
Chapter 2

Evolutionary Computing and Type-2 Fuzzy

Neural Networks

2.1 Evolutionary Computing Methods

Evolutionary computing involves stochastic search and continuous optimization

methods that are inspired by biological mechanisms and systems (Crosby 1973;

Eiben and Smith 2003). These computing methods inherit the principles of devel-

opment and progress from the natural processes and phenomena such as evolution,

reproduction (or generation), selection, survival, grouped and distributed behavior,

chance, inheritance, crossover (or recombination), mutation, fitness (or health) and

so on. Evolutionary computing methods emulate the laws of natural evolution such

as “a stronger (healthier or fitter) organism has more chances to survive than a

weaker one”, “an organism or a pair can generate a new offspring with a probabil-

ity”, “an offspring takes over some of properties of their parents”, “an offspring

very rarely but may have some properties that differ it from their parents”, “pop-

ulation size cannot grow infinitely”, etc. Some less natural laws can exist as well:

“the best organism will never die”.

Very often evolutionary computing based methods are also named population

based. This is because the notion of “population (of individuals)” forms the basis

and exists in all such methods whereas the type (i.e. its design and set of properties)

of individuals and of the population as well as the processing algorithms to evolve

the population may vary in a wide range. In all evolutionary computing methods,

every individual is attached a numerical value reflecting its fitness (quality, health-

iness). There should also be provided a way to derive the individual’s fitness degree

from its properties.

Well-known evolutionary computing techniques are: Differential Evolution

(Storn and Price 1997; Price et al. 2005; Feoktistov 2006), Swarm Optimization

(Bonabeau et al. 1999; Clerc 2006; Kennedy and Eberhart 1995), Ant Colony

Optimization (Dorigo and Stützle 2004), Cultural Algorithms (Reynolds 1994),

Harmony Search (Geem et al. 2001; Karahan et al. 2012; Ricart et al. 2011),
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Genetic Algorithm (Chiong et al. 2012; Goldberg 1989; Langdon and Poli 2002)

and others.

When applying an evolutionary computing based approach for solving optimi-

zation problems a candidate solution (i.e. appropriate values of sought-for vari-

ables) is represented as an individual in a population and the corresponding value of

objective function (possibly normalized) as the individual’s fitness degree. Gener-

ation of new individuals (and accordingly the candidate solutions), their survival,

and overall treatment of the population are governed by the laws of evolution driven

by application of multiple so-called evolutionary forces (or operators) implemented

within a specific evolutionary computing technique. The most important and

frequently used evolutionary forces are recombination (crossover), mutation, selec-

tion, and elitism. While recombination and mutation creates diversity in the pop-

ulation (and accordingly, in the candidate solutions), selection and elitism increases

its quality. Thereby it is implemented a global and continuous optimization process.

In some techniques such as Genetic Algorithms (GA) it may be required some

transformation procedure to get the problem’s decision or search variables into

individuals and back (encoding/decoding). Or more specifically: the procedure to

convert the variables’ numerical values into instances of the individual’s container
class (i.e. a specific data type with fields representing an individual’s properties)

and vice versa. In GA they often call such data containers as chromosomes or genes

(genomes). Physically, in computers, the chromosomes are represented as long

strings of bits. As they express it in genetic algorithms, the phenotype (numeric

values of problem’s variables) is encoded to produce a genotype (a data container –

gene or chromosome).

The assessment of the individuals is done by a function called a fitness function

(GA) or by a computational model that allows computation of the individual’s

fitness degree from its properties (phenotype or genotype). If the algorithm uses

data containers such as chromosomes, at some stage of the evolution the best

(healthiest, strongest, or fittest) chromosome should have been decoded to retrieve

the corresponding values of decision variables (e.g. the sought-for solution).

For optimization problems solved by evolutionary computing methods, the

fitness function (sometimes, in such techniques as Differential Evolution – DE –

replaced by cost or error function) is produced from the objective function and,

possibly, constraints posed on the decision variables.

Genetic Algorithm (GA) is one of the first offered evolutionary computing

methods and is still very popular. Figure 2.1 in a very general form illustrates the

scheme of GA.

Please notice the force named elitism that we include in the scheme of GA

shown in Fig. 2.1. The elitism force ensures that at least one of best chromosomes is

transferred to the next generation. The elitism force is not an absolutely necessary

one and does not exist in basic versions of GA. However, it is very useful to

guarantee the best ever reached historical solution is never lost.

Figure 2.2 illustrates a possible version of implementation of the Genetic

Algorithm.
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This version of GA requires five user defined parameters: population size

(PopSize), probability of crossover (CrossoverProb), probability of mutation

(MutationProb), maximum number of generations (MaxGen), and desired fitness

(FitnessDesired). It is assumed that there exist functions: (1) to produce the

chromosome from a candidate solution (get_genotype), (2) to produce the candidate
solution from a chromosome (get_phenotype), and (3) to evaluate the quality

(fitness degree) of a candidate solution ( fitness). Also it is assumed that there are

operators implementing evolutionary forces (crossover and mutate). The crossover
force takes two chromosomes as its arguments to produce a new offspring chro-

mosome, and the mutate force alters its single argument chromosome. An i-th
chromosome is designated Chromosome[i], i¼ 1, . . ., PopSize. The algorithm

stops when the desired fitness threshold (FitnessDesired) is reached by one of the

chromosomes or the maximum generation number (MaxGens) is passed.
As can be seen from the algorithm presented in Fig. 2.2, at steps 3.1–3.4 the

bunch of evolutionary forces elitism, selection, crossover (recombination), and

mutation are applied to the chromosomes in the existing population to create

members of the new population. After meeting the stop condition, the sought-for

solution is extracted from the chromosome with maximum fitness.

The versions of GA may differ from not only the set but also the type of

evolutionary forces (genetic operators) used. Figure 2.3 illustrates various

implementations of the crossover and mutation forces.

Let’s now consider an example of optimization using the GA (Fig. 2.4).

Example Find the maximum of the function:

z ¼ f x; yð Þ ¼ 3 1� xð Þ2e�x2� yþ1ð Þ2 � 10
x

5
� x3 � y5

� �
e�x2�y2 � 1

3
e� xþ1ð Þ2�y2

Figure 2.5 demonstrates how the initial 20 candidate solutions are distributed

and how the population changes after five and ten generations.

Fig. 2.1 The genetic algorithm

2.1 Evolutionary Computing Methods 65



Particle swarm optimization (PSO) is another population based stochastic

optimization technique inspired by the social behavior of birds (Kennedy and

Eberhart 1995, 2001). The algorithm is very simple but powerful. The PSO

algorithm is quite similar to genetic algorithms and can be used for similar

problems. Because the algorithm allows for parallelization and uses less computa-

tional resources than GA, it can efficiently be used to minimize/maximize high

dimensional functions and thus as a training method for neural networks.

To understand the algorithm, it is best to imagine a swarm of birds that are

searching for food in a defined area. It is assumed that there is only one piece of

food in this area. Initially, the birds don’t know where the food is, but they know at

GA(PopSize, SelectionProb, MutationProb, MaxGen, FitnessDesired)

Step 1. Create and initialize with random chromosomes: [ ], 
=(1,.., ). =0

Step 2. Evaluate fitness for each chromosome in :
[ ]= ( _ ( [ ]))

Step 3. Create new generation :
Step 3.1. Apply elitism: copy the best [argmax( [ ])

i
Fitness i ] 

from to .

Step 3.2. Select two chromosomes kcr and lcr from with proba-

bilities
[ ]
[ ]

j

Fitness k

Fitness jS
and 

[ ]
[ ]

j

Fitness l

Fitness jS
, respectively.

Step 3.3. Apply crossover force for the selected pare ( , )k lcr cr with 

to produce an offspring: ( , )lknewcr crossover cr cr=

Step 3.4. Apply mutation force with : ( )new newcr mutate cr=

Step 3.5. Copy newcr to .

Step 3.6. If number of chromosomes in <
go to Step3.2.

Step 4. Replace with . Increment = +1

Step 5. Extract the solution: 
= _ ( [ argmax( [ ])

i
Fitness i ])

Step 6. Check the termination condition: If ( )max( [ ])
i

Fitness i FitnessDesired³ or 

( ³ ) terminate and return , else go to Step2

Fig. 2.2 Genetic algorithm implementation high level code
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each time how far the food is. It is quite natural that in their search the birds will

follow the strategy that is nearest to the food.

PSO adopts this behavior and searches the search space for candidate solutions,

which are called here particles. Very similar to the GA, each particle has its cost

degree (fitness) that is evaluated by a function to be minimized, and each particle

has a velocity that directs its flying.

The swarm is initialized by particles at random positions and then each particle

flies through the search space by adjusting its velocity (vector V) and location

(vector X) to follow two best candidate solutions found so far: their own best

11101001000

00001010101

11111000000 11101010101

00001001000

Initial bitstring Crossover mask Offspring

Single-point crossover:

11101001000

00001010101

00111110000 11001011000

00101000101
Two-point crossover:

11101001000

00001010101

10011010011 10001000100

01101011001
Uniform crossover:

11101001000 11101011000Point mutation:
00000010000

Fig. 2.3 Implementation of operators for GA

z=6.5

z=−6.5

x=−1.5

x=1.5
x=0

y=−1.5 y=1.5y=0

z=0 x
y

z

Fig. 2.4 Example function to maximize using GA
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historical location (ParticleBest) and the best particle in the swarm (GlobalBest).
The following equations demonstrate how the adjustments are made:

Vnew ¼ Vþ c1r1 ParticleBest� Xð Þ þ c2r2 GlobalBest� Xð Þ
Xnew ¼ Xþ V,

ð2:1Þ

where V is the current velocity, Vnew is the new velocity, X is the current position,

Xnew is the new position, r1 and r2 are random numbers in the interval [0, 1], and c1
and c2 are acceleration coefficients: c1 is the factor that influences the cognitive

behavior, i.e. how much the particle will follow its own best solution, and c2 is the
factor for social behavior, i.e. how much the particle will follow the swarm’s best

solution.

In an optimization problem, the current position will be meant as the vector of

sought-for parameter values, i.e. a candidate solution.

The basic algorithm can be written as presented in Fig. 2.6:

Fig. 2.5 The process of optimization of the example function by GA

PSO(PopSize, c1, c2, MaxGen, MinimumCost)

Step 1. Initialize each particle with a random velocity and random position.
Step 2. Calculate the cost for each particle. If the current cost is lower than the best

value so far, remember this position (ParticleBest).
Step 3. Choose the particle with the highest fitness (lowest cost) of all particles.

The position of this particle is GlobalBest.
Step 4. Calculate, for each particle, the new velocity and position according to the 

equations (2.1).
Step 5. Go to Step 2 and repeat steps 2-4 until one of the criteria (maximum iterations

Max Genor minimum cost Minimum Cost) is not attained.

Fig. 2.6 Basic PSO algorithm
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The next section will consider another evolutionary optimization technique,

which is very efficient and suitable, in our opinion, for application in training of

parameters of neural networks – the differential evolution (DE) algorithm.

2.2 Differential Evolution Based Optimization (DEO)

In this section we consider the Differential Evolution (DE) algorithm. This popu-

lation based algorithm implements global search. Being designed specifically for

numerical optimization, it is characterized by good convergence properties in

multidimensional search spaces. DE has been successfully applied to solve a

wide range of problems such as those found in image classification, clustering,

and function optimization. These characteristics of DE make the method also an

efficient tool for implementation of neural network training.

2.2.1 DE Algorithm

As other stochastic and population-based methods, DE algorithm (Price et al. 2005;

Storn and Price 1997; Chakraborty 2008; Feoktistov 2006) uses an initial popula-

tion of randomly generated individuals and applies to them operations of differen-

tial mutation, crossover, and selection. DE considers individuals as vectors in n-
dimensional Euclidean space. The population of PopSize (PopSize� 4) individuals

is maintained through consecutive generations. A new vector is generated by

mutation, which, in this case is completed by adding a weighted difference vector

of two individuals to a third individual as follows: Xnew¼ (Xr1�Xr2)f+Xr3, where

Xr1,Xr2,Xr3 (r1 6¼ r2 6¼ r3) are three different individuals randomly picked from the

population and f (>0) is the mutation parameter. The mutated vector then

undergoes crossover with another vector thus generating a new offspring.

The selection process is realized as follows. If the resulting vector is better

(e.g. yields a lower value of the cost function) than the member of the population

with an index changing consequently, the newly generated vector will replace the

vector with which it was compared in the following generation. Another approach,

which we adopted in this research, is to randomly pick an existing vector for

realizing crossover.

Figure 2.7 illustrates a process of generation of a new trial solution (vector) Xnew

from three randomly selected members of the populationXr1,Xr2,Xr3. VectorXi,

i¼ 1, . . .,PopSize, i 6¼ r1 6¼ r2 6¼ r3 becomes the candidate for replacement by the

new vector, if the former is better in terms of the DE cost function. Here, for

illustrative purposes, we assume that the solution vectors are of dimension n¼ 2

(i.e. two parameters are to be optimized).

The algorithm itself can be described as presented in Fig. 2.8.
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Usually the mutation rate f is chosen f ∈ [0, 2]. After the crossover of the trial

vector and the vector Xi¼ (xi[1], xi[2], . . ., xi[n]) from the population, at least one of

elements (dimensions) of the trial vector Xt¼ (xt[1], xt[2], . . ., xt[n]) should be

transferred to the offspring vector Xnew¼ (xnew[1], xnew[2], . . ., xnew[n]). The cross-
over parameter cr ∈ [0, 1] affects the mutated (trial) vector as follows:

xnew j½ � ¼ xnew j½ �, if rand 0; 1ð Þ � cr or rand 1; nð Þ ¼ j,
xi j½ �, otherwise,

�
where the function rand(a,b) returns a random value in the range [a,b].

)1,0(2 =E

Xr2

Xr1

Xr3

Xi

Xnew

Fig. 2.7 Realization of DE

optimization: a

two-dimensional case

DEO(PopSize, f, cr, MaxGen, MinimumCost) 

Step 1. Randomly generate PopSize parameter vectors (from respective parameter spac-
es (e.g. in the range [-1, 1]) and form a population P={X1, X2, ..., Xps} 

Step 2. While the termination condition (maximum iterations MaxGen reached or min-
imum cost MinimumCost attained) is not met generate new parameter sets: 

Step 2.1. Choose a next vector Xi (i=1,...,PopSize) 
Step 2.2. Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of 

which is different from current Xi 
Step 2.3. Generate trial vector Xt=Xr1+f(Xr2-Xr3) 
Step 2.4. Generate a new vector from trial vector Xt. Individual vector parame-

ters of Xt are inherited with probability cr into the new vector Xnew. If 
Xnew evaluates as being a better solution than Xi, then the current Xi is 
replaced in population P by Xnew 

Next i
Step 3. Select from population P the parameter vector Xbest, which is evaluated as the

best solution
Step 4. Stop the algorithm

Fig. 2.8 Basic DE algorithm
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Differential Evolution based Optimization (DEO) usually implies existence of a

function F(X), where X is vector (x1, . . ., xn), whose values should be minimized by

DE algorithm. In DE based neural network training F(X) is replaced by the network
error function.

When solving optimization problems a common recommendation is to choose

PopSize ten times the number of optimization variables (Price et al. 2005), f¼ 0.9,

cr¼ 1 or cr¼ 0.5. Some authors suggest ways for choosing optimal values of DE

parameters f and cr. For example (Brest et al. 2006) suggests a way for self-adapting

of the DE parameters during the optimization.

Let’s consider a couple of examples of function optimization using DE.

Example Find the minimum of the function (the Rosenbrock function): z(x, y)¼
100(x2� y)2 + (x� 1)2, see Fig. 2.9.

Using the code implementing the DE algorithm, we can see that the algorithm

very quickly finds the minimum of this function (zmin¼ 0 reached at (xmin, ymin)¼
(1, 1)) In Fig. 2.10 you can see the average number of calculations of the function to

reach the minimum for specified error levels. The experiment has been done with

the standard version of DE with the parameters set as PopSize¼ 10, f¼ 0.9, cr¼ 1.

DE is also very effective for multi-parametric function optimization and out-

performs most classical and other evolutionary algorithms in finding global mini-

mums for non-smooth and multi-extreme functions. The suggested standard version

of the DE algorithm (with PopSize set to 3,000) used for minimization of the

50-dimensional Rosenbrock function has used on average about 12 million function

evaluations to reach accuracy of 10�6. This performance is comparable with

gradient-based methods. However, it should be noted that the well-known coordi-

nate decent, gradient based, and many other classical methods are not global

optimizers (the Rosenbrock function is indeed a single-extreme function) and

z=900

z=600

z=300

x=-0.5

x=2.5y=4.5
y=1

y=-2.5
x=1

Fig. 2.9 The Rosenbrock

function
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pose certain requirements on the function such as smoothness, continuity,

differentiability, etc.

Let’s consider another example with a more complex function with many local

minima.

Example Find the minimum of Griewangk’s function (Griewangk 1981):

f Xð Þ ¼
X9
i¼0

x2i
4000

�
Y9
i¼0

cos
xiffiffiffiffiffiffiffiffiffiffi
iþ 1

p
� �

þ 1, xi ∈ [�400, 400].

Its global minimum f(0)¼ 0 is very difficult to find. The standard DE version

(PopSize¼ 50) has used on average about 32,000 function evaluations to find the

global minimum with the accuracy 10�6.

The Tables 2.2 and 2.3 compares the performance of DE and other methods on a

number of benchmark functions presented in Table 2.1 (Vesterstrøm and Thomsen

2004; Yao and Liu 1996).

For DE the following control parameters were set: PopSize¼ 100, cr¼ 0.9,

f¼ 0.5. For PSO: PopSize¼ 25, c1¼ c2¼ 1.8. For GA: Popsize¼ 100,

MutationProb¼ 0.9, CrossoverProb¼ 0.7.

For each problem 30 runs of each algorithm were done and the mean value of

function minimum reached and the standard deviation were computed. In Tables 2.2

and 2.3 the best performing algorithms for each problem are marked in bold.

As can be seen from the results of experiments presented above (Vesterstrøm

and Thomsen 2004), the performance of DE is outstanding in comparison to the

other evolutionary algorithms tested. DE has found the optimum in almost

every run.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000

Reached error vs Function calls

Fig. 2.10 Performance of DE being used for minimization of the Rosenbrock function
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2.2.2 Using Constraints in DEO

The constraints can be used in neural network training where specific requirements

are posed to neurons parameters’ ranges.

Consider we have an optimization problem with constraints:

Table 2.2 Results of evolutionary algorithms on the benchmark problems of dimensionality

30 or less

#

DE PSO Standard EA (GA)

Mean Std dev Mean Std dev Mean Std dev

1 0.00 0.00 0.00 0.00 1.79E-03 2.77E-04

2 0.00 0.00 0.00 0.00 1.72E-02 1.70E-03

3 2.02E-09 8.26E-10 0.00 0.00 1.59E-02 4.25E-3

4 3.85E-08 9.17E-09 2.10E-16 8.01E-16 1.98E-02 2.07E-03

5 0.00 0.00 4.03E + 00 4.99E00 3.13E + 01 1.74E + 01

6 0.00 0.00 4.00E-02 1.98E-01 0.00 0.00

7 4.94E-03 1.13E-03 1.91E-03 1.14E-03 7.11E-04 3.27E-04

8 �1.2569E+ 04 2.30E-04 �7.19E + 0.3 6.72E + 0.2 �1.17E + 04 2.34E + 02

9 0.00 0.00 4.92E + 01 1.62E + 01 7.18E-01 9.22E-01

10 �1.19E-15 7.03E-16 1.40E + 00 7.91E-01 1.05E-02 9.08E-04

11 0.00 0.00 2.35E-02 3.5E-02 4.64E-03 3.96E-03

12 0.00 0.00 3.82 8.40E-01 4.56E-06 8.11E-07

13 4.17E-04 3.01E-04 1.34E-03 3.94E-03 3.70E-04 8.78E-05

14 �1.03E00 1.92E-08 �1.03E00 3.84E-08 �1.03E00 3.16E-08

Table 2.3 Results of evolutionary algorithms on the benchmark problems of dimensionality 100

#

DE PSO Standard EA (GA)

Mean Std dev Mean Std dev Mean Std dev

1 0.00 0.00 0.00 0.00 5.23E-04 5.18E-05

2 0.00 0.00 1.80E + 01 6.52E + 01 1.74E-02 9.43E-04

3 5.87E-10 1.83E-10 3.67E + 03 6.94E + 03 3.68E-02 6.06E-03

4 1.13E-09 1.42E-10 5.31E + 00 8.63E-01 7.67E-03 5.71E-04

5 0.00 0.00 2.02E + 02 7.66E + 02 9.25E + 01 1.29E + 01

6 0.00 0.00 2.10E + 00 3.52E + 00 0.00 0.00

7 7.66E-03 6.58E-04 2.78E-02 7.31E-02 7.05E-04 9.70E-05

8 �4.1898E+ 04 1.06E-03 �2.16EE+ 04 1.73E + 03 �3.94E + 04 5.36E + 02

9 0.00 0.00 2.43E + 02 4.03E + 01 9.98E-02 3.04E-01

10 8.02E-15 1.74E-15 4.49E + 00 1.73E + 00 2.93E-03 1.47E-04

11 5.42E-20 0.00 4.17E-01 6.45E-01 1.89E-03 4.42E-03

12 0.00 0.00 1.18E-01 1.75E-01 2.98E-07 2.76E-08
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Minimize F(X)
Subject to:

Gj Xð Þ � 0, j ¼ 1, . . . , q,
Hj Xð Þ ¼ 0, j ¼ qþ 1, . . . ,m,
li � xi � ui, i ¼ 1, . . . , n,

where X¼ (x1, . . ., xn), F(X) is the objective function, Gj(X) and Hj(X) are the

constraint functions, each variable xi are limited by lower li and upper bounds ui.
Then we can define a constraints violation function C(X) as follows (Takahama

and Sakai 2012):

C Xð Þ ¼ max max
j

0,Gj Xð Þ
 �
, max Hj Xð Þ�� ��� 


or

C Xð Þ ¼
Xq
j¼1

max
j

0,Gj Xð Þ
 �� �2

þ
Xm
j¼qþ1

Hj Xð Þ� 	2
Then of the two vectors U and V (i.e. potential solutions, elements of a DE

population) from the population P, whether U is better than V can be decided as

follows:

U � V , F Uð Þ < F Vð Þ and C Uð Þ � C Vð Þj j � εð Þ or C Uð Þ < C Vð Þð Þ

where ε� 0 is a small value.

A found solution X is considered feasible if C(X)� ε.
As can be seen the goal is to minimize both the constraint violation function and

the objective function. Note also that the minimization of the constraint violation

function is more important for unfeasible population vectors than the objective

function.

2.2.3 Training of All Types of Neural Networks by DEO

As we have already mentioned in previous sections, evolutionary computing based

methods are more flexible than classical methods when using for global optimiza-

tion of functions (Aliev et al. 2009).

As they do not require any restrictive properties for the functions or the compu-

tational models to work with, they can be effectively used for training of parameters

of ordinary, fuzzy, and fuzzy type-2 neural networks. The models of neural

networks, and especially fuzzy and high-order fuzzy networks can be described

by complex nonlinear, non-convex, and non-differentiable functions.
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Training of a neural network is in fact a procedure to minimize a function

evaluating the network error, e.g. mismatch between the network’s actual output

and the desired output for a given input. The typical error function is described as

follows:

E ¼ 1

n � sy
Xn
p¼1

Xsy
i¼1

y�pi � ypi

� �2
Here y�pi is the desired value (target) for output i when we apply input value

vector xp, ypi is the corresponding output of the model output, n is the number of

training patterns, and sy is the number of outputs in the model.

The decision or optimization variables or parameters for a neural network are

either its connection weights (perceptron like NN) or fuzzy parameters describing

the input and output linguistic terms in fuzzy rules (NN-based fuzzy inference

systems). To apply an evolutionary algorithm, in our case, the DE, the whole bunch

of these parameters should have been considered as a population individual.

For example, for a perceptron-like recurrent fuzzy neural network (RFNN),

we consider a population individual to represent a whole combination of weights

( eW ¼ ewlij


 �
, eV ¼ evlij
 �

) and biases ( eθ ¼ eθ lin o
) (i.e. parameters of RFNN)

defining the input/output mapping (Aliev et al. 2009). For a type-2 neural network,

considered in Sect. 3.6.2 of this book, each fuzzy term-parameter is itself described

by several sub-parameters: the parameters LL, LR, ML, MR, RL, RR for all input

terms and the parameters L, ML, MR, R for all outputs terms (Aliev et al. 2011).

The population maintains a number of potential parameter sets defining different

network solutions and recognizes one of these solutions to be the best solution. This

best solution is the one with minimum training error. After a series of generations,

the best solution may converge to a near-optimum solution, which would represent

a network performing with the required accuracy.

The detailed DE based algorithm for training of FNN and FRNN has been

presented in Sect. 3.5.2 of this book. Section 3.9.1 presents a DE based training

for a type-2 neural network, considered in Sect. 3.6.2 of this book.
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