
Chapter 2
Simplicial (Co)homology

Simplicial homology was invented by Poincaré in 1899 [162] and its mod 2 version,
presented in this chapter, was introduced in 1908 by Tietze [196]. It is the simplest
homology theory to understand and, for finite complexes, it may be computed algo-
rithmically. The mod 2 version permits rapid computations on easy but non-trivial
examples, like spheres and surfaces (see Sect. 2.4).

Simplicial (co)homology is defined for a simplicial complex, but is an invariant
of the homotopy type of its geometric realization (this result will be obtained in
differentways using singular homology: seeSect. 3.6). Thefirst section of this chapter
introduces classical techniques of (abstract) simplicial complexes. Since simplicial
homology was the only existing (co)homology theory until the 1930s, simplicial
complexes played a predominant role in algebraic topology during the first third of the
12th century (see the Introduction of Sect. 5.1). Later developments of (co)homology
theories, defined directly for topological spaces, made this combinatorial approach
less crucial. However, simplicial complexes remain an efficient way to construct
topological spaces, also largely used in computer science.

2.1 Simplicial Complexes

In this section we fix notations and recall some classical facts about (abstract) sim-
plicial complexes. For more details, see [179, Chap.3].

A simplicial complex K consists of

• a set V (K ), the set of vertices of K .
• a set S(K ) of finite non-empty subsets of V (K ) which is closed under inclusion:
if σ ∈ S(K ) and τ ⊂ σ, then τ ∈ S(K ). We require that {v} ∈ S(K ) for all
v ∈ V (K ).

An element σ of S(K ) is called a simplex of K (“simplexes” and “simplices” are
admitted as plural of “simplex”; we shall use “simplexes”, in analogy with “com-
plexes”). If �(σ) = m +1, we say that σ is of dimension m or that σ is an m-simplex.
The set of m-simplexes of K is denoted by Sm(K ). The set S0(K ) of 0-simplexes is
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6 2 Simplicial (Co)homology

in bijection with V (K ), and we usually identify v ∈ V (K ) with {v} ∈ S0(K ). We
say that K is of dimension ≤ n if Sm(K ) = ∅ for m > n, and that K is of dimen-
sion n (or n-dimensional) if it is of dimension ≤ n but not of dimension ≤ n − 1.
A simplicial complex of dimension ≤ 1 is called a simplicial graph. A simplicial
complex K is called finite if V (K ) is a finite set.

If σ ∈ S(K ) and τ ⊂ σ, we say that τ is a face of σ. As S(K ) is closed under
inclusion, it is determined by it subset Smax(K ) of maximal simplexes (if K is finite
dimensional). A subcomplex L of K is a simplicial complex such that V (L) ⊂ V (K )

and S(L) ⊂ S(K ). If S ⊂ S(K ) we denote by S̄ the subcomplex generated by S,
i.e. the smallest subcomplex of K such that S ⊂ S(S̄). The m-skeleton K m of K is
the subcomplex of K generated by the union of Sk(K ) for k ≤ m.

Let σ ∈ S(K ). We denote by σ̄ the subcomplex of K formed by σ and all its faces
({σ} in the above notation). The subcomplex σ̇ of σ̄ generated by the proper faces of
σ is called the boundary of σ.

2.1.1 Geometric realization. The geometric realization |K | of a simplicial complex
K is, as a set, defined by

|K | := {μ : V (K ) → [0, 1] ∣∣ ∑v∈V (K ) μ(v) = 1 and μ−1((0, 1]) ∈ S(K )} .

We can thus see |K | as the set of probability measures on V (K )which are supported
by the simplexes (this language is just used for comments and only in this section).
There is a distance on |K | defined by

d(μ, ν) =
√

∑

v∈V (K )

[μ(v) − ν(v)]2

which defines the metric topology on |K |. The set |K | with the metric topology is
denoted by |K |d . For instance, if σ ∈ Sm(K ), then |σ̄|d is isometric to the standard
Euclidean simplex �m = {(x0, . . . , xm) ∈ R

m+1 | xi ≥ 0 and
∑

xi = 1}.
However, a more used topology for |K | is the weak topology, for which A ⊂ |K |

is closed if and only if A ∩ |σ̄|d is closed in |σ̄|d for all σ ∈ S(K ). The notation
|K | stands for the set |K | endowed with the weak topology. A map f from |K |
to a topological space X is then continuous if and only if its restriction to |σ̄|d is
continuous for each σ ∈ S(K ). In particular, the identity |K | → |K |d is continuous,
which implies that |K | is Hausdorff. The weak and the metric topology coincide if
and only if K is locally finite, that is each vertex is contained in a finite number
of simplexes. When K is not locally finite, |K | is not metrizable (see e.g. [179,
Theorem 3.2.8]).

When a simplicial complex K is locally finite, has countably many vertices and
is finite dimensional, it admits a Euclidean realization, i.e. an embedding of |K |
into some Euclidean space RN which is piecewise affine. A map f : |K | → R

N is
piecewise affine if, for each σ ∈ S(K ), the restriction of f to |σ̄| is an affine map.
Thus, for each simplex σ, the image of |σ̄| is an affine simplex ofRN . If dim K ≤ n,
such a realization exists in R

2n+1 (see e.g. [179, Theorem3.3.9]).
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If σ ∈ S(K ) then |σ̄| ⊂ |K |. We call |σ̄| the geometric simplex associated to σ.
Its boundary is |σ̇|. The space |σ| − |σ̇| is the geometric open simplex associated
to σ. Observe that |K | is the disjoint union of its geometric open simplexes.

There is a natural injection i : V (K ) ↪→ |K | sending v to the Dirac measure with
value 1 on v. We usually identify v with i(v), seeing a simplex v as a point of |K |
(a geometric vertex). In this way, a point μ ∈ |K | may be expressed as a convex
combination of (geometric) vertices:

μ =
∑

v∈V (K )

μ(v)v . (2.1.1)

2.1.2 Let K and L be simplicial complexes. Their join is the simplicial complex
K ∗ L defined by

(1) V (K ∗ L) = V (K ) ∪̇ V (L).
(2) S(K ∗ L) = S(K ) ∪ S(L) ∪ {σ ∪ τ | σ ∈ S(K ) and τ ∈ S(L)}.
Observe that, if σ ∈ Sr (K ) and τ ∈ Ss(L), then σ ∪ τ ∈ Sr+s+1(K ∗ L). Also,
σ ∪ τ = σ̄ ∗ τ̄ and |K ∗ L| the topological join of |K | and |L| (see p. 171).
2.1.3 Stars, links, etc. Let K be a simplicial complex and σ ∈ S(K ). The star St(σ)

of σ is the subcomplex of K generated by all the simplexes containing σ. The link
Lk(σ) of σ is the subcomplex of K formed by the simplexes τ ∈ S(K ) such that
τ ∩ σ = ∅ and τ ∪ σ ∈ S(K ). Thus, Lk(σ) is a subcomplex of St(σ) and

St(σ) = σ̄ ∗ Lk(σ) .

More generally, if L is a subcomplex of K , the star St(L) of L is the subcomplex
of K generated by all the simplexes containing a simplex of L . The link Lk(L) of
L is the subcomplex of K formed by the simplexes τ ∈ S(St(L)) − S(L). One has
St(L) = L ∗ Lk(L). The open star Ost(L) of L is the open neighbourhood of |L| in
|K | defined by

Ost(L) = {μ ∈ |K | | μ(v) > 0 if v ∈ V (L)} .

This is the interior of |St(L)| in |K |.
2.1.4 Simplicial maps. Let K and L be two simplicial complexes. A simplicial map
f : K → L is a map f : V (K ) → V (L) such that f (σ) ∈ S(L) if σ ∈ S(K ), i.e.
the image of a simplex of K is a simplex of L . Simplicial complexes and simplicial
maps form a category, the simplicial category, denoted by Simp.

A simplicial map f : K → L induces a continuous map | f |: |K | → |L| defined,
for w ∈ V (L), by

| f |(μ)(w) =
∑

v∈ f −1(w)

μ(v) .
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In other words, | f |(μ) is the pushforward of the probability measure μ on |L|. The
geometric realization is thus a covariant functor from the simplicial category Simp
to the topological category Top of topological spaces and continuous maps.

2.1.5 Components.Let K be a simplicial complex.Wedefine an equivalence relation
on V (K ) by saying that v ∼ v′ if there exists x0, . . . , xm ∈ V (K ) with x0 = v,
xm = v′ and {xi , xi+1} ∈ S(K ). Amaximal subcomplex L of K such that V (L) is an
equivalence class is called a component of K . The set of components of K is denoted
by π0(K ). As the vertices of a simplex are all equivalent, K is the disjoint union
of its components and π0(K ) is in bijection with V (K )/ ∼. The relationship with
π0(|K |), the set of (path)-components of the topological space |K |, is the following.
Lemma 2.1.6 The natural injection j : V (K ) → |K | descends to a bijection j̄ :

π0(K )
≈→ π0(|K |).

Proof The definition of the relation ∼ makes clear that j descends to a map j̄ :
π0(K ) → π0(|K )|. Any point of |K | is joinable by a continuous path to some vertex
j (v). Hence, j̄ is surjective. To check the injectivity of j̄ , let v, v′ ∈ V (K ) with
j̄(v) = j̄(v′). There exists then a continuous path c: [0, 1] → |K | with c(0) = j (v)

and c(1) = j (v′). Consider the open cover {Ost(w) | w ∈ V (K )} of |K |. By
compactness of [0, 1], there exists n ∈ N and vertices v0, . . . , vn−1 ∈ V (K ) such
that c([k/n, (k + 1)/n]) ⊂ Ost(vk) for all k = 0, . . . , n − 1. As c(0) = j (v) and
c(1) = j (v′), one deduces that v0 = v and vn−1 = v′. For 0 < k ≤ n − 1, one
has c(k/n) ∈ Ost(vk−1) ∩ Ost(vk). This implies that {vk−1, vk} ∈ S(K ) for all
k = 1, . . . , n − 1, proving that v ∼ v′. �

Asimplicial complex is called connected if it is either emptyor has one component.
Note that |K | is locally path-connected for any simplicial complex K . Indeed, any
point has a neighborhood of the form |St(v)| for some vertex v, and |St(v)| path-
connected. Therefore, |K | is path-connected if and only if |K | is connected. Using
Lemma2.1.6, this proves the following lemma.

Lemma 2.1.7 Let K be a simplicial complex. Then K is connected if and only if
|K | is a connected space.

Finally, we note the functoriality of π0. Let f : K → L be a simplicial map.
If v ∼ v′ for v, v′ ∈ V (K ), then f (v) ∼ f (v′), so f descends to a map π0 f :
π0(K ) → π0(L). If f : K → L and g: L → M are two simplicial maps, then
π0(g◦ f ) = π0g◦π0 f . Also, π0idK = idπ0(K ). Thus, π0 is a covariant functor from
the simplicial category Simp to the category Set of sets and maps.

2.1.8 Simplicial order. A simplicial order on a simplicial complex L is a partial
order≤ on V (L) such that each simplex is totally ordered. For example, a total order
on V (L), as in examples where vertices are labeled by integers, is a simplicial order.
A simplicial order always exists, as a consequence of the well-ordering theorem.
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2.1.9 Triangulations.A triangulation of a topological space X is a homeomorphism
h: |K | → X , where K is a simplicial complex. A topological space is triangulable
if it admits a triangulation. It will be useful to have a good process to triangulate
some subspaces of Rn . A compact subspace A of Rn is a convex cell if it is the set
of solutions of families of affine equations and inequalities

fi (x) = 0, i = 1, . . . , r and g j (x) ≥ 0, j = 1, . . . , s .

A face B of A is a convex cell obtained by replacing some of the inequalities g j ≥ 0
by the equations g j = 0. The dimension of B is the dimension of the smallest affine
subspace of Rn containing B. A vertex of A is a cell of dimension 0. By induction
on the dimension, one proves that a convex cell is the convex hull of its vertices (see
e.g. [138, Theorem5.2.2]).

A convex-cell complex P is a finite union of convex cells in Rn such that:

(i) if A is a cell of P , so are the faces of A;
(ii) the intersection of two cells of P is a common face of each of them.

The dimension of P is the maximal dimension of a cell of P . The r-skeleton Pr

is the subcomplex formed by the cells of dimension ≤ r . The 0-skeleton coincides
with the set V (P) of vertices of P .

A partial order≤ on V (P) is an affine order for P if any subset R ∈ V (P) formed
by affinely independent points is totally ordered. For instance, a total order on V (P)

is an affine order. The following lemma is a variant of [104, Lemma1.4].

Lemma 2.1.10 Let P be a convex-cell complex. An affine order ≤ for P determines

a triangulation h≤: |L≤| ≈−→ P, where L≤ is a simplicial complex with V (L≤) =
V (P). The homeomorphism h≤ is piecewise affine and ≤ is a simplicial order
on L≤.

Proof The order ≤ being chosen, we drop it from the notations. For each subcom-
plex Q of P , we shall construct a simplicial complex L(Q) and a piecewise affine
homeomorphism hQ : |L(Q)| → Q such that,

(i) V (L(Q)) = V (Q);
(ii) if Q′ ⊂ Q, then L(Q′) ⊂ L(Q) and hQ′ is the restriction of hQ to |L(Q′)|.
The case Q = P will prove the lemma. The construction is by induction on the
dimension of Q, setting L(Q) = Q and hQ = id if dim Q = 0.

Suppose that L(Q) and hQ have been constructed, satisfying (i) and (ii) above, for
each subcomplex Q of P of dimension≤ k −1. Let A be a k-cell of K with minimal
vertex a. Then A is the topological cone, with cone-vertex a, of the union B of faces
of A not containing a. The triangulation hB : |L(B)| → |B| being constructed by
induction hypothesis, define L(A) to be the join L(B) ∗ {a} and h A to be the unique
piecewise affine extension of hB . Observe that, if C is a face of A, then hC is the
restriction to L(C) of h A. Therefore, this process may be used for each k-cell of P
to construct hQ : |L(Q)| → Q for each subcomplex Q of P with dim Q ≤ k. �



10 2 Simplicial (Co)homology

2.1.11 Subdivisions. Let Z be a set andA be a family of subsets of Z . A simplicial
complex L such that

(a) V (L) ⊂ Z ;
(b) for each σ ∈ S(L) there exists A ∈ A such that σ ⊂ A;

is called a (Z ,A)-simplicial complex, or a Z -simplicial complex supported by A.

Let K be a simplicial complex. Let N be a (|K |,GS(K ))-simplicial complex,
where

GS(K ) = {|σ| | σ ∈ S(K )}

is the family of geometric simplexes of K . A continuous map j : |N | → |K | is
associated to N , defined by

j (μ) =
∑

w∈V (N )

μ(w)w .

In other word, j is the piecewise affine map sending each vertex of N to to
the corresponding point of |K |. A subdivision of a simplicial complex K is a
(|K |,GS(K ))-simplicial complex N for which the associated map j : |N | → |K | is
a homeomorphism (in other words, j is a triangulation of |K |).

Let N be a (|K |,GS(K ))-simplicial complex for a simplicial complex K . If L is
a subcomplex of K , then

NL = {σ ∈ S(N )|σ ⊂ |L|}

is a (|L|,GS(L))-simplicial complex. Its associated map jL : |NL | → |L| is the
restriction of j to |L|. The following Lemma is useful to recognize a subdivision
(compare [179, Chap.3, Sect. 3, Theorem4]).

Lemma 2.1.12 Let N be a (|K |,GS(K ))-simplicial complex. Then N is a subdivi-
sion of K if and only if, for each τ ∈ S(K ), the simplicial complex Nτ̄ is finite and
jτ̄ : |Nτ̄ | → |τ̄ | is bijective.

Proof If N is a subdivision of K , then jτ̄ is bijective since j is a homeomorphism.
Also, |Nτ̄ | = j−1(|τ̄ |) is compact, so Nτ̄ is finite.

Conversely, The fact that jτ̄ is bijective for each τ ∈ S(K ) implies that the
continuousmap j is bijective. If Nτ̄ is finite, then jτ̄ is a continuous bijection between
compact spaces, hence a homeomorphism. This implies that the map j−1, restricted
to each geometric simplex, is continuous. Therefore, j−1 is continuous since K is
endowed with the weak topology. �

Seeing V (K ) as a subset of |K |, we get the following corollary.

Corollary 2.1.13 Let N be a subdivision of K . Then V (K ) ⊂ V (N ).
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A useful systematic subdivision process is the barycentric subdivision. Let σ ∈
Sm(K ) be an m-simplex of a simplicial complex K . The barycenter σ̂ ∈ |K | of σ is
defined by

σ̂ = 1

m + 1

∑

v∈σ

v .

The barycentric subdivision K ′ of K is the (|K |,GS(K ))-simplicial complex where

• V (K ′) = {σ̂ ∈ |K | | σ ∈ S(K )};
• {σ̂0, . . . , σ̂m} ∈ Sm(K ′) whenever σ0 ⊂ · · · ⊂ σm (σi �= σ j if i �= j).

Using Lemma2.1.12, the reader can check that K ′ is a subdivision of K . Observe
that the partial order “≤” defined by

σ̂ ≤ τ̂ ⇐⇒ σ ⊂ τ (2.1.2)

is a simplicial order on K ′.

2.2 Definitions of Simplicial (Co)homology

Let K be a simplicial complex. In this section,we give the definitions of the homology
H∗(K ) and cohomology H∗(K ) of K under the various and peculiar forms available
when the coefficients are in the field Z2 = {0, 1}.
Definition 2.2.1 (subset definitions)

(a) An m-cochain is a subset of Sm(K ).
(b) An m-chain is a finite subset of Sm(K ).

The set ofm-cochains of K is denoted byCm(K ) and that ofm-chains byCm(K ).
By identifying σ ∈ Sm(K ) with the singleton {σ}, we see Sm(K ) as a subset of both
Cm(K ) and Cm(K ). Each subset A of Sm(K ) is determined by its characteristic
function χA: Sm(K ) → Z2, defined by

χA(σ) =
{

1 if σ ∈ A
0 otherwise.

This gives a bijection between subsets of Sm(K ) and functions from Sm(K ) to Z2.
We see such a function as a colouring (0 = white and 1 = black). The following
“colouring definition” is equivalent to the subset definition:

Definition 2.2.2 (colouring definitions)

(a) An m-cochain is a function a: Sm(K ) → Z2.
(b) An m-chain is a function α: Sm(K ) → Z2 with finite support.
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The colouring definition is used in low-dimensional graphical examples to draw
(co)chains in black (bold lines for 1-(co)chains).

Definition2.2.2 endowCm(K ) andCm(K )with a structure of aZ2-vector space. The
singletons provide a basis of Cm(K ), in bijection with Sm(K ). Thus,
Definition2.2.2b is equivalent to

Definition 2.2.3 Cm(K ) is the Z2-vector space with basis Sm(K ):

Cm(K ) =
⊕

σ∈Sm (K )

Z2 σ .

We shall pass from one of Definitions2.2.1, 2.2.2 or 2.2.3 to another without notice;
the context usually prevents ambiguity. We consider C∗(K ) = ⊕m∈NCm(K ) and
C∗(K ) = ⊕m∈NCm(K ) as graded Z2-vector spaces. The convention C−1(K ) =
C−1(K ) = 0 is useful.

We now define the Kronecker pairing on (co)chains

Cm(K ) × Cm(K )
〈 , 〉−→ Z2

by the equivalent formulae

〈a,α〉 = �(a ∩ α) (mod 2) using Definition 2.2.1a and b
= ∑

σ∈α a(σ) using Definitions 2.2.1a and 2.2.2b
= ∑

σ∈Sm (K ) a(σ)α(σ) using Definitions 2.2.2a and b.
(2.2.1)

Lemma 2.2.4 The Kronecker pairing is bilinear and the map a �→ 〈a, 〉 is an
isomorphism between Cm(K ) and Cm(K )� = hom(Cm(K ),Z2).

Proof The bilinearity is obvious from the third line of Eq. (2.2.1). Let 0 �= a ∈
Cm(K ). This means that, as a subset of Sm(K ), a is not empty. If σ ∈ a, then
〈a,σ〉 �= 0, which proves the injectivity of a �→ 〈a, 〉. As for its surjectivity, let
h ∈ hom(Cm(K ),Z2). Using the inclusion Sm(K ) ↪→ Cm(K ) given by τ �→ {τ },
define

a = {τ ∈ Sm(K ) | h(τ ) = 1} .

For each σ ∈ Sm(K ) the equation h(σ) = 〈a,σ〉 holds true. As Sm(K ) is a basis of
Cm(K ), this implies that h = 〈a, 〉. �
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We now define the boundary and coboundary operators. The boundary operator
∂: Cm(K ) → Cm−1(K ) is the Z2-linear map defined by

∂(σ) = {(m − 1)-faces of σ} = Sm−1(σ̄), σ ∈ Sm(K ). (2.2.2)

Formula (2.2.2) is written in the language of Definition2.2.1b. Using Definition
2.2.3, we get

∂(σ) =
∑

τ∈Sm−1(σ̄)

τ . (2.2.3)

The coboundary operator δ : Cm(K ) → Cm+1(K ) is defined by the equation

〈δa,α〉 = 〈a, ∂α〉 . (2.2.4)

The last equation indeeddefines δ byLemma2.2.4 and δmaybe seen as theKronecker
adjoint of ∂. In particular, if σ ∈ Sm(K ) and τ ∈ Sm−1(K ) then

τ ∈ ∂(σ) ⇔ τ ⊂ σ ⇔ σ ∈ δ(τ ) . (2.2.5)

The first equivalence determines the operator ∂ since Sm(K ) is a basis for Cm(K ).
The second equivalence determines δ if Sm−1(K ) is finite. Note that the definition
of δ may also be given as follows: if a ∈ Cm(K ), then

δ(a) = {τ ∈ Sm+1(K ) | � (a ∩ ∂(τ )) is odd} .

Let σ ∈ Sm(K ). Each τ ∈ Sm−2(K ) with τ ⊂ σ belongs to the boundary of
exactly two (m − 1)-simplexes of σ. Using Eq. (2.2.3), this implies that ∂ ◦∂ = 0.
By Eq. (2.2.4) and Lemma2.2.4, we get δ◦δ = 0. We define the Z2-vector spaces

• Zm(K ) = ker(∂ : Cm(K ) → Cm−1(K )), the m-cycles of K .
• Bm(K ) = image (∂ : Cm+1(K ) → Cm(K )), the m-boundaries of K .
• Zm(K ) = ker(δ : Cm(K ) → Cm+1(K )), the m-cocycles of K .
• Bm(K ) = image (δ : Cm−1(K ) → Cm(K )), the m-coboundaries of K .

For example, Fig. 2.1 shows a triangulation K of the plane, with V (K ) = Z×Z.
The bold line is a cocycle a which is a coboundary: a = δB, with B = {{(m, n)} |
(m, n) ∈ V (K ) and m ≤ 0}, drawn in bold dots.

Since ∂ ◦∂ = 0 and δ◦δ = 0, one has Bm(K ) ⊂ Zm(K ) and Bm(K ) ⊂ Zm(K ).
We form the quotient vector spaces

• Hm(K ) = Zm(K )/Bm(K ), the mth -homology vector space of K .
• Hm(K ) = Zm(K )/Bm(K ), the mth -cohomology vector space of K .

As for the (co)chains, the notations H∗(K ) = ⊕m∈NHm(K ) and H∗(K ) =
⊕m∈NHm(K ) stand for the (co)homology seen as graded Z2-vector spaces. By
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Fig. 2.1 A triangulation K
of the plan, with
V (K ) = Z × Z

0

a

convention, H−1(K ) = H−1(K ) = 0. Also, the homology and the cohomology
are in duality via the Kronecker pairing:

Proposition 2.2.5 (Kronecker duality)The Kronecker pairing on (co)chains induces
a bilinear map

Hm(K ) × Hm(K )
〈 , 〉−→ Z2 .

Moreover, the correspondence a �→ 〈a, 〉 is an isomorphism

Hm(K )
k−→≈ hom(Hm(K ),Z2) .

Proof Instead of giving a direct proof, which the reader may do as an exercise, we
will take advantage of the more general setting of Kronecker pairs, developed in the
next section. In this way, Proposition2.2.5 follows from Proposition2.3.5. �

2.3 Kronecker Pairs

All the vector spaces in this section are over an arbitrary fixed field F. The dual of a
vector space V is denoted by V �.

A chain complex is a pair (C∗, ∂), where

• C∗ is a graded vector spaceC∗ = ⊕

m∈N Cm .We add the convention thatC−1 = 0.
• ∂ : C∗ → C∗ is a linear map of degree −1, i.e. ∂(Cm) ⊂ Cm−1, satisfying

∂ ◦∂ = 0. The operator ∂ is called the boundary of the chain complex.

A cochain complex is a pair (C∗, δ), where

• C∗ is a gradedvector spaceC∗ = ⊕

m∈N Cm .Weadd the convention thatC−1 = 0.
• δ : C∗ → C∗ is a linear map of degree +1, i.e. ∂(Cm) ⊂ Cm+1, satisfying

δ◦δ = 0. The operator δ is called the coboundary of the cochain complex.
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A Kronecker pair consists of three items:

(a) a chain complex (C∗, ∂).
(b) a cochain complex (C∗, δ).
(c) a bilinear map

Cm × Cm
〈 , 〉−→ F

satisfying the equation

〈δa,α〉 = 〈a, ∂α〉 . (2.3.1)

for all a ∈ Cm and α ∈ Cm+1 and all m ∈ N. Moreover, we require that the map
k: Cm → C�

m , given by k(a) = 〈a, 〉, is an isomorphism.

Example 2.3.1 Let K be a simplicial complex. Its simplicial (co)chain complexes
(C∗(K ), δ), (C∗(K ), ∂), together with the pairing 〈 , 〉 of Sect. 2.2 is a Kronecker
pair, with F = Z2, as seen in Lemma2.2.4 and Eq. (2.2.4).

Example 2.3.2 Let (C∗, ∂) be a chain complex. One can define a cochain complex
(C∗, δ) by Cm = C�

m and δ = ∂� and then get a bilinear map (pairing) 〈,〉 by the
evaluation: 〈a,α〉 = a(α). These constitute a Kronecker pair. Actually, via the map
k, any Kronecker pair is isomorphic to this one. The reader may use this fact to
produce alternative proofs of the results of this section.

We first observe that, as the Kronecker pairing is non-degenerate, chains and
cochains mutually determine each other:

Lemma 2.3.3 Let
(

(C∗, δ), (C∗, ∂), 〈 , 〉) be a Kronecker pair.

(a) Let a, a′ ∈ Cm. Suppose that 〈a,α〉 = 〈a′,α〉 for all α ∈ Cm. Then a = a′.
(b) Let α,α′ ∈ Cm. Suppose that 〈a,α〉 = 〈a,α′〉 for all a ∈ Cm. Then α = α′.
(c) Let Sm be a basis for Cm and let f : Sm → F be a map. Then, there is a unique

a ∈ Cm such that 〈a,σ〉 = f (σ) for all σ ∈ Sm.

Proof In Point (a), the hypotheses imply that k(a) = k(a′). As k is injective, this
shows that a = a′.

In Point (b), suppose that α �= α′. Let A ∈ (Cm)� such that A(α−α′) �= 0. Then,
〈a,α〉 �= 〈a,α′〉 for a = k−1(A) ∈ Cm .

Finally, the condition ã(σ) = f (σ) for all σ ∈ Sm defines a unique ã ∈ C�
m and

a = k−1(ã). �

As is Sect. 2.2, we consider the Z2-vector spaces

• Zm = ker(∂ : Cm → Cm−1), the m-cycles (of C∗).
• Bm = image (∂ : Cm+1 → Cm), the m-boundaries.
• Zm = ker(δ : Cm → Cm+1), the m-cocycles.
• Bm = image (δ : Cm−1 → Cm), the m-coboundaries.
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Since ∂ ◦∂ = 0 and δ◦δ = 0, one has Bm ⊂ Zm and Bm ⊂ Zm .We form the quotient
vector spaces

• Hm = Zm/Bm , the mth-homology group (or vector space).
• Hm = Zm/Bm , the mth-cohomology group (or vector space).

We consider the (co)homology as graded vector spaces: H∗ = ⊕m∈NHm and H∗ =
⊕m∈NHm .

The cocycles and coboundaries may be detected by the pairing:

Lemma 2.3.4 Let a ∈ Cm. Then

(i) a ∈ Zm if and only if 〈a, Bm〉 = 0.
(ii) a ∈ Bm if and only if 〈a, Zm〉 = 0.

Proof Point (i) directly follows from Eq. (2.3.1) and the fact that k is injective. Also,
if a ∈ Bm , Eq. (2.3.1) implies that 〈a, Zm〉 = 0. It remains to prove the converse
(this is the only place in this lemma where we need vector spaces over a field instead
just module over a ring). We consider the exact sequence

0 → Zm → Cm → Bm−1
∂−→ 0 . (2.3.2)

Let a ∈ Cm such that 〈a, Zm〉 = 0. By (2.3.2), there exists a1 ∈ B�
m−1 such that

〈a, 〉 = a1 ◦∂. As we are dealing with vector spaces, Bm−1 is a direct summand
of Cm−1. We can thus extend a1 to a2 ∈ C�

m−1. As k is surjective, there exists
a3 ∈ Cm−1 such that 〈a3, 〉 = a2. For all α ∈ Cm , one then has

〈δa3,α〉 = 〈a3, ∂α〉 = a2(∂α) = a1(∂α) = 〈a,α〉 .

As k is injective this implies that a = δa3 ∈ Bm . �

Let us restrict the pairing 〈 , 〉 to Zm × Zm . Formula (2.3.1) implies that

〈Zm, Bm〉 = 〈Bm, Zm〉 = 0 .

Hence, the pairing descends to a bilinear map Hm × Hm
〈 , 〉−→ F, giving rise to a

linear map k: Hm → H �
m , called the Kronecker pairing on (co)homology. We see

H∗ and H∗ as (co)chain complexes by setting ∂ = 0 and δ = 0.

Proposition 2.3.5 (H∗, H∗, 〈 , 〉) is a Kronecker pair.

Proof Equation (2.3.1) holds trivially since ∂ and δ both vanish. It remains to show
that k: Hm → H �

m is bijective.
Let a0 ∈ H �

m . Pre-composing a0 with the projection Zm →→ Hm produces a1 ∈
Z �

m . As Zm is a direct summand in Cm , one can extend a1 to a2 ∈ C�
m . Since

(C∗, C∗, 〈 , 〉) is a Kronecker pair, there exists a ∈ Cm such that 〈a, 〉 = a2. The
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cochain a satisfies 〈a, Bm〉 = a2(Bm) = 0 which, by Lemma2.3.4, implies that
a ∈ Zm . The cohomology class [a] ∈ Hm of a then satisfies 〈[a], 〉 = a0. Thus, k
is surjective.

For the injectivity of k, let b ∈ Hm with 〈b, Hm〉 = 0. Represent b by b̃ ∈ Zm ,
which then satisfies 〈b̃, Zm〉 = 0. By Lemma2.3.4, b̃ ∈ Bm and thus b = 0. �

Let (C∗, ∂) and (C̄∗, ∂̄) be two chain complexes. A map ϕ: C∗ → C̄∗ is a
morphism of chain complexes or a chain map if it is linear map of degree 0 (i.e.
ϕ(Cm) ⊂ C̄m) such that ϕ◦∂ = ∂̄ ◦ϕ. This implies that ϕ(Zm) ⊂ Z̄m and ϕ(Bm) ⊂
B̄m . Hence, ϕ induces a linear map H∗ϕ : Hm → H̄m for all m.

In the same way, let (C∗, δ) and (C̄∗, δ̄) be two cochain complexes. A linear map
φ: C̄∗ → C∗ of degree 0 is a morphism of cochain complexes or a cochain map if
φ◦ δ̄ = δ◦φ. Hence, φ induces a linear map H∗φ : H̄m → Hm for all m.

Let P = (C∗, ∂, C∗, δ, 〈 , 〉) and P̄ = (C̄∗, ∂̄, C̄∗, δ̄, 〈 , 〉−) be two Kronecker
pairs. A morphism of Kronecker pairs, from P to P̄ , consists of a pair (ϕ,φ) where
ϕ: C∗ → C̄∗ is a morphism of chain complexes and φ: C̄∗ → C∗ is a morphism of
cochain complexes such that

〈a,ϕ(α)〉− = 〈φ(a),α〉 . (2.3.3)

Using the isomorphisms k and k̄, Eq. (2.3.3) is equivalent to the commutativity of
the diagram

C̄∗

k̄≈
��

φ �� C∗

k≈
��

C̄�∗
ϕ�

�� C�∗

. (2.3.4)

Lemma 2.3.6 Let P and P̄ be Kronecker pairs as above. Let ϕ: C∗ → C̄∗ be a
morphism of chain complex. Define φ: C̄∗ → C∗ by Eq. (2.3.3) (or Diagram (2.3.4)).
Then the pair (ϕ,φ) is a morphism of Kronecker pairs.

Proof Obviously, φ is a linear map of degree 0 and Eq. (2.3.3) is satisfied. It remains
to show that φ is a morphism of cochain-complexes. But, if b ∈ Cm(K̄ ) and α ∈
Cm+1(K ), one has

〈δφ(b),α〉 = 〈φ(b), ∂α〉 = 〈b,ϕ(∂α)〉− = 〈b, ∂̄ϕ(α)〉−
= 〈δ̄b,ϕ(α)〉− = 〈φ(δ̄b),α〉 ,

which proves that δφ(b) = φ(δ̄b). �
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Amorphism (ϕ,φ) of Kronecker pairs determines amorphism of Kronecker pairs
(H∗ϕ, H∗φ) from (H∗, H∗, 〈 , 〉) to (H̄∗, H̄∗, 〈 , 〉−). This process is functorial:

Lemma 2.3.7 Let (ϕ1,φ1) be a morphism of Kronecker pairs from P to P̄ and let
(ϕ2,φ2) be a morphism of Kronecker pairs from P̄ to Ṗ . Then

(H∗ϕ2 ◦ H∗ϕ1, H∗φ1 ◦ H∗φ2) = (H∗(ϕ2 ◦ϕ1), H∗(φ2 ◦φ1))

Proof That H∗ϕ2 ◦ H∗ϕ1 = H∗(ϕ2 ◦ϕ1) is a tautology. For the cohomology equality,
we use that

〈H∗φ1 ◦ H∗φ2(a),α〉 = 〈H∗φ2(a), H∗ϕ1(α)〉 = 〈a, H∗ϕ2 ◦ H∗ϕ1(α)〉
= 〈a, H∗(ϕ2 ◦ϕ1)(α)〉 = 〈H∗(φ2 ◦φ1))(a),α〉

holds for all a ∈ H̄∗ and all α ∈ H∗. �

We finish this section with some technical results which will be used later.

Lemma 2.3.8 Let f : U → V and g: V → W be two linear maps between vector
spaces. Then, the sequence

U
f−→ V

g−→ W (2.3.5)

is exact at V if and only if the sequence

U � f �

←− V � g�

←− W � (2.3.6)

is exact at V �.

Proof As f � ◦g� = (g◦ f )�, then f � ◦g� = 0 if and only if g◦ f = 0.
On the other hand, suppose that ker g ⊂ image f . We shall prove that ker f � ⊂

image g�. Indeed, let a ∈ ker f �. Then, a(image f ) = 0 and, using the inclusion
ker g ⊂ image f , we deduce that a(ker g) = 0. Therefore, a descends to a linear
map ā: V/ ker g → F. The quotient space V/ ker g injects into W , so there exists
b ∈ W � such that a = b◦g = g�(b), proving that a ∈ image g�.

Finally, suppose that ker g �⊂ image f . Then there exists a ∈ V � such that
a(image f ) = 0, i.e., a ∈ ker f �, and a(ker g) �= 0, i.e. a /∈ image g�. This proves
that ker f � �⊂ image g�. �

Lemma 2.3.9 Let (ϕ,φ) be a morphism of Kronecker pairs from P = (C∗, ∂, C∗,
δ, 〈 , 〉) to P̄ = (C̄∗, ∂̄, C̄∗, δ̄, 〈 , 〉−). Then the pairings 〈 , 〉 and 〈 , 〉− induce bilinear
maps

coker φ × ker ϕ
〈,〉−→ F and ker φ × coker ϕ

〈,〉−−−→ F
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such that the induced linear maps

coker φ
k−→ (ker ϕ)� and ker φ

k̄−→ (coker ϕ)�

are isomorphisms.

Proof Equation (2.3.3) implies that 〈φ(C∗), ker ϕ〉 = 0 and 〈ker φ,ϕ(C∗)〉− = 0,
whence the induced pairings. Consider the exact sequence

0 �� ker ϕ �� C∗
ϕ �� C̄∗ �� coker ϕ �� 0 .

By Lemma2.3.8, passing to the dual preserves exactness. Using Diagram(2.3.4),
one gets a commutative diagram

0 (ker ϕ)��� C�∗�� C̄�∗
ϕ�

�� (coker ϕ)��� 0��

0 coker φ��

k

��

H∗��

k≈
��

C̄∗φ��

k̄≈
��

ker φ��

k̄

��

0��

. (2.3.7)

By diagram-chasing, the two extreme up-arrows are bijective (one can also invoke
the famous five-lemma: see e.g. [179, Chap.4,Sect. 5,Lemma11]). �

Corollary 2.3.10 Let (ϕ,φ) be a morphism of Kronecker pairs from (C∗, ∂, C∗, δ,
〈 , 〉) to (C̄∗, ∂̄, C̄∗, δ̄, 〈 , 〉−). Then the pairings 〈 , 〉 and 〈 , 〉− on (co)homology induce
bilinear maps

coker H∗φ × ker H∗ϕ
〈,〉−→ F and ker H∗φ × coker H∗ϕ

〈,〉−−−→ F

such that the induced linear maps

coker H∗φ k−→ (ker H∗ϕ)� and ker H∗φ k̄−→ (coker H∗ϕ)�

are isomorphisms.

Proof The morphism (φ,ϕ) induces a morphism of Kronecker pairs (H∗φ, H∗ϕ)

from (H∗, H∗, 〈 , 〉) to (H̄∗, H̄∗, 〈 , 〉−). Corollary2.3.10 follows then from
Lemma2.3.9 applied to (H∗φ, H∗ϕ). �

Corollary2.3.10 implies the following

Corollary 2.3.11 Let (ϕ,φ) be a morphism of Kronecker pairs from (C∗, ∂, C∗,
δ, 〈 , 〉) to (C̄∗, ∂̄, C̄∗, δ̄, 〈 , 〉−). Then
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(a) H∗φ is surjective if and only if H∗ϕ is injective.
(b) H∗φ is injective if and only if H∗ϕ is surjective.
(c) H∗φ is bijective if and only if H∗ϕ is bijective.

2.4 First Computations

2.4.1 Reduction to Components

Let K be a simplicial complex.We have seen in 2.1.5 that K is the disjoint union of its
components, whose set is denoted by π0(K ). Therefore, Sm(K ) = ∐

L∈π0(K ) Sm(L)

which, by Definition2.2.3, gives a canonical isomorphism

⊕

L∈π0(K )

Cm(L)
≈→ Cm(K ) .

This direct sum decomposition commutes with the boundary operators, giving a
canonical isomorphism

⊕

L∈π0(K )

H∗(L)
≈→ H∗(K ) . (2.4.1)

As for the cohomology, seeing an m-cochain as a map α: Sm(K ) → Z2
(Definition2.2.2) the restrictions of α to Sm(L) for all L ∈ π0(K ) gives an
isomorphism

Cm(K )
≈−→

∏

L∈π0(K )

Cm(L)

commuting with the coboundary operators. This gives an isomorphism

H∗(K )
≈−→

∏

L∈π0(K )

H∗(L) . (2.4.2)

The isomorphisms of (2.4.1) and (2.4.2) permit us to reduce (co)homology com-
putations to connected simplicial complexes. They are of course compatible with the
Kronecker duality (Proposition2.2.5). A formulation of these isomorphisms using
simplicial maps is given in Proposition2.5.3.

2.4.2 0-Dimensional (Co)homology

Let K be a simplicial complex. The unit cochain 1 ∈ C0(K ) is defined by 1 = S0(K ),
using the subset definition. In the language of colouring, one has 1(v) = 1 for all
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v ∈ V (K ) = S0(K ), that is all vertices are black. If β = {v,w} ∈ S1(K ), then

〈δ1,β〉 = 〈1, ∂β〉 = 1(v) + 1(w) = 0 ,

which proves that δ(1) = 0 by Lemma2.2.4. Hence, 1 is a cocycle, whose cohomol-
ogy class is again denoted by 1 ∈ H0(K ).

Proposition 2.4.1 Let K be a non-empty connected simplicial complex. Then,

(i) H0(K ) = Z2, generated by 1 which is the only non-vanishing 0-cocycle.
(ii) H0(K ) = Z2. Any 0-chain α is a cycle, which represents the non-zero element

of H0(K ) if and only if �α is odd.

Proof If K is non-empty the unit cochain does not vanish. As C−1(K ) = 0, this
implies that 1 �= 0 in H0(K ).

Let a ∈ C0(K )with a �= 0, 1. Then there exists v, v′ ∈ V (K )with a(v) �= a(v′).
Since K is connected, there exists x0, . . . , xm ∈ V (K ) with x0 = v, xm = v′ and
{xi , xi+1} ∈ S(K ). Therefore, there exists 0 ≤ k < m with a(xk) �= a(xk+1). This
implies that {xk, xk+1} ∈ δa, proving that δa �= 0. We have thus proved (i).

Now, H0(K ) = Z2 since H0(K ) ≈ H0(K )�. Any α ∈ C0(K ) is a cycle since
C−1(K ) = 0. It represents the non-zero homology class if and only if 〈1,α〉 = 1,
that is if and only if �α is odd. �

Corollary 2.4.2 Let K be a simplicial complex. Then H0(K ) ≈ Z
π0(K )
2 .

Here, Zπ0(K )
2 denotes the set of maps from π0(K ) to Z2. The isomorphism of

Corollary2.4.2 is natural for simplicial maps (see Corollary 2.5.6).

Proof By Proposition2.4.1 and its proof, H0(K ) = Z0(K ) is the set of maps from
V (K ) to Z2 which are constant on each component. Such a map is determined by a
map from π0(K ) to Z2 and conversely. �

2.4.3 Pseudomanifolds

An n-dimensional pseudomanifold is a simplicial complex M such that

(a) every simplex of M is contained in an n-simplex of M .
(b) every (n − 1)-simplex of M is a face of exactly two n-simplexes of M .
(c) for any σ,σ′ ∈ Sn(M), there exists a sequence σ = σ0, . . . ,σm = σ′ of n-

simplexes such that σi and σi+1 have an (n −1)-face in common for i ≤ 1 < m.

Example 2.4.3 (1) Let m be an integer with m ≥ 3. The polygon Pm is the 1-
dimensional pseudomanifold for which V (Pm) = {0, 1, . . . , m − 1} = Z/mZ and
S1(Pm) = {{k, k + 1} | k ∈ V (Pm)}. It can be visualized in the complex plane as
the equilateral m-gon whose vertices are the mth roots of the unity.
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(2) Consider the triangulation of S2 given by an icosahedron. Choose one pair of
antipodal vertices and identify them in a single point. This gives a quotient simplicial
complex K which is a 2-dimensional pseudomanifold. Observe that |K | is not a
topological manifold.

Pseudomanifolds have been introduced in 1911 by Brouwer [22, p. 477], for his
work on the degree and on the invariance of the dimension. They are also called
n-circuits in the literature. Proposition2.4.4 below and its proof, together with
Proposition2.4.1, shows that n-dimensional pseudomanifolds satisfy Poincaré dual-
ity in dimensions 0 and n.

Let M be a finite n-dimensional pseudomanifold. The n-chain [M] = Sn(M) ∈
Cn(M) is called the fundamental cycle of M (it is a cycle by Point (b) of the above def-
inition). Its homology class, also denoted by [M] ∈ Hn(M) is called the fundamental
class of M .

Proposition 2.4.4 Let M be a finite non-empty n-dimensional pseudomanifold.
Then,

(i) Hn(M) = Z2, generated by [M] which is the only non-vanishing n-cycle.
(ii) Hn(M) = Z2. Any n-cochain a is a cocycle, and [a] �= 0 in Hn(M) if and only

if �a is odd.

Proof We define a simplicial graph L with V (L) = Sn(M) by setting {σ,σ′} ∈
S1(L) if and only if σ and σ′ have an (n − 1)-face in common. The identification
Sn(M) = V (L) produces isomorphisms

F̃n : Cn(M)
≈−→ C0(L) and F̃n : Cn(M)

≈−→ C0(L) . (2.4.3)

(As M is finite, so is L and C∗(L) is equal to C∗(L), using Definition2.2.2) On the
other hand, by Point (b) of the definition of a pseudomanifold, one gets a bijection

F̃ : Sn−1(M)
≈−→ S1(L). It gives rise to isomorphisms

F̃n−1 : Cn−1(M)
≈−→ C1(L) and F̃n−1 : Cn−1(M)

≈−→ C1(L) . (2.4.4)

The isomorphisms of (2.4.3) and (2.4.4) satisfy

F̃n−1 ◦∂ = δ◦ F̃n and ∂ ◦ F̃n−1 = Fn ◦δ .

Since Cn+1(M) = 0 by Point (a) of the definition of a pseudomanifold, the above
isomorphisms give rise to isomorphisms

F∗ : Hn(M)
≈−→ H0(L) and F∗ : Hn(M)

≈−→ H0(L)

with F∗([M]) = 1. By Point (c) of the definition of a pseudomanifold, the graph L
is connected. Therefore, Proposition2.4.4 follows from Proposition2.4.1. �
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The proof of Proposition2.4.4 actually gives the following result.

Proposition 2.4.5 Let M be a finite non-empty simplicial complex satisfying Con-
ditions (a) and (b) of the definition of an n-dimensional pseudomanifold. Then, M is
a pseudomanifold if and only if Hn(M) = Z2.

2.4.4 Poincaré Series and Polynomials

A graded Z2-vector space A∗ = ⊕

i∈N Ai is of finite type if Ai is finite dimensional
for all i ∈ N. In this case, the Poincaré series of A∗ is the formal power series
defined by

Pt (A∗) =
∑

i∈N
dim Ai t

i ∈ N[[t]].

When dim A∗ < ∞, the series Pt (A∗) is a polynomial, also called the Poincaré
polynomial of A∗.

A simplicial complex K is of finite (co)homology type if H∗(K ) (or, equivalently,
H∗(K )) is of finite type. In this case, the Poincaré series of K is that of H∗(K ).
The (co)homology of a simplicial complex of finite (co)homology type is, up to
isomorphism, determined by its Poincaré series, which is often the shortest way to
describe it. The number dim Hm(K ) is called the m-th Betti number of K . The vector
space C∗(K ) is endowed with the basis S(K ) for which the matrix of the boundary
operator is given explicitly. Thus, the Betti numbers may be effectively computed by
standard algorithms of linear algebra.

2.4.5 (Co)homology of a Cone

The simplest non-empty simplicial complex is a point whose (co)homology is
obviously

Hm(pt) ≈ Hm(pt) ≈
{

0 if m > 0

Z2 if m = 0 .
(2.4.5)

In terms of Poincaré polynomial: Pt (pt) = 1. Let L be a simplicial complex. The
cone on L is the simplicial complex C L defined by V (C L) = V (L) ∪ {∞} and

Sm(C L) = Sm(L) ∪ {σ ∪ {∞} | σ ∈ Sm−1(L)} .

Note that C L is the join C L ≈ L ∗ {∞}.
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Proposition 2.4.6 The cone C L on a simplicial complex L has its (co)homology
isomorphic to that of a point. In other words, Pt (C L) = 1.

Proof By Kronecker duality, it is enough to prove the result on homology. The cone
C L is obviously connected and non-empty (it contains ∞), so H0(C L) = Z2.

Define a linear map D: Cm(C L) → Cm+1(C L) by setting, for σ ∈ Sm(C L):

D(σ) =
{

σ ∪ {∞} if ∞ /∈ σ

0 if ∞ ∈ σ .

Hence, D◦ D = 0. If ∞ /∈ σ, the formula

∂D(σ) = D(∂σ) + σ (2.4.6)

holds true in Cm(C L) (and has a clear geometrical interpretation). Suppose that
∞ ∈ σ and dim σ ≥ 1. Then σ = D(τ ) with τ = σ − {∞}. Using Formula (2.4.6)
and that D◦ D = 0, one has

D(∂σ) + σ = D(∂D(τ )) + σ = D(D(∂τ ) + τ ) + D(τ ) = 0 .

Therefore, Formula (2.4.6) holds also true if ∞ ∈ σ, provided dim σ ≥ 1. This
proves that

∂D(α) = D(∂α) + α for all α ∈ Cm(C L) with m ≥ 1 . (2.4.7)

Now, if α ∈ Cm(C L) satisfies ∂α = 0, Formula (2.4.7) implies that α = ∂D(α),
which proves that Hm(C L) = 0 if m ≥ 1. �

As an application of Proposition2.4.6, let A be a set. The full complex F A on A
is the simplicial complex for which V (F A) = A and S(F A) is the family of all
finite non-empty subsets of A. If A is finite and non-empty, then F A is isomorphic
to a simplex of dimension �A − 1. Denote by Ḟ A the subcomplex of F A generated
by the proper (i.e. �= A) subsets of A. For instance, Ḟ A = F A if A is infinite.

Corollary 2.4.7 Let A be a non-empty set. Then

(i) F A has its (co)homology isomorphic to that of a point, i.e. Pt (F A) = 1.
(ii) If 3 ≤ �A ≤ ∞, then Pt (Ḟ A) = 1 + t�A−1.
(iii) If �A = 2, then Pt (Ḟ A) = 2.

Proof As A is not empty, F A is isomorphic to the cone over F A deprived of one
of its elements. Point (i) then follows from Proposition2.4.6. Let n = �A − 1. The
chain complex of F A looks like a sequence

0 → Cn(F A)
∂n−→ Cn−1(F A)

∂n−1−−→ · · · → C0(F A) → 0 ,
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which, by (i), is exact except at C0(F A). One has Cn(F A) = Z2, generated by the
A ∈ Sn(F A). Hence, ker ∂n−1 ≈ Z2. As the chain complex C∗(Ḟ A) is the same as
that of F A with Cn replaced by 0, this proves (ii). If �A = 2, then Ḟ A consists of
two 0-simplexes and Point (iii) follows from (2.4.5) to (2.4.1). �

2.4.6 The Euler Characteristic

Let K be a finite simplicial complex. Its Euler characteristic χ(K ) is defined as

χ(K ) =
∑

m∈N
(−1)m �Sm(K ) ∈ Z .

Proposition 2.4.8 Let K be a finite simplicial complex. Then

χ(K ) =
∑

m∈N
(−1)m dim Hm(K ) =

∑

m

(−1)m dim Hm(K ) .

As in the definition of the Poincaré polynomial, the number dim Hm(K ) is the
dimension of Hm(K ) as a Z2-vector space. In other words, dim Hm(K ) is the m-th
Betti number of K . Proposition2.4.8 holds true for the (co)homology with coeffi-
cients in any field F, though the Betti numbers depend individually on F.

Proof By Kronecker duality, only the first equality requires a proof. Let cm, zm, bm

and hm be the dimensions ofCm(K ), Zm(K ), Bm(K ) and Hm(K ). Elementary linear
algebra gives the equalities

{

cm = zm + bm−1
zm = bm + hm .

We deduce that

χ(K ) =
∑

m∈N
(−1)mcm =

∑

m∈N
(−1)mhm +

∑

m∈N
(−1)mbm +

∑

m∈N
(−1)mbm−1 .

As b−1 = 0, the last two sums cancels each other, proving Proposition2.4.8. �
Corollary 2.4.9 Let K be a finite simplicial complex. Then

χ(K ) = Pt (K )t=−1.

The following additive formula for the Euler characteristic is useful.

Lemma 2.4.10 Let K be a simplicial complex. Let K1 and K2 be two subcomplexes
of K such that K = K1 ∪ K2. Then,

χ(K ) = χ(K1) + χ(K2) − χ(K1 ∩ K2) .
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Proof The formula follows directly from the equations Sm(K ) = Sm(K1)∪Sm(K2)

and Sm(K1 ∩ K2) = Sm(K1) ∩ Sm(K2). �

2.4.7 Surfaces

A surface is a manifold of dimension 2. In this section, we give examples of trian-
gulations of surfaces and compute their (co)homology. Strictly speaking, the results
would hold only for the given triangulations, but we allow us to formulate them in
more general terms. For this, we somehow admit that

• a connected surface is a pseudomanifold of dimension 2. This will be established
rigorously in Corollary5.2.7 but the reader may find a proof as an exercise and
this is easy to check for the particular triangulations given below.

• up to isomorphism, the (co)homology of a simplicial complex K depends only of
the homotopy type of |K |. This will be proved in Sect. 3.6. In particular, the Euler
characteristic of two triangulations of a surface coincide.

The 2-Sphere

The 2-sphere S2 being homeomorphic to the boundary of a 3-simplex, it follows
from Corollary2.4.7 that:

Pt (S2) = 1 + t2 .

The Projective Plane

Theprojective planeRP2 is the quotient of S2 by the antipodalmap.The triangulation
of S2 as a regular icosahedron being invariant under the antipodal map, it gives a
triangulation of RP2 given in Fig. 2.2. Note that the border edges appear twice,

Fig. 2.2 A triangulation
of RP2
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showing as expected that RP2 is the quotient of a 2-disk modulo the antipodal
involution on its boundary.

Being a quotient of an icosahedron, the triangulation of Fig. 2.2 has 6 vertices, 15
edges and 10 facets, thusχ(RP2) = 1. Using thatRP2 is a connected 2-dimensional
pseudomanifold, we deduce that

Pt (RP2) = 1 + t + t2 . (2.4.8)

To identify the generators of H1(RP2) ≈ Z2 and H1(RP2), we define

a = α = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} ⊂ S1(RP2) . (2.4.9)

We see a ∈ C1(RP2) and α ∈ C1(RP2). The cochain a is drawn in bold on Fig. 2.2,
where it looks as the set of border edges, since each of its edges appears twice on the
figure. It is easy to check that δ(a) = 0 and ∂(α) = 0. As �α = 5 is odd, one has
〈a,α〉 = 1, showing that a is the generator of H1(RP2) = Z2 and α is the generator
of H1(RP2) = Z2.

The 2-Torus

The 2-torus T 2 = S1× S1 is the quotient of a square whose opposite sides are identi-
fied. A triangulation of T 2 is described (in two copies) in Fig. 2.3. This triangulation
has 9 vertices, 27 edges and 18 facets, which implies that χ(T 2) = 0. Since T 2 is a
connected 2-dimensional pseudomanifold, we deduce that

Pt (T
2) = (1 + t)2 .

In Fig. 2.3 are drawn two chains α,β ∈ C1(T 2) given by

α = {{3, 8}, {8, 9}, {9, 3}} and β = {{5, 7}, {7, 9}, {9, 5}} .
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β

Fig. 2.3 Two copies of a triangulation of the 2-torus T 2, showing generators of H1(T 2) and H1(T 2)
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We also drew two cochains a, b ∈ C1(T 2) defined as

a = {{4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 4}}

and

b = {{2, 3}, {3, 6}, {6, 8}, {8, 7}, {7, 9}, {9, 2}} .

One checks that ∂α = ∂β = 0 and that δa = δb = 0. Therefore, they represent
classes a, b ∈ H1(T 2) and α,β ∈ H1(T 2). The equalities

〈a,α〉 = 1 , 〈a,β〉 = 0 , 〈b,α〉 = 0 , 〈b,β〉 = 1

imply that a, b is a basis of H1(T 2) and α,β is a basis of H1(T 2).
If we consider a and b as 1-chains (call them ã and b̃), we also have ∂ã = ∂b̃ = 0.

Note that

〈a, b̃〉 = 1 , 〈a, ã〉 = 0 , 〈b, b̃〉 = 0 , 〈b, ã〉 = 1

This proves that ã = β and b̃ = α in H1(T 2).

The Klein Bottle

A triangulation of the Klein bottle K is pictured in Fig. 2.4. As the 2-torus, the
Klein bottle is the quotient of a square with opposite side identified, one of these
identifications “reversing the orientation”. One checks that χ(K ) = 0. Since K is
a connected 2-dimensional pseudomanifold, the (co)homology of K is abstractly
isomorphic to that of T 2:

Pt (K ) = (1 + t)2

(In Chap.3, H∗(T 2) and H∗(K ) will be distinguished by their cup product: see
p. 138). In Fig. 2.4 the dotted lines show two 1-chains α,β ∈ C1(K ) given by

α = {{3, 8}, {8, 9}, {9, 3}} and β = {{5, 7}, {7, 9}, {9, 5}} . (2.4.10)

The bold lines describe two 1-cochains a, b ∈ C1(K ) defined as

a = {{4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 5}} (2.4.11)

and

b = {{2, 3}, {3, 6}, {6, 8}, {8, 7}, {7, 9}, {9, 2}} . (2.4.12)

http://dx.doi.org/10.1007/978-3-319-09354-3_3
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Fig. 2.4 Two copies of a triangulation of the Klein bottle K , showing generators of H1(K ) and
H1(K )

One checks that ∂α = ∂β = 0 and that δa = δb = 0. Therefore, they represent
classes a, b ∈ H1(K ) and α,β ∈ H1(K ). The equalities

〈a,α〉 = 1 , 〈a,β〉 = 1 , 〈b,α〉 = 0 , 〈b,β〉 = 1

imply that a, b is a basis of H1(K ) and α,β is a basis of H1(K ).
As in the case of T 2, we may regard a and b as 1-chains (call them ã and b̃). Here

∂b̃ = 0 but ∂ã = {4} + {5} �= 0.

Other Surfaces

Let K1 and K2 be two simplicial complexes such that |K1| and |K2| are surfaces. A
simplicial complex L with |L| homeomorphic to the connected sum |K1|�|K2| may
be obtained in the following way: choose 2-simplexes σ1 ∈ K1 and σ2 ∈ K2. Let
Li = Ki − σi and let L be obtained by taking the disjoint union of L1 and L2 and
identifying σ̇1 with σ̇2. Thus, L = L1 ∪ L2 and L0 = L1 ∩ L2 is isomorphic to the
boundary of a 2-simplex.

By Lemma2.4.10, one has

χ(L) = χ(L1) + χ(L2) − χ(L0)

= χ(K1) − 1 + χ(K2) − 1 − 0

= χ(K1) + χ(K2) − 2 . (2.4.13)

The orientable surface �g of genus g is defined as the connected sum of g copies
of the torus T 2. By Formula (2.4.13), one has

χ(�g) = 2 − 2g . (2.4.14)
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As �g is a 2-dimensional connected pseudomanifold, one has

Pt (�g) = 1 + 2gt + t2 .

The nonorientable surface �̄g of genus g is defined as the connected sum of g
copies ofRP2. For instance, �̄1 = RP2 and �̄2 is the Klein bottle. Formula (2.4.13)
implies

χ(�̄g) = 2 − g . (2.4.15)

As �̄g is a 2-dimensional connected pseudomanifold, one has

Pt (�̄g) = 1 + gt + t2 .

2.5 The Homomorphism Induced by a Simplicial Map

Let f : K → L be a simplicialmap between the simplicial complexes K and L . Recall
that f is given by a map f : V (K ) → V (L) such that f (σ) ∈ S(L) if σ ∈ S(K ), i.e.
the image of an m-simplex of K is an n-simplex of L with n ≤ m. We define C∗ f :
C∗(K ) → C∗(L) as the degree 0 linear map such that, for all σ ∈ Sm(K ), one has

C∗ f (σ) =
{

f (σ) if f (σ) ∈ Sm(L) (i.e. if f|σ is injective)

0 otherwise.
(2.5.1)

We also define C∗ f : C∗(L) → C∗(K ) by setting, for a ∈ Cm(L),

C∗ f (a) = {

σ ∈ Sm(K ) | f (σ) ∈ a
}

. (2.5.2)

In the following lemma, we use the same notation for the (co)boundary operators ∂
and δ and the Kronecker product 〈 , 〉, both for K of for L .

Lemma 2.5.1 Let f : K → L be a simplicial map. Then

(a) C∗ f ◦∂ = ∂ ◦C∗ f .
(b) δ◦C∗ f = C∗ f ◦δ.
(c) 〈C∗ f (b),α〉 = 〈b, C∗ f (α)〉 for all b ∈ C∗(L) and all α ∈ C∗(K ).

In other words, the couple (C∗ f, C∗ f ) is a morphism of Kronecker pairs.

Proof To prove (a), let σ ∈ Sm(K ). If f restricted to σ is injective, it is straightfor-
ward thatC∗ f ◦∂(σ) = ∂ ◦C∗ f (σ). Otherwise,we have to show thatC∗ f ◦∂(σ) = 0.
Let us label the vertices v0, v1, . . . , vm of σ in such a way that f (v0) = f (v1).
Then, C∗ f ◦∂(σ) is a sum of two terms: C∗ f ◦∂(σ) = C∗ f (τ0) + C∗ f (τ1), where
τ0 = {v1, v2, . . . , vm} and τ1 = {v0, v2, . . . , vm}. As C∗ f (τ0) = C∗ f (τ1), one has
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C∗ f ◦∂(σ) = 0. Thus, Point (a) is established. Point (c) can be easily deduced from
Definitions (2.5.1) and (2.5.2), taking for α a simplex of K . Point (b) then follows
from Points (a) and (c), using Lemma2.3.6 and its proof. �

By Lemma2.5.1 and Proposition2.3.5, the couple (C∗ f, C∗ f ) determines linear
maps of degree zero

H∗ f : H∗(K ) → H∗(L) and H∗ f : H∗(L) → H∗(K )

such that

〈H∗ f (a),α〉 = 〈a, H∗ f (α)〉 for all a ∈ H∗(L) and α ∈ H∗(K ) . (2.5.3)

Lemma 2.5.2 (Functoriality) Let f : ZK → L and g: L → M be simplicial maps.
Then H∗(g◦ f ) = H∗g ◦ H∗ f and H∗(g◦ f ) = H∗ f ◦ H∗g. Also H∗idK = idH∗(K )

and H∗idK = idH∗(K )

In other words, H∗ and H∗ are functors from the simplicial category Simp to the
category GrV of graded vector spaces and degree 0 linear maps. The cohomology
is contravariant and the homology is covariant.

Proof For σ ∈ S(K ), the formula C∗(g◦ f )(σ) = C∗g ◦C∗ f (σ) follows directly
from Definition (2.5.1). Therefore C∗(g◦ f ) = C∗g ◦C∗ f and then H∗(g◦ f ) =
H∗g ◦ H∗ f . The corresponding formulae for cochains and cohomology follow from
Point (c) of Lemma2.5.1. The formulae for idK is obvious. �

Simplicial maps and components. Let K be a simplicial complex. For each
component L ∈ π0(K ) of K , the inclusion iL : L → K is a simplicial map. The
results of Sect. 2.4.1 may be strengthened as follows.

Proposition 2.5.3 Let K be a simplicial complex. The family of simplicial maps iL:
L → K for L ∈ π0(K ) gives rise to isomorphisms

H∗(K )
(H∗iL )

≈
��

∏

L∈π0(K ) H∗(L)

and

⊕

L∈π0(K ) H∗(L)

∑
H∗iL

≈
�� H∗(K ) .

The homomorphisms H0 f and H0 f . We use the same notation 1 ∈ H0(K ) and
1 ∈ H0(L) for the classes given by the unit cochains.

Lemma 2.5.4 Let f : K → L be a simplicial map. Then H0 f (1) = 1.

Proof The formula C0 f (1) = 1 in C0(K ) follows directly from Definition
(2.5.2). �
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Corollary 2.5.5 Let f : K → L be a simplicial map with K and L connected. Then

H0 f : Z2 = H0(L) → H0(K ) = Z2

and

H0 f : Z2 = H0(K ) → H0(L) = Z2

are the identity isomorphism.

Proof By Proposition2.4.1, the generator of H0(L) (or H0(K )) is the unit cocycle
1. By Lemma2.5.4, this proves the cohomology statement. The homology statement
also follows from Proposition2.4.1, since H0(K ) and H0(L) are generated by a cycle
consisting of a single vertex. �

More generally, one has H0(L)≈Z
π0(L)
2 and H0(K )≈Z

π0(K )
2 byCorollary2.4.2.

Using this and Lemma2.5.4, one gets the following corollary.

Corollary 2.5.6 Let f : K → L be a simplicial map. Then H0 f : Zπ0(L)
2 → Z

π0(K )
2

is given by H0 f (λ) = λ◦π0 f .

The degree of a map. Let f : K → L be a simplicial map between two finite
connected n-dimensional pseudomanifolds. Define the degree deg( f ) ∈ Z2 by

deg( f ) =
{

0 if Hn f = 0

1 otherwise.
(2.5.4)

By Proposition2.4.4, Hn(K ) ≈ Hn(L) ≈ Z2. Thus, deg( f ) = 1 if and only if
Hn f is the (only possible) isomorphism between Hn(K ) and Hn(L). By Kronecker
duality, the homomorphism Hn f may be used instead of Hn f in the definition
of deg( f ). Our degree is sometimes called the mod 2 degree, since, for oriented
pseudomanifolds, it is the mod 2 reduction of a degree defined in Z (see, e.g. [179,
Exercises of Chap.4]).

Let f : K → L be a simplicial map between two finite n-dimensional pseudo-
manifolds. For σ ∈ Sn(L), define

d( f,σ) = �{τ ∈ Sn(K ) | f (τ ) = σ} ∈ N. (2.5.5)

As an example, let K = L = P4, the polygon of Example2.4.3 with 4 edges. Let
f be defined by f (0) = 0, f (1) = 1, f (2) = 2, f (3) = 1. Then, d( f, {0, 1}) =
d( f, {1, 2}) = 2, d( f, {2, 3}) = d( f, {3, 0}) = 0 and deg( f ) = 0. This example
illustrates the following proposition.

Proposition 2.5.7 Let f : K → L be a simplicial map between two finite n-
dimensional pseudomanifolds which are connected. For any σ ∈ Sn(L), one has

deg( f ) = d( f,σ) mod 2 .
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Proof By Proposition2.4.4, Hn(L) = Z2 is generated by the cocycle formed by the
singleton σ and Cn f (σ) represents the non-zero element of Hn(K ) if and only if
�Cn f (σ) = d( f,σ) is odd. �

The interest of Proposition2.5.7 is 2-fold: first, it tells us that deg( f ) may be
computed using any σ ∈ Sm(L) and, second, it asserts that d( f,σ) is independent of
σ. Proposition2.5.7 is themod 2 context of the identity between the degree introduced
by Brouwer in 1910, [22, p.419], and its homological interpretation due to Hopf in
1930, [98, Sect. 2]. For a history of the notion of the degree of a map, see [40,
pp.169–175].

Example 2.5.8 Let f : T 2 → K be the two-fold cover of the Klein bottle K by the
2-torus T 2, given in Fig. 2.5. In formulae: f (i) = i = f (ī) for i = 1, . . . , 9.

The 1-dimensional (co)homology vector spaces of T 2 and K admit the bases:

(i) Ṽ = {[ã], [b̃]} ⊂ H1(T 2), where ã is drawn in Fig. 2.5 and

b̃ = {{2, 3}, {3, 6}, {6, 8}, {8, 7}, {7, 9}, {9, 2}} .

(ii) W̃ = {[α̃], [β̃]} ⊂ H1(T 2), where α̃ is drawn in Fig. 2.5 and

β̃ = {{5, 7}, {7, 9}, {9, 4̄}, {4̄, 7̄}, {7̄, 9̄}, {9̄, 5}} .

(iii) V = {[a], [b]} ⊂ H1(K ), where a and b are defined inEqs. (2.4.11) and (2.4.12)
(a drawn in Fig. 2.5).

(iv) W = {[α], [β]} ⊂ H1(K ), where α and β are defined in Eq. (2.4.10) (α drawn
in Fig. 2.5).

The matrices for C∗ f and C∗ f in these bases are

C∗ f =
(

1 0
0 0

)

and C∗ f =
(

1 0
0 0

)

.

Note that, under the isomorphism k: H1(−)
≈−→ H1(−)�, the bases Ṽ and V are dual

of W̃ and W; therefore, the matrix of C∗ f is the transposed of that of C∗ f .

f
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Fig. 2.5 Two-fold cover f : T 2 → K over the triangulation K of the Klein bottle given in Fig. 2.4
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Now, T 2 and K are 2-dimensional pseudomanifolds and d( f,σ) = 2 for each
σ ∈ S2(K ). By Proposition2.5.7, deg( f ) = 0 and both H∗ f : H2(K ) → H2(T 2)

and H∗ f : H2(T 2) → H2(K ) vanish.

Contiguous maps. Two simplicial maps f, g: K → L are called contiguous if
f (σ) ∪ g(σ) ∈ S(L) for all σ ∈ S(K ). We denote by τ (σ) the subcomplex of L
generated by the simplex f (σ)∪g(σ) ∈ S(L). For example, the inclusion K ↪→ C K
of a simplicial complex K into its cone and the constant map of K onto the cone
vertex of C K are contiguous.

Proposition 2.5.9 Let f, g: K → L be two simplicial maps which are contiguous.
Then H∗ f = H∗g and H∗ f = H∗g.

Proof ByKroneckerDuality, usingDiagram(2.3.4), it is enough to prove that H∗ f =
H∗g. By induction on m, we shall prove the following property:

Property H(m): there exists a linear map D: Cm(K ) → Cm+1(L) such that:

(i) ∂D(α) + D(∂α) = C∗ f (α) + C∗g(α) for each α ∈ Cm(K ).
(ii) for each σ ∈ Sm(K ), D(σ) ∈ Cm+1(τ (σ)) ⊂ Cm+1(L).

We first prove that PropertyH(m) for all m implies that H∗ f = H∗g. Indeed, we
would then have a linear map D: C∗(K ) → C∗+1(L) satisfying

C∗ f + C∗g = ∂ ◦ D + D◦∂ . (2.5.6)

Such a map D is called a chain homotopy from C∗ f to C∗g. Let β ∈ Z∗(K ). By
Eq. (2.5.6), one has C∗ f (β) + C∗g(β) = ∂D(β) which implies that H∗ f ([β]) +
H∗g([β]) in H∗(L).

We now prove thatH(0) holds true. We define D: C0(K ) → C1(L) as the unique
linear map such that, for v ∈ V (K ):

D({v}) =
{

{ f (v), g(v)} = τ ({v}) if f (v) �= g(v)

0 otherwise.

Formula (i) being true for any {v} ∈ S0(K ), it is true for any α ∈ C0(K ). Formula
(ii) is obvious.

Suppose that H(m − 1) holds true for m ≥ 1. We want to prove that H(m) also
holds true. Let σ ∈ Sm(K ). Observe that D(∂σ) exists by H(m − 1). Consider the
chain ζ ∈ Cm(L) defined by

ζ = C∗ f (σ) + C∗g(σ) + D(∂σ)

UsingH(m − 1), one has

∂ζ = ∂C∗ f (σ) + ∂C∗g(σ) + ∂D(∂σ)

= C∗ f (∂σ) + C∗g(∂σ) + D(∂∂σ) + C∗ f (∂σ) + C∗g(∂σ)

= 0 .
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On the other hand, ζ ∈ Cm(τ (σ)). As m ≥ 1, Hm(τ (σ)) = 0 by Corollary2.4.7.
There exists then η ∈ Cm+1(τ (σ)) such that ζ = ∂η. Choose such an η and set
D(σ) = η. This defines D: Cm(K ) → Cm+1(L) which satisfies (i) and (ii), proving
H(m). �

Remark 2.5.10 The chain homotopy D in the proof of Proposition2.5.9 is not explic-
itly defined. This is because several of these exist and there is no canonical way to
choose one (see [155, p. 68]). The proof of Proposition2.5.9 is an example of the
technique of acyclic carriers which will be developed in Sect. 2.9.

Remark 2.5.11 Let f, g: K → L be two simplicialmapswhich are contiguous. Then
| f |, |g|: |K | → |L| are homotopic. Indeed, the formula F(μ, t) = (1 − t)| f |(μ) +
t |g|(μ) (t ∈ [0, 1]) makes sense and defines a homotopy from | f | to |g|.

2.6 Exact Sequences

In this section, we develop techniques to obtain long (co)homology exact sequences
from short exact sequences of (co)chain complexes. The results are used in several
forthcoming sections. All vector spaces in this section are over a fixed arbitrary
field F.

Let (C∗
1 , δ1), (C

∗
2 , δ2) and (C∗, δ) be cochain complexes of vector spaces, giving

rise to cohomology graded vector spaces H∗
1 , H∗

2 and H∗. We consider morphisms
of cochain complexes J : C∗

1 → C∗ and I : C∗ → C∗
2 so that

0 → C∗
1

J−→ C∗ I−→ C∗
2 → 0 (2.6.1)

is an exact sequence. We call (2.6.1) a short exact sequence of cochain complexes.
Choose a GrV-morphism S: C∗

2 ↪→ C∗ which is a section of I . The section S cannot
be assumed in general to be a morphism of cochain complexes. The linear map δ◦ S:
Cm
2 → Cm+1 satisfies

I ◦δ◦ S(a) = δ2 ◦ I ◦ S(a) = δ2(a) ,

thus δ◦ S(Zm
2 ) ⊂ J (Cm+1

1 ). We can then define a linear map δ̃∗: Zm
2 → Cm+1

1 by
the equation

J ◦ δ̃∗ = δ◦ S . (2.6.2)

If a ∈ Zm
2 , then J ◦δ1(δ̃

∗(a)) = δ◦δ(S(a)) = 0. Therefore, δ̃∗(Zm
2 ) ⊂ Zm+1

1 .
Moreover, if b ∈ Cm−1

2 and a = δ2(b), then

I ◦δ◦ S(b) = δ2 ◦ I ◦ S(b) = a ,
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whence δ◦ S(b) = S(a) + J (c) for some c ∈ Cm
1 . Therefore δ̃∗(a) = δ1(c), which

shows that δ̃∗(B∗
2 ) ⊂ B∗

1 . Hence, δ̃
∗ induces a linear map

δ∗ : H∗
2 → H∗+1

1

which is called the cohomology connecting homomorphism for the short exact
sequence (2.6.1).

Lemma 2.6.1 The connecting homomorphism δ∗ : H∗
2 → H∗+1

1 does not depend
on the linear section S.

Proof Let S′: Cm
2 → Cm be another section of I , giving rise to δ̃′∗: Zm

2 → Zm+1
1 ,

via the equation J ◦ δ̃′∗ = δ◦ S′. Let a ∈ Zm
2 . Then

S′(a) = S(a) + J (u)

for some u ∈ Cm
1 . Therefore, the equations

J ◦ δ̃′∗(a) = δ(S(a)) + δ(J (u)) = δ(S(a)) + J (δ1(u))

hold in Cm+1. This implies that δ̃′∗(a) = δ̃∗(a) + δ1(u) in Zm+1
1 , and then δ′∗(a) =

δ∗(a) in Hm+1
1 . �

Proposition 2.6.2 The long sequence

· · · → Hm
1

H∗ J−−→ Hm H∗ I−−→ Hm
2

δ∗−→ Hm+1
1

H∗ J−−→ · · ·

is exact.

The exact sequence of Proposition2.6.2 is called the cohomology exact sequence,
associated to the short exact of cochain complexes (2.6.1).

Proof The proof involves 6 steps.

1. H∗ I ◦ H∗ J = 0 As H∗ I ◦ H∗ J = H∗(I ◦ J ), this comes from that I ◦ J = 0.
2. δ∗ ◦ H∗ I = 0 Let b ∈ Zm . Then I (b+ S(I (b))) = 0. Hence, b+ S(I (b)) = J (c)

for some c ∈ Cm
1 . Therefore,

J ◦ δ̃∗ ◦ I (b) = δ(S(I (b)) = δ(b + J (c)) = δ(b) + J ◦δ1(c) = J ◦δ1(c) ,

which proves that δ̃∗ ◦ I (b) = δ1(c), and then δ∗ ◦ H∗ I = 0 in H∗
1 .

3. H∗ J ◦δ∗=0Leta ∈ Zm
2 . Then, J ◦ δ̃∗(a) = δ(S(a)) ⊂ Bm+1, so H∗ J ◦δ∗([a]) =

0 in Hm+1(K ).
4. ker H∗ J ⊂ Image δ∗ Let a ∈ Zm+1

1 representing [a] ∈ ker H∗ J . This means
that J (a) = δ(b) for some b ∈ Cm . Then, I (b) ∈ Zm

2 and S(I (b)) = b + J (c)
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for some c ∈ Cm
1 . Therefore,

δ◦ S ◦ I (b) = δ(b) + δ(J (c)) = J (a) + J (δ1(c)) .

As J is injective, this implies that δ̃∗(I (c)) = a + δ1(c), proving that
δ∗([I (c)]) = [a].

5. ker H∗ I ⊂ Image H∗ J Let a ∈ Zm representing [a] ∈ ker H∗ I . This means that
I (a) = δ2(b) for some b ∈ Cm−1

2 . Let c = δ(S(b)) ∈ Cm . One has I (a +c) = 0,
so a +c = J (e) for some e ∈ Cm

1 . As δ(a +c) = 0 and J is injective, the cochain
e is in Zm

1 . As c ∈ Bm , H∗ J ([e]) = [a] in Hm .
6. ker δ∗ ⊂ Image H∗ I Let a ∈ Zm

2 representing [a] ∈ ker δ∗. This means that
δ̃∗(a) = δ1(b) for some b ∈ Cm

1 . In other words,

δ(S(a)) = J (δ1(b)) = δ(J (b)) .

Hence, c = J (b) + S(a) ∈ Zm and H∗ I ([c]) = [a]. �
We now prove the naturality of the connecting homomorphism in cohomology.

We are helped by the following intuitive interpretation of δ∗: first, we consider C∗
1

a cochain subcomplex of C∗ via the injection J . Second, a cocycle a ∈ Zm
2 may be

represented by a cochain in ã ∈ Cm such that δ(ã) ∈ C∗
1 . Then, δ

∗([a]) = [δ(ã)].
More precisely:

Lemma 2.6.3 Let

0 → C∗
1

J−→ C∗ I−→ C∗
2 → 0

be a short exact sequence of cochain complexes. Then

(a) I −1(Zm
2 ) = {b ∈ Cm | δ(b) ∈ J (Cm+1

1 )}.
(b) Let a ∈ Zm

2 representing [a] ∈ Hm
2 . Let b ∈ Cm with I (b) = a. Then δ∗([a]) =

[J−1(δ(b))] in Hm+1
1 .

Proof Point (a) follows from the fact that I is surjective and from the equality δ2 ◦ I =
I ◦δ. For Point (b), choose a section S: Cm

2 → Cm of I . By Lemma2.6.1, δ∗([a]) =
[J−1(δ(S(a))]. The equality I (b) = a implies that b = S(a) + J (c) for some
c ∈ Cm

1 . Therefore,

[J−1(δ(b))] = [J−1(δ◦ S(a))] + [δ1(c)] = δ∗([a]) . �

Let us consider a commutative diagram

0 �� C̄∗
1

F1
��

J̄ �� C̄∗

F
��

Ī �� C̄∗
2

F2
��

�� 0

0 �� C∗
1

J �� C∗ I �� C∗
2

�� 0

(2.6.3)
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of morphisms of cochain complexes, where the horizontal sequences are exact. This
gives rise to two connecting homomorphisms δ̄∗: H̄∗

2 → H̄∗+1
1 and δ∗: H∗

2 → H∗+1
1 .

Lemma 2.6.4 (Naturality of the cohomology exact sequence) The diagram

· · · �� H̄m
1

H∗ F1
��

H∗ J̄ �� H̄m

H∗ F
��

H∗ Ī �� H̄m
2

H∗ F2
��

δ̄∗
�� H̄m+1

1

H∗ F1
��

H∗ J̄ �� · · ·

. . . �� Hm
1

H∗ J �� Hm H∗ I �� Hm
2

δ∗
�� Hm+1

1
H∗ J �� · · ·

is commutative.

Proof The commutativity of two of the square diagrams follows from the func-
toriality of the cohomology: H∗F ◦ H∗ J̄ = H∗ J ◦ H∗F1 since F ◦ J̄ = J ◦ F1
and H∗F2 ◦ H∗ Ī = H∗ I ◦ H∗F since F2 ◦ Ī = I ◦ F . It remains to prove that
H∗F1 ◦ δ̄∗ = H∗δ∗ ◦ F2.

Let a ∈ Z̄m
2 representing [a] ∈ H̄m

2 . Let b ∈ C̄m with Ī (b) = a. Then, I ◦ F(b) =
F2(a). Using Lemma2.6.3, one has

δ∗ ◦ H∗F2([a]) = [J−1 ◦δ◦ F(b)]
= [J−1 ◦ F ◦ δ̄(b)]
= [F1 ◦ J̄−1 ◦ δ̄(b)]
= H∗F1 ◦ δ̄∗([a]) . �

We are now interested in the case where the cochain complexes (C∗
i , δi ) and

(C∗, δ) are parts of Kronecker pairs

P1 = (

(C∗
1 , δ1), (C∗,1, ∂1), 〈 , 〉1

)

, P2 = (

(C∗
2 , δ2), (C∗,2, ∂2)〈 , 〉2

)

and

P = (

(C∗, δ), (C∗, ∂), 〈 , 〉) .

Let us consider two morphism of Kronecker pairs, (J, j) from P to P1 and (I, i)
from P2 to P . We suppose that the two sequences

0 → C∗
1

J−→ C∗ I−→ C∗
2 → 0 (2.6.4)

and

0 → C∗,2
i−→ C∗

j−→ C∗,1 → 0 (2.6.5)
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are exact sequences of (co)chain complexes. Note that, by Lemma2.3.8, (2.6.4) is
exact if and only if (2.6.5) is exact. Exact sequence (2.6.4) gives rise to the coho-
mology connecting homomorphism δ∗: H∗

2 → H∗+1
1 . We construct a homology

connecting homomorphism in the same way. Choose a linear section s: C∗,1 → C∗
of j , not required to be a morphism of chain complexes. As in the cohomology
setting, one can defines ∂̃∗: Zm+1,1 → Zm,2 by the equation

i ◦ ∂̃∗ = ∂ ◦s . (2.6.6)

We check that ∂̃∗(Bm+1,1) ⊂ Bm,2. Hence ∂̃∗ induces a linear map

∂∗ : H∗+1,1 → H∗,2

called the homology connecting homomorphism for the short exact sequence (2.6.5).

Lemma 2.6.5 The connecting homomorphism ∂∗: H∗+1,1 → H∗,2 does not depend
on the linear section s.

Proof The proof is analogous to that of Lemma2.6.1 and is left as an exercise to the
reader. �
Lemma 2.6.6 The connecting homomorphisms δ∗: Hm

2 → Hm+1
1 and ∂∗: Hm+1,1

→ Hm,1 satisfy the equation

〈δ∗(a),α〉1 = 〈a, ∂∗(α)〉2
for all a ∈ Hm

2 , α ∈ Hm+1,1 and all m ∈ N. In other words, (δ∗, ∂∗) is a morphism
of Kronecker pairs from (H∗

1 , H∗,1, 〈 , 〉1) to (H∗
2 , H∗,2, 〈 , 〉2).

Proof Let ã ∈ Zm
2 represent a and α̃ ∈ Zm+1,1 represent α. Choose linear sections

S and s of I and j . Using Formulae (2.6.2) and (2.6.6), one has

〈δ∗(a),α〉1 = 〈δ̃∗(ã), α̃〉1
= 〈δ̃∗(ã), j ◦s(α̃)〉1
= 〈J ◦ δ̃∗(ã), s(α̃)〉
= 〈S(ã), ∂ ◦s(α̃)〉
= 〈S(ã), i ◦ ∂̃∗(α̃)〉
= 〈I ◦ S(ã), ∂̃∗(α̃)〉2
= 〈ã, ∂̃∗(α̃)〉2 = 〈a, ∂∗(α)〉2 . �

Proposition 2.6.7 The long sequence

· · · → Hm,2
H∗i−−→ Hm

H∗ j−−→ Hm,1
∂∗−→ Hm−1,2

H∗i−−→ · · ·

is exact.
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The exact sequence of Proposition2.6.7 is called the homology exact sequence asso-
ciated to the short exact of chain complexes (2.6.5). It can be established directly, in
an analogous way to that of Proposition2.6.2. To make a change, we shall deduce
Proposition2.6.7 from Proposition2.6.2 by Kronecker duality.

Proof Byour hypotheses couples (I, i) and (J, j) aremorphisms ofKronecker pairs,
and so is (δ∗, ∂∗) by Lemma2.6.6. Using Diagram(2.3.4), we get a commutative
diagram

· · · (Hm,2)
��� (Hm)�

(H∗i)��� (Hm,1)
�

(H∗ j)��� H �
m−1,2

∂
�∗�� · · ·��

· · · Hm
1

��

k≈
��

HmH∗ I��

k≈
��

Hm
1

H∗ J��

k≈
��

Hm−1
2

δ∗
��

k≈
��

· · ·��

.

By Proposition2.6.2, the bottom sequence of the above diagram is exact. Thus,
the top sequence is exact. By Lemma2.3.8, the sequence of Proposition2.6.7 is
exact. �

Let us consider commutative diagrams

0 �� C̄∗
1

F1
��

J̄ �� C̄∗

F
��

Ī �� C̄∗
2

F2
��

�� 0

0 �� C∗
1

J �� C∗ I �� C∗
2

�� 0

(2.6.7)

and

0 C̄∗,1
�� C̄∗

j̄�� C̄∗,2
ī�� 0��

0 C∗,1��

f1

��

C∗
j��

f

��

C∗,2
i��

f2

��

0��

(2.6.8)

such that the horizontal sequences are exact, Fi and F are morphisms of cochain
complexes and fi and f are morphisms of cochain complexes.

Lemma 2.6.8 (Naturality of the homology exact sequence) Suppose that (Fi , fi )

and (F, f ) are morphisms of Kronecker pairs. Then, the diagram

· · · �� Hm,2

H∗ f2
��

H∗i �� Hm

H∗ f
��

H∗ j �� Hm,1

H∗ f1
��

∂∗ �� Hm−1,2

H∗ f2
��

H∗i �� · · ·

. . . �� H̄m,2
H∗ ī �� H̄m

H∗ j̄ �� H̄m,1
∂̄∗ �� H̄m−1,2

H∗ ī �� · · ·

is commutative.
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Proof By functoriality of the homology, the square diagrams not involving ∂∗ com-
mute. It remains to show that ∂̄∗ ◦ H∗ f1=H∗ f2 ◦∂∗. As H∗F1 ◦ δ̄∗=δ∗ ◦ H∗F2 by
Lemma2.6.4, one has

〈a, ∂̄∗ ◦ H∗ f1(α)〉2 = 〈H∗F1 ◦ δ̄∗(a), α〉1 = 〈δ∗ ◦ H∗F2(a), α〉1 = 〈a, H∗ f1 ◦∂∗(α)〉2
for all a ∈ H̄m−1

2 and α ∈ Hm,1. By Lemma2.3.3, this implies that ∂̄∗ ◦ H∗ f1 =
H∗ f2 ◦∂∗. �

2.7 Relative (Co)homology

A simplicial pair is a couple (K , L) where K is a simplicial complex and L is a
subcomplex of K . The inclusion i : L ↪→ K is a simplicial map. Let a ∈ Cm(K ).
If, using Definition2.2.1a of Sect. 2.2, we consider a as a subset of Sm(K ), then
C∗i(a) = a ∩ Sm(L). If we see a as a map a: Sm(K ) → Z2, then C∗i(a) is the
restriction of a to Sm(L). We see that C∗i : C∗(K ) → C∗(L) is surjective. Define

Cm(K , L) = ker
(

Cm(K )
C∗i−−→ Cm(L)

)

and C∗(K , L) = ⊕m∈NCm(K , L). This definition implies that

• Cm(K , L) is the set of subsets of Sm(K ) − Sm(L);
• if K is a finite simplicial complex, Cm(K , L) is the vector space with basis
Sm(K ) − Sm(L).

AsC∗i is amorphism of cochain complexes, the coboundary δ:C∗(K ) → C∗(K )

preservesC∗(K , L) and gives rise to a coboundary δ:C∗(K , L) → C∗(K , L) so that
(C∗(K , L), δ) is a cochain complex. The cocycles Z∗(K , L) and the coboundaries
B∗(K , L) are defined as usual, giving rise to the definition

Hm(K , L) = Zm(K , L)/Bm(K , L) .

The graded Z2-vector space H∗(K , L) = ⊕m∈NHm(K , L) is the simplicial relative
cohomology of the simplicial pair (K , L).

When useful, the notations δK , δL and δK ,L are used for the coboundaries of the
cochain complexes C∗(K ), C∗(L) and C∗(K , L). We denote by j∗ the inclusion j∗:
C∗(K , L) ↪→ C∗(K ), which is a morphism of cochain complexes, and use the same
notation j∗ for the induced linear map j∗: H∗(K , L) → H∗(K ) on cohomology.
We also use the notation i∗ for both C∗i and H∗i . We get thus a short exact sequence
of cochain complexes

0 → C∗(K , L)
j∗−→ C∗(K )

i∗−→ C∗(L) → 0 . (2.7.1)
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If a ∈ Cm(L), any cochain ā ∈ Cm(K ) with i∗(ā) = a is called a extension of
a as a cochain in K . For instance, the 0-extension of a is defined by ā = a ∈
Sm(L) ⊂ Sm(K ). Using Sect. 2.6, Exact sequence (2.7.1) gives rise to a (simplicial
cohomology) connecting homomorphism

δ∗ : H∗(L) → H∗+1(K , L) .

It is induced by a linear map δ̃∗: Zm(L) → Zm+1(K , L) characterized by the
equation j∗ ◦ δ̃∗ = δK ◦ S for some (or any) linear section S: Cm(L) → Cm(K ) of i∗,
not required to be a morphism of cochain complex. For instance, one can take S(a)

to be the 0-extension of a. Using that C∗(K , L) is a chain subcomplex of C∗(K ),
the following statement makes sense and constitutes a useful recipe for computing
the connecting homomorphism δ∗.

Lemma 2.7.1 Let a ∈ Zm(L) and let ā ∈ Cm(K ) be any extension of a as an
m-cochain of K . Then, δK (ā) is an (m + 1)-cocycle of (K , L) representing δ∗(a).

Proof Choose a linear section S: Cm(L) → Cm(K ) such that S(a) = ā. The
equation j∗ ◦ δ̃∗ = δK ◦ S proves the lemma. �

We can now use Proposition2.6.2 and get the following result.

Proposition 2.7.2 The long sequence

· · · → Hm(K , L)
j∗−→ Hm(K )

i∗−→ Hm(L)
δ∗−→ Hm+1(K , L)

j∗−→ · · ·

is exact.

The exact sequence of Proposition2.7.2 is called the simplicial cohomology exact
sequence, or just the simplicial cohomology sequence, of the simplicial pair (K , L).

We now turn our interest to homology. The inclusion L ↪→ K induces an inclu-
sion i∗: C∗(L) ↪→ C∗(K ) of chain complexes. We define Cm(K , L) as the quotient
vector space

Cm(K , L) = coker
(

i∗ : Cm(L) ↪→ Cm(K )
)

.

As i∗ is a morphism of chain complexes, C∗(K , L) = ⊕m∈NCm(K , L) inherits
a boundary operator ∂ = ∂K ,L : C∗(K , L) → C∗−1(K , L). The projection j∗:
C∗(K ) → C∗(K , L) is a morphism of chain complexes and one gets a short exact
sequence of chain complexes

0 → C∗(L)
i∗−→ C∗(K )

j∗−→ C∗(K , L) → 0 . (2.7.2)

The cycles and boundaries Z∗(K , L) and B∗(K , L) are defined as usual, giving rise
to the definition
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Hm(K , L) = Zm(K , L)/Bm(K , L) .

The graded Z2-vector space H∗(K , L) = ⊕m∈NHm(K , L) is the relative homology
of the simplicial pair (K , L). As before, the notations ∂K and ∂L may be used for the
boundary operators in C∗(K ) and C∗(L) and i∗ and j∗ are also used for the induced
maps in homology.

Since the linear map i∗: C∗(L) ↪→ C∗(K ) is induced by the inclusion of bases
S(L) ↪→ S(K ), the quotient vector space C∗(K , L)may be considered as the vector
space with basis S(K ) − S(L). This point of view provides a tautological linear
map s: C∗(K , L) → C∗(K ), which is a section of j∗ but not a morphism of chain
complexes.

The Kronecker pairings for K and L are denoted by 〈 , 〉K and 〈 , 〉L , both at the
levels of (co)chains and of (co)homology. As 〈 j∗(K , L), i∗(L)〉K = 0, we get a
bilinear map

Cm(K , L) × Cm(K , L)
〈,〉K ,L−−−→ Z2 .

The formula

〈a,α〉K ,L = 〈 j∗(a), s(α)〉K (2.7.3)

holds for all a ∈ Cm(K , L), α ∈ Cm(K , L) and all m ∈ N. Observe also that the
formula

〈S(b), i∗(β)〉K = 〈b,β〉L (2.7.4)

holds for all b ∈ Cm(L), β ∈ Cm(L) and all m ∈ N.

Lemma 2.7.3
(

C∗(K , L), δK ,L , C∗(K , L), ∂K ,L , 〈 , 〉K ,L
)

is a Kronecker pair.

Proof We first prove that 〈δK ,L(a),α〉K ,L = 〈a, ∂K ,L(α)〉K ,L for all a ∈ Cm(K , L)

and all α ∈ Cm+1(K , L) and all m ∈ N. Indeed, one has

〈δK ,L(a),α〉K ,L = 〈 j∗ ◦δK ,L(a), s(α)〉K

= 〈δK ◦ j∗(a), s(α)〉K

= 〈 j∗(a), ∂K ◦s(α)〉K (2.7.5)

Observe that j∗ ◦∂K ◦s(α) = ∂K ,L(α) and therefore ∂K ◦s(α) = s ◦∂K ,L(α) + i∗(c)
for some c ∈ Cm(L). Hence, the chain of equalities in (2.7.5) may be continued

〈δK ,L(a),α〉K ,L = 〈 j∗(a), ∂K ◦s(α)〉K

= 〈 j∗(a), s ◦∂K ,L(α) + i∗(c)〉K

= 〈 j∗(a), s ◦∂K ,L(α)〉K + 〈 j∗(a), i∗(c)〉K
︸ ︷︷ ︸

0

= 〈a, ∂K ,L(α)〉K ,L . (2.7.6)
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It remains to prove that the linear map k: C∗(K , L) → C∗(K , L)� given by
k(a) = 〈a, 〉 is an isomorphism. As the inclusion i : L ↪→ K is a simplicial map, the
couple (C∗i, C∗i) is a morphism of Kronecker pairs by Lemma2.5.1 and the result
follows from Lemma2.3.9. �

Passing to homology then produces three Kronecker pairs with vanishing
(co)boundary operators:

PL = (H∗(L), H∗(L), 〈, 〉L), PK = (H∗(K ), H∗(K ), 〈, 〉K )

and

PK ,L = (H∗(K , L), H∗(K , L), 〈, 〉K ,L) .

UsingSect. 2.6, short exact sequence (2.7.2) gives rise to the (simplicial homology)
connecting homomorphism

∂∗ : H∗(K , L) → H∗−1(L) .

It is induced by a linearmap ∂̃: Zm(K , L) → Zm−1(L) characterized by the equation

j∗ ◦ ∂̃∗ = ∂K ◦s ,

using the section s of j∗ defined above (or any other one).

Lemma 2.7.4 The following couples are morphisms of Kronecker pairs:

(a) (i∗, i∗), from PL to PK .
(b) ( j∗, j∗), from PK to PK ,L .
(c) (δ∗, ∂∗), from PK ,L to PL .

Proof As the inclusion L ↪→ K is a simplicial map, Point (a) follows from
Lemma2.5.1. Point (c) is implied by Lemma2.6.6. To prove Point (b), let a ∈
Cm(K , L) andα ∈ Cm(K ). Observe that s( j∗(α)) = α+i∗(β) for some β ∈ Cm(L)

and that 〈 j∗(a), i∗(β)〉K = 0. Therefore:

〈a, j∗(α)〉K ,L = 〈 j∗(a), s ◦ j∗(α)〉K = 〈 j∗(a),α〉K �

Proposition2.6.7 now gives the following result.

Proposition 2.7.5 The long sequence

· · · → Hm(L)
i∗−→ Hm(K )

j∗−→ Hm(K , L)
∂∗−→ Hm−1(L)

i∗−→ · · ·

is exact.
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The exact sequence of Proposition2.7.5 is called the (simplicial) homology exact
sequence, or just the (simplicial) cohomology sequence, of the simplicial pair (K , L).

We now study the naturality of the (co)homology sequences. Let (K , L) and
(K ′, L ′) be simplicial pairs. A simplicial map f of simplicial pairs from (K , L)

to (K ′, L ′) is a simplicial map fK : K → K ′ such that the restriction of f to L
is a simplicial map fL : L → L ′. The morphism C∗ fK : C∗(K ′) → C∗(K ) then
restricts to a morphism of cochain complexes C∗ f : C∗(K ′, L ′) → C∗(K , L) and
themorphismC∗ fK :C∗(K ) → C∗(K ′) descends to amorphism of chain complexes
C∗ f : C∗(K , L) → C∗(K ′, L ′). The couples (C∗ fK , C∗ fK ) and (C∗ fL , C∗ fL) are
morphisms of Kronecker pairs by Lemma2.5.1. We claim that (C∗ f, C∗ f ) is a
morphism of Kronecker pair from (C∗(K , L), . . . ) to (C∗(K ′, L ′), . . . ). Indeed, let
a ∈ Cm(K ′, L ′) and α ∈ Cm(K , L). One has

〈C∗ f (a),α〉K ,L = 〈 j∗ ◦C∗ f (a), s(α)〉K

= 〈C∗ fK ◦ j ′∗(a), s(α)〉K

= 〈 j ′∗(a), C∗ fK ◦s(α)〉K ′

= 〈 j ′∗(a), C∗ fK ◦s(α)〉K ′ (2.7.7)

and

〈a, C∗ f (α)〉K ′,L ′ = 〈 j ′∗(a), s′ ◦C∗ f (α)〉K ′ (2.7.8)

The equation j ′∗ ◦s′ ◦C∗ f (α) = j ′∗ ◦C∗ fK ◦s(α) = ∗ f (α) implies that s′ ◦C∗
f (α) = C∗ fK ◦s(α) + i ′∗(β) for some β ∈ Cm(L ′). As 〈 j ′∗(a), i ′∗(β)〉K ′ = 0,
Equations (2.7.7) and (2.7.8) imply that 〈C∗ f (a),α〉K ,L = 〈a, C∗ f (α)〉K ′,L ′ .

Lemmas2.6.4 and 2.6.8 then imply the following

Proposition 2.7.6 The cohomology and homology sequences are natural with
respect to simplicial maps of simplicial pairs. In other words, given a simplicial
map of simplicial pairs f : (K , L) → (K ′, L ′), the following diagrams

· · · �� Hm (K ′, L ′)

H∗ f
��

j ′∗ �� Hm (K ′)

H∗ fK
��

i ′∗ �� Hm (L ′)

H∗ fL
��

δ′∗
�� Hm+1(K ′, L ′)

H∗ f
��

j ′∗ �� · · ·

. . . �� Hm (K , L)
j∗ �� Hm (K )

i∗ �� Hm (L)
δ∗

�� Hm+1(K , L)
j∗ �� · · ·

and

· · · �� Hm (L)

H∗ fL
��

i∗ �� Hm (K )

H∗ fK
��

j∗ �� Hm (K , L)

H∗ f
��

∂∗ �� Hm−1(L)

H∗ fL
��

i∗ �� · · ·

. . . �� Hm (L ′)
i ′∗ �� Hm (K ′)

j ′∗ �� Hm (K ′, L ′)
∂′∗ �� Hm−1(L ′)

i ′∗ �� · · ·

are commutative.
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We finish this section by the exact sequences for a triple. A simplicial triple is a
triplet (K , L , M) where K is a simplicial complex, L is a subcomplex of K and M
is a subcomplex of L . A simplicial map f of simplicial triples, from (K , L , M) to
(K ′, L ′, M ′) is a simplicial map fK : K → K ′ such that the restrictions of fK to L
and M are simplicial maps fL : L → L ′ and fM : M → M ′.

A simplicial triple T = (K , L , M) gives rise to pair inclusions

(L , M)
i−→ (K , M)

j−→ (K , L)

and to a commutative diagram

0 �� C∗(K , L)

C∗ j
��

j∗K ,L �� C∗(K )
��
id=

��

i∗K ,L �� C∗(L)

i∗L ,M����

�� 0

0 �� C∗(K , M)
j∗K ,M �� C∗(K )

i∗K ,M �� C∗(M) �� 0

(2.7.9)

where the horizontal lines are exact sequences of cochain complexes. A diagram-
chase shows that the morphism i∗K ,L ◦ j∗K ,M , which sends C∗(K , M) to C∗(L), has
image C∗(L , M) and kernel the image of C∗ j . This morphism coincides with C∗i .
We thus get a short exact sequence of cochain complexes

0 → C∗(K , L)
C∗ j−−→ C∗(K , M)

C∗i−−→ C∗(L , M) → 0 . (2.7.10)

The same arguments with the chain complexes gives a short exact sequence

0 → C∗(L , M)
C∗i−−→ C∗(K , M)

C∗ j−−→ C∗(K , L) → 0 . (2.7.11)

As above in this section, short exact sequences (2.7.10) and (2.7.11) produces con-
necting homomorphisms δT : H∗(L , M) → H∗+1(K , L) and ∂T : H∗(K , L) →
C∗−1(L , M). They satisfy 〈δT (a),α〉 = 〈a, ∂T (α)〉 as well as following proposition.
Proposition 2.7.7 ((Co)homology sequences of a simplicial triple)Let T = (K , L , M)

be a simplicial triple. Then,

(a) the sequences

· · · → Hm(K , L)
H∗ j−−−→ Hm(K , M)

H∗i−−→ Hm(L , M)
δT−→ Hm+1(K , L)

H∗ j−−−→ · · ·

and

· · · → Hm(L , M)
H∗i−−→ Hm(K , M)

H∗ j−−→ Hm(K , L)
∂T−→ Hm−1(L , M)

H∗i−−→ · · ·

are exact.
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(b) the exact sequences of Point (a) are natural for simplicial maps of simplicial
triples.

Remark 2.7.8 As H∗(∅) = 0, we get a canonical GrV-isomorphisms H∗(K ,∅)
≈−→

H∗(K ), etc. Thus, the (co)homology sequences for the triple (K , L ,∅) give back
those of the pair (K , L)

· · · → Hm(K , L)
H∗ j−−→ Hm(K )

H∗i−−→ Hm(L)
δ∗−→ Hm+1(K , L)

H∗ j−−→ · · ·
(2.7.12)

and

· · · → Hm(L)
H∗i−−→ Hm(K )

H∗ j−−→ Hm(K , L)
∂∗−→ Hm−1(L)

H∗i−−→ · · · (2.7.13)

where i : L → K and j : (K ,∅) → (K , L) denote the inclusions. This gives a more
precise description of the morphisms j∗ and j∗ of Propositions2.7.2 and2.7.5.

2.7.9 Historical note. The relative homology was introduced by S.Lefschetz in
1927 in order to work out the Poincaré duality for manifolds with boundary
(see, e.g. [40, p. 58], [51, p. 47]). The use of exact sequences occurred in several parts
of algebraic topology after 1941 (see, e.g. [40, p. 86], [51, p. 47]). The (co)homology
exact sequences play an essential role in the axiomatic approach of Eilenberg-
Steenrod, [51].

2.8 Mayer-Vietoris Sequences

Let K be a simplicial complex with two subcomplexes K1 and K2. We suppose that
K = K1 ∪ K2 (i.e. S(K ) = S(K1) ∪ S(K2)). We call (K , K1, K2) a simplicial
triad. Then, K0 = K1 ∩ K2 is a subcomplex of K1, K2 and K , with S(K0) =
S(K1)∩S(K2). The Mayer-Vietoris sequences relate the (co)homology of X to that
of Xi , generalizing Lemma2.4.10. The various inclusions are denoted as follows

K0

i2
��

i1 �� K1

j1
��

K2
j2 �� K .

(2.8.1)

The notations i∗1 , j∗1 , …, stand for both C∗i1, C∗ j1, etc, and H∗i1, H∗ j1, etc. The
same holds for chains and homology: i1∗ for bothC∗i1 and H∗i1, etc. Diagram(2.8.1)
induces two diagrams
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C∗(K )

j∗2 ����

j∗1 �� �� C∗(K1)

i∗1����
C∗(K2)

i∗2 �� �� C∗(K0)

and

C∗(K0)��
i2∗

��

�� i1∗ �� C∗(K1)��
j1∗

��
C∗(K2) �� j2∗ �� C∗(K ) .

The cohomology diagram is Cartesian (pullback) and the homology diagram is co-
Cartesian (pushout). Therefore, the sequence

0 → C∗(K )
( j∗1 , j∗2 )−−−−→ C∗(K1) ⊕ C∗(K2)

i∗1+i∗2−−−→ C∗(K0) → 0 (2.8.2)

is an exact sequence of cochain complexes and the sequence

0 → C∗(K0)
(i1∗,i2∗)−−−−→ C∗(K1) ⊕ C∗(K2)

j1∗+ j2∗−−−−→ C∗(K ) → 0 (2.8.3)

is an exact sequence of chain complexes.
Consider the Kronecker pairs (C∗(Ki ), C∗(Ki ), 〈 , 〉i ) for i = 0, 1, 2, and the

Kronecker pair (C∗(K ), C∗(K ), 〈 , 〉). A bilinear map

〈 , 〉⊕ : [

C∗(K1) ⊕ C∗(K2)
] × [

C∗(K1) ⊕ C∗(K2)
] → Z2

is defined by

〈(a1, a2), (α1,α2)〉⊕ = 〈a1,α1〉1 + 〈a2,α2〉2 .

We check that (C∗(K1) ⊕ C∗(K2), C∗(K1) ⊕ C∗(K2), 〈 , 〉⊕) is a Kronecker pair
and that the couples (( j∗1 , j∗2 ), j∗1 + j∗2 ) and (i∗1 + i∗2 , (i∗1 , i∗2 )) are morphisms of
Kronecker pairs. By Sect. 2.6, there exist linear maps δMV : H∗(K0) → H∗+1(K )

and ∂MV : H∗(K ) → H∗−1(K0) which, by Propositions2.6.2 and 2.6.7, give the
following proposition.

Proposition 2.8.1 (Mayer-Vietoris sequences) The long sequences

· · · → Hm(K )
( j∗1 , j∗2 )−−−−→ Hm(K1) ⊕ Hm(K2)

i∗1+i∗2−−−→ Hm(K0)
δMV−−−→ Hm+1(K ) → · · ·

and

· · · → Hm(K0)
(i1∗,i2∗)−−−−−→ Hm(K1) ⊕ Hm(K2)

j1∗+ j2∗−−−−−→ Hm(K )
∂MV−−−→ Hm−1(K0) → · · ·

are exact.

The homomorphisms δMV and ∂MV are called the Mayer-Vietoris connecting
homomorphisms in (co)homology. By Lemma2.6.6, they satisfy 〈δMV (a),α〉 =
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〈a, ∂MV (α)〉0 for all a ∈ Hm(K0), all α ∈ Hm+1(k) and all m ∈ N. To define the
connecting homomorphisms, one must choose a linear section S of i∗1 + i∗2 and s of
j1∗ + j2∗. One can choose S(a) = (S1(a), 0), where S1: C∗(K ) → C∗(K1) is the
tautological section of i∗1 given by the inclusion S(K0) ↪→ S(K1) (see Sect. 2.7). A
choice of s is given, for σ ∈ S(K ), by

s(σ) =
{

(σ, 0) if σ ∈ S(K1)

(0, 0) if σ /∈ S(K1) .

These choices produce linear maps δ̃MV : Z∗(K0) → Z∗+1(K ) and ∂̃MV : Z∗(K ) →
Z∗−1(K0), representing δMV and ∂MV and defined by the equations

( j∗1 , j∗2 )◦ δ̃MV = (δ1, δ2)◦ S and (i1∗, i2∗)◦ ∂̃MV = (∂1, ∂2)◦s .

(The apparent asymmetry of the choices has no effect by Lemma2.6.1 and its homol-
ogy counterpart: exchanging 1 and 2 produces other sections, giving rise to the same
connecting homomorphisms.)

Finally, the Mayer-Vietoris sequences are natural for maps of simplicial triads. If
T = (K , K1, K2) and T ′ = (K ′, K ′

1, K ′
2) are simplicial triads and if f : K → K ′

is a simplicial map such that f (Ki ) ⊂ K ′
i , then the Mayer Vietoris sequences of T

and T ′ are related by commutative diagrams, as in Proposition2.7.6. This is a direct
consequence of Lemmas2.6.4 and 2.6.8.

2.9 Appendix A: An Acyclic Carrier Result

The powerful technique of acyclic carrierswas introduced byEilenberg andMacLane
in 1953 [50], after earlier work by Lefschetz. Proposition2.9.1 below is a very par-
ticular example of this technique, adapted to our needs. For a full development of
acyclic carriers, see, e.g., [155, Chap.1,Sect. 13].

Let (C∗, ∂) and (C̄∗, ∂̄) be two chain complexes and let ϕ: C∗ → C̄∗ be a
morphism of chain complexes. We suppose that Cm is equipped with a basis Sm

for each m and denote by S the union of all Sm . An acyclic carrier A∗ for ϕ with
respect to the basis S is a correspondence which associates to each s ∈ S a subchain
complex A∗(s) of C̄∗ such that

(a) ϕ(s) ∈ A∗(s).
(b) H0(A∗(s)) = Z2 and Hm(A∗(s)) = 0 for m > 0.
(c) let s ∈ Sm and t ∈ Sm−1 such that t occurs in the expression of ∂ s in the basis

Sm−1. Then A∗(t) is a subchain complex of A∗(s) and the inclusion A∗(t) ⊂
A∗(s) induces an isomorphism on H0.

(d) if s ∈ S0 ⊂ C0 = Z0, then H0ϕ(s) �= 0 in H0(A∗(s)).
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Proposition 2.9.1 Let ϕ and ϕ′ be two morphisms of chain complexes from (C∗, ∂)

to (C̄∗, ∂̄). Suppose that ϕ and ϕ′ admit the same acyclic carrier A∗ with respect to
some basis S of C∗. Then H∗ϕ = H∗ϕ′.

Proof The proof is similar to that of Proposition2.5.9. By induction on m, we shall
prove the following property:

Property H(m): there exists a linear map D: Cm → C̄m+1 such that:

(i) ∂̄D(α) + D(∂α) = ϕ(α) + ϕ′(α) for all α ∈ Cm .
(ii) for each s ∈ Sm , D(s) ∈ Am+1(s).

PropertyH(m) for all m implies that H∗ϕ = H∗ϕ′. Indeed, we then have a linear
map D: C∗ → C̄∗+1 satisfying

ϕ + ϕ′ = ∂̄ ◦ D + D◦∂ . (2.9.1)

Let β ∈ Z∗. By Eq. (2.9.1), one has ϕ(β) + ϕ(β) = ∂̄D(β) which implies that
H∗ϕ([β]) + H∗ϕ′([β]) in H̄∗.

Let us prove H(0). Let s ∈ S0. In H0(A∗(s)) = Z2, one has H0ϕ(s) �= 0
and H0ϕ

′(s) �= 0. Therefore H∗ϕ(s) = H∗ϕ′(s) in H0(A∗(s)). This implies that
ϕ(s) + ϕ′(s) = ∂̄(ηs) for some ηs ∈ A1(s). We set D(s) = ηs . This procedure,
for each s ∈ S0, provides a linear map D: C0 → C̄1, which, as ∂C0 = 0, satisfies
ϕ(s) + ϕ′(s) = ∂̄D(α) + D(∂(α)).

We now prove that H(m − 1) implies H(m) for m ≥ 1. Let s ∈ Sm . The chain
D(∂s) exists in Am(s) by H(m − 1). Let ζ ∈ Am(s) defined by

ζ = ϕ(s) + ϕ′(s) + D(∂s)

Using H(m − 1), one checks that ∂ζ = 0. Since Hm(A∗(s)) = 0, there exists
ν ∈ Am+1(s) such that ζ = ∂ν. Choose such an element ν and set D(σ) = ν. This
defines D: Cm → C̄m+1 which satisfies (i) and (ii), proving H(m). �

2.10 Appendix B: Ordered Simplicial (Co)homology

This technical section may be skipped in a first reading. It shows that simplicial
(co)homology may be defined using larger sets of (co)chains, based on ordered
simplexes. This will be used for comparisons between simplicial and singular
(co)homology (see § 17) and to define the cup and cap products in Chap. 4.

Let K be a simplicial complex. Define

Ŝm(K ) = {(v0, . . . , vm) ∈ V (K )m+1 | {v0, . . . , vm} ∈ S(K )} .

Observe that dim{v0, . . . , vm} ≤ m andmay be strictly smaller if there are repetitions
amongst the vi ’s. An element of Ŝm(K ) is an ordered m-simplex of K .

http://dx.doi.org/10.1007/978-3-319-09354-3_4
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The definitions of ordered (co)chains and (co)homology are the same those for
the simplicial case (seeSect. 2.2), replacing the simplexes by the ordered simplexes.
We thus set

Definition 2.10.1 (subset definitions)

(a) An ordered m-cochain is a subset of Ŝm(K ).
(b) An ordered m-chain is a finite subset of Ŝm(K ).

The set of ordered m-cochains of K is denoted by Ĉm(K ) and that of ordered
m-chains by Ĉm(K ). As in Sect. 2.2, Definition2.10.1 are equivalent to

Definition 2.10.2 (colouring definitions)

(a) An ordered m-cochain is a function a: Ŝm(K ) → Z2.
(b) An ordered m-chain is a function α: Ŝm(K ) → Z2 with finite support.

Definition2.10.2 endow Ĉm(K ) and Ĉm(K )with a structure of aZ2-vector space.
The singletons provide a basis of Ĉm(K ), in bijection with Ŝm(K ). Thus, Definition
2.10.2.b is equivalent to

Definition 2.10.3 Ĉm(K ) is the Z2-vector space with basis Ŝm(K ):

Ĉm(X) =
⊕

σ∈Ŝm (X)

Z2 σ .

We consider the graded Z2-vector spaces Ĉ∗(K ) = ⊕m∈NĈm(K ) and Ĉ∗(K ) =
⊕m∈NĈm(K ). The Kronecker pairing on ordered (co)chains

Ĉm(K ) × Ĉm(K )
〈 , 〉−→ Z2

is defined, using the various above definitions, by the equivalent formulae

〈a,α〉 = �(a ∩ α) (mod 2) using Definition 2.10.1a and b

= ∑

σ∈α a(σ) using Definitions 2.10.1a and 2.10.2b

= ∑

σ∈Sm (K ) a(σ)α(σ) using Definitions 2.10.2a and b.
(2.10.1)

As in Lemma2.2.4, we check that the map k: Ĉm(K ) → Ĉm(K )�, given by k(a) =
〈a, 〉, is an isomorphism.

The boundary operator ∂̂: Ĉm(K ) → Ĉm−1(K ) is the Z2-linear map defined, for
(v0, . . . , vm) ∈ Ŝm(K ) by

∂̂(v0, . . . , vm) =
m

∑

i=0

(v0, . . . , v̂i , . . . , vm) , (2.10.2)
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where (v0, . . . , v̂i , . . . , vm) ∈ Ŝm−1 is the m-tuple obtained by removing vi . The
coboundary operator δ̂ : Cm(K ) → Cm+1(K ) is defined by the equation

〈δ̂a,α〉 = 〈a, ∂̂α〉 . (2.10.3)

With these definition, (Ĉ∗(K ), ∂̂, Ĉ∗(K ), δ̂, 〈 , 〉) is a Kronecker pair. We define
the vector spaces of ordered cycles Ẑ∗(K ), ordered boundaries B̂∗(K ), ordered cocy-
cles Ẑ∗(K ), ordered coboundaries B̂∗(K ), ordered homology Ĥ∗(K ) and ordered
cohomology Ĥ∗(K ) as in Sect. 2.3. By Proposition2.3.5, the pairing on (co)chain
descends to a pairing

Hm(K ) × Hm(K )
〈 , 〉−→ Z2

so that the map k: Ĥm → Ĥ �
m , given by k(a) = 〈a, 〉, is an isomorphism (ordered

Kronecker duality).

Example 2.10.4 Let K = pt be a point. Then, Ŝm(pt) contains one element for
each integer m, namely the (m + 1)-tuple (pt, . . . , pt). Then, Ĉm(pt) = Z2 for all
m ∈ N and the chain complex looks like

· · · ≈−→ Ĉ2k+1(pt)
0−→ Ĉ2k(pt)

≈−→ Ĉ2k−1(pt)
0−→ · · · ≈−→ Ĉ1(pt)

0−→ Ĉ0(pt) → 0 .

Therefore,

Ĥ∗(pt) ≈ Ĥ∗(pt) ≈
{

0 if ∗ > 0
Z2 if ∗ = 0 .

One sees that, for a simplicial complex reduced to a point, the ordered (co)homology
and the simplicial (co)homology are isomorphic.

Example 2.10.5 The unit cochain 1 ∈ Ĉ0(K ) is defined as 1 = Ŝ0(K ). It is a cocycle
and defines a class 1 = Ĥ0(K ). If K is non-empty and connected, then Ĥ0(K ) ≈ Z2
generated by 1. Then H0(K ) ≈ Z2 by Kronecker duality; one has Ẑ0(K ) = Ĉ0(K )

and α ∈ Ẑ0(K ) represents the non-zero element of H0(K ) if and only if �α is odd.
The proofs are the same as for Proposition2.4.1.

Example 2.10.6 Let L be a simplicial complex and C L be the cone on L . Then

Ĥ∗(C L) ≈ Ĥ∗(C L) ≈
{

0 if ∗ > 0
Z2 if ∗ = 0 .

The proof is the same as for Proposition2.4.6, even simpler, since D: Ĉm(C L) →
Ĉm+1(C L) is defined, for (v0, . . . , vm) ∈ Ŝm(C L) by the single line formula
D(v0, . . . , vm) = (∞, v0, . . . , vm).

Let f : L → K be a simplicial map. We define Ĉ∗ f : Ĉ∗(L) → Ĉ∗(K ) as the
degree 0 linear map such that
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Ĉ∗ f (v0, . . . , vm) = ( f (v0), . . . , f (vm))

for all (v0, . . . , vm) ∈ Ŝ(L). The degree 0 linear map Ĉ∗ f : Ĉ∗(K ) → Ĉ∗(L) is
defined by

〈Ĉ∗ f (a),α〉 = 〈a, Ĉ∗ f (α)〉 .

By Lemma2.3.6, (Ĉ∗ f, Ĉ∗ f ) is a morphism of Kronecker pairs.
We now construct a functorial isomorphism between the ordered and non-ordered

(co)homologies, its existence being suggested by the previous examples. Define ψ∗:
Ĉ∗(K ) → C∗(K ) by

ψ∗((v0, . . . , vm)) =
{

{v0, . . . , vm} if vi �= v j for all i �= j

0 otherwise.

We check thatψ is amorphismof chain complexes.Wedefineψ∗ : C∗(K ) → Ĉ∗(K )

by requiring that the equation 〈ψ∗(a),α〉 = 〈a,ψ∗(α)〉 holds for all a ∈ C∗(K )

and all α ∈ Ĉ∗(K ). By Lemma2.3.6, ψ∗ is a morphism of cochain complexes
and (ψ∗,ψ∗) is a morphism of Kronecker pairs between (Ĉ∗(K ), Ĉ∗(K )) and
(C∗(K ), C∗(K )). It thus defines a morphism of Kronecker pairs (H∗ψ, H∗ψ)

between (Ĥ∗(K ), Ĥ∗(K )) and (H∗(K ), H∗(K )).
To define amorphismofKronecker pairs in the other direction, choose a simplicial

order ≤ on K (see2.1.8). Define φ≤∗: C∗(K ) → Ĉ∗(K ) as the unique linear map
such that

φ≤∗({v0, . . . , vm}) = (v0, . . . , vm) ,

where v0 ≤ v1 ≤ · · · ≤ vm . We check that φ≤∗ is a morphism of chain complexes
and define φ≤∗: Ĉ∗(K ) → C∗(K ) by requiring that the equation 〈φ≤∗(a),α〉 =
〈a,φ≤∗(α)〉 holds for all a ∈ Ĉ∗(K ) and all α ∈ C∗(K ). By Lemma2.3.6,
(φ≤∗,φ≤∗) is amorphismofKronecker pairs between (C∗(K ), C∗(K )) and (Ĉ∗(K ),

Ĉ∗(K )). It then defines a morphism of Kronecker pairs (H∗φ≤, H∗φ≤) between
(H∗(K ), H∗(K )) and (Ĥ∗(K ), Ĥ∗(K )).

Proposition 2.10.7 H∗ψ◦ H∗φ≤ = idH∗(K ) and H∗φ≤ ◦ H∗ψ = idĤ∗(K )
.

Proof As ψ∗ ◦φ≤∗ = idC∗(K ), the first equality follows from Lemma2.3.7. For
the second one, let (v0, . . . , vm) ∈ Ŝm(K ). Let σ = {v0, . . . , vm} ∈ Sk(K ) with
k ≤ m. Clearly,φ≤∗◦ψ∗(v0, . . . , vm) ∈ Ĉ∗(σ̄). Bywhatwas seen in Examples2.10.5
and2.10.6, the correspondence (v0, . . . , vm) �→ Ĉ∗({v0, . . . , vm}) is an acyclic car-
rier A∗, with respect to the basis Ŝ∗(K ), for both idĈ(K )

and φ≤∗◦ψ∗. Therefore, the
equality H∗φ≤ ◦ H∗ψ = idĤ∗(K )

follows by Lemma2.3.7 and Proposition2.9.1.
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Applying Kronecker duality to Proposition2.10.7 gives the following

Corollary 2.10.8 H∗ψ◦ H∗φ≤ = idĤ∗(K )
and H∗φ≤ ◦ H∗ψ = idH∗(K ).

Corollary 2.10.9 H∗ψ and H∗ψ are isomorphisms.

Corollary 2.10.10 H∗φ≤ and H∗φ≤ are isomorphisms which do not depend on the
simplicial order ≤.

Proof This follows from Proposition2.10.7 and Corollary2.10.8, since H∗ψ and
H∗ψ do not depend on ≤. �

We shall see in Sect. 4.1 that H∗ψ and H∗φ≤ are isomorphisms of graded Z2-
algebras. We now prove that they are also natural with respect to simplicial maps.
Let f : L → K be a simplicial map. Let Ĉ∗ f : Ĉ∗(L) → Ĉ∗(K ) be the unique linear
map such that

Ĉ∗ f ((v0, . . . , vm)) = ( f (v0), . . . , f (vm))

for each (v0, . . . , vm) ∈ Ŝm(K ). Doing this for each m ∈ N produces a GrV-
morphism Ĉ∗ f : Ĉ∗(L) → Ĉ∗(K ). The formula ∂̂ ◦Ĉ∗ f = Ĉ∗ f ◦ ∂̂ is straightforward
(much easier than that for non-ordered chains). Hence, we get a GrV-morphism
Ĥ∗ f : Ĥ∗(L) → Ĥ∗(K ). A GrV-morphism Ĉ∗ f : Ĉ∗(K ) → Ĉ∗(L) is defined
by the equation 〈Ĉ∗ f (a),α〉 = 〈a, Ĉ∗ f (α)〉 required to hold for all a ∈ Ĉm(L),
α ∈ Ĉm(K ) and all m ∈ N. It is a cochain map and induces a GrV-morphism Ĥ∗ f :
Ĥ∗(K ) → Ĥ∗(L), Kronecker dual to H∗ f .

Proposition 2.10.11 Let f : L → K be a simplicial map. Let ≤ be a simplicial
order on K and ≤′ be a simplicial order on L. Then the diagrams

Ĥ∗(L)

H∗ψ
��

Ĥ∗ f �� Ĥ∗(K )

H∗ψ
��

H∗(L)
H∗ f ��

H∗φ≤′
��

H∗(K )

H∗φ≤
��

and

Ĥ∗(K )

H∗φ≤
��

Ĥ∗ f �� Ĥ∗(L)

H∗φ≤′
��

H∗(K )
H∗ f ��

H∗ψ
��

H∗(L)

H∗ψ
��

are commutative.

Proof By Kronecker duality, only the homology statement requires a proof. It is
enough to prove that H∗ f ◦ H∗ψ = H∗ψ◦ Ĥ∗ f since the formula Ĥ∗ f ◦ H∗φ≤′ =
H∗φ≤◦ H∗ f will follow by Corollary2.10.8. Finally, the formula Ĉ∗ f ◦C∗φ≤′ =
C∗φ≤◦C∗ f is straightforward. �

The above isomorphism results also work in relative ordered (co)homology. Let
(K , L) be a simplicial pair. Denote by i : L ↪→ K the simplicial inclusion. We define
the Z2-vector space of relative ordered (co)chain by

Ĉm(K , L) = ker
(

Ĉm(K )
Ĉ∗i−−→ Ĉm(L)

)

http://dx.doi.org/10.1007/978-3-319-09354-3_4
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and

Ĉm(K , L) = coker
(

i∗ : Ĉm(L) ↪→ Ĉm(K )
)

.

These inherit (co)boundaries δ̂ : Ĉ∗(K , L) → Ĉ∗(K , L) and ∂̂ = Ĉ∗(K , L) →
Ĉ∗−1(K , L) which give rise to the definition of relative ordered (co)homology
Ĥ∗(k, L) and Ĥ∗(K , L). Connecting homomorphisms δ̂∗: Ĥ∗(L) → Ĥ∗+1(K , L)

and ∂̂∗: Ĥ∗(K , L) → Ĥ∗−1(L) are defined as in Sect. 2.7, giving rise to long exact
sequences. Our homomorphisms ψ∗: Ĉ∗(K ) → C∗(K ) and φ≤∗: C∗(K ) → Ĉ∗(K )

satisfy ψ∗(Ĉ∗(L)) ⊂ C∗(L) and φ≤∗(C∗(L) ⊂ Ĉ∗(L), giving rise to homo-
morphisms on relative (co)chains and relative (co)homology H∗ψ: Ĥ∗(K , L) →
H − ∗(K , L), etc. Proposition2.10.7 and Corollary2.10.8 and their proofs hold in
relative (co)homology. Hence, as for Corollaries2.10.9 and2.10.10, we get

Corollary 2.10.12 H∗ψ : Ĥ∗(K , L) → H∗(K , L) and H∗ψ : H∗(K , L) →
Ĥ∗(K , L) are isomorphisms.

Corollary 2.10.13 H∗φ≤ : H∗(K , L) → Ĥ∗(K , L) and H∗φ≤ : Ĥ∗(K , L) →
Ĥ∗(K , L) are isomorphisms which do not depend on the simplicial order ≤.

2.11 Exercises for Chapter 2

2.1. Let Fn be the full complex on the set {0, 1, . . . , n} (see p. 24). What are the
2-simplexes of the barycentric subdivision F ′

2 of F2? How many n-simplexes
does F ′

n contain?
2.2. Compute the Euler characteristic and the Poincaré polynomial of the k-

skeleton Fk
n of Fn .

2.3. Let X be a metric space and let ε > 0. The Vietoris-Rips complex Xε of X
is the simplicial complex whose simplexes are the finite non-empty subset of
X whose diameter is < ε (the diameter of A ⊂ X is the least upper bound of
d(x, y) for x, y ∈ A). In particular, V (Xε) = X .

(a) Describe |Xε| for various ε when X is the set of vertices of a cube of edge 1
in R

3. In particular, if
√
2 < ε ≤ √

3, show that |Xε| is homeomorphic
to S3.

(b) Let X be the space n-th roots of unity, with the distance d(x, y) being the
minimal length of an arc of the unit circle joining x to y. Suppose that
4π/n < ε ≤ 6π/n.

(i) If n=6, show that |Xε| is homeomorphic to S2.
(ii) If n ≥ 7 is odd, show that |Xε| is homeomorphic to a Möbius band.
(iii) If n ≥ 7 is even, show that |Xε| is homeomorphic to S1 × [0, 1].
Note: the complex Xε was introduced by Vietoris in 1927 [201]. After its re-
introduction byE.Rips for studying hyperbolic groups, it has been popularized
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under the name of Rips complex. For some developments and applications, see
[84, 129] and Wikipedia’s page “Vietoris-Rips complex”.

2.4. Let � = (�1, . . . , �n) ∈ R
n
>0. A subset J of {1, . . . , n} is called �-short (or just

short) if
∑

i∈J �i <
∑

i /∈J �i . Show that short subsets are the simplexes of a
simplicial complex Sh(�) with V (Sh(�)) ⊂ J (used in Sect. 10.3). Describe
Sh(1, 1, 1, 1, 3), Sh(1, 1, 3, 3, 3) and Sh(1, 1, 1, 1, 1). Compute their Euler
characteristics and their Poincaré polynomials.

2.5. Let K be the simplicial complexwithV (K ) = Z andS1(K ) = {{r, r+1} | r ∈
Z} (|K | ≈ R). Then S1(K ) is a 1-cocycle. Find all the cochains a ∈ C0(K )

such that S1(K ) = δ(a).
2.6. Find a simplicial pair (K , L) such that |K | is homeomorphic to S1 × I and

|L| = Bd |K |. In the spirit of Sect. 2.4.7, compute the simplicial cohomology
of K and of (K , L) and find (co)cycles generating H∗(K ), H∗(K , L), H∗(K )

and H∗(K , L). Write completely the (co)homology sequence of (K , L).
2.7. Same exercise as before with |K | the Möbius band and |L| = Bd |K |.
2.8. Let f : K → L be a simplicial map between simplicial complexes. Suppose

that L is connected and K is non-empty. Show that H0 f is surjective.
2.9. Let m, n, q be positive integers. If m = nq, the quotient map Z → Z/nZ

descends to a map Z/mZ → Z/nZ, giving rise to a simplicial map f : Pm →
Pn between the simplicial polygonsPm andPn (see Example2.4.3). Compute
H∗ f .

2.10. Let M be an n-dimensional pseudomanifold. Let σ and σ′ be two distinct
n-simplexes of M . Find a ∈ Cn−1(M) such that δ(a) = {σ,σ′}.

2.11. Let M be afinite non-emptyn-dimensional pseudomanifold.Letγ ∈ Zn−1(M)

which is a boundary. Prove that γ is the boundary of exactly two n chains.
2.12. Let f : M → N be a simplicial map between finite n-dimensional pseudo-

manifolds. Show that the following two conditions are equivalent.

(a) Hn f �= 0.
(b) There exists σ ∈ S(N ) such that � f −1({σ}) is odd.

2.13. Let {±1} be the 0-dimensional simplicial complex with vertices−1 and 1. Let
K be a simplicial complex. The simplicial suspension �K is the join K ∗{±1}.
(a) Let P4 be the polygon complex with 4-edges (see Example2.4.3). Show

that P4 ∗ K is isomorphic to the double suspension �(�K ). [Hint: show
that the join operation is associative: (K ∗ L) ∗ M ≈ K ∗ (L ∗ M).]

(b) Prove that the suspension of a pseudomanifold is a pseudomanifold.
(c) Prove that the correspondence K �→ �K gives a functor from Simp to

itself.

2.14. Let A be a finite set. Show that Ḟ A is a pseudomanifold.
2.15. Let M be an n-dimensional pseudomanifoldwhich is infinite.What is Hn(M)?
2.16. Let (K , K1, K2) be a simplicial triad. Suppose that K1 and K2 are connected

and that K1 ∩ K2 is not empty. Show that K is connected.
2.17. Let (K , K1, K2) be a simplicial triad and let K0 = K1 ∩ K2.

http://dx.doi.org/10.1007/978-3-319-09354-3_10
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(a) Prove that the homomorphism H∗(K1, K0) → H∗(K,K2) induced by the
inclusion is an isomorphism (simplicial excision).

(b) Write the commutative diagram involving the homology sequences of
(K1, K0) and (K,K2). Using (a), construct out of this diagram the Mayer-
Vietoris sequence for the triad (K , K1, K2).

2.18. Deduce the additivity formula for the Euler characteristic of Lemma2.4.10
from the Mayer-Vietoris sequence.

2.19. Let M1 and M2 be two finite n-dimensional pseudomanifolds. Let σi ∈ S(Mi )

and let h:σ1 → σ2 be a bijection. The simplicial connected sum M = M1 � M2
(using h) is the simplicial complex defined by

V (M) = V (M1) ∪̇ V (M2)
/{v ∼ h(v) for v ∈ σ1}

and
S(M) = (

S(M1) − {σ1}
) ∪̇ (

S(M2) − {σ2}
)

.

Prove that M is a pseudomanifold. Compute H∗(M) in terms of H∗(M1) and
H∗(M2).
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