Chapter 2
Evolutionary Computing and Type-2 Fuzzy
Neural Networks

2.1 Evolutionary Computing Methods

Evolutionary computing involves stochastic search and continuous optimization
methods that are inspired by biological mechanisms and systems (Crosby 1973;
Eiben and Smith 2003). These computing methods inherit the principles of devel-
opment and progress from the natural processes and phenomena such as evolution,
reproduction (or generation), selection, survival, grouped and distributed behavior,
chance, inheritance, crossover (or recombination), mutation, fitness (or health) and
so on. Evolutionary computing methods emulate the laws of natural evolution such
as “a stronger (healthier or fitter) organism has more chances to survive than a

LLINT3

weaker one”, “an organism or a pair can generate a new offspring with a probabil-

LR L Y1 % <

ity”, “an offspring takes over some of properties of their parents”, “an offspring
very rarely but may have some properties that differ it from their parents”, “pop-
ulation size cannot grow infinitely”, etc. Some less natural laws can exist as well:
“the best organism will never die”.

Very often evolutionary computing based methods are also named population
based. This is because the notion of “population (of individuals)” forms the basis
and exists in all such methods whereas the type (i.e. its design and set of properties)
of individuals and of the population as well as the processing algorithms to evolve
the population may vary in a wide range. In all evolutionary computing methods,
every individual is attached a numerical value reflecting its fitness (quality, health-
iness). There should also be provided a way to derive the individual’s fitness degree
from its properties.

Well-known evolutionary computing techniques are: Differential Evolution
(Storn and Price 1997; Price et al. 2005; Feoktistov 2006), Swarm Optimization
(Bonabeau et al. 1999; Clerc 2006; Kennedy and Eberhart 1995), Ant Colony
Optimization (Dorigo and Stiitzle 2004), Cultural Algorithms (Reynolds 1994),
Harmony Search (Geem et al. 2001; Karahan et al. 2012; Ricart et al. 2011),

© Springer International Publishing Switzerland 2014 63
R.A. Aliev, B.G. Guirimov, Type-2 Fuzzy Neural Networks and Their Applications,
DOI 10.1007/978-3-319-09072-6_2

64 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

Genetic Algorithm (Chiong et al. 2012; Goldberg 1989; Langdon and Poli 2002)
and others.

When applying an evolutionary computing based approach for solving optimi-
zation problems a candidate solution (i.e. appropriate values of sought-for vari-
ables) is represented as an individual in a population and the corresponding value of
objective function (possibly normalized) as the individual’s fitness degree. Gener-
ation of new individuals (and accordingly the candidate solutions), their survival,
and overall treatment of the population are governed by the laws of evolution driven
by application of multiple so-called evolutionary forces (or operators) implemented
within a specific evolutionary computing technique. The most important and
frequently used evolutionary forces are recombination (crossover), mutation, selec-
tion, and elitism. While recombination and mutation creates diversity in the pop-
ulation (and accordingly, in the candidate solutions), selection and elitism increases
its quality. Thereby it is implemented a global and continuous optimization process.

In some techniques such as Genetic Algorithms (GA) it may be required some
transformation procedure to get the problem’s decision or search variables into
individuals and back (encoding/decoding). Or more specifically: the procedure to
convert the variables’ numerical values into instances of the individual’s container
class (i.e. a specific data type with fields representing an individual’s properties)
and vice versa. In GA they often call such data containers as chromosomes or genes
(genomes). Physically, in computers, the chromosomes are represented as long
strings of bits. As they express it in genetic algorithms, the phenotype (numeric
values of problem’s variables) is encoded to produce a genotype (a data container —
gene or chromosome).

The assessment of the individuals is done by a function called a fitness function
(GA) or by a computational model that allows computation of the individual’s
fitness degree from its properties (phenotype or genotype). If the algorithm uses
data containers such as chromosomes, at some stage of the evolution the best
(healthiest, strongest, or fittest) chromosome should have been decoded to retrieve
the corresponding values of decision variables (e.g. the sought-for solution).

For optimization problems solved by evolutionary computing methods, the
fitness function (sometimes, in such techniques as Differential Evolution — DE —
replaced by cost or error function) is produced from the objective function and,
possibly, constraints posed on the decision variables.

Genetic Algorithm (GA) is one of the first offered evolutionary computing
methods and is still very popular. Figure 2.1 in a very general form illustrates the
scheme of GA.

Please notice the force named elitism that we include in the scheme of GA
shown in Fig. 2.1. The elitism force ensures that at least one of best chromosomes is
transferred to the next generation. The elitism force is not an absolutely necessary
one and does not exist in basic versions of GA. However, it is very useful to
guarantee the best ever reached historical solution is never lost.

Figure 2.2 illustrates a possible version of implementation of the Genetic
Algorithm.

2.1 Evolutionary Computing Methods 65

Current Next
generation generation
01101001 01101001
01100010 Elitism > 01100011
10100100 10100100
10011001 10011101

Evolutionary forces
01111101 01111001
00111000 00111000
D [Selection] [Crossover] Mutation] D

Fig. 2.1 The genetic algorithm

This version of GA requires five user defined parameters: population size
(PopSize), probability of crossover (CrossoverProb), probability of mutation
(MutationProb), maximum number of generations (MaxGen), and desired fitness
(FitnessDesired). It is assumed that there exist functions: (1) to produce the
chromosome from a candidate solution (get_genotype), (2) to produce the candidate
solution from a chromosome (get phenotype), and (3) to evaluate the quality
(fitness degree) of a candidate solution (fitness). Also it is assumed that there are
operators implementing evolutionary forces (crossover and mutate). The crossover
force takes two chromosomes as its arguments to produce a new offspring chro-
mosome, and the mutate force alters its single argument chromosome. An i-th
chromosome is designated Chromosomelil, i=1, ..., PopSize. The algorithm
stops when the desired fitness threshold (FitnessDesired) is reached by one of the
chromosomes or the maximum generation number (MaxGens) is passed.

As can be seen from the algorithm presented in Fig. 2.2, at steps 3.1-3.4 the
bunch of evolutionary forces elitism, selection, crossover (recombination), and
mutation are applied to the chromosomes in the existing population to create
members of the new population. After meeting the stop condition, the sought-for
solution is extracted from the chromosome with maximum fitness.

The versions of GA may differ from not only the set but also the type of
evolutionary forces (genetic operators) used. Figure 2.3 illustrates various
implementations of the crossover and mutation forces.

Let’s now consider an example of optimization using the GA (Fig. 2.4).

Example Find the maximum of the function:
z=Ff(x,y) =3(1 _X)Ze—xz—(wl)2 _ 10@ 3 y5>e—x2—y2 _ %e_ml)z_yz

Figure 2.5 demonstrates how the initial 20 candidate solutions are distributed
and how the population changes after five and ten generations.

66 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

GA(PopSize, SelectionProb, MutationProb, MaxGen, FitnessDesired)

Step 1. Create and initialize Population with PopSize random chromosomes: Ch[i],
i=(1,.,PopSize). Gen=0

Step 2. Evaluate fitness for each chromosome in Population:
Fitness[i]=fitness(get phenotype(Cromosomeli]))

Step 3. Create new generation New Population:
Step3.1. Apply elitism: copy the best Cromosom [arg max(Fitness|i])]

from Population to NewPopulation.

Step3.2. Select two chromosomes cr, and cr, from Population with proba-
bilities Fitness|k] and Fitness|l] , respectively.
s, Fitness|j] s, Fitness|]
i j
Step 3.3. Apply crossover force for the selected pare (cr,,cr,) with

CrossoverProb to produce an offspring: cr

new

=crossover(cr,,cr;)

Step 3.4. Apply mutation force with Mutation Prob: cr,, =mutatd cr,,)
Step3.5. Copy cr,,, toNewPopulation.
Step 3.6. If number of chromosomes in New Population < PopSize

go to Step3.2.

Step4. Replace Population with NewPopulation. Increment Gen=Gen+1
StepS. Extract the solution:

Solution=get phenotype(Cromosone[arg max(Fitness[i])])

Step 6. Check the termination condition: If (max(Filness[i]) > FitnessDesired) or

(Gen>MaxGens) terminate and return Solution, else go to Step2

Fig. 2.2 Genetic algorithm implementation high level code

Particle swarm optimization (PSO) is another population based stochastic
optimization technique inspired by the social behavior of birds (Kennedy and
Eberhart 1995, 2001). The algorithm is very simple but powerful. The PSO
algorithm is quite similar to genetic algorithms and can be used for similar
problems. Because the algorithm allows for parallelization and uses less computa-
tional resources than GA, it can efficiently be used to minimize/maximize high
dimensional functions and thus as a training method for neural networks.

To understand the algorithm, it is best to imagine a swarm of birds that are
searching for food in a defined area. It is assumed that there is only one piece of
food in this area. Initially, the birds don’t know where the food is, but they know at

2.1 Evolutionary Computing Methods 67

Initial bitstring Crossover mask Offspring
. . 11101001000 11111000000 11101010101
Single-point crossover: >—<
00001010101 00001001000
11101001000 00111110000 11001011000
Two-point crossover: >—<
00001010101 00101000101
11101001000 10011010011 10001000100
Uniform crossover: >—<
00001010101 01101011001
00000010000
Point mutation: 11101001000 11101011000

Fig. 2.3 Implementation of operators for GA

z=6.5

z=0

L

z=-6.5

Y y=0 y=1.5

Fig. 2.4 Example function to maximize using GA

each time how far the food is. It is quite natural that in their search the birds will
follow the strategy that is nearest to the food.

PSO adopts this behavior and searches the search space for candidate solutions,
which are called here particles. Very similar to the GA, each particle has its cost
degree (fitness) that is evaluated by a function to be minimized, and each particle
has a velocity that directs its flying.

The swarm is initialized by particles at random positions and then each particle
flies through the search space by adjusting its velocity (vector V) and location
(vector X) to follow two best candidate solutions found so far: their own best

68 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

Initial population 5th generation 10th generation

Fig. 2.5 The process of optimization of the example function by GA

PSO(PopSize, ¢, ¢5, MaxGen, MinimumCost)

Step 1. Initialize each particle with a random velocity and random position.

Step 2. Calculate the cost for each particle. If the current cost is lower than the best
value so far, remember this position (ParticleBest).

Step 3. Choose the particle with the highest fitness (lowest cost) of all particles.

The position of this particle is GlobalBest.

Step 4. Calculate, for each particle, the new velocity and position according to the
equations (2.1).

Step 5. Go to Step 2 and repeat steps 2-4 until one of the criteria (maximum iterations
Max Genor minimum cost Minimum Cost) is not attained.

Fig. 2.6 Basic PSO algorithm

historical location (ParticleBest) and the best particle in the swarm (GlobalBest).
The following equations demonstrate how the adjustments are made:

View = V + 171 (ParticleBest — X) + carp(GlobalBest — X) 2.1)
Xoew =X+, '

where V is the current velocity, V,,.,, is the new velocity, X is the current position,
X, 18 the new position, r; and r, are random numbers in the interval [0, 1], and ¢,
and ¢, are acceleration coefficients: c; is the factor that influences the cognitive
behavior, i.e. how much the particle will follow its own best solution, and c; is the
factor for social behavior, i.e. how much the particle will follow the swarm’s best
solution.

In an optimization problem, the current position will be meant as the vector of
sought-for parameter values, i.e. a candidate solution.

The basic algorithm can be written as presented in Fig. 2.6:

2.2 Differential Evolution Based Optimization (DEO) 69

The next section will consider another evolutionary optimization technique,
which is very efficient and suitable, in our opinion, for application in training of
parameters of neural networks — the differential evolution (DE) algorithm.

2.2 Differential Evolution Based Optimization (DEO)

In this section we consider the Differential Evolution (DE) algorithm. This popu-
lation based algorithm implements global search. Being designed specifically for
numerical optimization, it is characterized by good convergence properties in
multidimensional search spaces. DE has been successfully applied to solve a
wide range of problems such as those found in image classification, clustering,
and function optimization. These characteristics of DE make the method also an
efficient tool for implementation of neural network training.

2.2.1 DE Algorithm

As other stochastic and population-based methods, DE algorithm (Price et al. 2005;
Storn and Price 1997; Chakraborty 2008; Feoktistov 2006) uses an initial popula-
tion of randomly generated individuals and applies to them operations of differen-
tial mutation, crossover, and selection. DE considers individuals as vectors in #n-
dimensional Euclidean space. The population of PopSize (PopSize > 4) individuals
is maintained through consecutive generations. A new vector is generated by
mutation, which, in this case is completed by adding a weighted difference vector
of two individuals to a third individual as follows: X,,.,, = (X, — X,2)f+ X3, where
X1, X0, X,3 (] # 15 # r3) are three different individuals randomly picked from the
population and f (>0) is the mutation parameter. The mutated vector then
undergoes crossover with another vector thus generating a new offspring.

The selection process is realized as follows. If the resulting vector is better
(e.g. yields a lower value of the cost function) than the member of the population
with an index changing consequently, the newly generated vector will replace the
vector with which it was compared in the following generation. Another approach,
which we adopted in this research, is to randomly pick an existing vector for
realizing crossover.

Figure 2.7 illustrates a process of generation of a new trial solution (vector) X,,,,,
from three randomly selected members of the population X,, X,,, X,3. Vector X;,
i=1,...,PopSize, i #ri #ry#r; becomes the candidate for replacement by the
new vector, if the former is better in terms of the DE cost function. Here, for
illustrative purposes, we assume that the solution vectors are of dimension n=2
(i.e. two parameters are to be optimized).

The algorithm itself can be described as presented in Fig. 2.8.

70

Fig. 2.7 Realization of DE 4

optimization: a
two-dimensional case

2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

E,=(0]
DEO(PopSize, f, cr, MaxGen, MinimumCost)
Step 1. Randomly generate PopSize parameter vectors (from respective parameter spac-
es (e.g. in the range [-1, 1]) and form a population P={X;, X,, ..., X}
Step 2. While the termination condition (maximum iterations MaxGen reached or min-

imum cost MinimumCost attained) is not met generate new parameter sets:

Step 2.1. Choose a next vector X; (i=1....,PopSize)

Step 2.2. Choose randomly different 3 vectors from P: X, X,,, X,; each of
which is different from current X;

Step 2.3. Generate trial vector X=X, +f(X,,-X,3)

Step 2.4. Generate a new vector from trial vector X,. Individual vector parame-
ters of X, are inherited with probability cr into the new vector X ... If
X, evaluates as being a better solution than X;, then the current X; is
replaced in population P by X,.,,

Next i

Step 3. Select from population P the parameter vector Xy, which is evaluated as the

best solution

Step 4. Stop the algorithm

Fig. 2.8 Basic DE algorithm

Usually the mutation rate f is chosen f € [0, 2]. After the crossover of the trial
vector and the vector X; = (x;[1], x;{2], . . ., x;[n]) from the population, at least one of
elements (dimensions) of the trial vector X,= (x,[1],x,[2],...,x[n]) should be
transferred to the offspring vector X,,.,, = (X e[1], Xpew[2]s - - -5 Xpewln]). The cross-
over parameter cr € [0, 1] affects the mutated (trial) vector as follows:

Xnewli] = {xm’wm, if rand(0,1) < cr or rand(1,n) = j,

x;[j], otherwise,

where the function rand(a,b) returns a random value in the range [a,b].

2.2 Differential Evolution Based Optimization (DEO) 71

Fig. 2.9 The Rosenbrock
function

z=900

z=600

z=300

Differential Evolution based Optimization (DEO) usually implies existence of a
function F(X), where X is vector (xy, .. ., X,,), whose values should be minimized by
DE algorithm. In DE based neural network training F(X) is replaced by the network
error function.

When solving optimization problems a common recommendation is to choose
PopSize ten times the number of optimization variables (Price et al. 2005), f=0.9,
cr=1 or cr=0.5. Some authors suggest ways for choosing optimal values of DE
parameters f and cr. For example (Brest et al. 2000) suggests a way for self-adapting
of the DE parameters during the optimization.

Let’s consider a couple of examples of function optimization using DE.

Example Find the minimum of the function (the Rosenbrock function): z(x, y) =
100(x* — y)* + (x — 1)%, see Fig. 2.9.

Using the code implementing the DE algorithm, we can see that the algorithm
very quickly finds the minimum of this function (z,,;, = 0 reached at (Xin, Ymin) =
(1, 1)) In Fig. 2.10 you can see the average number of calculations of the function to
reach the minimum for specified error levels. The experiment has been done with
the standard version of DE with the parameters set as PopSize =10, f=0.9, cr=1.

DE is also very effective for multi-parametric function optimization and out-
performs most classical and other evolutionary algorithms in finding global mini-
mums for non-smooth and multi-extreme functions. The suggested standard version
of the DE algorithm (with PopSize set to 3,000) used for minimization of the
50-dimensional Rosenbrock function has used on average about 12 million function
evaluations to reach accuracy of 107°. This performance is comparable with
gradient-based methods. However, it should be noted that the well-known coordi-
nate decent, gradient based, and many other classical methods are not global
optimizers (the Rosenbrock function is indeed a single-extreme function) and

72 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

Reached error vs Function calls

10
1 \

0.01 \
0.001 \
0.0001 \

0.00001 \\

1 10 100 1000 10000

0.000001

Fig. 2.10 Performance of DE being used for minimization of the Rosenbrock function

pose certain requirements on the function such as smoothness, continuity,
differentiability, etc.
Let’s consider another example with a more complex function with many local
minima.
Example Find the minimum of Griewangk’s function (Griewangk 1981):
9 2
i

9
X Xi
fX)= E 2000~ Al,Ol cos (\/lJr—l) + 1, x; € [-400,400].

i=0

Its global minimum f{0) =0 is very difficult to find. The standard DE version
(PopSize =50) has used on average about 32,000 function evaluations to find the
global minimum with the accuracy 10°.

The Tables 2.2 and 2.3 compares the performance of DE and other methods on a
number of benchmark functions presented in Table 2.1 (Vesterstrgm and Thomsen
2004; Yao and Liu 1996).

For DE the following control parameters were set: PopSize =100, cr=0.9,
f=0.5. For PSO: PopSize=25, cy=c,=1.8. For GA: Popsize=100,
MutationProb =0.9, CrossoverProb=0.7.

For each problem 30 runs of each algorithm were done and the mean value of
function minimum reached and the standard deviation were computed. In Tables 2.2
and 2.3 the best performing algorithms for each problem are marked in bold.

As can be seen from the results of experiments presented above (Vesterstrgm
and Thomsen 2004), the performance of DE is outstanding in comparison to the
other evolutionary algorithms tested. DE has found the optimum in almost
every run.

73

2.2 Differential Evolution Based Optimization (DEO)

(panunuod)

o

L soo ML+ (K)o

0=(04 [009°009—]1 001/0€ Y 11
. o=tr— U
a4+ 07+ | (zrg)soo T:”W . dxo
(erifer- Yo
0=(04 lzetze—] 001/0€ o1
0=1(0)4 [crsTis—] 001/0€ (01 + (xxg)soo 1 —) V= 6
.) 0=
£86817—/S 69571 — = (L6°0TH) A [005°005—] 001/0€ AAE\(v uts X v I“W 8
0=(00)4 [8z1°8T1-1] 001/0€ (1 ‘0pups+(x(1+ 1 P =i%) L
§0>"'d> 60 T,) o=
Ty
0= (d)d4 [oor'001-1 001/0€ NA T i 3 e 9
0=(Dd [ogog—1 001/0¢ (1 =20+ (X =1"2)001) P S
0=(04 [001°001—] 001/0€ [—uso=1 ‘¥ xew e
0=(04 [o01°001—1] 001/0€ (0= 0= €
0=(04 [oT°'01—] 001/0€ SO I S T
0=(04 [ersers—] 001/0€ I
WINWIUTA soguey] uoIsudWI(] uondunj #

swo[qoid Yrewyouaq [eorownyN 7 dqeL

2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

74

91€0'T—=(1L0 ‘60'0—)d

[s's—]

P+ Dy — o + S 4 g — Wy

4!

SLOE000'0=(¥1°0 ‘T10 “61°0 ‘61°0)4

[s5—]

wwﬂﬁmﬁ‘ﬁﬁcﬁ\:wﬁwrmN.Orm.OrﬂFNN.V ”aw
vao.o ‘S€T0°0°€TE0°0 “THE0'0 '9S+0°0 °LT90°0
‘P¥80°0 ‘009T°0‘SELT 0 L6170 ,hma.ov =n
- aIym

[3 ! ! —
B RQ+NQ\§ oLN

Ixlg 4+ ‘q)ox 01
q+q
T

el

0=>a-)d

[os‘0s—1

001/0€¢

p>X>p—Ju 90
p—>xp ‘(p—x=)q » = (2'qDX)n

p<xp L (r—x)q
,:+5N+HH§

I
: aroym

“(v*001 ‘01) " + Tc —)

+AANQ:§V us)1 + QN: - 5v Now”w

+ (s)or =

Cl

WINWTUTA

soguey]

uorsuouIq

uonouny

#

(ponunuod) -7 AqeL

2.2 Differential Evolution Based Optimization (DEO) 75

Table 2.2 Results of evolutionary algorithms on the benchmark problems of dimensionality
30 or less

DE PSO Standard EA (GA)

Mean Std dev Mean Std dev Mean Std dev

1 10.00 0.00 0.00 0.00 1.79E-03 2.77E-04

2 10.00 0.00 0.00 0.00 1.72E-02 1.70E-03

3 | 2.02E-09 8.26E-10 | 0.00 0.00 1.59E-02 4.25E-3

4 | 3.85E-08 9.17E-09 |2.10E-16 8.01E-16 1.98E-02 2.07E-03

5 10.00 0.00 4.03E+00 4.99E00 3.13E+01 1.74E+01

6 [0.00 0.00 4.00E-02 1.98E-01 0.00 0.00

7 | 4.94E-03 1.13E-03 | 1.91E-03 1.14E-03 7.11E-04 3.27E-04

8 | —1.2569E +04 |2.30E-04 |—-7.19E+0.3 |6.72E+0.2 |—1.17E+04 |2.34E+02

9 10.00 0.00 4.92E +01 1.62E +01 7.18E-01 9.22E-01
10 | —1.19E-15 7.03E-16 | 1.40E +00 7.91E-01 1.05E-02 9.08E-04
11 10.00 0.00 2.35E-02 3.5E-02 4.64E-03 3.96E-03
12 10.00 0.00 3.82 8.40E-01 4.56E-06 8.11E-07
13 | 4.17E-04 3.01E-04 |1.34E-03 3.94E-03 3.70E-04 8.78E-05
14 | —1.03E00 1.92E-08 | —1.03E00 3.84E-08 —1.03E00 3.16E-08

Table 2.3 Results of evolutionary algorithms on the benchmark problems of dimensionality 100

DE PSO Standard EA (GA)
Mean Std dev Mean Std dev Mean Std dev
1 10.00 0.00 0.00 0.00 5.23E-04 5.18E-05
2 10.00 0.00 1.80E +01 6.52E+01 |1.74E-02 9.43E-04
3 |5.87E-10 1.83E-10 |3.67E+03 6.94E+03 |3.68E-02 6.06E-03
4 | 1.13E-09 1.42E-10 |5.31E+00 8.63E-01 7.67E-03 5.71E-04
5 10.00 0.00 2.02E+02 7.66E+02 |9.25E+01 1.29E+01
6 [0.00 0.00 2.10E+00 3.52E+00 |0.00 0.00
7 | 7.66E-03 6.58E-04 | 2.78E-02 7.31E-02 7.05E-04 9.70E-05
8 | —4.1898E +04 |1.06E-03 | —2.16EE+04 |1.73E+03 |—3.94E+04 |5.36E+02
9 10.00 0.00 2.43E+02 4.03E+01 |9.98E-02 3.04E-01
10 |8.02E-15 1.74E-15 | 4.49E+00 1.73E+00 |2.93E-03 1.47E-04
11 |5.42E-20 0.00 4.17E-01 6.45E-01 1.89E-03 4.42E-03
12 10.00 0.00 1.18E-01 1.75E-01 2.98E-07 2.76E-08

2.2.2 Using Constraints in DEO

The constraints can be used in neural network training where specific requirements
are posed to neurons parameters’ ranges.
Consider we have an optimization problem with constraints:

76 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

Minimize F(X)

Subject to:
Gi(X) <0, j=1,....,q,
Hi(X)=0, j=qg+1,...,m,
L<xi<uw, i=1,...,n,

where X = (xy,...,%,), F(X) is the objective function, G(X) and H«(X) are the
constraint functions, each variable x; are limited by lower /; and upper bounds ;.

Then we can define a constraints violation function C(X) as follows (Takahama
and Sakai 2012):

C(X) = max{mjax {0,G;(X)}, max|Hj(X)|}

or

2 m

C(X) = Z (m,ax {O»G,f(X)}> + 3 (1 (X))

Jj=1 Jj=q+1

Then of the two vectors U and V (i.e. potential solutions, elements of a DE
population) from the population P, whether U is better than V can be decided as
follows:

U=V (FU)<F(V)and |C(U) — C(V)| < &) or (C(U) < C(V))

where £ >0 is a small value.

A found solution X is considered feasible if C(X) <e.

As can be seen the goal is to minimize both the constraint violation function and
the objective function. Note also that the minimization of the constraint violation
function is more important for unfeasible population vectors than the objective
function.

2.2.3 Training of All Types of Neural Networks by DEO

As we have already mentioned in previous sections, evolutionary computing based
methods are more flexible than classical methods when using for global optimiza-
tion of functions (Aliev et al. 2009).

As they do not require any restrictive properties for the functions or the compu-
tational models to work with, they can be effectively used for training of parameters
of ordinary, fuzzy, and fuzzy type-2 neural networks. The models of neural
networks, and especially fuzzy and high-order fuzzy networks can be described
by complex nonlinear, non-convex, and non-differentiable functions.

References 7

Training of a neural network is in fact a procedure to minimize a function
evaluating the network error, e.g. mismatch between the network’s actual output
and the desired output for a given input. The typical error function is described as
follows:

Sy

Cn- syZZ(y’” y’”)

1

Here y is the desired value (target) for output i{ when we apply input value

vector X, y,; is the corresponding output of the model output, n is the number of
training patterns, and s, is the number of outputs in the model.

The decision or optimization variables or parameters for a neural network are
either its connection weights (perceptron like NN) or fuzzy parameters describing
the input and output linguistic terms in fuzzy rules (NN-based fuzzy inference
systems). To apply an evolutionary algorithm, in our case, the DE, the whole bunch
of these parameters should have been considered as a population individual.

For example, for a perceptron-like recurrent fuzzy neural network (RFNN),
we consider a population individual to represent a whole combination of weights

(W = {vT/hj}, V= {V,,-j}) and biases (5 = {5,,}) (i.e. parameters of RFNN)

defining the input/output mapping (Aliev et al. 2009). For a type-2 neural network,
considered in Sect. 3.6.2 of this book, each fuzzy term-parameter is itself described
by several sub-parameters: the parameters LL, LR, ML, MR, RL, RR for all input
terms and the parameters L, ML, MR, R for all outputs terms (Aliev et al. 2011).

The population maintains a number of potential parameter sets defining different
network solutions and recognizes one of these solutions to be the best solution. This
best solution is the one with minimum training error. After a series of generations,
the best solution may converge to a near-optimum solution, which would represent
a network performing with the required accuracy.

The detailed DE based algorithm for training of FNN and FRNN has been
presented in Sect. 3.5.2 of this book. Section 3.9.1 presents a DE based training
for a type-2 neural network, considered in Sect. 3.6.2 of this book.

References

Aliev RA, Guirimov BG, Fazlollahi B, Aliev RR (2009) Evolutionary algorithm-based learning of
fuzzy neural networks. Part 2: Recurrent fuzzy neural networks. Fuzzy Sets and Systems
archive, Volume 160 Issue 17, 2553-2566.

Aliev RA, Pedrycz W, Guirimov B, Aliev RR, Ilhan U, Babagil M, Mammadli S (2011) Type-2
fuzzy neural networks with fuzzy clustering and differential evolution optimization. Informa-
tion Sciences, Volume 181 Issue 9, 1591-1608.

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems.
Oxford University Press, USA

http://dx.doi.org/10.1007/978-3-319-09072-6_3
http://dx.doi.org/10.1007/978-3-319-09072-6_3
http://dx.doi.org/10.1007/978-3-319-09072-6_3
http://dx.doi.org/10.1007/978-3-319-09072-6_3

78 2 Evolutionary Computing and Type-2 Fuzzy Neural Networks

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-Adapting Control Parameters in
Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE
Transactions on Evolutionary Computation, Vol. 10, No 6.

Chakraborty UK (eds) (2008), Advances in Differential Evolution, Springer

Chiong R, Weise T, Michalewicz Z (eds) (2012) Variants of evolutionary algorithms for real-
world applications. Springer

Clerc M (2006) Particle swarm optimization. ISTE

Crosby JL (1973) Computer simulation in genetics. John Wiley & Sons, London

Dorigo M, Stiitzle T (2004) Ant colony optimization. MIT Press

Eiben A, Smith J (2003). Introduction to evolutionary computing. Springer

Feoktistov V (2006) Differential evolution: in search of solutions. Springer

Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony
search. Simulation 76: 60-68

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison
Wesley

Griewangk (1981), A.O., Generalized Descent for Global Optimization, JOTA, vol. 34, pp. 11-39.

Karahan H, Gurarslan G, Geem ZW (2012) Parameter estimation of the nonlinear Muskingum
flood routing model using a hybrid harmony search algorithm. Journal of Hydrologic Engi-
neering. doi:10.1061/(ASCE)HE.1943-5584.0000608

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks IV: 1942-1948. doi:10.1109/ICNN.1995.488968

Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

Langdon WB, Poli R (2002) Foundations of genetic programming. Springer-Verlag

Price K, Storn, RM, Lampinen JA (2005). Differential evolution: a practical approach to global
optimization. Springer

Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the 3rd Annual
Conference on Evolutionary Programming. World Scientific Publishing: 131-139

Ricart J, Hiittemann G, Lima J, Bardan B (2011) Multiobjective harmony search algorithm pro-
posals. Electronic Notes in Theoretical Computer Science

Storn R, Price K (1997) Differential evolution — a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11: 341-359. doi:10.
1023/A:1008202821328

Takahama T, Sakai S (2012) Efficient Constrained Optimization by the € Constrained Rank-Based
Differential Evolution. In: Proc. of 2012 L.E. Congress on Evolutionary Computation (CEC).

Vesterstrgm J, Thomsen R (2004) A Comparative Study of Differential Evolution, Particle Swarm
Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Congress
on Evolutionary Computation (CEC2004), Volume:2, 1980-1987.

Yao X, Liu Y (1996) Fast evolutionary programming. In: Fogel LJ, Angeline PJ, Back T (eds),
Proceedings of the 5th Annual Conference on Evolutionary Programming, 451-460. MIT
Press.

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000608
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328

2 Springer
http://www.springer.com/978-3-319-09071-9

Type-2 Fuzy MNeural Metworks and Their Applications
Aliev, R.A.; Guirimow, B.G.

2014, Xlll, 190 p. 73 illus., Hardcover

ISBN: 278-3-319-09071-9

