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Abstract We propose mathematical programming-based approaches to refine
graph clustering solutions computed by heuristics. Clustering partitions are refined
by applying cluster splitting and a combination of merging and splitting actions.
A refinement scheme based on iteratively fixing and releasing integer variables
of a mixed-integer quadratic optimization formulation appears to be particularly
efficient. Computational experiments show the effectiveness and efficiency of the
proposed approaches.

1 Introduction

Networks, or graphs, provide very useful tools for modeling complex systems [33].
They consist of a set V of vertices associated with the entities under study and
a set E of edges each of which joins two vertices and corresponds to relationships
among the entities. For instance, in sociology vertices are associated with people and
edges with relationships like friendship, communication, or collaboration between
them. In biology, vertices are associated, for instance, with proteins and the edges
with their interactions. Some topological features of networks are studied to better
understand the underlying complex systems, as they may reveal the organizational
principles of the system components. The structure of complex systems can in fact
be understood by identifying the way the nodes of the corresponding networks are
connected to each other. A modular structure characterizes many complex systems,
meaning that they contain subgroups of entities sharing some common properties.
A topic of particular interest in the study of complex networks is therefore the
identification of modules, also called clusters or communities. Given a graph
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G D .V;E/, roughly speaking one seeks subgraphs induced by sets of vertices
Si � V which contain more inner edges (with both vertices in the same subset)
than cut edges (with vertices in different subsets). In the last decade the problem
of finding clusters in complex networks has been very extensively studied, see
Fortunato [15] for an in-depth survey.

Many definitions of network modules have been proposed as well as criteria
to evaluate partitions of vertices in modules. Maximizing any such criterion
over the set of all partitions is a combinatorial optimization problem. The most
popular criterion, despite some recent criticism [8, 16], is the modularity of a
subnetwork [32]. The modularity of a module is defined as the difference of the
fraction of the edges that it contains and the expected number of such edges
in a network where edges are distributed at random while keeping the degree
distribution of vertices constant, according to the so-called configuration model.
Modularity of a partition is the sum of modularities of its clusters. So modularity of
a network is a criterion whose maximization provides both the optimal number of
clusters and an estimate of the amount of modularity of the network. Numerous
heuristics have been proposed for maximizing modularity of a network. They
include applications of simulated annealing [20, 28, 29], mean field annealing [26],
genetic search [36], extremal optimization [14], variable neighborhood search [3],
spectral clustering [31], linear programming followed by randomized rounding [1],
dynamical clustering [5], multilevel partitioning [13], contraction–dilation [30],
divisive [9, 31] or agglomerative [4, 11] hierarchical clustering, and several other
approaches.

Mathematical programming allows us rigorous formulations and solutions for
the maximizing modularity optimization problem. Nevertheless, it is rarely used.
There are two approaches to use mathematical programming formulations which
can be solved to global optimality. Grötschel and Wakabayashi’s [18, 19] model for
clique partitioning can be immediately applied, replacing the original graph by a
complete weighted graph. A closed model is used by Brandes et al. [6]. The second
approach was proposed by Xu et al. [39], who express modularity maximization as a
mixed-integer quadratic programming problem with a continuous convex relaxation.
Column generation can be applied to solve both models [2]. In these models,
modularity is the objective function to be maximized and constraints are used to
impose conditions defining a partition of the vertex set.

The obtained optimization problems are generally difficult to solve and only
small or medium-scale problems can be easily treated. The situation is more
favorable when subgraphs of an original graph are handled, as they are more likely to
have smaller size (possibly, medium-scale) than the original graph. Given a partition
found by a heuristic, one can attempt to refine the result to obtain a new better
partition, acting on subnetworks induced by the clusters of the original partition.
The purpose of the present paper is to discuss and advance the use of mathematical
programming to refine heuristic solutions for network clustering. Two approaches
are discussed and compared, one of which is new. The first one was proposed in
[10] and is based on splitting clusters using an exact algorithm for bipartitioning
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and merging pairs of clusters. The new one is inspired by the approach in [38] and is
based on iteratively fixing integer variables and solving the corresponding problem.

The paper is structured as follows. In Sect. 2 we describe the proposed
mathematical programming-based approaches to refine heuristic partitions.
In particular, a mixed-integer quadratic model for modularity-maximizing clustering
is recalled and the two strategies to refine partitions, that use such a model, are
presented. In Sect. 3 a computational analysis and comparison, on a set of instances
from the literature, is presented and discussed. Section 4 concludes the paper.

2 Mathematical Programming-Based Clustering Refinement

Let us consider a partition found by a heuristic for network clustering. It is consti-
tuted by subnetworks induced by the clusters found. As a heuristic has been applied,
there is no guarantee that the partition given by these subnetworks represents the
optimal solution. Thus, one can seek an improved solution by applying a refinement
technique.

We propose in this section mathematical programming-based refinement
techniques, to be employed as post-processing of heuristics for modularity
maximization. First, we recall the main elements of a mixed-integer quadratic
model for modularity maximization which is used in these refinement techniques.

2.1 A MIQP Mathematical Programming Model

Let G D .V;E/ be an undirected unweighted graph, with set of vertices V of order
n D jV j and set of edges E of size m D jEj. Modularity Q of G can be expressed
as the sum of modularities of clusters, each one being a function of its number of
inner edges and of the sum of degrees of its vertices:
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#
; (1)

where ms denotes the number of edges in cluster s, and Ds denotes the sum of
degrees ki of the vertices of cluster s.

In [39] a mixed-integer quadratic formulation is proposed, where (1) is the
objective function to be maximized and binary variables are used to identify to
which cluster each vertex and each edge belongs. Sets of allocation constraints,
and constraints used to express that each vertex belongs to exactly one module,
to impose lower and upper bounds on the cardinality of the modules and to break
symmetries, fully define the model. In [10] this model is specialized to the case of
two clusters only, i.e., a bipartition of the graph. Such a model for bipartitioning is
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recalled below. Notice that it has been also successfully used to build a hierarchical
divisive clustering algorithm, see [7, 9].

First observe that in the case of bipartitioning the objective function (1) can be
rewritten in a simpler form, expressing the sum of degrees of vertices belonging to
one of the two clusters, say D2, as a function of the sum of degrees D1 of vertices
belonging to the other one: D2 D Dc � D1, where Dc denotes the sum of degrees
in the cluster c to be bipartitioned. The objective function to split cluster c can then
be written as the following quadratic function:

Qc D m1 C m2

m
� D1

2

2m2
� Dc

2

4m2
C D1Dc

2m2
: (2)

where m1 and m2 are, respectively, the number of edges inside the two clusters.
Decision variables are variables Xi;j;s for each edge .vi ; vj / and s D 1; 2, with

Xi;j;s equal to 1 if the edge .vi ; vj / is inside cluster s and 0 otherwise, and variables
Yi;1 for i D 1; 2; : : : n, equal to 1 if the vertex vi is inside cluster 1 and 0 otherwise.
Constraints on the problem are allocation constraints, used to impose that any edge
.vi ; vj / can belong to cluster s if and only if both of its end vertices i and j also
belong to that cluster:

8.vi ; vj / 2 Ec Xi;j;1 � Yi;1 (3)

8.vi ; vj / 2 Ec Xi;j;1 � Yj;1 (4)

8.vi ; vj / 2 Ec Xi;j;2 � 1 � Yi;1 (5)

8.vi ; vj / 2 Ec Xi;j;2 � 1 � Yj;1 (6)

Further constraints express the number of edges of each of the two clusters and the
sum of vertex degrees of the first cluster in terms of the decision variables X and Y ,
and finally integrality constraints are imposed on variables Y . Notice that integrality
of variables X is implied by constraints (3)–(6), as well as integrality of D1 follows
by its defining constraint. The following mixed-integer quadratic (MIQP) model,
that has a continuous convex relaxation, is finally obtained [10]:
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2.2 Splitting and Merging Clusters

In [10] we proposed a refinement technique for clustering results that is built on
the mathematical programming formulation (B) recalled above. First, clusters are
considered one at a time and the bipartitioning problem (B) is solved exactly,
then pairs of clusters are merged and the exact bipartitioning is applied again.
More precisely, in a sequence of steps, starting from the original partition obtained
applying a heuristic, each cluster is first bipartitioned using an exact algorithm.
Notice that (B) is a MIQP with a continuous convex relaxation, that can be solved to
global optimality by any standard solver for MIQP problems through the standard
branch-and-bound method. If the modularity value corresponding to the obtained
bipartition is higher than the one of the original cluster, then such original cluster is
replaced by the new ones obtained by bipartition, otherwise the original cluster is
kept. This sequence of bipartition attempts leads to a new, refined partition.

This new partition is further refined by a new sequence of steps, where pairs of
clusters, sorted by decreasing number of joining links, are provisionally merged and
modularity of the merged cluster is compared to the sum of modularities of the two
original clusters. In the case of improvement of the objective function value, the
merged cluster is kept at the place of the two original ones. When merging is not
beneficial in terms of improvement of the solution, the merged cluster is attempted
to be split into two parts, according to the procedure applied in the first sequence
of refining steps, exactly solving the bipartition problem. The two new clusters are
possibly different from the original ones that have been merged, and can potentially
correspond to an improved solution.

2.3 Fixing Integer Variables

We now present a novel mathematical programming-based approach to refine
heuristic partitions. It is inspired by the methodology proposed by Xu et al. [38]
for community detection in networks. In [38], the authors propose a two-stage
procedure, where first a mixed-integer nonlinear problem (similar to that of [39]
for a number of clusters generally greater than two, but where the only decision
variables are binary variables Y expressing allocation of vertices to modules) is
approximately solved to get an initial partition, and then a fixing and releasing
scheme is applied. In this second stage, the authors consider the MIQP model in [39]
and solve it, by standard solvers, iteratively fixing a certain number of variables Y to
their value 1 and releasing the other variables, that are so free to take a value 1 or 0
depending on the way vertices are re-allocated in the current solution. Fixing integer
variables gives a mathematical programming formulation with a reduced number of
variables, and so more tractable.

We build upon the idea of fixing binary variables, though developing a different
approach. Our approach is devised to refine approximate clustering solutions, so we
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start from the partition provided by a clustering heuristic, that replaces the first
stage of the procedure in [38]. Then, we attempt to improve the original partition
by acting on modules through a new heuristic based on variable fixing. Starting
from an assignment of vertices to modules, i.e., from an assignment of 0–1 values
to variables Y , we fix nfix variables to their value 1 and compute a new value
for the remaining variables, that is, we re-allocate the corresponding vertices. For
each cluster, the vertices that are reallocated are chosen on the basis of their inner
degree (the number of neighbors of a vertex inside the cluster), moving first vertices
that have a small inner degree and so are likely to have more connections inside a
different cluster than the one they are assigned. A given number of (outer) iterations
is performed, each one acting on a set Fix, containing variables whose value has
to be fixed, and a set Unfix, containing variables to be released. To avoid using the
same sets Fix-Unfix in successive iterations, random perturbations are applied to
these sets.

As acting on the whole graph requires to solve a mixed-integer nonlinear problem
that may be quite large even with a number of variables that are fixed, and splitting
and merging clusters appears to be an effective strategy for refinements [10],
we integrate our fixing variables-based strategy in the procedure above based on
splitting and merging clusters. To refine a given partition, again we implement
the two consecutive steps performing, respectively, bipartitioning of each cluster
and merging mixed to bipartitioning on pairs of clusters. Thus, we consider the
MIQP formulation (B), but in place of solving exactly the bipartitioning problem by
standard branch-and-bound for MIQP, we apply our fixing variables-based strategy.

Thus, our refinement procedure works as follows.
First, each cluster of the original partition is split into two sets. To that effect,

an initial approximate solution for the bipartition is computed and the above fixing
variables-based approach is applied. If the modularity value corresponding to the
obtained bipartition is higher than the one of the original cluster, then the original
cluster is replaced by the new ones obtained by bipartition, otherwise the original
cluster is kept. Once all clusters of the original partition have been examined, the
merging-and-splitting procedure is applied. Pairs of clusters, sorted by decreasing
number of joining links, are provisionally merged. If merging improves the objective
function value, then the merged cluster is kept, otherwise it is split into two subsets
again applying the fixing variables-based approach.

3 Computational Results

In this section, we apply the proposed clustering refinement techniques to the
partitions found by two known heuristics for graph modularity maximization. The
first one was proposed by Noack and Rotta [34] and is based on a single-step
coarsening with a multi-level refinement. The second one was proposed in 2011
by Cafieri et al. [9] and is a hierarchical divisive heuristic that is locally optimal in
the sense that bipartitions are computed by an exact optimization algorithm.
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The first refinement technique (Sect. 2.2) is implemented solving the
mixed-integer quadratic bipartition problem (B) using CPLEX 12.2 [22], setting
its parameters in such a way that the MIP cutting plane generation is disabled, the
branching variable selection strategy is based on reduced pseudo costs, the number
of nodes in the Branch-and-Bound tree is limited to 40000, and 1 only thread is
used.

The fixing variables-based technique (Sect. 2.3) is implemented using as a
starting guess an (approximate) affectation of variables provided by CPLEX 12.2
limited to the solution at the root node, and then iterating the fixing variables scheme
over 100 iterations. At each iteration, the number of fixed variables is set to half the
cardinality of the current subgraph.

We test the proposed refinement algorithms on datasets in the literature, which
correspond to networks modeling various real-life applications. Specifically, we
consider a social network of dolphins [27], a network describing interactions
among the characters of Hugo’s novel Les Misérables [23], a biological network
of protein–protein interactions [12], a network recording co-purchasing of political
books on Amazon.com [24], a representation of the schedule of games between
American college football teams in the Fall of 2000 [17], a network of connections
between US airports [35], a network describing electronic circuits [25], e-mail
interchanges between members of a university [21], a network giving the topology
of the Western States Power Grid of the United States [37], and authors collabora-
tions [35]. The considered datasets are listed in Table 1 together with their number
of vertices n and number of edges m. Solutions have been obtained on a 2.4 GHz
Intel Xeon CPU of a computer with 8GB RAM shared by three other similar CPU
running Linux.

In Tables 2 and 3 we report the results of the refinements of clustering
results obtained using the Noack and Rotta’s [34] (NR) heuristic and the

Table 1 Datasets in the literature, with
their number of vertices n and number of
edges m

Dataset n m

Dolphins 62 159

Les miserables 77 254

p53_protein 104 226

Political books 105 441

Football 115 613

usair97 332 2126

netscience_main 379 914

s838 512 819

Email 1133 5452

Power 4941 6594

erdos02 6927 11850
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Table 2 Modularity values corresponding to the partition found by the Noack and Rotta’s
heuristic [34] (QNR), by our first approach for refinement after the splitting step only (QNR

split)
and after the merging and splitting step (QNR

mrgCspl), and by our fixing variables-based approach

after the splitting step only (QNR
split_fix) and after the merging and splitting step (QNR

mrgCspl_fix).
In the last column, the optimal modularity value Qopt is reported, when available in the
literature [2]

Dataset QNR QNR
split QNR

mrgCspl QNR
split_fix QNR

mrgCspl_fix Qopt [2]

Dolphins 0.52377 0.52773 0.52852 0.52508 0.52646 0.52852

Les miserables 0.56001 0.56001 0.56001 0.56001 0.56001 0.56001

p53_protein 0.53216 0.53216 0.53502 0.53216 0.53502 0.53513

Political books 0.52694 0.52724 0.52724 0.52694 0.52694 0.52724

Football 0.60028 0.60237 0.60457 0.60237 0.60457 0.60457

usair97 0.36577 0.36577 0.36808 0.36577 0.36808 0.3682

netscience_main 0.84745 0.84828 0.84842 0.84828 0.84842 0.8486

s838 0.81624 0.81624 0.81656 0.81624 0.81656 0.8194

Email 0.57740 0.57741 0.57776 0.57741 0.57768 –

Power 0.93854 0.93867 0.93873 0.93854 0.93858 –

erdos02 0.75926 0.75926 0.76958 0.75926 0.78952 –

Table 3 Modularity values corresponding to the partition found by the Cafieri et al.’s heuristic [9]
(QCHL), by our first approach for refinement after the splitting step only (QCHL

split ) and after the
merging and splitting step (QCHL

mrgCspl), and by our fixing variables-based approach after the splitting

step only (QCHL
split_fix) and after the merging and splitting step (QCHL

mrgCspl_fix). In the last column, the
optimal modularity value Qopt is reported, when available in the literature [2]

Dataset QCHL QCHL
split QCHL

mrgCspl QCHL
split_fix QCHL

mrgCspl_fix Qopt [2]

Dolphins 0.52646 0.52646 0.52680 0.52646 0.52680 0.52852

Les miserables 0.54676 0.54676 0.55351 0.54676 0.55351 0.56001

p53_protein 0.53000 0.53000 0.53004 0.53000 0.53145 0.53513

Political books 0.52629 0.52629 0.52678 0.52629 0.52678 0.52724

Football 0.60091 0.60091 0.60112 0.60091 0.60112 0.60457

usair97 0.35959 0.35959 0.35975 0.35959 0.35960 0.3682

netscience_main 0.84702 0.84702 0.84703 0.84702 0.84703 0.8486

s838 0.81663 0.81663 0.81675 0.81663 0.81667 0.8194

Email – – – –

Power 0.93937 0.93937 0.93941 0.93937 0.93941 –

erdos02 – – – –

Cafieri et al.’s [9] (CHL) heuristic, respectively. We compare the results of the
mathematical programming-based refinements described in Sect. 2, showing the
original modularity value computed by the heuristic under consideration (NR or
CHL), the intermediate result obtained by cluster splitting only and the final result
after sequentially applying the splitting step and the merging step mixed to splitting,
for the first refinement technique (split and mrgCspl) (also in [10]) and, respectively,
the new one based on fixing variables (split_fix and mrg C spl_fix). We are able to
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Table 4 Computing time (seconds) required by the proposed approaches applied as post-
processing to Noack and Rotta’s heuristic (timeNR) and Cafieri et al.’s heuristic (timeCHL).
Solutions have been obtained on a 2.4 GHz Intel Xeon CPU of a computer with 8GB
RAM shared by three other similar CPU running Linux

Dataset timeNRmrgCspl timeNRmrgCspl_fix timeCHL
mrgCspl timeCHL

mrgCspl_fix

Dolphins 0:20 0:39 0:26 0:20

Les miserables 0:67 0:71 0:35 0:30

p53_protein 1:02 1:23 0:26 0:49

Political books 5:10 1:66 3:41 1:21

Football 3:26 3:16 0:99 0:83

usair97 334:72 8:96 454:64 16:86

netscience_main 1:38 1:67 0:77 0:85

s838 1:20 1:40 1:06 1:16

Email 57:80 56:02 – –

Power 18:62 15:81 17:50 15:42

erdos02 919:74 241:29 – –

obtain improved results for all the tested cases out of one (political books)
refined with the fixing variables technique. Comparing the refined results with
optimal modularity maximization solutions, when available in the literature [2], we
remark that in some cases we get the optimal partitions, and in general very good
quality solutions. The results obtained applying the two proposed refinements are
generally comparable, and often we get the same modularity value (up to 5 decimal
digits) in the two cases. When this is not the case, the values coincide up to 2 or 3
decimal digits.

In Table 4 we compare the two proposed approaches in terms of computing
time. Very short times are spent in both cases on small-scale networks. For larger
networks, it appears that the proposed approach based on fixing integer variables
reduces sometimes significantly the time needed to refine the initial partition. This
happens, as expected, especially for networks for which exact bipartitioning takes
time because of the exploration of a large Branch-and-Bound tree. For example,
improving the NR heuristic, time is reduced from 334.72 to 8.96 seconds for the
6-th dataset and from 919.74 to 241.29 seconds for the last dataset, and, improving
the CHL heuristic, the reduction is from 454.64 to 16.86 seconds, again for the 6-th
dataset.

Figure 1 illustrates the clustering of a network for which the optimal modularity-
maximizing partition is obtained refining the NR heuristic result.

4 Conclusions

We proposed mathematical programming-based approaches to refine graph cluster-
ing solutions. In particular we discussed and compared two approaches, the one
in [10] based on splitting clusters and a combination of merging and splitting
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Fig. 1 Optimal clustering of network football obtained refining the NR heuristic result

clusters, where bipartitions are computed exactly solving a MIQP problem, and
a new one, based on iteratively fixing and releasing integer variables, again
integrated in a splitting and merging–splitting scheme. We employ our approach as
post-processing of some known heuristics for modularity maximization, obtaining
improved solutions and, for some datasets, the optimal partition. The proposed
approach based on fixing integer variables allows us to significantly reduce the
computing time needed to provide an improved clustering solution.
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