB and depth data can be extracted. However, they do not provide a dataset that
contains annotations or additional data, e.g. accelerometric data. Glocker et al. [13]
prvoide a dataset captured with a moving camera and use KinectFusion to generate
the 3D scene and the camera path as ground truth for the benchmark. They provide
seven different scenes including RGB, depth and pose data in a txt-file.

2.10 Object Recognition

Based on the Kinect’s realtime output of accurate depth maps, it became possible to
reconstruct 3D objects with theKinect, e.g. bymoving the sensor around the acquired
object. For example, Tam and his colleagues [50] register point clouds captured with
the Kinect to each other. Lai et al. [21] present an annotated dataset containing visual
and depth images of 300 physically distinct objects ranging from fruits to tools.
Their dataset was captured with the Primesense prototype and a Firewire RGB-
camera from Pointgrey. Their approach to labeling the objects in the input sequences
is somewhat innovative: they reconstruct the 3D scene from the moving RGB-D
sensor setup while keeping track of its position over time. The objects of interest
are then labeled once in the 3D scene by hand and then backprojected into the input
streams. Liu and Shao [23] present a dataset for gesture recognitionwhere 2,160 hand
gesture sequences of 6 persons are capturedwith theMicrosoft Kinect. The annotated
dataset differentiates 10 hand gestures: circle (clockwise), triangle (anti-clockwise),
up-down, right-left, wave, Z, cross, comehere, turnaround. As the Microsoft Kinect
remains fixed during acquisition there is no additional accelerometric data in the
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dataset. Negin et al. [35] provide a dataset of human bodymovements represented by
3Dpositions of skeletal joints.As theKinect sensor remainedfixed, no accelerometric
data is available, but the authors provide the complete tracking results gained from
applying the Microsoft Kinect SDK to the RGB-D data as the ground truth for their
benchmark. In the dataset 15 people conduct 10 different exercises. Barbosa et al.
[5] capture 79 persons first for a distinctive signature, e.g. in a defined pose, and then
in regular motion, e.g. walking across a floor. They provide both skeleton fits and
.ply meshes alongside the RGB-D data. The goal of their dataset is to reindentify
different humans captured with the Kinect. The humans may change their movement
patterns or their clothes in between recordings. Machado and Ferreira [27] record
several objects and models with the Kinect camera and let them annotate by human
observers. The meshes are presented in various formats with the task to identify the
object from the recorded shape. Luber et al. [25] present a pedestrian dataset captured
with threeKinectswhich are placed such that their viewing cones do not interfere. The
dataset is annotated in that the position of each pedestrian is bounded by a rectangle in
the input views. Their dataset contains of walking and standing pedestrians seen from
different orientations and with different levels of occlusions. Silberman et al. [34]
present a dataset consisting of 1,449 labeled pairs of aligned RGB and depth images
captured in indoor environments, such as bathrooms, basements, bedrooms, kitchens
and playrooms. It includes the accelerometric data for each frame and also features
a toolbox implemented in matlab that includes useful functions for manipulating the
data and labels. Anand et al. [3] captured several indoor environments and labeled the
depth data. They also present in bag files the output of RGBDSLAM for each scene,
e.g. for each timestamp a transform-matrix for that frame that transforms the camera
from the first frame accordingly. Janoch et al. [18] show a large dataset annotated
with the help of Amazon’s Mechanical Turk consisting of indoor environment items
like chairs, monitors, cups, bottles, bowls, keyboards, mouses or phones. They do
not provide additional accelerometer data. Dataset consisting of faces of 52 people
(14 females, 38 males) captured with the Microsoft Kinect has been presented by
Huynh et al. [16]. The faces are captured in nine different conditions (neutral face,
smile, mouth open, face in left profile, face in right profile, partial occlusion of face
parts, changing lighting conditions). They do not include the accelerometric data.
Defined landmark points were manually identified in the input images. In their work
about motion recognition Sung et al. [48] provide depthmaps and skeletons for four
subjects (twomale, two female, one left-handed)whowere asked to performdifferent
high-level activities, like making cereal, arranging objects or having a meal. The
activities are label and subclassified for movements like reaching, opening, placing,
or scrubbing.

2.11 Shortcomings

The authors believe that, although there is already quite a remarkable amount of
publicly available datasets based on capturings conducted with the Kinect, certain
aspects in use of the sensor seem to be underrepresented. While already one paper is
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published [30] that aims to extend the depth reconstruction capabilities from IR input
stream data, a coherent dataset containing the IR data and additional ground truth
depth information, e.g. from scene calibration or stereo, is missing. Also, arbitrary
mesh reconstruction is in the datasets currently considered as byproduct of SLAM
algorithms, Sect. 2.9, such that estimates with the accuracy of a few millimeters to a
centimeter seem sufficient. However, recently publications have emerged to employ
one or many Kinects for the accurate reconstruction of objects, e.g. based on depth,
a combination of depth and texture cues in the RGB stream [31] or from IR input
stream [37]. The reconstructed objects in these setups need explicitly not necessary
be purely opaque [7, 26]. A ground truth dataset with a high-resolution laser scan
alongside input frames from Kinect (depth, RGB and IR) with a pose reconstruction
of the sensor position would be highly desirable.

2.12 Conclusion

In this chapter I have shown that, counter-intuitively, it is possible to use several
Kinects in one capturing setup. Although each device projects the same pattern at
the same wavelength into the scene and consequently contributes to confusion in
processing the raw IR-data, several approaches, ranging from hardware fixes over
intelligent software algorithms for mitigation to placing the Kinects such that the
scene content acts as an occluding surface between each projection cone, have been
discussed. The applicational context varied between motion capturing, the original
purpose of the Kinect sensor, over scene reconstruction to tracking and recognition.
Furthermore, I have provided an overview over the publicly available datasets gen-
erated for benchmark with the Microsoft Kinect. Several approaches, ranging from a
steady single Kinect capturing setup over a moving Kinect in the scene to capturing
setups that include multiple Kinects, have been discussed. The applicational context
varied between SLAM, motion capturing and recognition. I have also phrased a crit-
ical view onto the diversity of current datasets with suggestions for extending the
state of the art in benchmarks. With the deployment of the new Kinect One in the
near future the authors assume that in the next years the amount of publicly avail-
able benchmark datasets will increase significantly. It has to be evaluated, though, if
setups with multiple sensors in one capturing scenario are possible, but the authors
predict that in the next years there will still be challenges formultiple RGB-D sensors
relying on the emission of light to be addressed by the community
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