Chapter 2

Consumer Robotics: A Platform
for Embedding Computer Vision
in Everyday Life

Mario E. Munich, Phil Fong, Jason Meltzer and Ethan Eade

Abstract Consumer robotic devices provide a platform for embedded computer
vision algorithms in applications for everyday life. The consumer market is very
price-sensitive, so robots must be developed with a single task in mind, aiming
to provide the best performance at the lowest cost. Computational resources in
consumer robotics are scarce given cost constraints, forcing the design of novel
algorithms that elegantly incorporate such constraints. We present a graph-based
SLAM approach designed to operate on computationally constrained platforms using
monocular vision and odometry. When computation and memory are limited, visual
tracking becomes difficult or impossible, and costs for map representation and updat-
ing must remain low. Our system constructs a map of structured views using only
weak temporal assumptions and performs recognition and relative pose estimation
over the set of views. We fuse visual observations and differential measurements
in an incrementally optimized graph representation. Using variable elimination and
constraint pruning, graph complexity and storage is kept linear in explored space
rather than growing over time. We evaluate performance on sequences with ground
truth and also compare to a standard graph-SLAM approach.

2.1 Introduction

Over the past decade, computer vision algorithms have transitioned from the lab to
the marketplace. Improvements in processors, memory density, and image sensor
technology enable the deployment of sophisticated algorithms. The introduction
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of smartphones and tablets has accelerated the pace of this trend. These mobile
devices include powerful processors, ample memory, and high-resolution cameras.
Coupled with high-level operating systems such as iOS and Android, these enable
the quick development of computer-vision-based applications. One can argue that
these devices provide a conduit for the deployment of embedded computer vision in
the consumer electronics market. However, these devices are fairly expensive, which
allow them to provide the resources computation- and memory-hungry computer
vision applications require.

Consumer robotic devices, on the other hand, face severe constraints on the cost
of computation. The mass consumer market is very price-sensitive, so the retail cost
of the robot is key for the success of the product. The consumer electronics industry
standard suggests a retail price for the product that is 3-5 times the cost of parts
(bill of materials, or BOM). In other words, for a $300 MSRP robot, the BOM
should be between $60 and 100, including all mechanical parts, electrical parts,
battery, processor, memory, motors, assembly, packaging, user manuals, and miscel-
laneous items! These strict cost constraints translate into a reduced availability of
computational resources, requiring the development of particularly lean algorithms.
Consumer robotics thus serves as an important platform for deploying embedded
computer vision applications.

Another interesting factor that distinguishes the smartphone from the robotic use
case is autonomy. Unlike in a smartphone app, the vision system in a robot must
work reliably with no user assistance, continuously and for long periods of time.
There is no opportunity for a user to correct an error or ignore a defect; if the vision
system fails, the effectiveness of the overall system is reduced.

Visual localization and mapping is attractive for low-cost robotics applications
since cameras are data rich, low power, and inexpensive. The challenge lies in design-
ing an algorithm that can efficiently extract relevant information from this high-rate
visual data stream. Despite Moore’s Law, low-cost embedded platforms are still
constrained by limited processing power, memory, and storage. Many state-of-the-
art approaches to visual SLAM rely on interframe tracking, which requires high
frame rate processing. Additionally, common constraint graph SLAM methods for
agglomerating sensor information often incur computation and storage costs that
grow with time rather than with space explored. For a robot operating for extended
periods within a limited spatial area—typical of practical applications—this is an
undesirable trade-off.

This chapter describes the development of a localization system that can enable
systematic navigation of domestic robots in a household environment. The target
application is a mobile domestic robot with a price lower than $1000, and ideally
below $500. We present an approach to visual localization and mapping designed
for a low-cost robotic platform equipped with simple odometry and a single camera.
Operating primarily as a recognition engine, the visual measurement subsystem
requires only occasional, weak assumptions on processing rate, and intrinsically
provides robust loop closing when previously-mapped areas are revisited. Visual
measurements and odometry are fused in a graph representation and optimized incre-
mentally. Important novel features of this system include techniques for bounding the
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SLAM graph complexity during operation, using variable elimination and constraint
pruning with heuristic schedules. These methods keep optimization and storage costs
commensurate with explored area rather than with time of exploration while causing
minimal loss in mapping and localization accuracy.

An instantiation of the approach is demonstrated on real datasets with planar
ground-truth reference. The system operates successfully even at frame rates below
2Hz. Comparing the results with and without complexity reduction demonstrates
that the reduced graph yields similar localization accuracy at a small fraction of the
computational cost.

2.2 Related Work

2.2.1 View Recognition for SLAM

View recognition engines have proven attractive components for SLAM systems
because they permit robust and flexible loop closing. Instead of making correspon-
dences between individual features or measurements, visual or otherwise, view recog-
nition engines typically match constellations of features or entire images without
requiring feature tracking.

Williams et al. [20] rely on tracking for normal EKF SLAM operation, but use
view recognition to recover from failure. Several features are matched to the existing
map using appearance and structure constraints in order to reinitialize tracking.

The Parallel Tracking and Mapping(PTAM) [10] system also employs view recog-
nition for recovery from tracking failure. Instead of using feature-based methods for
identifying candidate views, the system performs image-to-image correlation using
heavily blurred, low-resolution versions of the reference and query images. A crude
pose estimate is deduced from the result of the inverse-compositional matching,
following which tracking resumes.

Eade and Drummond [4] group subsets of features into local maps during tracking-
based SLAM. Correspondences are made between local maps to connect them or
to recover from tracking failures. The image-to-map matching first selects a subset
of local maps to consider using a bag-of-words ranking, and then performs local
matching to determine feature-to-feature correspondences. This two-step process is
common to many view recognition systems, often instantiated as a bag-of-words
prefilter followed by re-ranking using geometric constraints [17].

The above approaches rely on tracking and use view recognition as an out-of-
band method for failure recovery. Our approach instead performs recognition at
every time step as the primary source of observations. The system of Karlsson et al.
[9] is similar, constructing landmarks out of constellations of SIFT [14] features
and employing nearest neighbors and a simple Hough transform as the recognition
algorithm. The system is further refined by Eade et al. [5] by replacing the particle-
filter back end with a graph SLAM back end that is described in further detail in
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the following sections. The work of Cummins et al. [2] takes a more sophisticated
approach to recognition, building a visual vocabulary offline, and approximating
the joint probability distribution of visual words with a Chow-Liu tree. Each view’s
appearance model is updated upon recognition.

Our view recognition front end bears many similarities to the view-based maps
of Konolige et al. [12]. That system constructs views from stereo images and per-
forms two-step recognition using first a vocabulary tree and then a geometric match-
ing stage. Views (called skeleton frames) are constructed from the output of visual
odometry, which requires a frame rate sufficient for tracking. We require only monoc-
ular imagery, constructing structured appearance models from two matched views
of the same scene. While Konolige et al. use randomized tree signatures for feature
matching, we use a simple variant on SIFT features and local and global feature
databases.

2.2.2 Graph-Based SLAM

Storing observations and poses in a constraint graph is now a well-explored technique
for localization and mapping. The graph formulation provides a straightforward and
flexible representation of the underlying Gaussian Markov random field (GMRF)
problem that SLAM attempts to solve. The general framework is described in [18],
including a description of a graph relaxation procedure identical to batch bundle
adjustment in photogrammetry [19]. Relaxation algorithms for SLAM graphs have
received much attention, especially with online operation in mind. Olson et al. [16]
suggest a stochastic gradient descent method, and Grisetti et al. [7] review that and
related methods for incremental graph optimization.

The system of Eade and Drummond [3] forms a graph where each node is a joint
distribution over a local map, and the relative nonlinear constraints between nodes
are derived from shared features. The graph is relaxed by imposing cycle constraints
using preconditioned gradient descent. The network constructed by PTAM is effec-
tively a graph of relative constraints between keyframes, though the optimization,
performed asynchronously to the primary tracking task, acts on individual structure
elements.

The view-based mapping of Konolige et al. [12] constructs a reduced graph of
poses by consolidating consecutive frames tracked by visual odometry into skeleton
frames. Then the constraint graph over skeleton frames is incrementally relaxed using
the Toro method [8].

While existing graph-based SLAM methods employ incremental graph optimiz-
ers to allow online operation, the number of poses in the graph continues to grow with
time. One technique suggested for bounding this growth is that the robot be occasion-
ally virtually “kidnapped,” disconnecting its current pose in the graph from previous
poses and re-inserting it in using only recent observations [8]. This assumes both that
the recent observations are sufficiently accurate to allow relocalization, and that the
effective uncertainty of these observations is zero. These assumptions are routinely
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violated in practice, especially in visual systems, where the accuracy and uncertainty
of relative pose estimates depends heavily on viewpoint and scene structure.

We instead apply probabilistically sound graph reduction methods that limit the
complexity of the graph to a linear factor of the complexity of the explored space. Past
poses of the robot that are not used for view recognition can be marginalized out of the
estimation, and their incident constraints are collapsed back into the graph. The mar-
ginalization procedure, equivalent to the update step of the Kalman filter or the vari-
able elimination step of the GraphSLAM algorithm, is described by Konolige in [11].

Marginalization is used to systematically limit graph complexity in Kretzschmar
et al. [13], which employs an approximation rather than exact marginalization. The
approximate form is used to bound edge connectivity in the graph. Carlevaris—Bianco
and Eustice [1] propose an alternative via generic linear constraint node removal. In
contrast, we selectively prune edges incident to nodes of high degree, removing their
constraints from the GMRF in a conservative manner. The adaptive application of
marginalization and edge removal, discussed in Sect.2.8, is a significant feature of
this system.

2.3 System Overview

The input to the system is a sequence of images from the camera and a sequence
of differential motion estimates, derived from wheel odometry measurements or
other differential sensors. We refer to these differential measurements collectively
as odometry. The system outputs an incrementally updated estimate of the device’s
current pose (localization) and estimates of a subset of its previous poses during
operation (mapping).

Two high-level components constitute the system: the visual recognition front end
and the constraint graph SLAM back end (Fig. 2.1). The front-end processes the video
stream, yielding a global appearance database, a set of structured local appearance
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Fig. 2.1 System structure overview
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models called views, and a sequence of pose estimates relative to these models.
The back end fuses the relative pose and differential motion estimates together in a
graph representation, incrementally optimizing and distilling it synchronously with
updates. The graph nodes include estimates of current and selected previous poses
of the robot.

The front end inherently yields 6DoF relative pose estimates and 3D structured
views; the back end can be instantiated in 3DoF for planar robot motion or 6DoF in
the general case. This chapter shows results for the 3DoF case (Sect.2.9).

2.4 Viewpoint Invariant Features

The view recognition engine identifies previously constructed appearance models
from novel viewpoints based on correspondences between image features. Thus,
the image features themselves must have a representation robust to viewpoint and
lighting changes. Any efficient feature detector/descriptor combination providing
these properties is suitable for this purpose.

We employ Difference-of-Gaussian (DoG) interest points and reduced-
dimensionality SIFT [14] descriptors. Our descriptors are computed in a manner
similar to 128D SIFT descriptors, but using a 3 x 3 spatial grid and four angular
histogram bins per cell, instead of the 4 x 4 grid and eight angular bins of the standard
configuration. We have determined empirically through recognition tasks that these
36D descriptors perform nearly as well as the higher-dimensional variants, but with
reduced memory and computational costs.

The detection and description algorithms can be implemented efficiently. Table 2.1
shows the computational viability of our implementation on different platforms.

2.5 View Creation

The view creation process extracts from the image sequence a set of structured
appearance models. These consist of estimated 3D feature locations and associated
appearance descriptors. These sets of features are accessible through a database for
use by the view recognition process.

Table 2.1 Timings for SIFT feature computation

Task Core2 Atom ARM9
(2.4GHz) (1.6 GHz) (266 MHz)
Pyramid (ms) 2.0 9.1 42
Detector (ms) 0.6 2.0 8.9
Descriptors (jus/desc) 14 81 219
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View creation proceeds in three steps (see Fig.2.2):

1. Robust matching: Correspondences are established between features in two or
more temporally local images, while enforcing geometric constraints.

2. Structure estimation: From the feature correspondences, three-dimensional point
structure is estimated and stored. The (optional) differential motion estimate is
used to determine the common scale of the structure.

3. Database management: The appearance model of the view (comprising a set of
feature descriptors) is added to a global database for later recognition.

2.5.1 Robust Matching

The interframe matching procedure for view creation first establishes putative corre-
spondences then partitions these correspondences into inliers (correct matches) and
outliers (incorrect matches) using geometric constraints.

Putative correspondences can be generated using only the feature descriptors, or
by taking advantage of any differential motion estimates supplied by other sensors,
such as wheel odometry. In the first case, each feature in the current image is paired
with the feature in a recent older image according to distance in the feature descriptor
space using a brute-force or approximate nearest neighbors (ANN) method. In the
second case, a motion estimate constrains the search for putative correspondences.
The nearest feature in descriptor space that also satisfies the corresponding epipolar
constraint is taken as a putative correspondence to the older feature.

Given a set of putative correspondences, geometric constraints are applied iter-
atively to eliminate outliers. If no prior on camera motion is provided, a starting
point for the procedure can be computed using RANSAC [6] and the five-point
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algorithm [15]. This yields an estimate of camera motion (up to scale) and a set of
inlier correspondences. When a prior differential motion estimate is available, it is a
sufficient starting point for iteration.

The iteration proceeds as follows:

1. An error threshold factor 7 is chosen as a multiple of the desired final acceptance
threshold r.

2. Inliers are selected by finding all putative correspondences whose matches fall
within a threshold distance of the epipolar line, whose descriptor distances are
low, and whose depth estimates are positive. The epipolar threshold distance
for a feature with scale s is given by 7 - s, modeling larger location uncertainty
associated with larger-scale features.

3. The motion estimate is refined by nonlinear maximum-likelihood estimation over
the current set of inlier correspondences.

4. The threshold factor 7 is decreased multiplicatively, and the process is repeated
from step 2 until 7 ~ r.

We use this approximation to a standard M-estimator scheme (e.g., iterated reweighted
least squares with Tukey weighting) in order to reduce the computational cost on
embedded platforms.

2.5.2 Structure Estimation

Given feature correspondences between two views, bundle adjustment [19] is per-
formed over the reprojection objective function to yield joint estimates on structure
and camera motion. The scale is left unconstrained by the feature correspondences,
so the gauge freedom is eliminated by fixing the camera translation to unit mag-
nitude while performing the optimization. The scale is assigned to the view using
the differential odometry between the two views used for estimation. Further views
can be added to the optimization either at the point of view creation or upon later
observation. In this case of upgrading the structure, the camera translation magnitude
is constrained only between the first two views, and all six degrees of freedom vary
among the others. The previously computed parameter values are used as a starting
point in the new, larger optimization.

2.5.3 Database Management

A global appearance database is maintained to aid view recognition. When a new
view is created, its appearance model is added to this database.

The global database could take one of many forms, depending on the desired
appearance model representation. We describe a simple but effective approach here.
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The database contains descriptors for features in all views in a collection of kd-
trees for efficient ANN searches. The time required to add new views to the global
database is bounded: upon view creation, all descriptors in the view are added to the
current kd-tree, which is then rebalanced. If the number of descriptors in the tree
exceeds a predetermined constant bound, a new tree is added to the collection and
becomes the current tree. ANN searches of the forest are described below in Sect. 2.6.

In addition to the global database update, a local appearance model is also con-
structed for each view. The local model supports ANN searches over only the descrip-
tors present in the view, and is queried for the second stage of view recognition.

2.6 View Recognition

The view recognition process yields relative pose estimates between single images
and existing views. The recognition approach is hierarchical, first performing appear-
ance matching in a global database, and then applying structure constraints at the
view-local level.

The input to the view recognition algorithm is a set of viewpoint invariant features
extracted from an image, and a global appearance model as described in Sect.2.5.3.
The output is zero, one, or multiple relative pose estimates to existing views.

The recognition method proceeds as follows (see Fig.2.3).

1. Features in the query image are looked up in the global appearance model data-
base.

2. The results of the database lookup are used to rank potential views by visual
similarity, and the m top-ranked views are chosen as candidates (we use m = 3
throughout).

3. For each candidate view, correspondences are established between query features
and the features in the view.

4. Geometric constraints are applied to these correspondences, using reprojection
constraints and the estimated view structure to reject outliers. This yields a rough
relative pose estimate.

5. The relative pose and structure estimates are refined using by optimizing over
the inlier correspondences and internal correspondences of the view, yielding
maximum-likelihood relative pose with covariance.

6. The view’s stored structure estimate is optionally updated using the optimization
results.

2.6.1 Recognition Candidate Selection

The top k nearest neighbors in the global database for each query feature are deter-
mined using ANN search (typically k = 2). Then, the putative matches are grouped
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by view. At this point, crude structure constraints can be applied, using a Hough trans-
form or RANSAC to enforce a loose similarity, affine, homography, or reprojection
transformation. The views are then ranked by the number of matches satisfying the
constraints. The m highest ranked views are kept as candidates.

2.6.2 Robust Matching and Pose Estimation

For each of the m candidate views chosen by the appearance matching stage, the
query features are matched to the view’s features using the local view appearance
model. Each view feature has an associated three-dimensional structure estimate,
allowing the three-point pose algorithm [6] to be applied within a standard RANSAC
hypothesize-and-test framework. If enough inliers result from this process, they are
passed to the pose estimation stage, along with the relative pose estimate given by
the three-point algorithm.

The pose estimation stage takes correspondences between query features and
view features, and computes the relative camera pose between the query image and
the view’s base coordinate frame (the first image of the view pair). The relative pose
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estimate is represented by mean and covariance in the Lie group SE(3) of rigid 6DoF
transformations. The covariance is represented by a quadratic form in the tangent
space se(3).

The maximum-likelihood estimation is performed using Levenberg—Marquardt
iteration. The camera motion between the existing view frames is assumed fixed and
known, and the feature structure estimates and relative pose to the novel viewpoint
are permitted to vary. The data matrix at the point of convergence is taken as the
information matrix (inverse covariance) of the optimum, as per the Cramer—Rao
lower bound. The structure parameters are marginalized out of this representation,
and the resulting 6 x 6 matrix is inverted to yield an estimate of the covariance on the
relative pose parameters. If the information matrix is singular or poorly conditioned,
the pose estimate is under-constrained, and the view recognition is discarded.

2.7 Graph Construction and Optimization

The SLAM back end encodes view observations and robot motion in a graph repre-
sentation of a Gaussian Markov random field (GMRF). The graph is constructed as
the robot moves and processes video frames. The graph is continuously and incre-
mentally optimized to improve the state estimate of view and robot poses.

2.7.1 Graph Representation

The SLAM graph [18] consists of nodes and directed edges between pairs of nodes.
Each node represents the pose of the robot at a certain time. Edges encode constraints
between nodes, arising from differential motion estimates (odometry), view obser-
vations, and combinations thereof. All poses and transformations are parametrized
in the Lie group SE(2) (for robot pose in 2D space) or SE(3) (for robot pose in 3D
space), and any covariances or information matrices are expressed in the respective
tangent spaces.

Each node stores the estimated pose of the robot at a certain time. The pose
describes the coordinate transformation from the common global frame to the frame
of the robot at the specified time. Nodes are created for every timestep when a view
is recognized or created. Nodes corresponding to the robot pose at view coordinate
frames are called view nodes and nodes corresponding to the robot pose at any other
times are called pose nodes.

Each edge stores a rigid transformation estimate, with covariance, describing a
constraint between its source and destination endpoint. The constraint means and
covariances are represented in the Lie group and algebra, respectively. Edges that
encode only differential motion constraints (from odometry) are called motion edges,
and connect temporally consecutive nodes. Edges that encode relative pose estimates
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from view recognitions are called observation edges. Edges that are formed by com-
bining other edges (described below in Sect.2.8.2) are called hybrid edges.

2.7.2 Graph Construction

After each image is processed by the front end, the graph representation is updated:

e A new pose node is added for the current pose, and the new node is connected to
the preceding pose node by a motion edge, encoding the accumulated differential
motion estimate between the two poses.

e If an existing view has been observed, an observation edge is created from the
observed view node to the pose node, encoding the observation constraint. When
the back end is operating in SE(2), the relative pose estimate (in SE(3)) is first
projected into SE(2) before creating the observation edge.

e If a new view has been created, one of the recent pose nodes corresponding to the
view is promoted to a view node.

2.7.3 Incremental Optimization

The graph flexibly represents the GMRF corresponding to the SLAM estimation
problem. The negative log-likelihood of the parameter estimates (encoded by the
nodes) is the sum residuals of the edges. Denote the edge set by E = {e;}. For an
edge e € E, the source and destination are given by s(e) and d(e) respectively. The
edge’s constraint mean is denoted by i (e) and the covariance by X' (e). Then the
negative log-likelihood — L of the graph (up to a constant offset) is given in terms of
the residuals v; by

vi = ple;) - s(ep) - d(e)™! (2.1)
L= (Z‘(ei)_l) Vi 2.2)

When the node pose estimates better satisfy the constraints encoded in the edges,
the negative log-likelihood — L is lower. Graph optimization increases the likelihood
of the GMRF parameters by minimizing the negative log-likelihood as function of
the node parameters.

Because computation time must be bounded and the graph is continually grow-
ing and changing, any feasible graph optimization technique must be incremental.
Several methods are described in, e.g., [7]. Any general method for incremental
nonlinear optimization can be applied successfully to the graph.

We employ spanning tree and blob-based optimizations, which are run for a fixed
number of iterations at each time step following the graph update.
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2.8 Graph Complexity Reduction

2.8.1 Complexity Growth

The SLAM graph grows every time a view is created or observed. Even when the
robot stays within a bounded space, the views there are observed repeatedly, adding
pose nodes and edges to the graph and thus increasing the complexity with time. The
storage requirements and graph optimization costs grow with the graph complexity,
so in order to control these costs, the graph complexity must be bounded.

The view nodes correspond to elements of the front end relative to which pose
estimates can be computed. Further, the spatial density of view nodes is bounded
by the front end (as existing views will be recognized from nearby viewpoints), so
operation within a fixed spatial region implies a bounded number of view nodes. The
pose nodes, on the other hand, represent past robot poses that are not directly useful
in subsequent operation, except as a data structure for encoding constraints on other
nodes. The number of pose nodes grows with the number of observations, instead of
with the number of views. The graph complexity can be bounded by removing pose
nodes and limiting node connectivity to keep the complexity of the graph linear in
the number of views and thus linear in the amount of space explored.

2.8.2 Pose Node Marginalization

The graph represents a GMRF over past poses of the robot, so nodes can be removed
in statistically consistent manner by marginalizing out the corresponding pose vari-
ables from the GMREF state. The graph directly encodes the Markov property of the
system: a node is conditionally independent of all nodes to which it is not directly
connected. Thus marginalizing out a node’s state involves only the Markov blanket
of the node (all of the nodes within one hop in the graph). Further, because the mar-
ginal distributions of a Gaussian are also Gaussians, the graph resulting from the
removal exactly encodes the appropriate Gaussian distribution over the remaining
variables [11].

Removing a node by marginalization induces pairwise constraints between all
pairs of nodes connected to the removed node. If a constraint (edge) already exists
between such a pair, the new constraint is combined with the existing constraint by
multiplication of their Gaussians. A few operations on edges are needed to define
the node marginalization procedure:

2.8.2.1 Edge Reversal

An edge e represents an uncertain rigid transformation between its two endpoint
nodes, given by a mean and covariance (i, X') in the appropriate Lie group and Lie
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algebra respectively. The adjoint operator in a Lie group allows elements of the Lie
algebra to be moved from the right tangent space of a transformation to the left. Thus,
the reversed edge ¢!, pointing in the opposite direction in the graph but encoding
the same transformation constraint, is given by

el = (,u_l,Adj [u—l] .2 Adj [;rl]T) (2.3)

2.8.2.2 Edge Composition

Given an edge ep = (ug, Xo) from node a to node b and an edge e; = (u1, X1)
from node b to node c, the two edges may be composed into one edge from a to ¢
by composing the uncertain transformations, as in a Kalman filter motion update:

er-eo = (o, T+ Adj [+ Zo - Adjl1”) 24)

2.8.2.3 Edge Combination

Given two edges ep = (10, o) and e; = (i1, X1) connecting the same two nodes
in the same direction, their constraints may be combined by multiplying the asso-
ciated Gaussian distributions together to yield the resulting Gaussian. Because the
exponential map from the tangent space to the transformation manifold is nonlinear,
the combination procedure for the mean is iterative. The combined covariance X'¢
is computed by summing the information of the two edges:

-1
S = ():0‘1 + ):1‘1) (2.5)
Let the initial estimate of the combined mean be the first edge’s mean:
0 _
pg = o (2.6)
Then the combined transformation is updated by taking the information-weighted

average between the two transformations and exponentiating the correction into the
Lie group:

vi=n (e ;') e (0.1) @.7)
5 = ¢ - (2(;‘ v+ 37! -vﬁ) (2.8)

pe = exp (6) - il (2.9)
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This update is iterated until convergence (usually three or four iterations), yielding
the combined edge:

ec = ([Llé, zc) (2.10)

Node Removal

Consider a node n, to be removed by marginalization, with incident edges E, =
{eo, ..., en}. Each pair of such edges (e;, e;) is composed into e; ;) according to
the following cases:

ei-ej s(e)=d(ej)=n,
. ej-e;. s(e)=s(ej)=n,
@@.j) e—l “ej d(e;) = d(e]') = n,

ej-e d(e)=s(ej)=n,

@2.11)

The resulting composed edge is added to the graph between the two incident nodes
that are not n,.. If such an edge already exists, the edges are combined, reversing the
composed edge if necessary. Finally, all incident edges E; are deleted from the graph
along with the node n,. An example is shown in Fig.2.4.

2.8.3 Edge Pruning

While the node marginalization procedure always decreases the number of graph
nodes and attempts to decrease the number of edges, it might fail to bound the
degrees of nodes and thus the complexity of the graph. Indeed, marginalizing out
all pose nodes results in a completely connected graph over view nodes, with edge
cardinality quadratic in the number of views.

Original Graph Marginalization Resulting Graph

Fig. 2.4 Graph reduction by marginalizing out a node. In this example, the number of edges in the
graph is unchanged
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To limit the edge complexity of the graph, edges need to be heuristically pruned
during operation. Removing an edge from the graph is equivalent to discarding the
information represented by the edge, as though the observation or measurement had
never been made.

One simple approach to limiting the number of edges is to maintain a priority
queue of nodes with degrees exceeding a fixed, predetermined bound. This queue
needs to be updated only when edges are added to the graph (measurements or node
removals). Edges are removed from each node in the queue until no node degrees
exceed the bound.

The heuristic operates as follows: the edges of a high-degree node n are examined
one at a time. If the opposite endpoint through edge e is not connected to n through a
path that excludes e, with length under a predetermined bound, then e is not eligible
for removal, as the graph would be potentially disconnected. The eligible edge with
the least residual is deleted. Of the edges incident to n, such an edge is in least
disagreement with the current state of the graph, and thus its removal should least
affect the graph optimum.

This simple, greedy heuristic does not consider the collective effect of removing
multiple edges in series. Nonetheless, our evaluation shows that it performs ade-
quately.

2.9 Evaluation

We use three indoor sequences (SEQI, SEQ2, SEQ3) to evaluate the performance
of the system and the effects of graph complexity reduction. SEQ1 and SEQ2 were
collected using an Evolution Robotics Scorpion, and SEQ3 with an iRobot Roomba.
In each instance, the robot was equipped with a web camera and wheel odometry.
Fiducials placed in the environment were observed by a SICK NAV200 laser range
finder mounted on the robot to provide ground truth.

The sequence parameters are described in Table2.2, and example images are
shown in Fig.2.5. The ground truth trajectories are shown in Fig.2.6.

Table 2.2 Test sequences

SEQ1 SEQ2 SEQ3
Environment ‘Warehouse Home Office
Frame rate (Hz) 1.5 1.5 3.0
Timesteps 1,035 1,822 3,896
Extent (m) 24 x 12 20 x 9 19 x 10
Views created 41 103 140
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Fig. 2.5 Example images from the SEQ2 (left) and SEQ3 (right). The reflector beacons are NAV200
fiducials used for ground truth estimation

2.9.1 Metrics

We measure both the accuracy of the incrementally estimated trajectory and of the
final view map. The view map is the set of poses of view nodes in the graph at the
end of the run, including incremental optimization but without any post-processing.

Comparing the trajectory to the reference reflects localization accuracy during
the run. Comparing the map to the appropriate subset of the reference indicates
how well the system can be expected to localize in the same environment given
subsequent operation. Though the latter metric is more common, and generally shows
smaller errors compared to the reference, it does not necessarily reflect how useful
the localization is during online operation.

The estimated and ground truth trajectories are compared by first finding the
rigid transformation between them that minimizes sum-squared position error, using
RANSAC and least squares. The view map corresponds to a subset of the total robot
trajectory, so the same method is used to compute the view map error over that
subset.

2.9.2 Results

Figure 2.7 shows a portion of the graph computed for SEQ2 with and without reduc-
tion. The node and edge density is significantly lower in the latter.

Table 2.3 shows error metrics and graph complexity for full and reduced graphs.
In the “Full” columns, the graph is heavily optimized and no nodes or edges are
removed. The “Reduced” columns show the same metrics when the number of pose
nodes is bounded by the number of views plus ten, and the maximum permitted node
degree is eight. The graph complexity is greatly reduced with little or no loss of
localization accuracy. As expected, the error of the view map is smaller than that of
the causally estimated trajectory consisting of the best estimate at each timestep, as
the map has incorporated all the information up to the end of the run.
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Fig. 2.6 Ground truth trajectories for the test sequences

Fig. 2.7 Detail from middle of full and reduced graphs for SEQ2. View nodes are (red) circles,
pose nodes are (green) squares, and edges are (blue) lines. Note the reduced density on the right
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Table 2.3 Metrics for full and reduced complexity graphs

Error (cm) SEQ1 SEQ2 SEQ3

Odom. RMS 281 331 469

Odom. max 773 667 852

Error (cm) Full Reduced Full Reduced Full Reduced
Traj. RMS 45 44 23 28 59 59

Traj. max 109 105 81 74 138 149
Map RMS 24 18 21 20 43 47
Map max 41 32 47 46 98 103
Number of nodes 709 92 897 216 2,491 290
Number of edges 1,471 155 1,810 414 5,154 501

Seq1 Full and Reduced Estimated Trajectories
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Fig. 2.8 Causally estimated trajectories: graph reduction yields results similar to those computed
with full-complexity graphs
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Fig. 2.9 Graph complexity over time for SEQ1, with and without reduction. The two regions
bounded by vertical dotted lines are periods of revisitation, during which views are reobserved
rather than created. The reduced graph complexity remains constant unless new views are created.
Note the difference in vertical scale

Figure 2.8 overlays the trajectories computed using the heavily optimized, fully
complex graphs with those computed using reduced graphs. The qualitative similarity
of the results reflects the quantitative similarity of the errors to ground truth. The
deviation between the two traversals of the large loop in SEQ3 occurs because the
robot traverses in opposite directions, so views are not reobserved.

Figure 2.9 shows the growth in number of graph nodes over time for SEQ1, with
and without reduction. Reduction keeps the complexity linear with number of views
rather than time.

2.10 Conclusion

This view-based monocular SLAM system minimizes the computation required for
vision-based processing and actively manages the complexity of the SLAM graph to
permit operation on constrained computational platforms. Our results show that the
complexity reduction methods significantly limit graph node and edge cardinality,
while only negligibly affecting localization accuracy. The system uses inexpensive
sensors, has low computational requirements, and high reliability, all of which are
ideal for low-cost robotic applications.
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