Chapter 2
Futures for Trusted Computing

Abstract Trusted virtualisation is anticipated to become the dominant form of
Trusted Computing in PCs and servers because it enables isolation of applications,
and simplifies determination of platforms’ trust and security properties. Trusted
Computing can enable platforms to provide trusted services such as cryptographic
erasure of data, negotiations for the supply of services, single-sign-on, and digital
signatures. These provide greater confidence in the use of computer platforms.
Nothing is free, however, and Trusted Computing is no exception: it requires a
public key infrastructure and other infrastructure that is peculiar to Trusted
Computing.

This chapter extrapolates existing technologies and trends. It speculates that trusted
virtualisation will become the dominant form of Trusted Computing (in PCs, at any
rate), describes some potential usages of Trusted Computing, and describes some of
the infrastructure that is necessary to make it happen.

2.1 Trusted Virtualisation

It is anticipated that future computers will use trusted virtualisation, to prevent
applications attacking other applications. This is because the only known generic
way of preventing attacks by software on software is software isolation. If software
can’t touch data and the applications that use that data, the software can’t misuse the
data or subvert the applications.

Future computers will use hypervisors to provide separate OS environments,
possibly enhancing separation via execution on separate physical processor cores.
Selected data and applications will execute in separate OS environments, so they
aren’t affected by what is going on in other OS environments. The hypervisor will
control the creation and destruction of the OS environments, and control commu-
nications between environments and with other platforms. Trusted platform tech-
nology will be used to ensure that secrets belonging to a particular hypervisor are
only revealed to that hypervisor. In some trusted computers, trusted platform
technologies will release keys to hypervisors executing in the isolated environment
provided by new platform architectures. Other trusted computers will comprise a

© Springer International Publishing Switzerland 2014 21
G. Proudler et al., Trusted Computing Platforms, DOI 10.1007/978-3-319-08744-3_2



22 2 Futures for Trusted Computing

hypervisor that controls the platform’s hardware and provides trust functions to
various virtual computers supported by the hypervisor (perhaps executing on
different hardware cores), and control data flows to and between those virtual
computers. For more details see Chap. 13.

One trusted piece of firmware is the first software to execute when one of these
trusted virtualisation platforms boots. This firmware measures the next software to
execute, stores that measurement in the TPM, and then passes control to that
software. The software does its normal work, measures the next software to
execute, stores that measurement in the TPM, and passes control to that software.
And so on. Eventually the hypervisor is booted. Remaining software (apart from
upgrades to the hypervisor) will be executed at a lower hardware privilege than the
hypervisor and therefore can’t subvert the hypervisor. At this point it becomes
unnecessary to record new software (apart from hypervisor upgrades) in the TPM,
because the TPM already contains measurements of all the software that can affect
the integrity of the hypervisor.

Once the hypervisor has booted, it accesses the hard disk drive and retrieves
encrypted files. The hypervisor then asks the TPM for the keys to those files. The
TPM compares the software measurements stored with the keys against the current
measurements. If they are the same, the hypervisor is the legitimate owner of those
keys, and can be permitted to use the keys to decrypt the files. Otherwise the
requestor is not the proper owner of those keys, the TPM will refuse to use or
release the keys, and the encrypted files cannot be decrypted. Hence a platform
could boot using rogue software, but that software won’t be able to access the user’s
data, won’t be able to display protected images, and won’t be able to use a TPM’s
signing keys to fool other devices. This uses a mechanism unique to Trusted
Computing that is called “sealing”, which restricts the availability of small amounts
of data and keys. Sealed data is encrypted data that contains both plaintext data and
plaintext measurements of the software environment that must exist outside a TPM
before the plaintext data can be used by that software environment. When sealed
data is created, a TPM concatenates plaintext data and plaintext measurements of a
software environment, and encrypts the concatenated data. When sealed data is
decrypted inside a TPM, the resultant plaintext measurements are compared with
measurements of the current software environment. If the two measurements don’t
match, the TPM refuses to allow the current software environment to use the
plaintext data from the sealed data.

Computer users should see very little change when they run applications on
these platforms (and deliberately so). They will, however, need some means to
determine whether the computer in front of them is in a trustworthy state. The
fundamental obstacle is (obviously) that a device can’t make a decision about its
own trustworthiness. There’s no way it or a user can believe a platform’s own
assessment of itself. Instead, the decision must be made using another computing
device, either directly attached to the computer (via USB, for example) or indirectly
connected via a network (for example). That other device must ask the target
computer for the measurements that it made during boot, interpret them
(to decide whether the platform is executing a respectable hypervisor) and then


http://dx.doi.org/10.1007/978-3-319-08744-3_13

2.1 Trusted Virtualisation 23

display the conclusion to the user. Once the user believes that a computer is in a
trusted state, the user can introduce personalised images (such as text, shapes and
pictures) to a trusted function in the target computer. The target can then use those
images as the background or circumference of trusted windows on a normal display.
When the user sees a window that uses the personalised image, he knows that that
window was generated by trusted processes.

Note, however, that a crucial step is missing from the previous description. It is
meaningless to ask a platform for its measurements unless one knows that the
platform will respond truthfully. Trusted platforms therefore need a way to prove
that they are trustworthy, and will provide genuine measurements. At first sight all
that is necessary is to install a single cryptographic signing key in a genuine
platform, provide a certificate to attest that that key belongs to a genuine trusted
platform, and ask the platform to sign measurements with that key. This works
perfectly but has the side effect that any interactions with that platform can be
correlated. A third party can tell that the same platform was used to file a tax return,
shop for vegetables, and read the news, for example. The correlation is indisputable
because a signature from a strong cryptographic key can’t be spoofed. This is one
reason why some commentators believed that trusted platform technology would
degrade privacy. In fact, privacy is impossible without data protection (whether
provided by Trusted Computing or other security mechanisms), because anyone can
snoop on data if it isn’t well protected.

The real issue is that “audit is incompatible with anonymity”, because good
security requires a good audit trail to enable investigation of attacks or breaches of
policy, while good anonymity requires a weak audit trail, to prevent investigation of
previous events. Modern zero-knowledge-proof security techniques can actually
improve privacy because they can prove possession of specific attributes, privileges
and properties without revealing identity. (There’s no longer any need to identify
someone in order to check that they have the right to do something.) Hence Trusted
Computing’s design objective is to provide a good level of security and optional
anonymity. In some situations it is possible to be anonymous and in others it is not.
One needs a good audit trail for bank records or medical files but wants anonymity
for more trivial actions such as browsing web sites, for example. TCG therefore
provided ways for genuine trusted platforms to obtain any quantity of separate
signing keys, called Attestation Identity Keys (AIKs) in TPMv1.2 (Attestation
Keys in TPM2.0), any of which can sign and produce evidence that measurements
are genuine. An Owner can then use one AIK when filing a tax return, another to
buy carrots, and another to read the news, and so on. And, of course, the Owner can
still choose to use one key for multiple activities, if he wishes.

One way of getting AIKs involves a third party called a Privacy Certification
Authority or Attestation Certification Authority, and can be used to produce
correlated or uncorrelated AIKs, as desired. Another way uses a zero-knowledge-
proof technique called Direct Anonymous Attestation, which enables a TPM to
directly setup an AIK with an interested party. These AIKs can be anonymous
(meaning that it is computationally infeasible to tell whether the same TPM



24 2 Futures for Trusted Computing

generated different AIKs) or pseudonymous (meaning that it is possible to tell that
the same TPM generated different AIKs, but not which TPM).

TPMs contain several other classes of functionality intended to be used by the
hypervisor, but it remains to be seen whether hypervisors will actually use those
functions. If not, we anticipate that those functions will eventually be deprecated
and ultimately deleted from the TPM.

¢ Some functions have a high probability of being used. These include delegation
of privilege (where the hypervisor performs management tasks that are normally
the privilege of the platform’s Owner) and monotonic counters (which the
hypervisor uses to detect attacks using genuine-but-old versions of itself).

¢ The future of some functions is in doubt. These functions include the ability to
create an audit trail of TPM usage and the ability to do time stamping. The issue
with auditing is that the TPM’s audit trail is no use without a hypervisor to
maintain a log, so why not just use the hypervisor to create an audit trail?

» The future of some functions is difficult to predict. These include DAA (Direct
Anonymous Attestation), which seems to provide little advantage in the enter-
prise environment because enterprises have no need for pseudonymity for
in-house computing.

2.1.1 Privacy Implications of Trusted Virtualisation

Trusting a trusted platform requires the exchange of measurements. If a platform
has common-place software, measurements don’t disclose much about a plat-
form—it’s merely one of many platforms that have that environment. On the
other hand, if a platform has specialist software, some commentators fear that
revealing measurements is sufficient to uniquely identify that platform. This is
actually less of a problem than it first appears, since a legitimate challenger doesn’t
require a detailed breakdown of the software on a target platform. A challenger
really only needs to know what hypervisor can be supported by a platform. Then the
challenger (perhaps after negotiations with the target platform) requests the plat-
form to load a particular OS and set up a particular topology of particular protected
processes. The challenger should have no legitimate interest in other processes in
the platform, since the hypervisor provides application separation, and other pro-
cesses should be irrelevant if the hypervisor provides sufficient process separation.
It is of course true that an optimised hypervisor might serve to identify a particular
platform, but even this is less likely than might first be thought, because a
hypervisor must be one that is recognisable (and trustable) by a challenger. Other-
wise the challenger has no way of deciding whether to trust that hypervisor. It
follows that any hypervisor used for trusted operations in a public context is almost
certain to be a well-known (and widely known) hypervisor, and hence unlikely to be
a one-off creation that identifies a particular platform. (A hypervisor in a private



2.1 Trusted Virtualisation 25

context could be both a one-off and trusted, but presumably it doesn’t matter that
the platform could be identified, because of the private context.)

There might be ways to ameliorate risk when revealing measurements, but these
are not currently part of any Trusted Computing specification:

1. One way is to use zero-knowledge-style protocols to prove that a target has some
desired properties without actually revealing a large set of platform properties.
Unfortunately no one really knows how to do this.

2. Another way is for measurements to be interpreted by a third party, which
effectively blinds the measurements and provides a simple (perhaps) Boolean
answer to the question “does this hypervisor meet my requirements?”. The
problem here is that there may not be a business case for such third parties,
and there may be doubts about their trustworthiness. (This is the same argument
used to justify the use of the Direct Anonymous Attestation protocol instead of
using Privacy-CAs.)

3. Yet another way is to use the isolated execution environments (compartments)
provided by the challenger or the target. A compartment can host a policy
interpreter that examines measurements to verify conformance with policy,
while hiding the integrity metrics from other processes in a platform.

Of course, with options (1) and (3), a platform still needs to expose sufficient
integrity metrics to prove that it can provide the necessary functionality. Even this
can be avoided, however, if that functionality is an inherent part of a platform, and
proof of attestation identity is sufficient proof that that functionality exists in a
platform. Then potentially no measurements need be disclosed by the platform. A
“policy checker” that is an inherent part of a platform should be considered a type of
“Root of Trust” of that platform. Otherwise at least the policy checker must be
measured and the actual measurements reported to the challenger.

We note in passing that method (3) could also be used to alleviate conventional
intrusion attacks. It is common for platforms to be scanned, looking for weaknesses.
But if all connection setup were negotiated within a compartment, connection could
be refused unless the process in the compartment was a known ‘“good-faith”
connection program. Both the enquirer and the target would use trusted platform
technology to verify that details from the target would be interpreted only by a
known “good-faith” connection program. The enquirer would have access to only
the sanitised output of the compartment, so the target should have no qualms about
misuse of detailed target information.

2.1.2 Virtualised Trusted Platforms

In computing, the term “virtual” implies non-hardware interfaces that mimic
hardware interfaces. Software that executes on a virtual platform can be the
same as software that executes on a hardware platform. The difference is that
software executing on a virtual platform executes on an interface that mimics a



26 2 Futures for Trusted Computing

hardware interface, instead of on an actual hardware interface. In the case of true
virtualisation, the software is completely ignorant of the fact that it is executing in a
virtual environment. In the case of para-virtualisation, the software is optimised to
take advantage of the virtual environment, or to allow optimisation of the virtual
interface.

Virtualised trusted platforms are platforms where the software components of a
normal trusted platform execute on an interface that mimics a hardware interface, in
separated environments in host trusted platforms. In individual virtualised trusted
platforms (such as PCs and servers, but probably not mobile phones), the evidence
that the platform will properly protect keys and report measurements is provided via
a certificate (or certificates) that vouches for a secret signing key held by a TPM.
The question is what evidence is required for a trusted platform executing on a
virtual hardware interface? There are two possible answers.

e The first possibility is that the host platform providing the virtual hardware
interface provides the certificates, and the host platform provides evidence that
it is trustworthy enough to provide the certificates. This is done via measure-
ments of the host’s boot process and via its certificates.

» The second possibility is that the host’s manufacturer provides certificates for
the Virtualised Trusted Virtualisation Platform.

Whatever the case, whenever the virtual platform provides its measurements, it
must supply its own measurements and the evidence that the measurements can be
trusted.

2.2 Future Trusted Services

This section speculates on services that might be provided by trusted platforms.
There are many unknowns.

2.2.1 Data Deletion

Trusted Computing enables a form of data deletion, via the reliable destruction of
encryption keys. The keys can be protected by TPMs, or can be inside self-
encrypting-drives. Once all keys are erased, the data can’t be accessed even though
it still exists.

Key erasure is a two-edged sword, of course. Once a key is really gone, no
amount of wailing or gnashing of teeth will bring it back. Computer users should
therefore be equally concerned (and arguably more concerned) about reliable and
continued access to data. This is why Trusted Computing provides means to control
the distribution and duplication of encryption keys.



2.2 Future Trusted Services 27
2.2.2 Contracts and Negotiations

Given platforms with isolated execution environments, any arbitrary service can be
described in terms of a set of processes and each process can be allocated to a
particular environment. Each process continues to be described in terms of its
properties, resources and quality of service (as normal), but isolation introduces
new attributes: (1) the controls that must be enforced on input data; (2) the controls
that must be enforced while executing data; (3) the controls that must be enforced
on output data; (4) the controls that must be enforced on audit data. Extra steps are
needed in the process of negotiating contracts for services, and methods for
executing those services on a computing platform according to the contract.

Contracts include a specification of the methods and processes used to perform a
service. The contract specification should be capable of interpretation by a com-
puting platform, and partition the methods and processes into functions that must be
trusted if the service is to be trusted, functions that are merely required (as a matter
of choice) to be trustworthy, and functions that have to operate properly for the
service to function, but don’t need to be trusted and/or are not required to be
trustworthy.

Functions that must be trusted include those provided by a trusted platform that
are used to report on the state of the software platform in a computing platform.
Functions that must be trusted also include methods that will provide evidence of
the execution of the service. Functions that are required to be trustworthy are
functions whose integrity is paramount in the opinion of at least one of the parties
involved in the contract.

Negotiations may require new service types (in the computing sense, where
“type” indicates the operations that can legitimately be performed on data). The
input data to a service and output data from a service would be typed, and a process
would be typed. Typing could state the quality of isolation that is required, whether
services may swap between isolation environments, and scheduling of swaps.
Platforms could contain a label indicating the presence or potential presence of a
predetermined software state. Labels should be global, in the sense that the same
label always describes essentially the same services, and are signed by some trusted
entity.

Receiving a challenge that contains a label should cause the receiving platform
to determine whether it can provide the service described by that label. Platforms
could publish the labels of all the services they can support, even if not currently
providing those services, and use signed labels to decide whether to use another
platform for a particular service. Labels could be differentiated to indicate facilities
optimised for client-side or server-side operation, descriptions and certifications of
labels could be broadcast throughout a domain, and platforms could use web
services to advertise that they may support a particular service.

Audit parameters need to be specified. These include:

e The format of logs that record integrity metrics plus the method of their
measurement



28 2 Futures for Trusted Computing

« The quantity of hash engines used to create logs
¢ The frequency with which input data and/or output data and/or program instruc-
tions are sampled.

2.2.3 Single Sign-On

The concept of single sign-on is well-known: a platform authenticates a user and
then automatically represents the user to networks using various (and differing)
authentication techniques and tokens. Trusted platforms improve on the concept,
because they can use attestation identities and measurements to prove to the
network that user authentication was properly done and that any particular network
authentication method was executed as expected.

Trusted platforms can, however, extend the concept. If a platform is trusted by a
network, any user authentication normally done by the network may instead be
done by the trusted platform on behalf of the network. Then, whenever a network
receives a connection attempt by a known trusted platform, the network simply
grants access to the platform, knowing that the platform will already have authen-
ticated the user on behalf of the network. (The network accepts access requests
based on a user name and the platform’s identity, knowing that the platform has
already authenticated the user and verified his privileges.) This potentially mini-
mises the number of network secrets (or private data) used as authorisation data,
and hence reduces the complexity of maintaining the PKI within an organisation.
The number of secrets in a domain is reduced to a minimum, yet individual users
may still be identified and access to applications may still be individually con-
trolled. At the same time, domain security may be maintained across the domain by
a broadcast mechanism, without having to deal with each platform as an individual.

The end effect is that each trusted platform verifies the network on behalf of the
user and verifies the user on behalf of the network.

2.2.4 Trusted Software Agents

Software agents would be much more useful if they could execute on trusted
platforms, because they could carry private information (including encryption
keys) with them, knowing that the confidentiality of that information would be
respected. The problem to be solved is the propagation of private data through a
platform or a network, depending on the trust properties of the destination. Data
should be accompanied by policies that dictate the permitted usage of the data,
including the extent to which it can be forwarded. Data could be accompanied by
dummy data (for testing) and a “release public key”, used to encrypt the work done
by an agent and release its data into the wild (so that its legitimate owner might have
a chance to recover it) when a platform can no longer be trusted to process real data.



2.3 Infrastructure Requirements 29

Preferably platforms would have keys that can be irrevocably erased, so that future
access to encrypted agent data would be irrevocably denied.

If trusted systems are the norm, and the confidentiality of information is
respected by platforms, private information (information distributed under tight
control) such as credit card details can be used for authorisation purposes instead of
secret information, to request access to a service. The requirement for a domain’s
on-line public key infrastructure (PKI) is reduced, or even eliminated. Continuing
the label theme introduced earlier, domains may not even be aware of the name of a
caller, simply the name and label of the calling platform.

2.2.5 What You See Is What You Sign

Just because a platform is a trusted platform, it doesn’t mean that the platform is
safe to use. A person using one must be able to tell that it is operating properly
before doing sensitive tasks, such as digital signatures. Digital signatures may be
legally binding, so a person should always have checked that his trusted platform is
in the correct state before using it for critical tasks.

Although trusted platforms are inherently designed to enable a third party to
deduce the current state of the software platform, these techniques involve complex
processes that cannot be done by an unaided human. A person wishing to use these
techniques must therefore interrogate a platform using a separate computing device,
such as another computer, a USB device, or even a mobile phone (for example).

Another option is to build trusted platforms and software platforms to display an
image around the edge of a window on the monitor, or as the background to that
window, for example. If an encrypted version of a personal image is locked to a
desired software platform inside a particular trusted platform, a person who sees
that image could have confidence that the platform is in the desired software state.

2.3 Infrastructure Requirements

Trusted platforms create new infrastructure requirements for manufacture, instal-
lation, maintenance, and logging.

2.3.1 Public Key Infrastructure

The most basic infrastructure requirement is that of a public key infrastructure. All
trust in trusted platforms comes from people and organisations (including commer-
cial companies). Trust is expressed via credentials that attest to genuine trusted
platforms, genuine values of software measurements and genuine Attestation



30 2 Futures for Trusted Computing

(Identity) Keys. At the very least, it is essential to be able to verify the signature on a
credential. In all but the simplest of situations, this requires certificates, each stating
the public key and name of the entity whose signatures can be verified using that
public key. The certificates can be arranged in a hierarchy, called a public key
infrastructure, where the public key in a parent certificate can be used to verify the
signatures on child certificates. Generally the root certificate is signed by a
respected and well-known entity whose public key has been well publicised by
other means. The root certificate can be verified using that root public key, and
hence all certificates in the hierarchy can be verified.

Some Trusted Computing Group infrastructure specifications describe a schema
for the evidence of trustworthiness of trusted platforms. In particular, the “TCG
Credential Profiles” specification describes the credentials used to support a trusted
platform. Other TCG specifications allude to (but do not specify) the actions of an
entity called a Privacy-CA that signs credentials for Attestation Identity Keys.

Few of TCG’s infrastructure specifications are implemented. It’s a chicken-and-
egg problem. TCG’s infrastructure specifications are not implemented because they
communicate attestation, which requires features of X.509 certificates that are not
implemented in common software libraries because no one is using attestation. For
example, a platform certificate is fundamentally an attribute certificate, because it
contains no key. There’s no sign that this deadlock will break any time soon.

2.3.2 Manufacture

Although this aspect is invisible to customers, it’s instructive to note that Trusted
Computing makes new demands on manufacturers.

Manufacturers are unique in the Trusted Computing life cycle (from product
creation to product destruction) because products do not have to conform to trusted
platform specifications whilst they are in the hands of manufacturers. The reason is
(obviously) that a product isn’t expected to satisfy a specification before it is
finished. The effect is that a product doesn’t have to obey any specifications until
the manufacturer says that it is finished, but (on the other hand) the manufacturing
process must have certain properties in order that the finished equipment can satisfy
those specifications. The general requirement is that the manufacturer must ensure
that any product it certifies is actually worthy of certification (does actually satisfy
the specifications). Otherwise the manufacturer’s “word” is worthless and its brand
reputation is damaged.

This aspect of production is new for most mass-market manufacturers. While
their products may be supplied with warranties, it is rare that manufacturers attest
that individual specific pieces of equipment were manufactured by them to meet
specific specifications. Thus manufacturers must modify their production tech-
niques and install the ability to sign credentials. (It isn’t always true, of course,
that all manufacturers need modified production lines. The primary exceptions are



2.3 Infrastructure Requirements 31

those TPM manufacturers who also manufacture smartcards, because they typically
already have processes in place to certify individual products.)

2.3.3 Upgrading TPMs

TCG specifications permit TPMs to be remotely upgraded, although it is not
mandatory. Field upgrades are intended to permit correction of problems or instal-
lation of improvements, such as more modern versions of the TPM specifications.
Any field upgrade requires permission from both the manufacturer (probably via a
signature) and the current platform Owner (either cryptographically or via direct
physical interaction with the platform). The entity providing an upgrade must
ensure that the upgrade does not permanently prevent access to any data already
protected by the TPM, or expose any data already protected by the TPM.

2.3.4 Upgrading Integrity Metrics

Trusted Computing relies upon good change-control practices, to ensure that
software with attested software measurements has good behaviour, and to ensure
that the proper interpretation of measurement values is well-known.

Trusted platforms use measurements of software programs as an indication of
platform behaviour. Measurements are used for three purposes, and changes to
measured values can cause denial of service.

¢ Measurements are signed using attestation keys and reported to challengers. If
measurements change, the challenger must interpret the new measurements in
order to decide whether the new platform state is acceptable.

+ Data is sealed with measurements, and a TPM will not reveal data if the sealed
measurements do not match current measurements. Data is sealed in order that
only specific software environments can recover specific plaintext data. Envi-
ronments can do whatever they wish with that plaintext data, including
(in principle) seal it to different measurements. Hence, if all environments
include a re-sealing facility, it is unnecessary for TCG to specify a method of
data recovery after measurements change. However, providing a re-sealing
facility in every environment is onerous.

» Migratory and duplicable keys are used to backup and transfer protected data
between environments. They can be sealed to measurements, just like data.
TPMv1.2 in particular doesn’t provide any method to enable keys to be sealed
to new measurements, whether in the original platform (because software has
changed) or in a target platform (because the new platform has different
software).



32 2 Futures for Trusted Computing

Measurements are deliberately designed to change whenever a program changes
by a single bit, because even tiny changes in a program might cause undesirable
changes in behaviour. However, this means that measurements of software change
even if the trustworthiness of the software has not changed. The problems caused by
this “brittleness” can be severe. Firmware revisions aside, even platforms with the
same model numbers may have different chipsets due to configuration options and
commercial decisions (such as alternative vendors and dual sourcing). Thus even a
constrained set of hardware platforms may have many trust-equivalent software
measurements.

There is no way to ameliorate brittleness in measurements in TPMv1.2, but
TPM2.0 has a feature called Enhanced Authorization that allows in situ adjustments
of measurements attached (sealed) to keys. Further, TCG’s “Dynamic-RTM”
specification allows measurements to be expressed using a public key. Using a
public key transforms recorded and reported measurements into measures of what
something does, instead of what it is. An actual software measurement is verified
using a policy (a public key), and the name of the policy (the public key) plus the
outcome of the test are recorded and reported as the measurement. Then, when
firmware or software changes, the actual measurement changes but the policy and
the outcome of the test do not (assuming the new software is as trustworthy as the
old software). Thus the recorded and reported measurements do not change.

An even better method might eventually be derived from the semantic web, by
translating behaviours directly into measurements.

2.3.5 Auditing Trusted Platforms

Secure platforms produce an audit trail, and trusted platforms should do the same,
to enable investigations after bad things have happened.

Audit data is evidence that a process executed, and how it executed. Audit data is
typically used to resolve arguments over “who did what”, and “how”, and “how
well”. The data might simply record aspects of a process, or may enable that process
to be totally recreated and reviewed. An engine gathering audit data would nor-
mally observe all data entering an isolated environment (including the process
software itself), all data leaving the isolated environment, and the execution of
the process (instructions executed and memory altered). Recording the actual
execution of a process would tend to produce a large amount of data, so it may
be preferable to sample the execution process. This could be done by sampling at
regular or irregular intervals, according to a keystream generated from a particular
key or secret.

Preferably, for privacy, there should be different views of audit data: one view
reveals all input data, one view reveals all data in the vicinity of a marker during
execution, one view reveals all output data sent to a particular destination, and so
on. This provides privacy for audit data, in the sense that an enquirer may be offered
access to certain aspects of an audit trail but denied access to others. Audit sets



2.3 Infrastructure Requirements 33

would be useful particularly when investigating processes that fail to execute as
required. A first set of audit data may provide access to all audit data for a specified
time period, for example. A second set may provide access to a subset of the audit
data for the duration of a given process, for example. A third set may provide access
to a subset of the audit data in the presence of certain events, for example. One set
may provide access to all attributes of all data in some time period, while another
set may provide access to selected attributes of one data parameter for the entire
process, for example.

Policies may determine what audit sets must be created and when can they be
revealed. The default would be to contact the owner of the data being processed.

2.3.6 Discovering Trusted Services

This section concerns the discovery of trusted platforms, and how to decide whether
to trust them. We preferably need a method that works with existing computer
systems because it will be years until all installed computers are trusted platforms.
Until then, there will be a mixture of conventional computers, first generation
trusted platforms, and trusted platforms.

The first generation of trusted platforms provide a low-cost hardware-based
crypto API to a TPM for existing applications to store cryptographic keys. The
next generation of computers will have hypervisors that additionally provide
measurements to enable new applications to identify software platforms, and
provide controlled (isolated) execution environments (software compartments).
Such platforms can map services in terms of a network of processes, each with its
own isolated allocated internal resources, permitted connections, and forbidden
connections. The trusted platforms hosting these isolated processes can provide
certificates and measurements as evidence of the controls and mechanisms
protecting processes, and evidence of processes being executed, their resources
and connections. The trusted platform knows nothing about what the processes are
doing, merely that they are connected together in a particular topology that is both
reported and enforced. If services and policies can’t be mapped this way, trusted
platforms cannot properly protect them. It follows that all services and all policies
should be described in terms of a network of measured protected processes. There
seems no fundamental reason why any service or policy could not be described in
such terms, but it is not always easy to “get there from here”. It is currently unclear
whether practical policies can be expressed in canonical terms.

Given that trusted platforms enforce networks of isolated processes, we suggest
that discovery and setup of services on trusted platforms falls into six categories:

1. Evidence that the other five categories of information can be believed.

2. Evidence of mechanisms to instantiate black-box execution environments (sep-
arate threads and/or processes).

3. Evidence of controls that govern the inputs to those black-box environments.



34 2 Futures for Trusted Computing

4. Evidence of controls that govern execution within those black-box
environments.

5. Evidence of controls that govern the results from those black-box environments.

6. Evidence of controls that govern the audit trail of those black-box environments.

This partitioning simplifies the interpretation of trusted platforms and makes it
simpler to decide how to allocate platforms to particular tasks. The latter five stages
are compatible with existing ordinary platforms (that don’t use trusted platform
technology), and hence work with systems that contain both ordinary and trusted
platforms.

The level of protection afforded to data in a platform naturally depends on the
environment implemented by the platform. Some platforms provide lower levels of
separation of execution than other platforms. For example, conventional common
operating systems provide separate threads or processes, but enforcement of sepa-
ration may be weak and is typically under the control of the platform’s adminis-
trator, who can override. Less common types of existing platform might provide
stronger separation using software or hardware compartments, and the administra-
tive role may be partitioned, so collusion by multiple rogue administrators is
required to subvert separation. Second generation trusted platforms should provide
strong levels of separation and prevent administrators from subverting that
separation.

According to this proposal, in stage 1 a challenger checks the (attestation)
identity of a platform, to discover whether it is a trusted platform or an ordinary
platform. If the target is an ordinary platform, the level of trust in the platform is
uncertain (although the platform may, of course, be perfectly trustworthy). It may,
however, be difficult to be sure that the target platform is even the platform it claims
to be. If the target is a trusted platform, its attestation identity identifies the
platform, and measurement data signed by that identity can be relied upon.

The challenger then uses stage-2 to understand the type and degree of process
isolation that can be provided by the target platform. It may be that the target
environment uses just standard conventional OS technologies to separate processes.
(If the target is a first generation trusted platform, the attestation identity indicates
that the target is suitable to support a conventional OS and integrity metrics signed
by the attestation identity show that the OS was properly booted.) It may be that the
target environment is a specialist cryptographic environment, in which case an
attestation identity vouches that that environment exists. Another possibility is that
the target is a trusted platform where one OS is isolated from another by virtue of
using hardware processor cores, or where a hypervisor separates OSs using soft-
ware. In these cases, the attestation identity provides evidence that the target is
suitable to support the environment; integrity metrics show that an appropriate
kernel/hypervisor was properly booted and the kernel/hypervisor provides evidence
of isolation of applications or other OSs.

Data from stage 2 should also reveal additional properties of target platforms. It
may be that some platforms can provide protected human interfaces, in the sense of
keyboards that cannot be snooped or subverted, or displays that are guaranteed to



2.3 Infrastructure Requirements 35

accurately present the visual output of a process. Other hardened platforms may
have disk drives and optical drives with security properties, for example.

Once a challenger receives stage 2 data, he can deduce the characteristics of the
target and decide what processes (if any) could be executed on that type of platform.
Any arbitrary task can be partitioned into (parallel and/or serial) processes that must
be (or are desired to be) protected to some degree. The challenger should partition
his task appropriately and determine which target is suitable for a particular job.
The challenger should do this by assessing the sensitivity of data that passes
between processes. Some data might be insensitive, in which case it does not matter
whether it can be interpreted by any arbitrary process on the target that produces or
consumes the data. Other data might be sensitive, and capable of interpretation just
by desired processes, but no others. A platform could enforce such restrictions by
controlling the flow of data between processes. Otherwise there seems little alter-
native to encrypting data, and ensuring that only intended processes have the keys
to encrypt and/or decrypt messages between processes.

The challenger should also decide what processes can observe the actual exe-
cution of a job (view the execution of instructions and/or the memory locations used
by the process). It could be that no additional process should be able to inspect the
execution of a process, or that only an administrator-privilege monitor is permitted
to observe execution, or only in the vicinity of execution faults. The challenger
should also decide whether an audit trail is required, and (if so) who should have
access to it. Note that we use the term “audit trail” in its most general sense,
including the ability to reproduce or recall the execution of a process. The audit
trail could be created by sampling the audited process, rather than be a complete
record of the process.

Once the challenger has made all these decisions, he should request each target
to customise its environment to provide the desired levels of protection for input,
execution, output, and audit. The target platforms make any necessary changes and
provide the challenger with measurements that are evidence that mechanisms are in
place to enforce the desired policies. After receiving and verifying this evidence,
the challenger distributes his task amongst the targets, and work commences.

One potential stumbling block is the infrastructure required to support public
Trusted Computing. While a public key infrastructure can work perfectly well
within a closed organisation, many commentators have expressed concerns about
scalability. In the public domain, some sort of infrastructure is necessary to enable
verification of the various certificates that vouch for the various parts of a trusted
platform, and the platform itself. It may not always be possible to reach and traverse
a database to validate primary trust sources, and hence secondary sources may be
desirable. We therefore propose the installation of distinctive kiosks in selected
locations, to provide introductions to trusted platforms in the locality. Thus an
automated information kiosk in the reception of a building could contain credentials
of trusted platforms in that building, or export a public key that can be used to
validate credentials of trusted platforms in the building. The presence of the kiosk
in such a prominent place would be taken as evidence that the kiosk could be
trusted. Naturally, the kiosk must be protected from unauthorised manipulation, and



36 2 Futures for Trusted Computing

hence may itself be a trusted platform. Alternatively, a mobile ‘phone could be used
via a network to authenticate a person to a platform, prove to the person that the
platform is trustworthy, and cause their data to be delivered to that platform, so the
platform can be used by the person to operate on their data.

Trusted platforms distinguish themselves via their attestation identities and
measurements: attestation identities and measurements are evidence of whether a
platform can support a given service. We suggest that sets of possible measure-
ments should be advertised by platforms whether or not they are currently in the
state indicated by those measurements, and when a platform receives a request
indicating one of its attestation identities and an appropriate set of measurements,
the platform instantiates the appropriate state “on demand”. In this case, the
measurements should include a set of applications that the platform is able to
instantiate. Then a service-requestor can simultaneously indicate a request for a
particular service executing on a desired OS, and the measurements become
(in effect) part of the service’s identification. A requestor looking for a particular
service could interrogate a database or uses a search engine, looking for a service
identified in terms of a set of measurements with the intent of collaborating with
existing providers to use the service or to augment the service.

Customers will require some indication of a service’s trust status. Native mea-
surements are unintelligible for ordinary customers, so the process must be auto-
mated and customers must have a simple way to initiate automated checking and
view the results. This could be achieved by appropriate user interface design: “right
clicking” on an icon representing a platform or service could present the option of
challenging that platform or service, and the icon or service should change
according to whether its trust status is unknown, acceptable, or unacceptable. The
source code of a program could change colour depending on whether it is executing
in a platform whose trust status is unknown, acceptable, or unacceptable. Dragging
a platform icon onto a service icon could cause the platform to test whether that
platform can provide the service.



2 Springer
http://www.springer.com/978-3-319-08743-6

Trusted Computing Platforms

TPM2.0 in Context

Proudler, G.; Chen, L.; Dalton, C.

2014, XV, 382 p. 9illus., 2 illus. in color., Hardcowver
ISEN: 978-3-319-08743-5



	Chapter 2: Futures for Trusted Computing
	2.1 Trusted Virtualisation
	2.1.1 Privacy Implications of Trusted Virtualisation
	2.1.2 Virtualised Trusted Platforms

	2.2 Future Trusted Services
	2.2.1 Data Deletion
	2.2.2 Contracts and Negotiations
	2.2.3 Single Sign-On
	2.2.4 Trusted Software Agents
	2.2.5 What You See Is What You Sign

	2.3 Infrastructure Requirements
	2.3.1 Public Key Infrastructure
	2.3.2 Manufacture
	2.3.3 Upgrading TPMs
	2.3.4 Upgrading Integrity Metrics
	2.3.5 Auditing Trusted Platforms
	2.3.6 Discovering Trusted Services



		2014-11-29T09:03:16+0530
	Certified PDF 2 Signature




