Chapter 1
Introduction

We hardly need to point out the importance of business process modelling and
of respective automation in this place (see, e.g. [39, 45, 58, 110, 141]). Also the
advantages and shortcomings of the various different methods and notations for
Business Process Management (BPM) have been widely discussed in the above-
mentioned literature and in further scientific work (see, e.g. [50,114,145,146]). But
while the diversity of methods and notations as well as their respective shortcomings
are well known, from our point of view, the status quo has hardly changed so far,
and we are not yet satisfied with the given alternatives.

Yet we do not deem it wise to introduce “yet another” completely different
method and notation. After a time of experimentation, there must be a time of
convergence and settlement so the industry can either adopt a single standard or
at least be able to select from a few competing, mature options. People usually do
not want to learn a new technique and notation for one and the same task every other
year. Thus, we have decided to build on one existing, widely adopted method and
notation, discuss it based on a new rigorous semantics and propose solutions for
shortcomings.

‘We have chosen the Business Process Model and Notation (BPMN) 2.0 [95] as a
basis for discussion and improvements, firstly because it is an international standard
issued by a well-established group with a strong foundation in the industry, the
Object Management Group (OMG); secondly because it has already gone through
a practice-driven maturing process; and thirdly because it has already been widely
adopted and is supported by various tools (see also [104]). While others might argue
that similar criteria would hold for some other methods as well, we simply (and
maybe subjectively) expect BPMN to have, and most importantly to continue to
have, the greatest impact in industrial practice. This might also be confirmed by the
emergence of further standards for business process modelling based on BPMN,
such as the e-government standards in Switzerland (eCH) [40-42], and formally
publishing BPMN 2.0 by the International Organization for Standardization (ISO)
as the 2013 edition standard ISO/IEC 19510 [61].

© Springer International Publishing Switzerland 2015 1
F. Kossak et al., A Rigorous Semantics for BPMN 2.0 Process Diagrams,
DOI 10.1007/978-3-319-09931-6_1



2 1 Introduction

To address the major categories of shortcomings of BPMN 2.0, we focus
on the operational semantics of BPMN process diagrams. First, we present a
complete formal semantics for the notation, in a way which is precise yet easily
understandable. (The semantics of parts of BPMN, at least of previous versions
(1.x), have been formalised before, typically using Petri nets; see Sect. 2. But those
semantic models are not complete; they use languages (in particular, variants of
Petri nets) with which not everyone feels comfortable, and no such formal model is
included in the standard.)

During the process of formalisation, we identified various inconsistencies as
well as ambiguities in the BPMN standard (though we were not the first to do
so; see, e.g. [18, 20]). This meant that for a formal model, we sometimes had
to choose between different possible interpretations of the standard or to choose
which of two or more conflicting provisions to adopt and which to ignore or to add
assumptions. Moreover, in some cases, we chose not to include certain constructs in
our specification for pragmatic reasons (which are stated in their due places).

To our knowledge, this work constitutes the most complete as well as detailed
formal model for BPMN 2.0 process diagrams. (Please note that we are always
referring to version 2.0 of BPMN from here on.) We also provide vertical refinement
of the core language, which leads the way to specific implementations. This kind of
improvement allows for more consistency in the interpretation of comprehensive
models as well as for real exchangeability of models between different tools.
(Experiences in this respect are mixed. Our own experiences and those of another
group were negative, but see also [48] and [115].)

Regarding horizontal refinement of the core language, in the form of different
extensions which we find indispensable in many cases, we conclude with an outlook
on future research. The extensions we propose address actor modelling (including
an easily understandable way for denoting permissions and obligations), integration
of user-centric views, a refined communication concept and integration of data.
Although all of these layers together form an integrated whole, each of them can
be of interest on its own.

Additional support for standardised tool support will be given in future research
work through a reference architecture for a BPM system which includes, besides
a workflow engine, actor management and user interaction, data management and
different interfaces. Furthermore, we want to show how the abstract, platform-
independent semantic model can be reliably refined towards a concrete implemen-
tation of a suitable workflow engine.

1.1 Motivation

BPMN is a widely used standard for business process modelling. The current
major release of BPMN is quite comprehensive and spans more than 500 pages.
However, major drawbacks of BPMN are the limited support for organisational
modelling, the only implicit expression of modalities, as well as the lack of



1.1 Motivation 3

integrated user interaction and data modelling. In addition, the syntactical and,
in particular, semantic definitions of the BPMN standard are in several cases
inaccurate, incomplete or inconsistent. The current work addresses concrete issues
concerning the execution semantics of business processes and provides a formal
definition of BPMN process diagrams, which ought to be a solid basis for further
extensions, i.e. in the form of horizontal refinements of the core language.

To motivate this work on rigorous semantics for BPMN process diagrams, we
discuss challenges in writing formal specifications of business process models
resulting from the diversity of readers on the one hand, which requires general
intelligibility, and a need for formality on the other hand.

In the following, we present some of the problems we have encountered, for
example, concerning (instantiating) event-based gateways, compensation event sub-
processes and process decomposition. We will further argue that the Abstract State
Machine (ASM) method, developed from the mid-1980s on by Gurevich [14,15,53,
54] and practically applied in software engineering by Borger and others [17, 19,
20,23,24,132] from the 1990s on, offers considerable advantages over other formal
methods with respect to the potential to bridge the gap between intelligibility and
formality.

During our work on formalising the BPMN standard, we have faced ambiguities
and inconsistencies, regarding both syntactical and semantic definitions in the
standard.

Firstly, regarding syntax, the standard only provides a semiformal definition
of the BPMN metamodel in the form of class diagrams, corresponding tables
specifying the attributes and model associations, as well as XML schemas. However,
the definition of an element in the class diagram is partly overlapping with the
refined specification in the corresponding table and redundant to the XML schema.
Due to this redundancy, the description of the metamodel is in several cases
inconsistent and contradictory. Additionally, further syntactical rules are defined
within natural text descriptions, also containing deviating information.

For example, considering the transaction element, the class diagram specifies
two attributes, protocol and method, both of type “String”, but in the corresponding
table, only method is mentioned and defined to be of type “TransactionMethod”.
Moreover, the XML schema defines the default value “Compensate”, which is
missing in the attribute description of the table.

For a full definition of an element, it is further necessary to consider the
specification of all superclasses. We have formally defined the syntax of BPMN
by means of an ontology in [86], where we point out further contradictions in the
BPMN standard concerning the class hierarchy. We have discussed contradictions
regarding event triggers, amongst others, in [66] and regarding the class hierarchy
and attributes of sub-processes in [89].

Secondly, regarding the semantic definitions, the definitions of elements are dis-
tributed across various sections and sometimes conflicting, i.e. the BPMN standard
often specifies an element in a very general way in one place and then constrains
this description in various other places. For example, start events are described
several times within the chapter Overview [95, p. 27, pp. 31f]; in chapters Process



4 1 Introduction

[95, pp. 238ff], Choreography [95, pp. 339f] and BPMN Execution Semantics [95,
pp- 439f]; as well as in sections describing other elements that can comprise or
connect to start events, e.g. event subprocesses [95, p. 177].

Consequently, an intense study of the BPMN standard revealed apparent incon-
sistencies or even contradictions between descriptions of the same element, while
at the same time, the semantics of certain elements remains ambiguous. Studying
further literature (see, e.g. [47]) often confirmed that certain parts of the BPMN
standard can be interpreted in different ways, while certain constructs seem to be
ignored by the literature and by tools. Sometimes additional literature even added
to our puzzlement. Thus, by our formalisation of the semantics of BPMN models
using ASMs, we aimed to address these ambiguities to gain a clear, well-defined
modelling language.

In particular, event-related aspects and process decomposition cause misun-
derstandings and confusion about what the intended behaviour of some BPMN
elements really is. We want to give some concrete examples.

Example 1: Event-Based Gateways. First, we have identified several issues con-
cerning event-based gateways as described in the BPMN standard, where the
exact semantics seems ambiguous and sometimes even contradictory [66]. In par-
ticular, we faced problems with (a) triggering event-based gateways, (b) closely
related, with determining the moment when an event-based gateway should be
considered to have been triggered and, (c) in the case of an instantiating gateway,
when a respective process instance should be created. All the interpretations of
the BPMN standard which we could think of turned out to contradict some part
of the standard. For example, it says that “The choice of the branch to be taken
is deferred until one of the subsequent Tasks or Events completes” [95, p. 437].
This appears to suggest that no tokens are sent by the gateway to any of the
events or receive tasks in its configuration. However, it is stated elsewhere in the
standard that a receive task needs to be activated before it can start waiting for a
message [95, p. 430], but also an intermediate event (the only event type possible
here) is obviously supposed to get a token before it can start waiting for events:
“Waiting starts when the Intermediate Event is reached” [95, p. 440].

Further problems concern the use of event-based gateways to instantiate sub-
processes, where we discovered further discrepancies between different parts
of the BPMN standard (see, e.g. [95, p. 299, p. 430, p. 440]). Mainly, the
interpretation of the semantics of instantiation by parallel event-based gateways
is ambiguous in a crucial way, namely, concerning the question whether it allows
for asynchronous behaviour of different branches after the gateway or not [95,
p- 299, p. 416, p. 437]. This question also affects the question whether such a
gateway could be replaced by other constructs, e.g. special forms of start events.
Hence, while the general idea of event-based gateways seems intuitive at
first sight, the semantic details are far less so, most of all in the case of
instantiating event-based gateways. Clearly, the standard needs to clarify many
points regarding the semantics of event-based gateways, and especially Chaps. 10



1.1 Motivation 5

and 13 of the standard need to be rendered consistent with each other (see [66]
for more information).

Example 2: Compensation Event Sub-process. A further open question regard-

ing compensation is whether compensation event sub-processes really work.
Event sub-processes (as well as boundary events) may be defined for starting
compensation handlers [95, p. 248, p. 252]. Compensation is generally aligned
with undoing actions that were already successfully completed [95, p. 302],
or “Compensation of a successfully completed Activity triggers its compen-
sation handler” [95, p. 235]. Hence, an activity that is still active cannot be
compensated, or if “compensation is invoked for an Activity that has not yet
completed, or has not completed successfully, nothing happens” [95, p. 235].
However, how can a compensation event sub-process be activated if its parent
activity has already been completed? The description of the default behaviour of
starting an event sub-process (“while the parent Process is active” [95, p. 177])
is inconsistent with the definitions above, and, therefore, we are led to suppose
that the compensation event sub-process can never be started.
On the contrary, there are also definitions that define an execution semantics
which seems to be consistent with the introductory statement, i.e. that an
event sub-process may start compensational actions but conflict with the default
behaviour of starting an event sub-process. For example, according to [95,
p. 442], a compensation event sub-process will become enabled when its parent
activity reaches the state “Completed”, whereupon a snapshot of the parent
activity’s data is preserved for later usage by the compensation event sub-
process. These specifications could give rise to the idea that a compensation
event sub-process is considered as a particular case of an event sub-process.
Yet no such provision is mentioned as a particular case in the description of
an event sub-process [95, pp. 173ff], causing serious inconsistencies regarding
the execution semantics of event sub-processes and compensation event sub-
processes in particular (see [60] for more information).

Example 3: Decomposition and Reusability. In contrast to some other business
process modelling languages, BPMN provides explicit concepts for decomposi-
tion to cope with complexity and reusability in order to enhance the consistency
of process models. In particular, BPMN specifies sub-processes and call activ-
ities for addressing decomposition and reusability. However, although BPMN
provides such elements, the support for process decomposition is nevertheless
limited and identified as a major drawback of BPMN (see, e.g. [104, 106]). In
detail, the standard shows contradictions and limitations regarding the instanti-
ation of sub-processes and call activities, due to several uncontrolled incoming
and/or outgoing sequence flows, which may lead to implicitly created instances
with neither the execution order nor the merging mechanism being defined.
Similar problems arise on using several start events placed on the boundary
or on defining activities without incoming/outgoing sequence flows, all causing
confusion about the intended behaviour of a process.

Further contradictions and limitations concern the use of activities, in particular
sub-processes, in combination with swimlanes and in unstructured diagrams.



6 1 Introduction

For example, the class FlowElementsContainer (including sub-processes) can
comprise 0..n lanes [95, p. 89], and each lane can comprise 0..n FlowNodes
(including sub-processes) [95, p. 309]. This cyclic definition may be problematic,
e.g. if someone wants to comprise two tasks which are located in different lanes.
Furthermore, a limitation of BPMN, and most other business process modelling
languages, is the missing support for asynchronous decomposition (see [89] for
more information).

Considering this diversity of ambiguities, a serious issue is how to guarantee
that the executable behaviour of a particular model is the same in different tools.
Graphical notations like BPMN seem intuitive enough to be well understood almost
at first sight. Unfortunately, they typically lack the precise mathematical basis that
is required to render them really unambiguous. On the other hand, partial attempts
on formalisation, e.g. based on Petri nets, are too difficult to understand even for
most developers.

We chose the ASM method to formalise the semantics of BPMN. The ASM
method is a formal technique that facilitates the formalisation of requirements
at the level of abstraction determined by the given application domain while
maintaining the correct-by-construction paradigm and also keeping specifications
easy to understand. It comes with a small set of intuitive core constructs and is very
flexible regarding notation. ASMs can be seen as ““a rather intuitive form of abstract
pseudo-code” [22, p. 2], though based on a precise yet minimal mathematical theory
of algorithms, yet also as “Virtual Machine programs working on abstract data” [22,
p- 5]. The ASM method consists of a notation for state-based models (automata) and
a method for refinement. Models can be arbitrarily abstract, and abstract models can
be stepwise refined towards programming code.

ASMs have demonstrated their strength in various domains, e.g. specifying the
semantics of programming languages [17] and modelling languages [19], verifying
the specification of the Java Virtual Machine [132] or formalising the ITIL change
management process [69]. In addition, some encouraging steps towards a formal
business process model using ASMs have been achieved.

A particular class of ASMs, called control state ASMs, has been shown to
represent a “normal form” for Unified Modeling Language (UML) activity diagrams
(see, e.g. [22]). Control state ASMs are frequently used and thus well understood
in practice. They build upon the concept of classical finite state machines. As
BPMN process diagrams can be seen as an extended and specialised form of activity
diagrams, we can employ control state ASMs for modelling the semantics of BPMN
process diagrams as well. As a matter of fact, we can already build on existing
work in which transformations of process diagrams into ASMs have already been
suggested [20, 23] and refine the mapping of each construct of BPMN to ASM
constructs.

Transforming process diagrams into ASMs will enable us to:

* highlight shortcomings in the BPMN standard regarding the semantics of process
diagrams,



1.2 Intended Readership and Relevance 7

» prove desired properties of process diagrams in general as well as of particular
process diagrams (or classes of process diagrams),

* Dbetter apply model-checking techniques to process diagrams, and

* provide a basis for building software tools for business process modelling.

We therefore base our rigorous semantics for BPMN process diagrams on the
ASM method and also apply intuitive specification writing style guidelines that
improve the understandability of formal specifications by combining rigour with
a way of expression that is closer to natural language [67].

1.2 Intended Readership and Relevance

This book provides the most complete formal specification of the semantics of
BPMN process diagrams available to date, in a style that is easily understandable
for a wide range of people—not only by experts in formal methods. Thereby, as a
side benefit, we also demonstrate the benefits of the ASM method combined with
efforts to stay close to natural language as a style of rigorous specification which
can be used much more widely.

Such kind of rigorous specification makes it possible to analyse the BPMN
standard profoundly and to develop it further to modelling and simulation tools for
BPMN, which is demonstrated in this book. It can also serve as a basis for further
development of the BPMN standard and additional add-ons.

Of particular importance are the potential insights that can help to resolve a
multitude of today’s sources of faults in business process implementation projects,
i.e. it is expected that the results will contribute to a more solid practice in the
development of process-oriented applications. It can further be expected that the
formal approach will have a considerable impact on a wide range of modelling
approaches and tools. Having a comprehensive, sound, and formal model, tools and
frameworks can rely on these findings and adjust the semantics of their modelling
and refinement constructs according to the formal specification. In doing so, the
semantics cannot be lost or changed by working with these tools and techniques.
This definitively constitutes a big step towards semantically correct business
process implementations. For example, modelling products could guarantee that a
refinement step has been applied semantically correct. Furthermore, models created
with different modelling tools could become comparable.

A summary of the complete ASM model, including the signature, can be found
on the Web page:

http://h-bpm.scch.at


http://h-bpm.scch.at

8 1 Introduction
1.3 Outline

The rest of this book is structured as follows: Related work with a focus on
established business process modelling techniques, formal descriptions of BPMN,
and the suitability of BPMN for business process modelling is studied in Chap. 2.
Chapter 3 provides an introduction to modelling the semantics of process diagrams
with ASMs. The core part of this book is Chap. 4, where we define a rigorous
semantics for BPMN process diagrams in detail.

Chapter 5 gives an overview over potential uses of such a formal model, with
a special focus on validation and verification of process diagrams, and Chap. 6
provides a detailed discussion of the BPMN 2.0 standard. An approach to refine the
semantic model towards a workflow engine by the method of stepwise refinement
is given in Chap. 7. We conclude with a final discussion of the results and give an
overview over future research in Chap. 8.

Appendix A contains an overview of auxiliary constructs which we use in
addition to standard ASM notation, including set notation, and the complete
signature of the ASM ground model.



2 Springer
http://www.springer.com/978-3-319-09930-9

& Rigorous Semantics for BPMMN 2.0 Process Diagrams
Kossak, F.; lllibauer, C.; Geist, V.; Kubowy, J.;
Matschlager, C.; Ziebermayr, Th.; Kopetzky, T.;
Freudenthaler, B.; Schewe, K.-D.

2014, ¥, 235 p. 80 illus., 1 illus. in color., Hardcover
ISEM: 978-3-319-09930-9



	1 Introduction 
	1.1 Motivation
	1.2 Intended Readership and Relevance
	1.3 Outline


