Authoring Composite Documents
and Their Descriptions

Nicolas Spyratos and Tsuyoshi Sugibuchi(®)
Laboratoire de Recherche en Informatique, Université Paris-Sud 11, Orsay, France
Nicolas.Spyratos@lri.fr,
tsuyoshi.sugibuchi@internetmemory.net

Abstract. We present a method for describing composite documents
based on the descriptions of their components. Our main objective is to
assist authors of composite documents in selecting documents and their
descriptions during the authoring process. We assume that a document
description is a set of terms from a given taxonomy, such that no two
terms in the set are comparable. We call such a description a “reduced
description” and we show that the set of all reduced descriptions forms
a complete lattice under an appropriate ordering. Based on this lattice
we introduce the concept of “admissible description” and we argue that
admissible descriptions are the only ones that describe composite docu-
ments in a useful and meaningful manner.

1 Introduction

Today’s growth of digital publishing is bringing about not only media migration
from atom to bit, but also more flexibility in authoring and customizing digital
documents after their publication. For example, several non-profit projects and
commercial companies start to offer open textbook platforms that intend to allow
textbook authors, educators and students to create and customize textbooks.
An interesting example is the Connezions project [1] funded by Rice University.
In the Connexions’ repository, every textbook is managed as a collection of indi-
vidual learning objects called modules. The Connexions’ website allows users not
only to read textbooks but also to create and customize textbooks by composing
modules taken from a variety of existing textbooks.

To make a new textbook by composing fragments of existing textbooks,
authors need to find appropriate fragments from textbook repositories.
At present, most open textbook platforms adopt description based document
management. In such systems, each document and its fragments are associated
with descriptions, also called metadata, two terms that we shall use interchange-
ably in the rest of the paper. Usually metadata contains free-text information
including title, short description and free keywords, and information based on
controlled vocabularies, or taxonomies, including subject category, topic group,
etc. We note here that when the terms of a controlled vocabulary are hierar-
chically organized, then the controlled vocabulary is usually called a tazonomy.

A. Kawtrakul et al. (Eds.): ISIP 2013, CCIS 421, pp. 18-30, 2014.
DOI: 10.1007/978-3-319-08732-0_2, (© Springer International Publishing Switzerland 2014



Authoring Composite Documents and Their Descriptions 19

Information based on controlled vocabularies is useful for more accurate and
intelligent content retrieval, if metadata is properly created and maintained.

If we intend to allow users to take fragments from textbooks with smaller
granularity, the cost of authoring metadata for each textbook fragment might
be a problem. In particular, if authors have 100 % freedom of selection of terms
for metadata, it rather makes metadata authoring tasks more difficult because
authors need to choose terms without any clues. However, if we can define for-
mal criteria of “better” or “consistent” descriptions, the story becomes slightly
different. In this case, authoring systems can automatically check the current
descriptions and give “suggestions” to authors to improve the descriptions. The
main goal of this study is twofold: (a) to capture, and state formally, some simple
but practically important requirements of descriptions, and (b) to demonstrate
how to use them to help authors make good descriptions with less effort.

To this end, we propose a simple metadata management model for document
composition environments. Our model assumes that (a) composite documents
are structured as trees, whose nodes are either atomic documents, or other com-
posite documents and (b) descriptions of documents are sets of terms taken from
a taxonomy. The model does not consider contents of documents but deals only
with their composition structure and the descriptions associated with the com-
ponents of a composite document in order to infer appropriate descriptions (for
the composite document).

Our basic assumption is that a document description is a set of terms from
a given taxonomy, such that no two terms in the set are comparable. We call
such a description a “reduced description”. In adopting this definition, our goal
is to ensure that documents are described in a non redundant way and that,
consequently, they can be retrieved more efficiently. We show that the set of
all reduced descriptions forms a complete lattice under an appropriate order-
ing. Based on this lattice we introduce the concept of “admissible description”
and we argue that admissible descriptions are the only (reduced) descriptions
that describe composite documents in a useful and meaningful manner. We also
outline an interactive process to assist users in authoring composite documents
and choosing a desirable admissible description. We emphasize that the ultimate
choice of a description is up to the document author and that the work presented
here aims simply to assist the author in making an informed choice.

In the rest of the paper we first review some related studies (Sect.2). Then
we present our model for documents and their descriptions, as well as algorithms
for description inference (Sect. 3). Based on this model, we introduce the concept
of “admissible description” and outline an interactive process to assist users in
authoring composite documents and choosing a desirable admissible description
(Sect. 4).

2 Related Work and Preliminary Concepts

A lot of efforts have been devoted recently to develop languages and tools to
generate, store and query metadata. Some of the most noticeable achievements



20 N. Spyratos and T. Sugibuchi

are the RDF language, RDF schema and several standards for representing con-
trolled vocabularies, including OWL [4] and SKOS [5]. By using such languages
and standards, several controlled vocabularies for metadata have been developed
and are widely used in practice. These vocabularies include the ACM Computing
Classification System [6] (for computer science), Gene Ontology [7] (genomics),
AAT [8] (arts and architectures), DBPedia Ontology [9] (cross-domain ontology)
and others. Most of these vocabularies are structured as general graphs including
cycles. Even then most of these vocabularies also include hierarchically organized
“is-a” relationships of terms.

In this paper, we focus on taxonomy-based descriptions [10], where a descrip-
tion is seen as a set of terms from a given taxonomy. The creation of such descrip-
tions still remains mostly a manual process, possibly supported by acquisition
software (for instance [11]). Usually, such description supports are performed by
text analysis techniques (see for instance [12]) and some researches deal with
description propagation to infer descriptions of derived contents from those of
the original contents [13,14].

The work in [3] which is the basis of our study also proposes a description
inference model for composite documents. The description inference model pro-
posed by [3] is mainly intended for document repository management. Based
on this model, we proposed a framework for document description authoring,
focusing in particular on description creation and description modification [2].
However, our previous work offers no clear discussion of what the requirements
for an admissible description should be in order to support an on-line document
ecosystem.

This paper is an extension of our previous work and its main goal is to
focus on criteria for descriptions to be admissible, in the sense that they pre-
serve integrity of document databases and provide enough information to cover
document contents.

3 The Model of Composite Documents and Their
Descriptions

3.1 Documents and Composite Documents

First of all, our model does not consider contents of documents. Our model
deals only with structures of document composition and document descriptions.
Therefore, we focus only on a document representation consisting of an identifier
and a set of parts, as this is sufficient for our description management. Therefore,
hereafter, when we talk of a document we shall actually mean its representation
by an identifier and a set of parts. In order to define a document formally, we
assume the existence of a countably infinite set Doc whose elements are used
by all authors for identifying the created documents. For example, the set Doc
could be the set of all URIs. In fact, we assume that the creation of a document
is tantamount to choosing a (new) element from Doc and associating it with a
set of other document identifiers that we call its parts.



Authoring Composite Documents and Their Descriptions 21

Definition 1 (The representation of a document). A document consists
of an identifier d together with a set of identifiers different than d, called the
parts of d and denoted as parts(d). If parts(d) = () then d is called atomic, else
it is called composite.

For notational convenience, we shall often write d = dy + ds + ... + d,, to
stand for parts(d) = {dy,da,...,d,}.

In this paper, we assume that the structure of every composite document d
is a tree in which d is the root, all atomic documents are leaves, and composite
documents other than roots are intermediate nodes. Our choice is justified by the
fact that (1) the tree is the most suitable structure for representing traditional
books that are hierarchically organized, and (2) the tree is also a common struc-
ture adopted by many existing document composition environments including
open textbook platforms. Based on this assumption, given a composite docu-
ment d, each part d’ of d is called a child of d, and d is called the parent of d’,
denoted as parent(d').

It is important to note that in our model the ordering of parts in a composite
document is ignored because it is not relevant to our purposes. As we shall see
shortly, deriving the description of a composite document from the descriptions
of its parts does not depend on any ordering of the parts.

Note that a change in the structure of a composite document may require the
use of new identifiers. For example, consider composite document dy of Fig.1
in which the parts dy, do and d3 are at the same level. If the author of this
composite document decides to group together d; and dy then it is necessary
to introduce a new identifier, say d, to represent this grouping as a composite
document. The new structure is shown in Fig. 1.

3.2 Taxonomy-Based Descriptions

Informally, a description in our model is just a set of terms taken from a given
taxonomy. We would like to start our explanation about descriptions from the
formal definition of taxonomy in our model.

Definition 2 (Taxonomy). Let T be a set of keywords, or terms. A tazonomy
7T defined over T is a pair (T, <) where < is a reflexive and transitive binary
relation over T, called subsumption relation.

Given two terms, s and ¢, if s < ¢t then we say that s is subsumed by t,
or that t subsumes s; we also say that s is a specialization of t, or that ¢ is a

Without grouping Group together d, and d,
A/dl\A A
d; d, dy /d\A ds
d; d,

Fig. 1. Grouping of atomic documents



22 N. Spyratos and T. Sugibuchi

Programming
Theory Languages Algorithms
OOL Functional Sort
Languages

C++ Java Haskell Heap Merge Quick Bubble
sort sort sort sort

Fig. 2. A taxonomy

generalization of s. In our work, we assume that every taxonomy (7T, =) is a
tree in which the nodes are the terms of T" and where there is an arrow s — ¢
iff s subsumes ¢ in <. Figure 2 shows the example taxonomy 7, that we use in
this paper. In this example, the term Sort subsumes the term Quick sort, 00L
subsumes Java and C++. Due to the transitivity of the subsumption relation, the
term Programming subsumes all terms in the tree including itself.

In order to make a document sharable, a description of its content must be
provided, so that users can judge whether the document in question matches their
needs. Our model allows any set of terms from a taxonomy to be a description.

Definition 3 (Description). Given taxonomy (7, <), we call description in T
any set of terms from 7.

We end this section with an important remark concerning descriptions in
general. In reality, a document has several attributes such as author name, title,
creation date, and so on. So to describe a document one has to give one value
per attribute. Therefore a description of a document should actually be a set
of attribute-value pairs. For example the following is a description of a well
known book by Agatha Cristie: {(Author, Agatha Cristie), (Title, And
then there were none), (Year, 1939), (Content description, novel)}.
Note that the description can contain more than one value per attribute (e.g. if
the document has more than one author).

The attribute values in such a description usually come from a controlled
vocabulary and might be structured in a taxonomy (as is the case for the
attribute Content description in our example). However, in order to simplify
the presentation, we have assumed only one attribute for describing documents
in this paper, namely Content description. As a consequence, we omit the
attribute name in the description of a document and give only the set of attribute
values. Moreover we have assumed that the values of this unique attribute are
organized in a taxonomy.

Extending our results to descriptions involving more than one attribute is
rather straightforward: instead of having single attribute values we will have
tuples of values, and what needs to be done then is to define a subsumption



Authoring Composite Documents and Their Descriptions 23

relation over tuples based on the subsumption relations over the individual
attribute values. This extension lies outside the scope of the present paper and
will be reported in future work.

As a final remark, note that the definition of a description as a set of attribute-
value pairs can be represented in RDF in a straightforward way. Indeed, each pair
{(Attr, Value)} can be represented by the RDF triple {(d, Attr, Value)},
where d is the identifier of the document being described. This means that the
document repository can then use the powerful reasoning system of RDF in
order to handle description inferences; and moreover, the document repository
can then communicate with other repositories using RDF, and in particular it can
communicate with the world wide web. Similar advantages can be obtained using
any other standard vocabulary of the Linked Open World (LOD). Indeed, the
framework that we propose here works with any kind of controlled vocabulary. In
fact, this ease to map to widely-used controlled vocabularies, gives a document
repository based on our model enhanced visibility, searchability, and reusability
of documents in the context of the world-wide-web. In a nutshell, descriptions in
our model are easy to define and easy to map to RDF (with all the advantages
entailed by such a mapping).

3.3 Inferred Descriptions

Reduction of a Description. A description can be redundant if some of its
terms are subsumed by other terms in the description. For instance, the descrip-
tion {Sorting, Quick sort, java} is redundant, as Sorting subsumes Quick
sort. Redundant descriptions are sometimes undesirable as they can lead to
redundant computations. Therefore we introduce the concept of non-redundant,
or reduced description, defined as follows:

Definition 4 (Reduced description). Given taxonomy (T, <), a set of terms
D from T is called reduced if for any terms s and ¢ in D, s At and ¢ £ s.

In general, from the same redundant description we can derive multiple no-
redundant descriptions, by either keeping only its maximal terms, or by keeping
only its minimal terms. In this paper we consider both types of non redundant
descriptions. Hence the following definitions:

Definition 5 (Cover of a description). Let D be a description in taxonomy
(T, =). we call cover of D, denoted as cover(D), the set of maximal terms in D.

Definition 6 (Reduction of a description). Let D be a description in tax-
onomy (T, =). we call reduction of D, denoted as red(D), the set of minimal
terms in D.

In our previous example, where D = {Sorting, Quicksort, java}, we have:
cover(D) = {Sorting, java} and red(D) = {Quicksort, java}. Note that every
term in D is subsumed by some term in the cover and that every term in the
cover subsumes some term in D.



24 N. Spyratos and T. Sugibuchi

Algorithm cover Algorithm summary

Input a description D Input a document d
Output cover(D) Output summary(d)
C— 0 if d is atomic then
for all t € D do return cover(ADescr(d))

if there is no t’ € D such that ¢’ = ¢ then end if

C — CuU({t} for all d; € parts(d),i=1,...,n do

end if D; « summary(d;)
end for end for
return C P« Dy XDy X...X D,y

for all L = [t¥,...,t"] € P,k =1,..,1 do
Algorithm reduction Ty, — lub< (%, ... &%)

Input a description D entd for AT )
Output red(D) return red(Ty, ..., T;
R—0 lub<(t1,...,t,) returns the least upper bound
for all t € D do of the set of terms t1,...,t, with respect to <.

if there is no t' € D such that ¢’ < ¢ then

R — RU{t}

end if
end for
return R

Fig. 3. cover, reduction and summary algorithm

Also note that every term in the description subsumes a term in the reduction,
and there is no term in the reduction that is NOT subsumed by a term in the
description. In other words, the reduction is the most compact and accurate
representation of a redundant description, for searching purposes. For example,
if a user wants to find documents describing something related to sorting, in
the above example we can find the term Sorting in both, the cover(D) and
the reduction red(D). But if a user wants to find documents related to “Quick
sort”, the term Quick sort appears only in red(D) and not in cover(D). So
red(D) keeps more accurate terms from the original redundant description than
cover(D) does. Therefore red(d) is more accurate than cover(D).

The algorithms for computing the cover and the reduction of a description
are illustrated in Fig. 3.

We note here that the cover, as well as other related concepts that we shall
introduce shortly are used only internally to generate all admissible descriptions.
It is up to the author to choose one among the admissible descriptions proposed
by the authoring system. The chosen description then becomes the document
description, and it is stored (along with the document identifier) in the document
repository.

Based on the concepts of reduction and cover of a description, we now define
some additional concepts to be used in the definition of admissible description.

Cover of a Document. Intuitively, the description of a composite document
must incorporate somehow the descriptions of the document’s parts (and there-
fore, recursively, the descriptions of the document’s components). To state this



Authoring Composite Documents and Their Descriptions 25

intuition formally, we have to extend the concept of cover from a single descrip-
tion to a set of descriptions.

Definition 7 (Cover of a document). Let d = dy + ... + d,, be a docu-
ment with part descriptions Dy, ..., D, respectively. The cover of d, denoted as
cover(d), is a description defined as cover(d) = cover(Dy U...U D,,).

For example, if d has two parts with descriptions D; ={Sorting, Quick
sort, java}and Dy ={Bubble sort, C++} then cover(d) = {Sorting, java,
C++}. Note that the description obtained by simply taking the union of D; and
D, gives an accurate but redundant description of the contents of the composite
document.

Summary of a Document. Sometimes we want to summarize the topics con-
tained in a big composite document. There are several possible approaches for
summarization, and one of them is to use the document cover. Another app-
roach is to extract common topics shared by all components of the document.
For example, consider a composite document d = d; + dy with {d;} = {Quick
sort, Java} and {d,} ={Bubble sort, C++}. In this case, the description
Dgym = {Sort, 00L} is a possible summary of d; and ds. Indeed, Sort sub-
sumes both Quick sort and Bubble sort, and 00L also subsumes both Java
and C++. Therefore {Sort, 00L} represents what d; and dy have in common.

In this example, D’ = {Algorithms, Languages} is also a possible sum-
mary. However, D, is less accurate than Dg,,,. The most extreme example is
D%, = {Programming}. D} . summarizes any description in 7' but with the
lowest accuracy. Usually such an over-general summary is useless for document
search.

Now, intuitively, we can define the summary of a document as a description
which (a) summarizes what all components of the document have in common in
their descriptions and (b) it is minimal, in other words, has highest accuracy.
The descriptions D, and D%, . violate the second criterion because they have
lower accuracy than Dgy,.

In order to state this intuition formally, we introduce the following refinement

relation over reduced descriptions.

Definition 8 (Refinement relation). Let Dy and Dy be two descriptions. We
say that D is finer than Do, denoted Dy C Do, iff Vi € Do, 3t1 € Dy Aty < to.

s ! 3 !/
For example, Dgym, is finer than D7, . as for every term ¢ in D7, we can

find a term in Dy, subsumed by t. Indeed, Sort =< Algorithms and 00L =
Languages.

The refinement relation C is clearly reflexive and transitive. Moreover, over
reduced descriptions, = becomes antisymmetric. From these properties we can
say that C is a partial order over reduced descriptions (see [3] for more details).
The following proposition states a more general property of the partial order C,
namely that it is a complete lattice. It is in this lattice that the summary of a
composite document can be defined formally.



26 N. Spyratos and T. Sugibuchi

Proposition 1. The set of all reduced descriptions forms a complete lattice U
under the ordering C. Moreover, for given a set D = {Dy,...,D,} of reduced
descriptions, U has least upper bound (lub), denoted as lub(D,C) and greatest
lower bound (glb), denoted as glb(D, C).

The least upper bound of a set of descriptions is the most accurate set of terms
representing what the descriptions have in common. Therefore, by obtaining the
lub of descriptions of documents, we can get the most accurate description that
summarizes what the documents have in common. By using this proposition, we
can now define the summary of a document as follows:

Definition 9 (Summary of a document). Given a document d, the summary
of d, denoted as sum(d), is a description defined as follows:

- if d is atomic, sum(d) = cover(D),
— else, for d = dy + ... + dp, let D = {sum(dy),...,sum(d,)}, sum(d) =
lub(D,C).

The algorithm summary illustrated in Fig. 3 recursively computes the sum-
mary of a given document.

4 Admissible Descriptions

In this section, we would like to explain how we can use inferred descriptions
of documents to help users to create and manage document descriptions. As we
already mentioned, the author description of a document is left entirely up to
description authors. Therefore, the algorithms explained in the previous section
are not intended to generate descriptions of documents automatically. The role
of the algorithms is to suggest inferred descriptions to avoid making descriptions
from scratch. Before describing the principles underlying our suggestion process,
we would like to introduce a basic concept, namely that of admissible description.

Admissible Descriptions. In order to define the concept of admissible descrip-
tion, the basic question is the following: are there any conditions that descriptions
should satisfy in order to be admissible?

To begin with, intuitively, the description of a document should not be more
general than the summary of the document. Consider for example a document
d with two parts having the following descriptions: D; = {Quick sort, Java},
Dy = {Bubble sort, C++}. The summary of d is then the following descrip-
tion: Sum(d) = {Sorting, 00L} The description {Computer Science} strictly
subsumes the summary of d and is therefore too general to describe d. On the
other hand, the descriptions {Sorting, Java, C++}and {Quick sort, Bubble
sort, 00L} are both subsumed by the summary of d and therefore each of them
can be used to describe d (and so can the summary itself).

Note that none of these two descriptions is better than the other (in fact they
are not comparable); the description {Sorting, Java, C++} would be used if



Authoring Composite Documents and Their Descriptions 27

the author wanted to emphasize the language aspect of the content of d, while
the description {Quick sort, Bubble sort, 00L} would be used if the author
wanted to emphasize the algorithmic aspect of the content of d.

However for a description to be admissible, it is not sufficient to just be
subsumed by the summary of the document being described. Suppose for exam-
ple that the descriptions of the two parts of d were the following: D; = {Quick
sort, Java}, Dy = {Bubble sort, C++, Analytics}. Then the summary
remains the same: Sum(d) = {Sorting, 00L}. Consider now the following
description: D = {Quick sort, Java, Bubble sort, C++}. This description
is subsumed by the summary, yet it leaves out the term Analytics (i.e. it does
not subsume the cover of d). On the other hand, if we remove the term Analytics
from Dy and add it to D then D is still subsumed by the summary but the term
Analytics in description D of d does not appear in the descriptions of the com-
ponents of d. In other words, D is simply a “bad” description because it describes
something which does not appear in the descriptions of its parts.

To summarize our discussion so far, a description D should be subsumed
by the summary, and moreover it should be sound and complete in order to be
admissible. By soundness we mean that each term of D should subsume some
term of the cover; and by completeness we mean that each term in the cover
should be subsumed by some term of D. These requirements are stated formally
in the following definition.

Definition 10 (Admissible description). Let Cover(d) and Sum(d) be the
cover and the summary of a document d. A reduced description D is called an
admissible description of d if the following conditions hold:

- D C Sum(d)

— for each term t in D there is a term s in cover(d) such that s <t (soundness)

— for each term s in cover(d) there is a term t in D such that s =< ¢
(completeness)

Soundness of descriptions is an indispensable property for every description
in order to preserve integrity of document databases. If a description of a compos-
ite document doesn’t satisfy soundness, it means that the description contains
a term which is not in the description of any component of the document. Doc-
uments with non-sound descriptions may appear as non-relevant documents in
document search results.

On the other hand, completeness comes from a more practical requirement,
namely the requirement of “minimal surprise”. Intuitively, this requirement is
satisfied if every term in a component description or a generalization thereof
appears in the description of its parent. This constraint minimizes the risk that
a reader meets unexpected contents in a document (i.e. contents not mentioned
in the document description).

Note that the cover is always an admissible description. The summary on the
other hand is not always an admissible description, though it is always a sound
description.



28 N. Spyratos and T. Sugibuchi

Clearly, in a composite document with a big number of components the
number of admissible descriptions might be quite large, and choosing one among
many admissible descriptions becomes a rather tedious task. Hence the need for
a user friendly interface helping the user to choose, in a systematic manner, one
among possibly many admissible descriptions. In the remaining of this section
we outline some basic principles that such an authoring system should follow.

The scenario that we consider is that of an author composing a document
and having at least a fair knowledge of the subject area of the documents being
composed (e.g. computer science, literature etc.) as well as of the taxonomy
being used. The author has two options: either to ask the authoring system to
suggest an admissible description for the composite document or to submit his
own description to the authoring system for approval. In both cases the authoring
system uses the inference mechanisms that we saw earlier in order to generate
admissible descriptions or to check proposed descriptions for admissibility.

In the first case, the authoring system will generate all admissible descriptions
of the composite document and will present them to the author so that he can
choose one. In the second case, the authoring system will check whether the
description proposed by the author is an admissible description; if yes, then the
description is accepted, otherwise an interaction takes place between the author
and the authoring system. During this interaction, the authoring system helps
the author to modify his description so that it becomes admissible.

If the proposed description is found to be non-admissible, this means that
it does not satisfy soundness or completeness. To see what kind of interaction
is taking place in this case, let ADescr(d) denote the description proposed by
the author for a composite document d, and suppose that d = d; + da. More-
over, suppose that ADescr(d;)= {Quick sort, Java}, ADescr(dy) ={Bubble
sort, C++} and ADescr(d) = {Sort, Theory}. This description does not sat-
isfy soundness because none of the terms in d; and ds is subsumed by Theory
in ADescr(d). In this case, the authoring system can suggest the following two
options:

— Remove terms: the system suggests to remove Theory from ADescr(d).

— Add components: the system shows to the user a list of components whose
descriptions contain a term ¢ < Theory and suggests the addition of one of
them.

On the other hand, if a description does not satisfy completeness, then
the system can again suggest two options. For example, the author description
ADescr(d) ={Bubble sort, 00L}, does not satisfy completeness due to lack of
mention about Quick sort in ADescr(d;). A reader who intends to learn about
bubble sort may be surprised when he faces a description of quick sort which is
not mentioned in the description. In this case, the author has the following two
options:

— Remove components: the system suggests to remove d; from the composite
document.



Authoring Composite Documents and Their Descriptions 29

— Add or generalize terms: the system shows a list of terms {t} satisfying t =
Quicksort and suggests the addition of one of them, or generalizes a term in
ADescr(d) by one of them. For instance, an author can add Quick sort to
ADescr(d), or replace Bubble sort in ADescr(d) by Sort which subsumes
both Quick sort and Bubble sort.

Such a description improvement process is usually an interactive process
because modification of a description in order to satisfy one property may break
another property. For each modification made by authors the authoring system
should check soundness and completeness and suggest next options if a modified
description does not satisfy these properties.

5 Concluding Remarks

We have seen a method for describing composite documents based on the descrip-
tions of their components. We defined an ordering on reduced descriptions and
gave algorithms for inferring descriptions based on that ordering. We also used
the description ordering to introduce the concept of “admissible description”;
and argued that admissible descriptions are the most appropriate for compos-
ite documents. However, as the number of such descriptions might be large, we
discussed an interactive approach allowing authors of composite documents to
build descriptions incrementally with the help of an authoring system.

The important features of descriptions as defined in this paper is that they are
easy to use and easy to map to RDF. This means that document repositories
based on our model have enhanced visibility, searchability, and reusability of
their documents in the context of the world wide web.

Our current work focuses on two topics:

— The extension of the model to handle descriptions over two or more attributes
(not just over the attribute Content Description). As we mentioned in the
paper, such an extension is possible and involves mainly the extension of the
ordering from descriptions over the values of a single attribute to descriptions
over tuples of values defined on two or more attributes.

— The design of an authoring system using the basic principles discussed in the

paper.

References

1. Connexions web site. http://cnx.org/

2. Sugibuchi, T., Tuan, L.A., Spyratos, N.: Metadata inference for description author-
ing in a document composition environment. In: Agosti, M., Esposito, F., Ferilli, S.,
Ferro, N. (eds.) IRCDL 2012. CCIS, vol. 354, pp. 69-80. Springer, Heidelberg
(2013)

3. Rigaux, P., Spyratos, N.: Metadata inference for document retrieval in a distributed
repository. In: Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 418-436.
Springer, Heidelberg (2004)


http://cnx.org/

30

12.

13.

14.

N. Spyratos and T. Sugibuchi

OWL 2 Web Ontology Language Document Overview. http://www.w3.org/TR/
owl2-overview/

SKOS Simple Knowledge Organization System Reference. http://www.w3.org/
TR/skos-reference/

Coulter, N.: ACM’s computing classification system reflects changing times. Com-
mun. ACM 40(12), 111-112 (1997)

The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nat. Genet. 25(1), 25-29 (2000)

AAT Web site. http://www.getty.edu/research/tools/vocabularies/aat/

The DBPedia Ontology. http://wiki.dbpedia.org/Ontology

. Baeza-Yates, R., Ribeiro-Neto, B. (eds.): Modern Information Retrieval. Addison-

Wesley, Boston (1999)

. Erdmann, M., Maedche, A., Schnurr, H.-P., Staab, S.: From manual to semi-

automatic semantic annotation: about ontology-based text annotation tools. In:
Proceedings of the COLING International Workshop on Semantic Annotation and
Intelligent Context (2000)

Handschuh, S., Staab, S., Volz, R.: On deep annotation. In: Proceedings of Inter-
national World Wide Web Conference (WWW), pp. 431-438 (2003)

Pastorello Jr, G.Z., Daltio, J., Medeiros, C.B.: Multimedia semantic annotation
propagation. In: Proceedings of IEEE International Symposium on Multimedia
(ISM) 08, pp. 509-514 (2008)

Leung, M.-K., Mandl, T., Lee, E.A., Latronico, E., Shelton, C., Tripakis, S., Lickly,
B.: Scalable semantic annotation using lattice-based ontologies. In: Schiirr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 393-407. Springer, Heidelberg
(2009)


http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/
http://www.getty.edu/research/tools/vocabularies/aat/
http://wiki.dbpedia.org/Ontology

2 Springer
http://www.springer.com/978-3-319-08731-3

Information Search, Integration, and Personalization
International Workshop, ISIP 2013, Bangkok, Thailand,
September 16--18, 2013, Revised Selected Papers
Kawtrakul, & Laurent, D.; Spyratos, N.; Tanaka, Y.
(Eds.)

2014, ¥, 137 p. 51 illus., Softcover

ISBM: 978-3-319-08731-3



	Authoring Composite Documents and Their Descriptions
	1 Introduction
	2 Related Work and Preliminary Concepts
	3 The Model of Composite Documents and Their Descriptions
	3.1 Documents and Composite Documents
	3.2 Taxonomy-Based Descriptions
	3.3 Inferred Descriptions

	4 Admissible Descriptions
	5 Concluding Remarks
	References


