
Chapter 2

Futures for Trusted Computing

Abstract Trusted virtualisation is anticipated to become the dominant form of

Trusted Computing in PCs and servers because it enables isolation of applications,

and simplifies determination of platforms’ trust and security properties. Trusted

Computing can enable platforms to provide trusted services such as cryptographic

erasure of data, negotiations for the supply of services, single-sign-on, and digital

signatures. These provide greater confidence in the use of computer platforms.

Nothing is free, however, and Trusted Computing is no exception: it requires a

public key infrastructure and other infrastructure that is peculiar to Trusted

Computing.

This chapter extrapolates existing technologies and trends. It speculates that trusted

virtualisation will become the dominant form of Trusted Computing (in PCs, at any

rate), describes some potential usages of Trusted Computing, and describes some of

the infrastructure that is necessary to make it happen.

2.1 Trusted Virtualisation

It is anticipated that future computers will use trusted virtualisation, to prevent

applications attacking other applications. This is because the only known generic

way of preventing attacks by software on software is software isolation. If software

can’t touch data and the applications that use that data, the software can’t misuse the

data or subvert the applications.

Future computers will use hypervisors to provide separate OS environments,

possibly enhancing separation via execution on separate physical processor cores.

Selected data and applications will execute in separate OS environments, so they

aren’t affected by what is going on in other OS environments. The hypervisor will

control the creation and destruction of the OS environments, and control commu-

nications between environments and with other platforms. Trusted platform tech-

nology will be used to ensure that secrets belonging to a particular hypervisor are

only revealed to that hypervisor. In some trusted computers, trusted platform

technologies will release keys to hypervisors executing in the isolated environment

provided by new platform architectures. Other trusted computers will comprise a

© Springer International Publishing Switzerland 2014

G. Proudler et al., Trusted Computing Platforms, DOI 10.1007/978-3-319-08744-3_2
21



hypervisor that controls the platform’s hardware and provides trust functions to

various virtual computers supported by the hypervisor (perhaps executing on

different hardware cores), and control data flows to and between those virtual

computers. For more details see Chap. 13.

One trusted piece of firmware is the first software to execute when one of these

trusted virtualisation platforms boots. This firmware measures the next software to

execute, stores that measurement in the TPM, and then passes control to that

software. The software does its normal work, measures the next software to

execute, stores that measurement in the TPM, and passes control to that software.

And so on. Eventually the hypervisor is booted. Remaining software (apart from

upgrades to the hypervisor) will be executed at a lower hardware privilege than the

hypervisor and therefore can’t subvert the hypervisor. At this point it becomes

unnecessary to record new software (apart from hypervisor upgrades) in the TPM,

because the TPM already contains measurements of all the software that can affect

the integrity of the hypervisor.

Once the hypervisor has booted, it accesses the hard disk drive and retrieves

encrypted files. The hypervisor then asks the TPM for the keys to those files. The

TPM compares the software measurements stored with the keys against the current

measurements. If they are the same, the hypervisor is the legitimate owner of those

keys, and can be permitted to use the keys to decrypt the files. Otherwise the

requestor is not the proper owner of those keys, the TPM will refuse to use or

release the keys, and the encrypted files cannot be decrypted. Hence a platform

could boot using rogue software, but that software won’t be able to access the user’s

data, won’t be able to display protected images, and won’t be able to use a TPM’s

signing keys to fool other devices. This uses a mechanism unique to Trusted

Computing that is called “sealing”, which restricts the availability of small amounts

of data and keys. Sealed data is encrypted data that contains both plaintext data and

plaintext measurements of the software environment that must exist outside a TPM

before the plaintext data can be used by that software environment. When sealed

data is created, a TPM concatenates plaintext data and plaintext measurements of a

software environment, and encrypts the concatenated data. When sealed data is

decrypted inside a TPM, the resultant plaintext measurements are compared with

measurements of the current software environment. If the two measurements don’t

match, the TPM refuses to allow the current software environment to use the

plaintext data from the sealed data.

Computer users should see very little change when they run applications on

these platforms (and deliberately so). They will, however, need some means to

determine whether the computer in front of them is in a trustworthy state. The

fundamental obstacle is (obviously) that a device can’t make a decision about its

own trustworthiness. There’s no way it or a user can believe a platform’s own

assessment of itself. Instead, the decision must be made using another computing

device, either directly attached to the computer (via USB, for example) or indirectly

connected via a network (for example). That other device must ask the target

computer for the measurements that it made during boot, interpret them

(to decide whether the platform is executing a respectable hypervisor) and then

22 2 Futures for Trusted Computing

http://dx.doi.org/10.1007/978-3-319-08744-3_13


display the conclusion to the user. Once the user believes that a computer is in a

trusted state, the user can introduce personalised images (such as text, shapes and

pictures) to a trusted function in the target computer. The target can then use those

images as the background or circumference of trusted windows on a normal display.

When the user sees a window that uses the personalised image, he knows that that

window was generated by trusted processes.

Note, however, that a crucial step is missing from the previous description. It is

meaningless to ask a platform for its measurements unless one knows that the

platform will respond truthfully. Trusted platforms therefore need a way to prove

that they are trustworthy, and will provide genuine measurements. At first sight all

that is necessary is to install a single cryptographic signing key in a genuine

platform, provide a certificate to attest that that key belongs to a genuine trusted

platform, and ask the platform to sign measurements with that key. This works

perfectly but has the side effect that any interactions with that platform can be

correlated. A third party can tell that the same platform was used to file a tax return,

shop for vegetables, and read the news, for example. The correlation is indisputable

because a signature from a strong cryptographic key can’t be spoofed. This is one

reason why some commentators believed that trusted platform technology would

degrade privacy. In fact, privacy is impossible without data protection (whether

provided by Trusted Computing or other security mechanisms), because anyone can

snoop on data if it isn’t well protected.

The real issue is that “audit is incompatible with anonymity”, because good

security requires a good audit trail to enable investigation of attacks or breaches of

policy, while good anonymity requires a weak audit trail, to prevent investigation of

previous events. Modern zero-knowledge-proof security techniques can actually

improve privacy because they can prove possession of specific attributes, privileges

and properties without revealing identity. (There’s no longer any need to identify

someone in order to check that they have the right to do something.) Hence Trusted

Computing’s design objective is to provide a good level of security and optional

anonymity. In some situations it is possible to be anonymous and in others it is not.

One needs a good audit trail for bank records or medical files but wants anonymity

for more trivial actions such as browsing web sites, for example. TCG therefore

provided ways for genuine trusted platforms to obtain any quantity of separate

signing keys, called Attestation Identity Keys (AIKs) in TPMv1.2 (Attestation

Keys in TPM2.0), any of which can sign and produce evidence that measurements

are genuine. An Owner can then use one AIK when filing a tax return, another to

buy carrots, and another to read the news, and so on. And, of course, the Owner can

still choose to use one key for multiple activities, if he wishes.

One way of getting AIKs involves a third party called a Privacy Certification

Authority or Attestation Certification Authority, and can be used to produce

correlated or uncorrelated AIKs, as desired. Another way uses a zero-knowledge-

proof technique called Direct Anonymous Attestation, which enables a TPM to

directly setup an AIK with an interested party. These AIKs can be anonymous

(meaning that it is computationally infeasible to tell whether the same TPM

2.1 Trusted Virtualisation 23



generated different AIKs) or pseudonymous (meaning that it is possible to tell that

the same TPM generated different AIKs, but not which TPM).

TPMs contain several other classes of functionality intended to be used by the

hypervisor, but it remains to be seen whether hypervisors will actually use those

functions. If not, we anticipate that those functions will eventually be deprecated

and ultimately deleted from the TPM.

• Some functions have a high probability of being used. These include delegation

of privilege (where the hypervisor performs management tasks that are normally

the privilege of the platform’s Owner) and monotonic counters (which the

hypervisor uses to detect attacks using genuine-but-old versions of itself).

• The future of some functions is in doubt. These functions include the ability to

create an audit trail of TPM usage and the ability to do time stamping. The issue

with auditing is that the TPM’s audit trail is no use without a hypervisor to

maintain a log, so why not just use the hypervisor to create an audit trail?

• The future of some functions is difficult to predict. These include DAA (Direct

Anonymous Attestation), which seems to provide little advantage in the enter-

prise environment because enterprises have no need for pseudonymity for

in-house computing.

2.1.1 Privacy Implications of Trusted Virtualisation

Trusting a trusted platform requires the exchange of measurements. If a platform

has common-place software, measurements don’t disclose much about a plat-

form—it’s merely one of many platforms that have that environment. On the

other hand, if a platform has specialist software, some commentators fear that

revealing measurements is sufficient to uniquely identify that platform. This is

actually less of a problem than it first appears, since a legitimate challenger doesn’t

require a detailed breakdown of the software on a target platform. A challenger

really only needs to know what hypervisor can be supported by a platform. Then the

challenger (perhaps after negotiations with the target platform) requests the plat-

form to load a particular OS and set up a particular topology of particular protected

processes. The challenger should have no legitimate interest in other processes in

the platform, since the hypervisor provides application separation, and other pro-

cesses should be irrelevant if the hypervisor provides sufficient process separation.

It is of course true that an optimised hypervisor might serve to identify a particular

platform, but even this is less likely than might first be thought, because a

hypervisor must be one that is recognisable (and trustable) by a challenger. Other-

wise the challenger has no way of deciding whether to trust that hypervisor. It

follows that any hypervisor used for trusted operations in a public context is almost

certain to be a well-known (and widely known) hypervisor, and hence unlikely to be

a one-off creation that identifies a particular platform. (A hypervisor in a private

24 2 Futures for Trusted Computing



context could be both a one-off and trusted, but presumably it doesn’t matter that

the platform could be identified, because of the private context.)

There might be ways to ameliorate risk when revealing measurements, but these

are not currently part of any Trusted Computing specification:

1. One way is to use zero-knowledge-style protocols to prove that a target has some

desired properties without actually revealing a large set of platform properties.

Unfortunately no one really knows how to do this.

2. Another way is for measurements to be interpreted by a third party, which

effectively blinds the measurements and provides a simple (perhaps) Boolean

answer to the question “does this hypervisor meet my requirements?”. The

problem here is that there may not be a business case for such third parties,

and there may be doubts about their trustworthiness. (This is the same argument

used to justify the use of the Direct Anonymous Attestation protocol instead of

using Privacy-CAs.)

3. Yet another way is to use the isolated execution environments (compartments)

provided by the challenger or the target. A compartment can host a policy

interpreter that examines measurements to verify conformance with policy,

while hiding the integrity metrics from other processes in a platform.

Of course, with options (1) and (3), a platform still needs to expose sufficient

integrity metrics to prove that it can provide the necessary functionality. Even this

can be avoided, however, if that functionality is an inherent part of a platform, and

proof of attestation identity is sufficient proof that that functionality exists in a

platform. Then potentially no measurements need be disclosed by the platform. A

“policy checker” that is an inherent part of a platform should be considered a type of

“Root of Trust” of that platform. Otherwise at least the policy checker must be

measured and the actual measurements reported to the challenger.

We note in passing that method (3) could also be used to alleviate conventional

intrusion attacks. It is common for platforms to be scanned, looking for weaknesses.

But if all connection setup were negotiated within a compartment, connection could

be refused unless the process in the compartment was a known “good-faith”

connection program. Both the enquirer and the target would use trusted platform

technology to verify that details from the target would be interpreted only by a

known “good-faith” connection program. The enquirer would have access to only

the sanitised output of the compartment, so the target should have no qualms about

misuse of detailed target information.

2.1.2 Virtualised Trusted Platforms

In computing, the term “virtual” implies non-hardware interfaces that mimic

hardware interfaces. Software that executes on a virtual platform can be the

same as software that executes on a hardware platform. The difference is that

software executing on a virtual platform executes on an interface that mimics a

2.1 Trusted Virtualisation 25



hardware interface, instead of on an actual hardware interface. In the case of true

virtualisation, the software is completely ignorant of the fact that it is executing in a

virtual environment. In the case of para-virtualisation, the software is optimised to

take advantage of the virtual environment, or to allow optimisation of the virtual

interface.

Virtualised trusted platforms are platforms where the software components of a

normal trusted platform execute on an interface that mimics a hardware interface, in

separated environments in host trusted platforms. In individual virtualised trusted

platforms (such as PCs and servers, but probably not mobile phones), the evidence

that the platform will properly protect keys and report measurements is provided via

a certificate (or certificates) that vouches for a secret signing key held by a TPM.

The question is what evidence is required for a trusted platform executing on a

virtual hardware interface? There are two possible answers.

• The first possibility is that the host platform providing the virtual hardware

interface provides the certificates, and the host platform provides evidence that

it is trustworthy enough to provide the certificates. This is done via measure-

ments of the host’s boot process and via its certificates.

• The second possibility is that the host’s manufacturer provides certificates for

the Virtualised Trusted Virtualisation Platform.

Whatever the case, whenever the virtual platform provides its measurements, it

must supply its own measurements and the evidence that the measurements can be

trusted.

2.2 Future Trusted Services

This section speculates on services that might be provided by trusted platforms.

There are many unknowns.

2.2.1 Data Deletion

Trusted Computing enables a form of data deletion, via the reliable destruction of

encryption keys. The keys can be protected by TPMs, or can be inside self-

encrypting-drives. Once all keys are erased, the data can’t be accessed even though

it still exists.

Key erasure is a two-edged sword, of course. Once a key is really gone, no

amount of wailing or gnashing of teeth will bring it back. Computer users should

therefore be equally concerned (and arguably more concerned) about reliable and

continued access to data. This is why Trusted Computing provides means to control

the distribution and duplication of encryption keys.

26 2 Futures for Trusted Computing



2.2.2 Contracts and Negotiations

Given platforms with isolated execution environments, any arbitrary service can be

described in terms of a set of processes and each process can be allocated to a

particular environment. Each process continues to be described in terms of its

properties, resources and quality of service (as normal), but isolation introduces

new attributes: (1) the controls that must be enforced on input data; (2) the controls

that must be enforced while executing data; (3) the controls that must be enforced

on output data; (4) the controls that must be enforced on audit data. Extra steps are

needed in the process of negotiating contracts for services, and methods for

executing those services on a computing platform according to the contract.

Contracts include a specification of the methods and processes used to perform a

service. The contract specification should be capable of interpretation by a com-

puting platform, and partition the methods and processes into functions that must be

trusted if the service is to be trusted, functions that are merely required (as a matter

of choice) to be trustworthy, and functions that have to operate properly for the

service to function, but don’t need to be trusted and/or are not required to be

trustworthy.

Functions that must be trusted include those provided by a trusted platform that

are used to report on the state of the software platform in a computing platform.

Functions that must be trusted also include methods that will provide evidence of

the execution of the service. Functions that are required to be trustworthy are

functions whose integrity is paramount in the opinion of at least one of the parties

involved in the contract.

Negotiations may require new service types (in the computing sense, where

“type” indicates the operations that can legitimately be performed on data). The

input data to a service and output data from a service would be typed, and a process

would be typed. Typing could state the quality of isolation that is required, whether

services may swap between isolation environments, and scheduling of swaps.

Platforms could contain a label indicating the presence or potential presence of a

predetermined software state. Labels should be global, in the sense that the same

label always describes essentially the same services, and are signed by some trusted

entity.

Receiving a challenge that contains a label should cause the receiving platform

to determine whether it can provide the service described by that label. Platforms

could publish the labels of all the services they can support, even if not currently

providing those services, and use signed labels to decide whether to use another

platform for a particular service. Labels could be differentiated to indicate facilities

optimised for client-side or server-side operation, descriptions and certifications of

labels could be broadcast throughout a domain, and platforms could use web

services to advertise that they may support a particular service.

Audit parameters need to be specified. These include:

• The format of logs that record integrity metrics plus the method of their

measurement

2.2 Future Trusted Services 27



• The quantity of hash engines used to create logs

• The frequency with which input data and/or output data and/or program instruc-

tions are sampled.

2.2.3 Single Sign-On

The concept of single sign-on is well-known: a platform authenticates a user and

then automatically represents the user to networks using various (and differing)

authentication techniques and tokens. Trusted platforms improve on the concept,

because they can use attestation identities and measurements to prove to the

network that user authentication was properly done and that any particular network

authentication method was executed as expected.

Trusted platforms can, however, extend the concept. If a platform is trusted by a

network, any user authentication normally done by the network may instead be

done by the trusted platform on behalf of the network. Then, whenever a network

receives a connection attempt by a known trusted platform, the network simply

grants access to the platform, knowing that the platform will already have authen-

ticated the user on behalf of the network. (The network accepts access requests

based on a user name and the platform’s identity, knowing that the platform has

already authenticated the user and verified his privileges.) This potentially mini-

mises the number of network secrets (or private data) used as authorisation data,

and hence reduces the complexity of maintaining the PKI within an organisation.

The number of secrets in a domain is reduced to a minimum, yet individual users

may still be identified and access to applications may still be individually con-

trolled. At the same time, domain security may be maintained across the domain by

a broadcast mechanism, without having to deal with each platform as an individual.

The end effect is that each trusted platform verifies the network on behalf of the

user and verifies the user on behalf of the network.

2.2.4 Trusted Software Agents

Software agents would be much more useful if they could execute on trusted

platforms, because they could carry private information (including encryption

keys) with them, knowing that the confidentiality of that information would be

respected. The problem to be solved is the propagation of private data through a

platform or a network, depending on the trust properties of the destination. Data

should be accompanied by policies that dictate the permitted usage of the data,

including the extent to which it can be forwarded. Data could be accompanied by

dummy data (for testing) and a “release public key”, used to encrypt the work done

by an agent and release its data into the wild (so that its legitimate owner might have

a chance to recover it) when a platform can no longer be trusted to process real data.

28 2 Futures for Trusted Computing



Preferably platforms would have keys that can be irrevocably erased, so that future

access to encrypted agent data would be irrevocably denied.

If trusted systems are the norm, and the confidentiality of information is

respected by platforms, private information (information distributed under tight

control) such as credit card details can be used for authorisation purposes instead of

secret information, to request access to a service. The requirement for a domain’s

on-line public key infrastructure (PKI) is reduced, or even eliminated. Continuing

the label theme introduced earlier, domains may not even be aware of the name of a

caller, simply the name and label of the calling platform.

2.2.5 What You See Is What You Sign

Just because a platform is a trusted platform, it doesn’t mean that the platform is

safe to use. A person using one must be able to tell that it is operating properly

before doing sensitive tasks, such as digital signatures. Digital signatures may be

legally binding, so a person should always have checked that his trusted platform is

in the correct state before using it for critical tasks.

Although trusted platforms are inherently designed to enable a third party to

deduce the current state of the software platform, these techniques involve complex

processes that cannot be done by an unaided human. A person wishing to use these

techniques must therefore interrogate a platform using a separate computing device,

such as another computer, a USB device, or even a mobile phone (for example).

Another option is to build trusted platforms and software platforms to display an

image around the edge of a window on the monitor, or as the background to that

window, for example. If an encrypted version of a personal image is locked to a

desired software platform inside a particular trusted platform, a person who sees

that image could have confidence that the platform is in the desired software state.

2.3 Infrastructure Requirements

Trusted platforms create new infrastructure requirements for manufacture, instal-

lation, maintenance, and logging.

2.3.1 Public Key Infrastructure

The most basic infrastructure requirement is that of a public key infrastructure. All

trust in trusted platforms comes from people and organisations (including commer-

cial companies). Trust is expressed via credentials that attest to genuine trusted

platforms, genuine values of software measurements and genuine Attestation

2.3 Infrastructure Requirements 29



(Identity) Keys. At the very least, it is essential to be able to verify the signature on a

credential. In all but the simplest of situations, this requires certificates, each stating

the public key and name of the entity whose signatures can be verified using that

public key. The certificates can be arranged in a hierarchy, called a public key

infrastructure, where the public key in a parent certificate can be used to verify the

signatures on child certificates. Generally the root certificate is signed by a

respected and well-known entity whose public key has been well publicised by

other means. The root certificate can be verified using that root public key, and

hence all certificates in the hierarchy can be verified.

Some Trusted Computing Group infrastructure specifications describe a schema

for the evidence of trustworthiness of trusted platforms. In particular, the “TCG

Credential Profiles” specification describes the credentials used to support a trusted

platform. Other TCG specifications allude to (but do not specify) the actions of an

entity called a Privacy-CA that signs credentials for Attestation Identity Keys.

Few of TCG’s infrastructure specifications are implemented. It’s a chicken-and-

egg problem. TCG’s infrastructure specifications are not implemented because they

communicate attestation, which requires features of X.509 certificates that are not

implemented in common software libraries because no one is using attestation. For

example, a platform certificate is fundamentally an attribute certificate, because it

contains no key. There’s no sign that this deadlock will break any time soon.

2.3.2 Manufacture

Although this aspect is invisible to customers, it’s instructive to note that Trusted

Computing makes new demands on manufacturers.

Manufacturers are unique in the Trusted Computing life cycle (from product

creation to product destruction) because products do not have to conform to trusted

platform specifications whilst they are in the hands of manufacturers. The reason is

(obviously) that a product isn’t expected to satisfy a specification before it is

finished. The effect is that a product doesn’t have to obey any specifications until

the manufacturer says that it is finished, but (on the other hand) the manufacturing

process must have certain properties in order that the finished equipment can satisfy

those specifications. The general requirement is that the manufacturer must ensure

that any product it certifies is actually worthy of certification (does actually satisfy

the specifications). Otherwise the manufacturer’s “word” is worthless and its brand

reputation is damaged.

This aspect of production is new for most mass-market manufacturers. While

their products may be supplied with warranties, it is rare that manufacturers attest

that individual specific pieces of equipment were manufactured by them to meet

specific specifications. Thus manufacturers must modify their production tech-

niques and install the ability to sign credentials. (It isn’t always true, of course,

that all manufacturers need modified production lines. The primary exceptions are

30 2 Futures for Trusted Computing



those TPM manufacturers who also manufacture smartcards, because they typically

already have processes in place to certify individual products.)

2.3.3 Upgrading TPMs

TCG specifications permit TPMs to be remotely upgraded, although it is not

mandatory. Field upgrades are intended to permit correction of problems or instal-

lation of improvements, such as more modern versions of the TPM specifications.

Any field upgrade requires permission from both the manufacturer (probably via a

signature) and the current platform Owner (either cryptographically or via direct

physical interaction with the platform). The entity providing an upgrade must

ensure that the upgrade does not permanently prevent access to any data already

protected by the TPM, or expose any data already protected by the TPM.

2.3.4 Upgrading Integrity Metrics

Trusted Computing relies upon good change-control practices, to ensure that

software with attested software measurements has good behaviour, and to ensure

that the proper interpretation of measurement values is well-known.

Trusted platforms use measurements of software programs as an indication of

platform behaviour. Measurements are used for three purposes, and changes to

measured values can cause denial of service.

• Measurements are signed using attestation keys and reported to challengers. If

measurements change, the challenger must interpret the new measurements in

order to decide whether the new platform state is acceptable.

• Data is sealed with measurements, and a TPM will not reveal data if the sealed

measurements do not match current measurements. Data is sealed in order that

only specific software environments can recover specific plaintext data. Envi-

ronments can do whatever they wish with that plaintext data, including

(in principle) seal it to different measurements. Hence, if all environments

include a re-sealing facility, it is unnecessary for TCG to specify a method of

data recovery after measurements change. However, providing a re-sealing

facility in every environment is onerous.

• Migratory and duplicable keys are used to backup and transfer protected data

between environments. They can be sealed to measurements, just like data.

TPMv1.2 in particular doesn’t provide any method to enable keys to be sealed

to new measurements, whether in the original platform (because software has

changed) or in a target platform (because the new platform has different

software).

2.3 Infrastructure Requirements 31



Measurements are deliberately designed to change whenever a program changes

by a single bit, because even tiny changes in a program might cause undesirable

changes in behaviour. However, this means that measurements of software change

even if the trustworthiness of the software has not changed. The problems caused by

this “brittleness” can be severe. Firmware revisions aside, even platforms with the

same model numbers may have different chipsets due to configuration options and

commercial decisions (such as alternative vendors and dual sourcing). Thus even a

constrained set of hardware platforms may have many trust-equivalent software

measurements.

There is no way to ameliorate brittleness in measurements in TPMv1.2, but

TPM2.0 has a feature called Enhanced Authorization that allows in situ adjustments

of measurements attached (sealed) to keys. Further, TCG’s “Dynamic-RTM”

specification allows measurements to be expressed using a public key. Using a

public key transforms recorded and reported measurements into measures of what

something does, instead of what it is. An actual software measurement is verified

using a policy (a public key), and the name of the policy (the public key) plus the

outcome of the test are recorded and reported as the measurement. Then, when

firmware or software changes, the actual measurement changes but the policy and

the outcome of the test do not (assuming the new software is as trustworthy as the

old software). Thus the recorded and reported measurements do not change.

An even better method might eventually be derived from the semantic web, by

translating behaviours directly into measurements.

2.3.5 Auditing Trusted Platforms

Secure platforms produce an audit trail, and trusted platforms should do the same,

to enable investigations after bad things have happened.

Audit data is evidence that a process executed, and how it executed. Audit data is

typically used to resolve arguments over “who did what”, and “how”, and “how

well”. The data might simply record aspects of a process, or may enable that process

to be totally recreated and reviewed. An engine gathering audit data would nor-

mally observe all data entering an isolated environment (including the process

software itself), all data leaving the isolated environment, and the execution of

the process (instructions executed and memory altered). Recording the actual

execution of a process would tend to produce a large amount of data, so it may

be preferable to sample the execution process. This could be done by sampling at

regular or irregular intervals, according to a keystream generated from a particular

key or secret.

Preferably, for privacy, there should be different views of audit data: one view

reveals all input data, one view reveals all data in the vicinity of a marker during

execution, one view reveals all output data sent to a particular destination, and so

on. This provides privacy for audit data, in the sense that an enquirer may be offered

access to certain aspects of an audit trail but denied access to others. Audit sets

32 2 Futures for Trusted Computing



would be useful particularly when investigating processes that fail to execute as

required. A first set of audit data may provide access to all audit data for a specified

time period, for example. A second set may provide access to a subset of the audit

data for the duration of a given process, for example. A third set may provide access

to a subset of the audit data in the presence of certain events, for example. One set

may provide access to all attributes of all data in some time period, while another

set may provide access to selected attributes of one data parameter for the entire

process, for example.

Policies may determine what audit sets must be created and when can they be

revealed. The default would be to contact the owner of the data being processed.

2.3.6 Discovering Trusted Services

This section concerns the discovery of trusted platforms, and how to decide whether

to trust them. We preferably need a method that works with existing computer

systems because it will be years until all installed computers are trusted platforms.

Until then, there will be a mixture of conventional computers, first generation

trusted platforms, and trusted platforms.

The first generation of trusted platforms provide a low-cost hardware-based

crypto API to a TPM for existing applications to store cryptographic keys. The

next generation of computers will have hypervisors that additionally provide

measurements to enable new applications to identify software platforms, and

provide controlled (isolated) execution environments (software compartments).

Such platforms can map services in terms of a network of processes, each with its

own isolated allocated internal resources, permitted connections, and forbidden

connections. The trusted platforms hosting these isolated processes can provide

certificates and measurements as evidence of the controls and mechanisms

protecting processes, and evidence of processes being executed, their resources

and connections. The trusted platform knows nothing about what the processes are

doing, merely that they are connected together in a particular topology that is both

reported and enforced. If services and policies can’t be mapped this way, trusted

platforms cannot properly protect them. It follows that all services and all policies

should be described in terms of a network of measured protected processes. There

seems no fundamental reason why any service or policy could not be described in

such terms, but it is not always easy to “get there from here”. It is currently unclear

whether practical policies can be expressed in canonical terms.

Given that trusted platforms enforce networks of isolated processes, we suggest

that discovery and setup of services on trusted platforms falls into six categories:

1. Evidence that the other five categories of information can be believed.

2. Evidence of mechanisms to instantiate black-box execution environments (sep-

arate threads and/or processes).

3. Evidence of controls that govern the inputs to those black-box environments.

2.3 Infrastructure Requirements 33



4. Evidence of controls that govern execution within those black-box

environments.

5. Evidence of controls that govern the results from those black-box environments.

6. Evidence of controls that govern the audit trail of those black-box environments.

This partitioning simplifies the interpretation of trusted platforms and makes it

simpler to decide how to allocate platforms to particular tasks. The latter five stages

are compatible with existing ordinary platforms (that don’t use trusted platform

technology), and hence work with systems that contain both ordinary and trusted

platforms.

The level of protection afforded to data in a platform naturally depends on the

environment implemented by the platform. Some platforms provide lower levels of

separation of execution than other platforms. For example, conventional common

operating systems provide separate threads or processes, but enforcement of sepa-

ration may be weak and is typically under the control of the platform’s adminis-

trator, who can override. Less common types of existing platform might provide

stronger separation using software or hardware compartments, and the administra-

tive role may be partitioned, so collusion by multiple rogue administrators is

required to subvert separation. Second generation trusted platforms should provide

strong levels of separation and prevent administrators from subverting that

separation.

According to this proposal, in stage 1 a challenger checks the (attestation)

identity of a platform, to discover whether it is a trusted platform or an ordinary

platform. If the target is an ordinary platform, the level of trust in the platform is

uncertain (although the platform may, of course, be perfectly trustworthy). It may,

however, be difficult to be sure that the target platform is even the platform it claims

to be. If the target is a trusted platform, its attestation identity identifies the

platform, and measurement data signed by that identity can be relied upon.

The challenger then uses stage-2 to understand the type and degree of process

isolation that can be provided by the target platform. It may be that the target

environment uses just standard conventional OS technologies to separate processes.

(If the target is a first generation trusted platform, the attestation identity indicates

that the target is suitable to support a conventional OS and integrity metrics signed

by the attestation identity show that the OS was properly booted.) It may be that the

target environment is a specialist cryptographic environment, in which case an

attestation identity vouches that that environment exists. Another possibility is that

the target is a trusted platform where one OS is isolated from another by virtue of

using hardware processor cores, or where a hypervisor separates OSs using soft-

ware. In these cases, the attestation identity provides evidence that the target is

suitable to support the environment; integrity metrics show that an appropriate

kernel/hypervisor was properly booted and the kernel/hypervisor provides evidence

of isolation of applications or other OSs.

Data from stage 2 should also reveal additional properties of target platforms. It

may be that some platforms can provide protected human interfaces, in the sense of

keyboards that cannot be snooped or subverted, or displays that are guaranteed to

34 2 Futures for Trusted Computing



accurately present the visual output of a process. Other hardened platforms may

have disk drives and optical drives with security properties, for example.

Once a challenger receives stage 2 data, he can deduce the characteristics of the

target and decide what processes (if any) could be executed on that type of platform.

Any arbitrary task can be partitioned into (parallel and/or serial) processes that must

be (or are desired to be) protected to some degree. The challenger should partition

his task appropriately and determine which target is suitable for a particular job.

The challenger should do this by assessing the sensitivity of data that passes

between processes. Some data might be insensitive, in which case it does not matter

whether it can be interpreted by any arbitrary process on the target that produces or

consumes the data. Other data might be sensitive, and capable of interpretation just

by desired processes, but no others. A platform could enforce such restrictions by

controlling the flow of data between processes. Otherwise there seems little alter-

native to encrypting data, and ensuring that only intended processes have the keys

to encrypt and/or decrypt messages between processes.

The challenger should also decide what processes can observe the actual exe-

cution of a job (view the execution of instructions and/or the memory locations used

by the process). It could be that no additional process should be able to inspect the

execution of a process, or that only an administrator-privilege monitor is permitted

to observe execution, or only in the vicinity of execution faults. The challenger

should also decide whether an audit trail is required, and (if so) who should have

access to it. Note that we use the term “audit trail” in its most general sense,

including the ability to reproduce or recall the execution of a process. The audit

trail could be created by sampling the audited process, rather than be a complete

record of the process.

Once the challenger has made all these decisions, he should request each target

to customise its environment to provide the desired levels of protection for input,

execution, output, and audit. The target platforms make any necessary changes and

provide the challenger with measurements that are evidence that mechanisms are in

place to enforce the desired policies. After receiving and verifying this evidence,

the challenger distributes his task amongst the targets, and work commences.

One potential stumbling block is the infrastructure required to support public

Trusted Computing. While a public key infrastructure can work perfectly well

within a closed organisation, many commentators have expressed concerns about

scalability. In the public domain, some sort of infrastructure is necessary to enable

verification of the various certificates that vouch for the various parts of a trusted

platform, and the platform itself. It may not always be possible to reach and traverse

a database to validate primary trust sources, and hence secondary sources may be

desirable. We therefore propose the installation of distinctive kiosks in selected

locations, to provide introductions to trusted platforms in the locality. Thus an

automated information kiosk in the reception of a building could contain credentials

of trusted platforms in that building, or export a public key that can be used to

validate credentials of trusted platforms in the building. The presence of the kiosk

in such a prominent place would be taken as evidence that the kiosk could be

trusted. Naturally, the kiosk must be protected from unauthorised manipulation, and

2.3 Infrastructure Requirements 35



hence may itself be a trusted platform. Alternatively, a mobile ‘phone could be used

via a network to authenticate a person to a platform, prove to the person that the

platform is trustworthy, and cause their data to be delivered to that platform, so the

platform can be used by the person to operate on their data.

Trusted platforms distinguish themselves via their attestation identities and

measurements: attestation identities and measurements are evidence of whether a

platform can support a given service. We suggest that sets of possible measure-

ments should be advertised by platforms whether or not they are currently in the

state indicated by those measurements, and when a platform receives a request

indicating one of its attestation identities and an appropriate set of measurements,

the platform instantiates the appropriate state “on demand”. In this case, the

measurements should include a set of applications that the platform is able to

instantiate. Then a service-requestor can simultaneously indicate a request for a

particular service executing on a desired OS, and the measurements become

(in effect) part of the service’s identification. A requestor looking for a particular

service could interrogate a database or uses a search engine, looking for a service

identified in terms of a set of measurements with the intent of collaborating with

existing providers to use the service or to augment the service.

Customers will require some indication of a service’s trust status. Native mea-

surements are unintelligible for ordinary customers, so the process must be auto-

mated and customers must have a simple way to initiate automated checking and

view the results. This could be achieved by appropriate user interface design: “right

clicking” on an icon representing a platform or service could present the option of

challenging that platform or service, and the icon or service should change

according to whether its trust status is unknown, acceptable, or unacceptable. The

source code of a program could change colour depending on whether it is executing

in a platform whose trust status is unknown, acceptable, or unacceptable. Dragging

a platform icon onto a service icon could cause the platform to test whether that

platform can provide the service.

36 2 Futures for Trusted Computing



http://www.springer.com/978-3-319-08743-6


	Chapter 2: Futures for Trusted Computing
	2.1 Trusted Virtualisation
	2.1.1 Privacy Implications of Trusted Virtualisation
	2.1.2 Virtualised Trusted Platforms

	2.2 Future Trusted Services
	2.2.1 Data Deletion
	2.2.2 Contracts and Negotiations
	2.2.3 Single Sign-On
	2.2.4 Trusted Software Agents
	2.2.5 What You See Is What You Sign

	2.3 Infrastructure Requirements
	2.3.1 Public Key Infrastructure
	2.3.2 Manufacture
	2.3.3 Upgrading TPMs
	2.3.4 Upgrading Integrity Metrics
	2.3.5 Auditing Trusted Platforms
	2.3.6 Discovering Trusted Services



		2014-11-29T09:03:16+0530
	Certified PDF 2 Signature




