
Chapter 2
Ball Tracking for Tennis Video Annotation

Fei Yan, William Christmas and Josef Kittler

Abstract Tennis game annotation using broadcast video is a task with a wide range
of applications. In particular, ball trajectories carry rich semantic information for the
annotation. However, tracking a ball in broadcast tennis video is extremely challeng-
ing. In this chapter, we explicitly address the challenges, and propose a layered data
association algorithm for tracking multiple tennis balls fully automatically. The effec-
tiveness of the proposed algorithm is demonstrated on two data sets with more than
100 sequences from real-world tennis videos, where other data association methods
perform poorly or fail completely.

2.1 Introduction

Effective and efficient sports video annotation systems have wide applications in,
e.g. content-based video retrieval, enhanced broadcast, summarisation, object-based
video encoding, automatic analysis of player tactics, to name a few. Owing to
advances in computer vision and machine learning, building such tools has become
possible [10, 13, 15].

Much of the effort in sports video annotation has been devoted to court games
such as tennis and badminton, not only due to their popularity, but also to the fact
that court games have well- structured rules. In court games, ball trajectories carry
rich semantic information for the annotation. However, tracking a ball in broadcast
video is an extremely challenging task. In broadcast videos, the ball can occupy as
few as only 5 pixels; it can travel at very high speed and blur into the background; the
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Fig. 2.1 Image patches cropped from frames demonstrating the challenges of tennis ball tracking.
a Ball travels at high speed and blurs into background, making it very hard to detect. b Far player
serves. The ball region contains only a few pixels, and due to low bandwidth of colour channel, its
colour is strongly affected by the background colour. c Chroma noise caused by PAL cross-colour
effect. This may introduce false ball candidates along the court lines. d Multiple balls in one frame.
A new ball (left) is thrown in by a ball boy, while the ball used for play (middle) is still in the scene.
There is another ball (right) in the ball boy’s hand. e A wristband can look very similar to the ball,
and can form a smooth trajectory as the player strikes the ball

ball is also subject to occlusion and sudden change of motion direction. Furthermore,
motion blur, occlusion, and abrupt motion change tend to occur together, when the
ball is close to one of the players. Example images demonstrating the challenges in
tennis ball tracking are shown in Fig. 2.1.

As a result of these challenges, many existing tennis annotation systems avoid
ball tracking and rely only on audio and player information [6, 10, 12, 15, 31].
As a result, they can only annotate at a crude level, e.g. highlight detection [10],
shot type classification [13], action recognition [31]. In this chapter, we explicitly
address the challenges, and propose a fully automatic tennis ball tracking algorithm.
Before presenting the algorithm, in the following we briefly review related work in
the literature.

2.1.1 Related Work

Object tracking is one of the key topics of computer vision. Briefly speaking, object
tracking is concerned with finding and following the object of interest in a video
sequence. Two pieces of information are essential for any object tracking problem:
object appearance and object dynamics. Depending on the way, these two pieces of
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information are combined, tracking algorithms can be broadly categorised into track-
after-detection (TAD) type of approach and track-before-detection (TBD) type.1

In the TAD approach, object candidates are first detected in each frame. After this
step, only the candidates are used for the tracking, the rest of the image is discarded.
The tracking problem then involves two elements: data association and estimation.
While data association deals with measurement origin uncertainty, i.e. which can-
didates are object-originated and which are clutter-originated (which candidates are
which-object-originated in a multiple object tracking scenario); estimation deals
with measurement inaccuracy, i.e. what is the “true state” of the object, assuming the
object-originated candidate has been identified. The TAD type of approach is suit-
able for tracking small and fast-moving objects with simple representations. Typical
examples can be found in aerospace and defence applications [1, 2, 17, 19, 24], where
scans of radar signal are equivalent to frames in a video, and an object candidate is
simply a point in a scan with no resolvable features.

The TBD approach, on the other hand, is suitable for tracking large and slowly
moving objects with complex representations. In a TBD approach, hypotheses about
the object’s position in a state space are generated, and then evaluated using the image.
Depending on the features used for evaluating the hypotheses, this type of approach
can be further categorised into contour-based tracking, colour-based tracking, etc.
The TBD approach is often used together with a particle filter, since a particle filter
provides a nice probabilistic framework for combining the hypotheses. Example
applications of the TBD approach include people tracking, face tracking [11, 21, 28]

A tennis ball is a small and fast-moving object with few features. We therefore
believe the TAD approach is more suitable for tracking a tennis ball. We first generate
ball candidates in each frame using image processing techniques. Each candidate
is then treated as a two-dimensional point in the image plane without resolvable
features. We then try to solve a pure data association problem using only the positions
of these candidates. Once the data association problem is solved, the estimation
problem becomes trivial. For example a Kalman smoother can give a Minimum
Mean Square Estimate (MMSE) of the object state.

Several tennis ball tracking algorithms have been reported in the literature [16, 18,
22, 23, 25, 30]. All these algorithms adopt the TAD approach. Some of the existing
algorithms have been successfully applied in practice for enhanced broadcast [23,
25]. In [23, 25], multiple cameras are used. This allows tracking the ball in the 3D
real world space, which significantly simplifies the data association problem.

Techniques in [16, 18, 22, 30], on the other hand, rely on a single camera. In
this sense, they are more closely related to the scope of this chapter. In [18, 22,
30], the focus is on ball candidate generation rather than data association. Typically,
foreground moving objects are extracted by frame differencing. The resulting blobs
are then tested using visual features such as size, shape and colour. Among the blobs
that have passed the test, the one that is closest to a predicted position is used to update
the trajectory. In other words, the data association problem is implicitly addressed

1 Note that TBD is short for track-before-detection instead of track-by-detection, which is in fact
TAD (track-after-detection).
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with a nearest neighbour type of single hypothesis scheme. This implicitly imposes
the assumption that the false candidate rate is very low, and the true ball detection
rate is reasonably high.

In [16], the authors propose a data association algorithm under the name of Robust
Data Association (RDA), and use RDA to track a tennis ball in monocular sequences.
RDA does not use the naive single hypothesis data association scheme. The key idea
of RDA is to treat data association as a motion model fitting problem. First, ball
candidates in each frame are detected. A sliding window containing several frames is
then moved over the sequence. A RANSAC-like algorithm is used to find the motion
model that is best at explaining the candidates inside the window. An estimate of the
ball position in one frame, e.g. the middle frame in the sliding window, is then given
by this model. As the sliding window moves, eventually ball positions in all frames
are estimated.

The remainder of this chapter is organised as follows. In Sect. 2.2 we propose
a layered data association (LDA) algorithm for tennis ball tracking. Experimental
evaluation is presented and discussed in Sect. 2.3. Finally, Sect. 2.4 concludes the
chapter.

2.2 Layered Data Association

In this section, we present our three-layered data association scheme for tracking
the tennis ball. From bottom to top, the three layers are: candidate level association,
tracklet level association and path level analysis (Fig. 2.2).

1. Assume ball candidates in each frame have been generated. Also, assume a tem-
poral sliding window is moved over the sequence. At the candidate level, we
exhaustively evaluate for each candidate in the middle frame of the sliding win-
dow whether a small ellipsoid around it in the column-row-time space contains
one candidate from the previous frame and one candidate from the next frame. If
it does, we fit a dynamic model to the three candidates. The fitted model is then
optimised recursively using candidates in the sliding window that are consistent
with it. This process is repeated until convergence, forming a “tracklet”.

2. As the sliding window moves, a sequence of tracklets is generated. These tracklets
may have originated from tennis balls or from clutter. We formulate tracklet level
association as a shortest path problem. We construct a weighted and directed
graph, where each node is a tracklet, and the edge weight between two nodes
is defined according to the “compatibility” of the two tracklets. If we were to
assume that there was only one ball to track, and that the first and last tracklets of

candidate
level

tracklet
level

path level

Fig. 2.2 The three layers of the proposed data association scheme
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this ball were already known, the shortest path between the two tracklets (nodes)
in the graph would then correspond to the trajectory of the ball.

3. We relax above assumptions by looking for shortest paths between all pairs of
nodes in the graph, instead of the shortest path between a given pair of nodes. By
analysing the all-pairs shortest paths at the path level, the first and last tracklets
of each ball can be identified. Track initiation/termination of this multiple object
tracking problem is then automatically dealt with.

2.2.1 Candidate Level Association

Assume a tennis sequence is composed of K frames numbered from 1 to K . Let us
denote the set of candidates in frame k by Ck = {c j

k }mk
j=1, where mk is the number of

candidates in frame k, c j
k is the j th of them, and k = 1, . . . , K . Assume a temporal

sliding window containing 2V +1 frames is moved over the sequence. At time i , the
interval Ii spans frame i − V to frame i + V . We project all the candidates inside
interval Ii , i.e. all the candidates in C (i) = {Ci−V , . . . ,Ci+V } onto the row-column
image plane. In this image plane, centred at each c j

i ∈ Ci and with radius R, a

circular area A j
i is considered, where R is the maximum distance the ball can travel

between two successive frames. We examine if at least one candidate from Ci−1 and

at least one candidate from Ci+1 fall into A j
i (see Fig. 2.3). Assume c j ′

i−1 ∈ Ci−1

and c j ′′
i+1 ∈ Ci+1 are found inside A j

i , throughout the rest of this chapter, we call the

three candidates c j ′
i−1, c j

i and c j ′′
i+1 a seed triplet.

The acceleration of a tennis ball in the 3D world space is constant if the air
resistance is ignored, since the ball is subject only to gravity. According to perspective
geometry [9], after the projective transformation to the 2D image plane, the motion of
the ball is approximately constant acceleration, as long as ΔZ is negligible compared

Fig. 2.3 Three examples of looking for seed triplet. Squares with numbers candidates detected in
different frames. Dashed circle the circular area A j

i around a candidate c j
i . The radius of this circle

is R. a, b For the candidate in frame 76, no seed triplet is found. c Sufficient candidates are found
in the circular area to form a seed triplet: one from C75 and one from C77
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to Z , where ΔZ is the distance the ball moves in the world space between two frames
along the direction perpendicular to the image plane, and Z is the distance from the
ball to the camera along the same direction.

Consider any three candidates detected in frames k1, k2 and k3, where k1 <

k2 < k3. Let the positions of the candidates in the image plane be p1, p2 and p3,
respectively. A constant acceleration model M can be solved as:

v1 = p2 − p1

Δk21
− Δk21 × a

2
(2.1)

a = 2 × Δk21 × (p3 − p2) − Δk32 × (p2 − p1)

Δk21 × Δk32 × (Δk21 + Δk32)
(2.2)

where Δk21 = k2 − k1, Δk32 = k3 − k2, a is the constant acceleration, v1 is the
velocity at time k1, and p1, p2, p3, a, v1 ∈ R

2. An estimate of the ball position in
any frame k is then given by

p̂k = p1 + Δk × v1 + (Δk)2

2
× a (2.3)

where Δk = k − k1. Such a model can be fitted to any three candidates detected
in different frames. We apply it to the seed triplet found inside A j

i , as illustrated in
Fig. 2.4a. In this special case, k1 = i − 1, k2 = i and k3 = i + 1.

Compared to the random sampling scheme in Robust Data Association (RDA)
[16], the advantage of using seed triplets for model fitting is that a seed triplet

Fig. 2.4 Model fitting and model optimising. Squares with numbers candidates detected in different
frames, including true positives and false positives. Big dashed circle the circular area A j

i around

the candidate c j
i . The radius of this circle is R. Bold squares the triplet used for model fitting. Solid

circles with numbers positions estimated with the fitted model. Small dashed circles the region a
candidate has to fall into to be a support. The radius of these circles is dth. Shaded squares candidates
that are in the support set of the model after the current iteration. Note that the bold squares are also
in the support set. a Fitting a motion model to the seed triplet in Fig. 2.3c. b Optimising the fitted
model. Assume in a two candidates, one from C74 and one from C78 are consistent with the model
fitted to the seed triplet, i.e. k̇ = 74,

...
k = 78 and k̈ = 76. The new triplet (bold squares in b) is then

used to compute a “better” model
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has a higher probability of containing only true positives than a sample set that is
drawn randomly from all candidates in the sliding window [20]. However, even if a
seed triplet is free of false positives, the model computed with it is usually poor, as
estimates are given by extrapolation. This can be seen in Fig. 2.4a. As the estimates
get further away from the seed triplet on the time axis, they depart from the detected
ball positions in row-column plane rapidly.

We remedy this by recursively optimising the model using supports found in the
previous iteration [4]. First, we define the support of a model as a candidate that is
consistent with the model. More precisely, a candidate c j

k ∈ C (i) located at pj
k is said

to be a support if d(p̂k, pj
k) < dth, where d(·, ·) is the Euclidean distance between

two points; p̂k is the estimated ball position at time k as given by the model; and dth
is a predefined threshold. In the rare case where more than one candidate satisfies
this condition at time k, only the one with the smallest d(p̂k, pj

k) is selected as a
support.

Let S be the set of supports of a model. Also, let

k̇ = min k ∀c j
k ∈ S

...
k = max k ∀c j

k ∈ S (2.4)

k̈ = arg min
k

||...k − k| − |k − k̇|| ∀c j
k ∈ S

We use the three candidates in S from frame k̇, k̈ and
...
k as a new triplet to fit another

model. Since the candidates in the new triplet are further apart from each other,
more estimates are interpolated. The resulting model is usually “better” than the one
computed with the seed triplet. One iteration of the optimisation is thus complete
(Fig. 2.4b).

Now, we need a measure of the quality of a model. RANSAC-like algorithms
normally use the number of supports a model gets. In [27], a maximum likelihood
version of RANSAC, MLESAC, is proposed as a more accurate measure. However,
MLESAC involves estimation of mixture parameters of a likelihood function [16, 26],
which can be complicated and computationally expensive. In our implementation,
the following cost function [27] is adopted:

C =
i+V∑

k=i−V

∑

j

ρ(pj
k) (2.5)

where

ρ(pj
k) =

{
d2(p̂k, pj

k) if d(p̂k, pj
k) < dth

d2
th if d(p̂k, pj

k) ≥ dth
(2.6)

and a smaller C indicates a better model.
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Having defined C , the optimisation loop terminates when the support set S stops
expanding, or when C increases. More specifically, let M (z) be the model after the
zth iteration, C (z) be its cost, k̇(z) and

...
k

(z) be defined as in Eq. (2.4). The optimisation
loop terminates if

(k̇(z+1) = k̇(z) ∧ ...
k

(z+1) = ...
k

(z)
) ∨ (C (z+1) > C (z)) (2.7)

and M (z) is retained as the final fitted model to the current seed triplet.
A tracklet T is defined as the combination of a parameterised model M and its

support set S , i.e. T = {M,S }. For interval Ii , the above model-fitting process is
applied to each seed triplet that contains each c j

i in Ci . We then retain only track-
lets that have more than mth supports, and denote the lth retained tracklet in Ii

by T l
i = {Ml

i ,S
l
i }. As the sliding window moves, a sequence of tracklets is gen-

erated. Figure 2.5 plots all 672 tracklets generated in an example sequence in the
row-column-time 3D space. In the figure, a tracklet T l

i is plotted as its dynamic

model Ml
i , and is bounded by k̇l

i and
...
k

l
i .

Fig. 2.5 All the generated tracklets in an example sequence plotted in random colours. a 3D view.
b Projection on the row-column plane. c Projection on the row-time plane. d Projection on the
column-time plane
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2.2.2 Tracklet Level Association

The tracklet level association problem is mapped onto a graph. We construct a
weighted and directed graph G = {N ,E }, where N is the set of nodes, and E
is the set of edges. Each node in N is a tracklet, and the node corresponding to
tracklet T l

i is denoted by nl
i . Clearly, N is composed of stages as

N = {N1+V ,N2+V , . . . ,NK−V −1,NK−V } (2.8)

where the i th stage Ni is the set of nodes (tracklets) generated in interval Ii , Ii centres
on frame i and spans frame i − V to frame i + V , and K is the number of frames in
the sequence. A directed edge from node n p

u to node nq
v , ep,q

u,v , exists in E , if

u < v ∧ k̇q
v − ...

k
p
u ≤ kth (2.9)

where k̇q
v is the k̇ of tracklet T q

v ,
...
k

p
u is the

...
k of tracklet T p

u , and u, v ∈ [1 + V, K −
V ]. The assumption here is that misdetection of the ball can happen in at most kth
successive frames, where kth ∈ N +. An example of graph topology is given in
Fig. 2.6.

Both M and S of the tracklets are used to define the edge weight between two
nodes. First, two nodes n p

u and nq
v are said to be “overlapping” if

u < v ∧ k̇q
v − ...

k
p
u ≤ 0 (2.10)

For overlapping nodes, their support sets are used. Two overlapping nodes are “con-
flicting” (not compatible) if for k̇q

v ≤ k ≤ ...
k

p
u , ∃k such that

(∃c j ′
k ∈ S

p
u ∧ �c j ′′

k ∈ S q
v ) ∨ (�c j ′

k ∈ S
p

u ∧ ∃c j ′′
k ∈ S q

v )

∨ (∃c j ′
k ∈ S

p
u ∧ ∃c j ′′

k ∈ S q
v ∧ pj′

k 
= pj′′
k ) (2.11)

In other words, two compatible tracklets should agree on the support in every frame
in the overlapping region: either both having the same support, or both having no
support. The edge weight between two overlapping nodes is then given by

Fig. 2.6 An illustrative example of the graph topology. Nodes in the same stage are aligned ver-
tically. Note that the number of nodes in a typical sequence is of the order of 102–103. Far fewer
nodes are plotted in this figure for ease of visualisation
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wp,q
u,v =

{
∞ if n p

u and nq
v are conflicting

0 otherwise
(2.12)

For non-overlapping nodes, their parameterised models are used. Ball positions
from frame

...
k

p
u to frame k̇q

v are estimated. The edge weight is then defined as

wp,q
u,v = min d(p̂p

u,k, p̂q
v,k), ∀k ∈ [...k

p
u , k̇q

v ] (2.13)

A path in a directed graph is a sequence of nodes such that from each node (except
the last one), there is an edge going to the next node in the sequence. In an edge-
weighted graph, the weight of a path is defined as the sum of the weights of all
the edges it goes through. The shortest path between two nodes is the path with the
smallest weight among all possible paths.

The edge weight defined in Eq. (2.12) and Eq. (2.13) can be thought of as a
compatibility measure. For now, we assume that there is only one ball to track, and
the first and last nodes that have originated from this ball are already known. The
Dijkstra’s algorithm [8] can then be applied to find the shortest path between the pair
of nodes. We manually specify the first and last ball-originated nodes in the third play
of the example sequence as source node and destination node. The result of applying
Dijkstra’s algorithm is illustrated in Fig. 2.7: a shortest path that corresponds to the
ball trajectory. According to the definition of edge weight, the shortest path found is
guaranteed to be non-conflicting: at any time k, there is at most one candidate in the
support sets of the shortest path. The data association problem is thus solved.

In tennis ball tracking, the points at which the ball changes its motion abruptly
correspond to key events such as hit and bounce, and provide important information
for high-level annotation. We use the algorithm of generalised edge-preserving signal
smoothing to detect these key events. A more detailed description can be found in
our previous work [29].

2.2.3 Path Level Analysis

In this section, we relax the assumptions made in the previous section, and show how
this relaxation can lead to a fully automatic algorithm for tracking multiple balls.
The key idea is to use all-pairs shortest path (APSP) instead of single-pair shortest
path (SPSP) at the tracklet level, and introduce one more layer on top of that, namely,
path level analysis.

For a given pair of nodes n p
u and nq

v in G , there may be paths connecting n p
u to

nq
v , or there may not be any such path at all. One example of the latter case is when

u ≥ v. Assume the shortest paths between any pair of nodes that has at least one
path connecting them have already been identified. Let Q be the set of such all-pairs
shortest paths, and Q is the number of paths in Q. Q is in the order of N 2, where N
is the number of nodes in the graph. Now, observe that the paths that correspond to
ball trajectories form a subset of Q. Our goal is to reduce the original set of APSP Q
to its subset that contains only paths that correspond to the ball trajectories (Fig. 2.8).
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Fig. 2.7 a Shortest path given by Dijkstra’s algorithm. Adjacent nodes in the shortest path are
plotted alternatively in blue and red. 3D view. b Ball trajectory superimposed on the mosaic image.
Yellow circles positions of the candidates in the support sets of the nodes in the shortest path. White
crosses interpolated tennis ball positions. Red squares detected key events

Fig. 2.8 An illustration of the shortest path in Fig. 2.7 in the graph. Striped red squares the manually
specified source node and destination node. Red squares the shortest path between the source node
and the destination node

To this end, we need to define the relative quality and compatibility of the paths.
Recall that the weight of a path is the sum of the weights of all edges the path goes
through. We then define the length of a path to be the size of the union of the support
sets in all its nodes. It should be noted that according to the definitions of weight
and length of a path, the term “shortest path” used in the previous sections should
have been “lightest path”. However, we chose to use “shortest path” for the sake of
consistency with the terminology used in the literature.
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Intuitively, a good path is one that is both “light” and “long”. However, there is
usually a trade-off between the weight and the length of a path: a longer path tends
to be heavier. Taking this into account, we define the relative quality of two path P1
and P2 as follows:

P1

⎧
⎨

⎩

>

=
<

⎫
⎬

⎭ P2 if (W1 − W2)

⎧
⎨

⎩

<

=
>

⎫
⎬

⎭α · (L1 − L2) (2.14)

where the relation operators “>”, “=” and “<” between P1 and P2 stand for “is
better than”, “has the same quality as”, and “is worse than”, respectively; W1 and W2
are the weights of P1 and P2, respectively; L1 and L2 are the lengths of P1 and P2,
respectively; and α is a controllable parameter with a unit of pixel. According to this
definition, if a path P1 is “much longer” but “slightly heavier” than a path P2, then
P1 is said to have a better quality than P2. It easily follows that the set Q equipped
with an operator “≥” satisfies transitivity, antisymmetry and totality. According to
order theory [7], Q associated with operator “≥” is a totally ordered set. The relative
quality of the paths is defined.

The definition of pair-wise compatibility of the paths is straightforward. Under
the assumption that two objects cannot produce the same candidate in a frame, two
paths are said to be compatible if and only if they do not share any common support.
It should be noted, however, two paths that do not share any common node are not
necessarily compatible, because different nodes can have common supports.

Algorithm 1 The path reduction algorithm

Input: Set P with p paths, and empty set B.
Output: A reduced set P .
1: while P is not empty do
2: Remove the best path P∗ in P from P
3: if P∗ is compatible with all paths in B then
4: add P∗ to B
5: end if
6: end while

We propose a simple path reduction algorithm (see Algorithm 1) to prune the
APSP set. According to the definition of relative quality and pair-wise compatibility
of the paths, the paths in the resulting subset are mutually compatible, and are optimal
in the sense that the best remaining path in P was always considered first. We call the
output of the path reduction algorithm B the Best Set of Compatible Paths (BSCP).

Now, we have a complete data association algorithm for tracking multiple objects
fully automatically. We apply the complete algorithm to the example sequence. With
path level analysis, track initiation and track termination is automated, and multiple
plays can be handled. By looking for all-pairs shortest paths, a setQ with Q = 87,961
paths is obtained. The path reduction algorithm is then applied, which gives a BSCP
B containing 11 paths. In descending order, the numbers of supports (lengths) of
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Fig. 2.9 Results of applying the complete algorithm to the example sequence: three paths in the
thresholded BSCP Bth. Adjacent nodes in each path are plotted alternatively in blue and red. a 3D
view. b Projection on the row-column plane. c Projection on the row-time plane. d Projection on
the column-time plane

the paths in B are: 411, 247, 62, 23, 20, 17, 17, 16, 15, 10, 9. It is a reasonable
assumption that a path corresponding to a ball trajectory has more supports than a
path corresponding to the motion of a non-ball object, e.g. a wristband. We set a
threshold L th and keep only the paths that have more supports than L th. This results
in a thresholded BSCP Bth with three paths, where each path corresponds to a play in
the sequence. The paths in Bth are plotted in the 3D space in Fig. 2.9. In Fig. 2.10, the
three reconstructed trajectories are superimposed on mosaic images. An illustration
of the three paths in the graph is shown in Fig. 2.11.

2.3 Experiments

In this section, we first introduce data sets used in our evaluation and tracking
algorithms under comparison. We then define performance metrics. Finally, experi-
mental results are presented, including a study of sensitivity of the proposed method
to parameters.
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Fig. 2.10 Ball trajectories (after interpolation and key event detection) superimposed on mosaic
images. From (a) to (c): the first, second and third play in time order. The first and second plays
overlap in time: the first play spans frame 16–260; the second frame 254–321; and the third frame
427–887

Fig. 2.11 An illustration of the paths in Bth. Magenta, cyan and red paths correspond to the first,
second and third play in the sequence, respectively

2.3.1 Experimental Data

Experiments were carried out on broadcast tennis videos from three tennis tourna-
ments. A broadcast tennis video is composed of shots, such as play, close-up, crowd,
advertisement. A play shot is a shot in which the ball is in play. In a play shot, the
camera is usually from behind one of the players, and has small pan, tilt and zoom
(PTZ) motion. Tennis ball tracking is performed only on play shots. In this chapter,
we also refer to a play shot as a “sequence”.

The three data sets used contain 165 sequences in total. A set with 25 sequences
was used as training set, and the other two with 70 sequences each as test sets.
Some statistics of the three data sets are shown in Table 2.1. In Table 2.1, N̄ is the
average number of false candidates in each frame, and rd is the probability that a ball
is detected as a candidate (ball detection rate). In our experiments, the parameters
of the proposed method were assumed independent of each other, and were tuned

Table 2.1 Statistics of experimental data

Game Court type No. of seq No. of frames Length N̄ rd

(min) (%)

Training set Australian’03 Women’s Artificial 25 15,716 5.2 12.1 90.3

Test set 1 Australian’06 Men’s Artificial 70 60,094 20.0 10.6 91.6

Test set 2 Wimbledon’05 Men’s Grass 70 43,706 14.6 16.5 88.2
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separately on the training set to maximise the F-measure of event detection. The
definition of F-measure which will be given shortly in Sect. 2.3.3. The optimal set of
parameters obtained during the training was: V = 10, R = 20.0, dth = 5.0, mth = 6,
kth = 20, L th = 45, and α = 1.0.

The proposed data association algorithm takes as input the tennis ball candidates
in each frame. In each sequence, image frames were first de-interlaced into fields.
For the sake of consistency with the terminology used in the literature, we have used
“frame” to refer to “field”. After de-interlacing, homographies between frames were
calculated by tracking corresponding corners that are automatically detected, and
were used to compensate the global motion (camera PTZ) between frames [3, 14].
Foreground moving objects were then extracted by differencing nearby frames and
thresholding the differences. Finally, a simple filter was applied to keep only fore-
ground blobs with an appropriate size. These blobs were used as tennis ball candidates
for tracking algorithms.

2.3.2 Algorithms Under Comparison

For comparison with the proposed algorithm, PDA [1] and RDA [16] were also
implemented. Due to the abrupt motion changes, PDA lost track in most sequences.
We will therefore focus on the comparison between the proposed method and RDA.
In RDA, the number of trials, n, is chosen so that the probability of finding a set
consisting entirely of true positives, P , is greater than a threshold P0. It has been
shown [5] that

n ≥ log(1 − P0)/ log(1 − εs) (2.15)

where ε is the ratio of the number of true positives to the number of all candidates,
and s is the size of each sample set. In our experiments, P0 was set to 0.95, and the
interval size was set to 15, both as suggested in [16]. According to Eq. (2.15), at
least 8,161 trials were needed. The mixture parameters of the likelihood function in
RDA were estimated recursively until convergence, also as suggested in [16]. As to
dynamic model, the same constant acceleration model as defined in Eq. (2.1) and
Eq. (2.2) was used. Since RDA cannot deal with track initiation and track termination,
we manually specified the frames in which it was applied.

2.3.3 Evaluation Methods

2.3.3.1 Matching the Tracked Trajectories and the Ground
Truth Trajectories Automatically

For each sequence, let Tgt be the set of trajectories in the ground truth, and Ttr be
the set of trajectories given by the tracker. Each trajectory is a sequence of points in



40 F. Yan et al.

the row-column-time 3D space. Define an assignment scheme as a correspondence
between the two sets of trajectories that satisfies: each trajectory in Tgt corresponds
to at most one trajectory in Ttr , and vice versa.

Observe that an assignment scheme consists of correspondence pairs. For a given
pair, let I ∗ be the time interval where the two trajectories overlap. For each frame in
I ∗, two ball positions are given, one by the tracker and one by the ground truth. The
two positions are compared. If the distance between them is smaller than a threshold,
the two trajectories are said to be “matched” in this frame. The match score of a pair
of trajectories is defined as the total number of frames where the two trajectories are
matched. Finally, the quality of an assignment scheme is defined as the sum of match
scores of all its correspondence pairs. Among all possible assignment schemes, the
one with highest quality is chosen.

2.3.3.2 Quality of Track Initiation and Track Termination

Having obtained the correspondence between Tgt and Ttr , we can measure the per-
formance of the tracker from several aspects. Let T i

gt ∈ Tgt and T i
tr ∈ Ttr be the

trajectories in the i th pair, and I i
gt and I i

tr be the time interval of T i
gt and T i

tr , respec-

tively. Moreover, let T
′ j
gt be the j th trajectory in Tgt that is not in any correspondence

pair, and I
′ j

gt be its time interval; and let T
′k
tr be the kth trajectory in Ttr that is not

in any correspondence pair, and I
′k

tr be its time interval. Now, define

I ∩ =
∑

i

|I i
gt ∩ I i

tr| (2.16)

and

I ∪ =
∑

i

|I i
gt ∪ I i

tr| +
∑

j

|I ′ j
gt | +

∑

k

|I ′k
tr | (2.17)

The quality of track initiation and track termination on this sequence is then:

β = I ∩/I ∪ (2.18)

where β ranges between 0 an 1. When β = 1, track initiation/termination is said to
be perfect.

2.3.3.3 Proportion of LOT

In addition to the quality of track initiation and termination, we would also like to
know how close the positions given by the tracker are to the ground truth. Consider
the i th pair of trajectories in the best assignment scheme. Two ball positions are
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given in each frame in I i
tr ∩ I i

gt, one by the tracker and the other by the ground
truth. We define tracking error as the Euclidean distance between the two positions.
For a given sequence, the number of such errors is I ∩. A loss-of-track (LOT) is then
defined as when tracking error is greater than 6 pixels. Let the number of LOTs in
the given sequence be I L

m . The proportion of LOT is then defined as:

γ = I L/I ∩ (2.19)

2.3.3.4 Quality of Event Detection

We also measure the performance of the proposed algorithm in terms of quality of
event detection. For each trajectory in Tgt, points that correspond to motion discon-
tinuities are marked up as ground truth events. These events correspond to racket
hitting the ball, the ball bouncing on the ground and the ball touching the net. We
then compare the events detected by an event detection algorithm against the ones
in ground truth. A detected event in a tracked trajectory T i

tr is regarded as “matched”
if it is within 3 frames and 5 pixels of a ground truth event in the corresponding
ground truth trajectory T i

gt. We report the F-measure of event detection, which is the
harmonic mean of the precision and the recall. The F-measure ranges from 0 to 1,
and a larger value indicates a better performance.

The quality of event detection is obviously affected by the event detection algo-
rithm used, and thus not a direct quality measure of the ball tracking algorithm.
However, event detection plays a crucial role in high-level annotation. We present
the quality of event detection to give an idea of the performance of the ball tracking
algorithm in the context of tennis video annotation.

2.3.4 Results and Discussion

Experimental results on the two test sets are shown in Table 2.2. The quality of track
initiation/termination of the two methods is not comparable, since in RDA this was
manually dealt with. In terms of proportion of LOT and F-measure of event detection,
the proposed method outperforms RDA significantly on both test sets. In RDA,
estimates are given by the best models in corresponding intervals independently of

Table 2.2 Experimental
results on the test sets

β γ (%) F-measure Frames/s

Test set 1 Proposed 83.7 % 3.51 0.758 98.4
RDA − 11.74 0.423 3.6

Test set 2 Proposed 82.2 % 3.66 0.729 109.3
RDA − 13.23 0.411 3.2



42 F. Yan et al.

each other, and the concept of “tracklet” does not exist. This significantly limits RDA’s
ability to deal with complexities in broadcast tennis video. In fact, RDA works only
under a strong assumption: a model fitted to three candidates that have all originated
from the ball being tracked is always “better” than that fitted to candidates that have
not. This assumption is not true in broadcast tennis sequences because:

1. Ball trajectories can overlap in time, i.e. there may be multiple balls in the same
part of a sequence;

2. Clutter-originated candidates can also form smooth trajectories that can be
explained by constant acceleration models;

3. A ball can change its motion drastically. As a result, even a model fitted to three
ball-originated candidates can have a poor quality.

By contrast, the proposed method slices the data association problem into layers,
and each layer is designed to solve the data association problem at its own level. It
is therefore more flexible in dealing with the complexities in broadcast tennis video.
(see Fig. 2.12 for an example).

The proposed algorithm also has the advantage of being more efficient. The fact
that it always starts model fitting from a seed triplet allows it to eliminate false

Fig. 2.12 The assumption in order for RDA to work is invalid in broadcast tennis video. a Tracking
results of the proposed method. b Tracking results of RDA
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Table 2.3 Sensitivity to parameters

Opt. param. RDA V R dth mth

7 13 15.0 25.0 4.0 6.0 4 8

β 83.7 % – 82.8 % 82.9 % 83.6 % 83.7 % 82.9 % 83.0 % 83.0 % 75.9 %

γ 3.51 % 11.74 % 3.94 % 3.78 % 3.58 % 3.50 % 3.87 % 3.29 % 3.82 % 3.75 %

F-measure 0.758 0.423 0.725 0.770 0.754 0.759 0.732 0.768 0.763 0.696

Frames/s 98.4 3.6 102.2 93.8 100.3 96.6 128.4 81.4 55.7 152.9

kth L th α

15 25 30 60 0.001 0.01 0.1 10.0 100.0 1,000.0

β 76.5 % 85.1 % 80.0 % 84.0 % 42.5 % 49.3 % 78.1 % 76.8 % 75.2 % 75.1 %

γ 2.78 % 4.46 % 2.89 % 3.29 % 2.10 % 2.14 % 2.64 % 5.78 % 7.48 % 7.60 %

F-measure 0.740 0.747 0.747 0.759 0.538 0.584 0.738 0.700 0.668 0.667

Frames/s 105.6 89.4 92.9 102.4 88.8 91.3 96.0 98.5 100.0 100.2

candidates very quickly. Taking test set 1, for example at each time step, on average
10.6 candidates are evaluated. On average, there are 1.02 seed triplets containing each
candidate, and it takes 3.7 iterations for model optimisation to converge. The effective
number of models evaluated is then 10.6 × 1.02 × 3.7 ≈ 40. On the other hand,
according to Eq. (2.15), at least 8161 models are needed in RDA. The estimation of
mixture parameters of the likelihood function in RDA is also time-consuming. Time
in Table 2.2 was measured on a single thread of an Intel Xeon 3.0G computer running
Linux, and overhead of disk I/O was included. Both algorithms were implemented
in C++.

Finally in Table 2.3 we show the sensitivity of the proposed algorithm to para-
meters using test set 1. It is evident from the table that the proposed algorithm is
not sensitive to small changes of most parameters. However, when the parameter for
determining the relative quality of two paths, α, varies over a large range, paths can
be inappropriately merged or broken, severely degrading track initiation/termination
and event detection. We can also see that the proposed method is sensitive to the
increase of the tracklet threshold mth. This is because when mth is too high, ball-
originated tracklets are discarded, and the shortest path algorithm is forced to take a
wrong path. On the other hand, when mth is low, false tracklets are allowed. However,
the shortest path algorithm can remove them effectively.

2.4 Conclusions

In this chapter, we have presented a layered data association algorithm with graph-
theoretic formulation for tracking multiple objects that undergo switching dynamics
in clutter. At the object candidate level, tracklets are grown from sets of candidates
that have high probabilities of containing only true positives. The tracklet association
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problem is then mapped onto a graph, and solved with an all-pairs shortest path
formulation and path level analysis. This results in a fully automatic data association
algorithm which can handle multiple object scenarios. The proposed data association
algorithm has been applied to tennis sequences from several tennis tournaments to
track tennis balls. Comparative experiments show that it works well on sequences
where other data association methods perform poorly or fail completely.
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