Porting Applications with OpenMP Using
Similarity Analysis

Wei Ding!2(®) | Oscar Hernandez'?, Tony Curtis!?,
and Barbara Chapman'?

! Department of Computer Science, University of Houston, Houston, USA
2 Oak Ridge National Laboratory, Oak Ridge, USA
{wding3,tonyc,chapman}@cs.uh.edu,
oscar@ornl.gov

Abstract. Computer architecture has undergone dramatic changes due
to technology innovation. Some emerging architectures, such as GPUs
and MICs also have been successfully used for parallel computation in
the today’s HPC field. Nowadays, people frequently have to port appli-
cation to a new architecture or system and to expand its functional-
ity for a better performance while in the meantime to meet the new
hardware environment need. However, many scientific application legacy
codes have a relative large size and long development cycle, so it’s a very
challenging job to port legacy codes to a new environment. And current
codes porting process is a manual, time-consuming, expensive and error-
prone process, which requires a team of people work together. Barely any
useful tools can be used to ease the porting process in High Performance
Computing (HPC). In this paper, we present a tool called Klonos, which
is designed for assisting scientific application porting. Based on similarity
analysis of code syntax and cost-model provided metrics, we are able to
find codes which can be optimized similarly without the need of profil-
ing the codes. The proposed porting plan can systematically guide users
for selecting subroutines in a way which maximizes the reuse of similar
porting strategy. We evaluate Klonos by applying it to a real scientific
application porting to a shared memory environment using OpenMP.
According to our experiment result, which shows that Klonos is very
accurate to detect similar codes which can be ported similarly.

1 Introduction

HPC systems have been continually evolving, driven by technology innovation in
computer hardware, operating systems, network protocols, and system libraries.
As a result, applications that have been developed and tuned for older systems
often require significant code changes to utilize the capabilities of the newer
systems. The process of code changes for a new system is called software porting.

This work was funded by the ORAU/ORNL HPC grant. This research used resources
of the Leadership Computing Facility at Oak Ridge National Laboratory and NICS
Nautilus supercomputer for the data analysis.

© Springer International Publishing Switzerland 2014
C. Cagcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 20-35, 2014.
DOI: 10.1007/978-3-319-09967-5_2

Porting Applications with OpenMP Using Similarity Analysis 21

Fig. 1. Accelerator/Co-Processor Treemap of Top500 released in November 2012

In software engineering, software porting refers to the process of adapting soft-
ware originally designed for one computing environment so that an executable
program can be created for a different computing environment [28]. This process
is a task that frequently arises in HPC, and it poses particular challenges in this
domain.

On the roadmap toward exascale computing, a major challenge with respect
to supercomputer design is the need to provide higher levels of computational
power at dramatically lower rates of power consumption. The use of GPUs as co-
processors is rapidly becoming a popular and powerful way to perform parallel
computation. In Fig. 1, according to the Treemap (Accelerator/Co-Processor)
of the Top500 List [19], released in November 2012, we see that the emerging
co-processor such as GPUs and MICs are playing a greatly increased role in the
supercomputers listed in the Top500. On the one hand, these co-processor- (or
vector processor-) based heterogeneous systems provide more computation and
power balance, but on the other hand, complicate programming models, which
makes application porting more challenging than ever.

The Titan supercomputer at Oak Ridge National Laboratory is equipped
with NVIDIA graphics processing units (Kepler K20x GPUs). In order to migrate
codes to Titan, scientists need to know how to exploit not only the large number
of CPU cores, but also the GPUs that are configured on the nodes. They will
need to create new computational kernels with suitable granularity to exploit
the GPUs, while minimizing costly data movement, exploiting complex memory
subsystems, and mapping work to balance the overall load. They may need to
use a hybrid programming model, such as adding OpenMP [1,3] and accelerator
directives [12,13] to MPI applications [27], or they may introduce Pthreads [4]
or an APT designed for accelerators [22,23].

CUDA and OpenCL are two popular programming APIs specifically used for
GPU programming, however programmers often have to restructure and write
kernels for running regions of code on GPU. Worse still, the syntax of CUDA or

22 W. Ding et al.

OpenCL code is quite different from the traditional C and Fortran languages,
which makes it almost impossible for programmers with no CUDA or OpenCL
background to understand and maintain the code. Directives-based program-
ming models like OpenMP, HMPP, PGI and OpenACC for GPU programming
that can greatly increase programming productivity, have been proposed to face
such challenges. Reference [14] have explored and compared popular program-
ming models used for GPUs, showing that a directives-based approach is able to
achieve similar or even better performance compared to CUDA and OpenCL. By
raising the level of abstraction, directives-based models will enable incremental
development and increase programming productivity, fast prototyping and retar-
getability for future new development environment and hardware. Reference [18]
summarizes the authors’ experience of porting a simulation of turbulent combus-
tion application to a GPU by using OpenACC. Although directives-based pro-
gramming models to some extent ease the programmability burden, the whole
porting process is still manual, time-consuming and error-prone.

Profiling tools are used to find computationally intensive code regions and
then offload them to GPUs, followed by either a manual or compiler-driven
restructuring for performance tuning. The quality of code porting relies solely
on the user’s programming experience. There are very few tools that can assist
the porting process. The whole process requires a lot of work, and worse still,
neither programmers or compilers can reuse previous experience for structurally
similar code. In order to ease the process of porting software to a new system, we
have created a tool called Klonos, which is able to provide a porting plan based
on similarity analysis. This tool allows programmers and compilers to reuse port-
ing experience as much as possible during the porting process. In this paper, we
use the OpenMP programming model as an example to show how we can apply
Klonos for porting serial code to a shared-memory programming environment.
The main contributions of this paper are that: (1) we adapt cost-model provided
metrics to capture code similarity in terms of optimization or porting, which
saves the trouble of running the application for profiling information collection;
(2) we propose a method for combining syntactic and cost-model-provided met-
rics clusters which aggregate similar subroutines that can be ported similarly.
(3) we validate the Klonos tool by applying it to a large scientific application
that is in production use. Our experiments shows that Klonos is an accurate
tool for detecting subroutines that can benefit from similar porting strategies,
and which reuse the programmers’ or compiler’s porting experience as much as
possible. For clarity, Table 1 explains terms used in this paper.

This paper is organized as follows: Sect.2 summarizes related work for the
software porting. Section 3 describes the framework of Klonos and the cost model
metrics which we introduced for detecting subroutine similarity in terms of port-
ing or optimization. Section 4 evaluates Klonos tool for porting a real application
called GenIDLEST to a shared programming environment by using OpenMP.
Section 5 is the conclusion and future work.

Porting Applications with OpenMP Using Similarity Analysis 23

Table 1. Terminology used in the Klonos tool

Term Description

Similarity A percentage score used to describe the match between
a pair of sequences

Similarity distance matrix | A matrix (two-dimensional array) containing the
distances, taken pairwise, of a set of subroutines.
Matrix size is NxN, N is the number of subroutines

Family distance tree A tree structure which is constructed based on the
similarity distance matrix. Inside the tree,
subroutines with similar code structure will be
grouped into one sub-tree

Porting strategy A solution for adapting a program to a different or new
platform while guaranteeing program correctness and
efficiency

Porting cluster A group of clusters with subroutines in each cluster

share the same syntactic and cost-model provided
metrics clusters

Porting plan A process of making plans for deciding the porting
orders among the porting groups to a new platform
in order to reuse porting strategies as much as
possible

2 Related Work

Various techniques are used to port software from one environment to another.
Two of these techniques used in the evolution of legacy codes are software refac-
toring and re-engineering. Additionally, a directives-based approach is used to
guide the compiler while minimizing code changes and retaining the original
syntax. With the help of code transformation tools, such restructuring work can
be carried out (semi-)automatically, greatly improving work productivity.
Software refactoring is an important technique for the development and evo-
lution of complex software systems. This technology saves development time and
effort by reusing much of the existing design and code. Reference [20] uses some
design tactics that assist users when evolving code from an existing software sys-
tem, rather than starting from scratch. However based on their proposed app-
roach, the onus is on the programmer to build a case model and object-oriented
design model. The development team must also go manually through a discovery
process to determine the structure of the code [8]. The discovery process is difficult
and time-consuming, and it also not trivial to determine architecture features from
the source code. Software re-engineering is the examination, analysis and alterna-
tion of an existing software system to reconstitute it for a new system. But this
technique usually comes with extremely high manual re-engineering costs, and
it’s hard to get a global view for code, data, process re-engineering. Additionally

24 W. Ding et al.

the re-engineered system might perform inadequately. We still needs a tool to
accurately provide us a code review.

A directives-based programming approach can be used to increase program-
mability and keep code concise. OpenMP serves as the de facto directives-
based standard for parallel programming on shared memory systems, and is now
deployed beyond pure HPC to include embedded systems, real time systems, and
accelerators [6]. This directives-based approach greatly increases programming
productivity, although it is not easy to write highly efficient code simply by
adding directives, as unexpected overheads or side-effects may be introduced. In
order to remedy this, several tools have been proposed: [16] develops an envi-
ronment integrated with a tool called CAPO [5] where the user can navigate
through both the program structure and performance data information in order
to make efficient optimization decisions during the process of porting sequen-
tial applications to parallel computer architectures. ParaWise [15] parallelizes
applications, including the automatic insertion of message passing communica-
tions and/or OpenMP directives. However, all of those tools are limited to the
compiler for the code analysis, no optimization strategies can be reused, and the
analysis capability is inaccurate in some cases.

A code transformation technique, [25] describes the porting strategy for
translating from COBOL to C/C++ based. However this tool is outdated since
COBOL is not used in the HPC field. There are some other tools such as
CHILL [7], POET [30] which provide code transformation for a target system.
But the code transformation replies on users to manually write transformation
scripts, also it’s lack of capability of finding code regions which could apply code
transformation. T'SF [21] is a pattern matching based code transformation tool
only for Fortran code engineering, but it’s lack of capability to find how similar
of the code regions could be applied for code transformation. Hercules [17] is
another code transformation tool that could be used to apply optimizing trans-
formations, but we still need a tool to identify code regions in which these trans-
formations could be applied. The Hercules project from Oak Ridge relies on a
transformation recipe and a compiler plug-in infrastructure to apply the transfor-
mation processes at compile time. Although early evaluations of Hercules suggest
that the pattern matching approach is feasible on current computer resources,
the task of defining patterns may become daunting to the programmer, and a
tool to assist with the creation of this pattern creation based on similar code is
needed.

3 Klonos Framework

Klonos [11] is the tool we designed for assisting software porting. This tool is
based on the similarity analysis with the help of the OpenUH [24] compiler. As
Fig. 2 shows, the main framework of Klonos is comprised of static, dynamic and
cost-model metrics collection and porting planning analysis.

Porting Applications with OpenMP Using Similarity Analysis 25

Compiler Infrastructure

—) Code Seql_Jence o
Extraction

T l Extraction of very high level of

Mapping of //// LI \

Similar Patterns | / /' /

[[\
To Source Code || Sequence
\ Patterns /
Annotated
porting planning /

tree

Database

——
Clustering

Static & cost-
Filtering, information model-provided
Aggregation of Results metrics clustering

Match Detection,

Fig. 2. The KLONOS porting planning system

3.1 Static Metrics

For static metrics collection, we reply on the compiler to collect code syntactic
information. Additional functionality to track pattern information in the gen-
erated parse tree has been added to OpenUH as part of this work. During the
traversal process, each key operator or operand visited by the compiler will be
decoded into a unique character, which is defined by a node map that was defined
in advance. This maps the hierarchical source code information into a flattened
sequence. Next, a sequence alignment is constructed to evaluate the subroutine
syntactic similarity for each pair of subroutines. Based on the syntactic similar-
ity score for each pair of subroutines, a family distance tree is built, showing
the aggregation of structurally similar subroutines. This aggregation is called
a “syntactic cluster”. This method is easy to use and quite scalable compared
to the graph comparison method. Reference [10] describes these steps in more
detail.

3.2 Dynamic Metrics

Syntactic analysis is able to help find similar code quickly, which provides the
ability to apply similar optimization strategies to that code. However, simi-
lar code structure does not guarantee that similar optimization techniques will
apply. For example, the parallelization strategy for a particular loop structure
would be totally different if we alternate an array name which might introduce
loop-carried dependence. In order to ensure a particular optimization or paral-
lelization strategy can be safely applied for similar codes, code feature metrics
such as parallelization, vectorization, and memory access pattern related met-
rics need to be taken into consideration. In selecting dynamic metrics, we choose
metrics that are able to reflect and capture the memory behaviors of an appli-
cation. In [9], the following hardware counters were collected using AMD Code-
Analyst: “DC accesses”, “DC misses”, “DTLB L1M L2M”, “CPU clocks”, “Ret
branch” and “Ret inst”. Once those metrics are available, Weka [2] is used to

26 W. Ding et al.

create “dynamic clusters” for subroutines based on these code features, using the
K-means algorithm to calculate the Euclidean distance for each pair of
subroutines.

3.3 Cost-Model Metrics

The aggregated structural information provided by the static metrics, and the
aggregated behavioral information provided by the dynamic metrics combine to
identify a viable porting plan for an application. However, it is still impractical
to run an entire application to collect the performance sampling data, especially
for a large application which consists of millions lines of code. To analyse a very
large data set generated by such a run is difficult and time-consuming. Even if
it is possible to collect this kind of performance data, the output is sensitive
to the content of the input data and sampling information varies significantly
between different execution phases. It is also evident that many optimization or
code restructuring techniques used during porting are target specific, and lead
to variations in performance on different platforms. So different cost-models will
be used for different target systems. A cost model is a performance estimation
without regard to specific input data, and is used by the compiler to select
different optimization algorithms. OpenUH uses a shared memory processor cost
model to evaluate different combinations of optimizations and to decide if there
is enough work (in processor cycles) to gain from automatic parallelization of a
loop. The cost model is essential to evaluate whether it is worth applying static
optimizations to loops and consists of three major components: the processor,
cache, and parallel overhead [29]. The similarity of code is measured by analysing
the similarity of cost-model-based metrics. Sections of code that exhibit the same
metrics are likely to benefit from similar optimization and porting strategies. The
cost model provided metrics used are: estimated number of iterations, suggested
parallelization, loop parallelizable attribute, loop vectorizable attribute, loop
vectorized number, loop align peeled, work estimate, loop depth. These metrics
are key factors used in the cost model for optimization strategy selection, which
can accurately capture the internal code optimization characteristics.

4 Experiments

GenIDLEST is a Fortran program that simulates transitional and turbulent
flows in complex geometries [26]. This application features both shared mem-
ory (OpenMP) and distributed memory (MPI) parallelism, which leads to a
high degree of portability between computer architectures. This application is
thus ideal for the porting planning strategy verification that we propose to per-
form with the Klonos tool. First, we use Klonos to analyze the serial version
of GenIDLEST, and then generate a porting plan for a parallel version of the
code using OpenMP. By referring to the optimized GenIDLEST OpenMP code,
we are able to verify the accuracy of the proposed OpenMP porting plan with
Klonos.

Porting Applications with OpenMP Using Similarity Analysis 27

Pseudocolor
Var var
1000

—75m

| e

—25m

Fig. 3. The subroutine similarities of the GenIDLEST application

4.1 GenIDLEST Similarity Analysis

GenIDLEST has a total of 264 subroutines. Before we perform the syntactic sim-
ilarity analysis, we pre-process the generated sequence pattern files by exclud-
ing subroutines with only one function invocation inside them, since those files
only contribute noise through many highly syntactically similar pairs. After the
pre-processing steps, next we generate a similarity square matrix by comparing
each pair of subroutine sequences until all the subroutines have been consumed.
Figure 3 shows the 3D visualization of GenIDLEST subroutines. It lists the over-
all similarities among all the subroutines. Axes X and Y are subroutines, the Z
axis represents the similarity score for each pair of subroutines. The node map
legend shows the level of similarity. Red means high similarity and blue means
low, or no, similarity. The diagonal shows subroutine self-similarity. Figure 4 is a
circular family distance tree with height of 31. It shows the overall relationship of
syntactic similarity for GenIDLEST subroutines after pre-processing. The fam-
ily distance tree lists similarity relationships of 254 subroutines, which the total
number of subroutines after preprocessing that excludes subroutines with only
one function call inside.

Table 2 summarizes the statistics of the similarities of subroutines after pre-
processing. GenIDLEST has 1327 subroutine pairs that maintain syntactic sim-
ilarity of greater than 50 %, which means a majority of subroutines look similar
structurally.

4.2 Syntactic Clustering Analysis

Figure 5 shows the relationship of the number of correct porting similar sub-
routine pairs with setting different number of clusters based on code syntactic
similarity. In Fig.5(a), we can the see the number of similar subroutine pairs
using similar porting directives decreases gradually as the syntactic based cluster
number increases. Figure 5(b) shows the ratio of similar subroutine pairs using

28 W. Ding et al.

Fig. 4. The overall family distance tree for GenIDLEST

Table 2. GenIDLEST subroutines Table 3. OpenMP directive encoding
similarity statistics code map

Similarity range | # of subroutine pairs Directives Character map
Similarity > 90 47 $!{OMP PARALLEL P

Similarity > 80 43 $IOMP DO D

Similarity > 70 44 $!{OMP PARALLEL DO | PD

Similarity > 60 208
Similarity > 50 985
Similarity < 50 | 30804

4000 ot M

2 3500 22 03
gg 3000 g}‘g 03 \/\
22 2500 \ é % 0.25 \
g0
Sfaw | dg % \
SE 1m0 | e 28 o1
<R3 \ ES \
5 & 1000 gz 0 \
S E 500 L. o@ 005
* G \ § % o \‘

0
Q 50 100 150 200 250 300 1] 50 100 150 200 250 300

#of syntactic based dusters #of duster based on syntactic

Fig. 5. Syntactic-based cluster for GenIDLEST application

Porting Applications with OpenMP Using Similarity Analysis 29

similar porting directives over the total number of similar subroutine pairs from
the “syntactic cluster”. As we can see, the ratio is less than 40 %, which means
the porting accuracy is very low by only using cost-model provided metrics for
porting clustering.

To further divide hierarchical clustering into fine-grained syntactic groups,
we propose three methods to cluster the tree, based on: (A) the user inputs
the tree depth value, which is used to divide the tree. (B) a similarity distance
value serves as a threshold to divide the tree: if the distance between current
the node and its parent is greater than the distance threshold, then the current
node and its descendants will be separated into a subtree. (C) a combination
of the first two methods; this combination method clusters the tree based on
user input of tree depth and similarity distance. Our goal is to find a cluster
number that is able to put syntactically similar subroutine pairs into groups as
much as possible while maintaining a moderate group size. Based on previous
empirical experience, a syntactic value of 50 % is a suitable threshold [9], so in
our experiment we use that threshold value and the input depth of the tree for
clustering.

4.3 Cost-Model Metrics Clustering Analysis

To better understand the relationship between the cost-model-provided metrics
and similar optimization or porting strategy, we only used the cost-model metrics
to cluster the subroutines and then check the number of subroutine pairs which
use the same optimization directives or strategies. Figure 6(a) depicts the rela-
tionship between the number of subroutine pairs that use similar directives and
the number of clusters, which is set manually based on the cost-model metrics.
When changing the number of clusters based on the cost-model metrics, we can
see the number of subroutine pairs using similar directive strategies decreases
gradually until it reaches a constant. Figure 6(b) shows the ratio of subroutine
pairs using a similar porting strategy over the total number of subroutine pairs
that have been clustered with respect to different numbers of clusters. According
to this result, we find that relying purely on cost-model provided metrics for clus-

o o
w e s O
g rO0

o f
w

o9 RpQo
[RN

Ratio of similar subroutine pairs use
similar optimization directive
o
N
192}

#of subroutine pairs using
similar optimization directive
= [N]
-8 888¢¢8

o

1 50 100 150 200 250
#of duster based on cost-model metrics

i

#of dusters based on cost-model metrics

Fig. 6. Cost-model metrics based cluster for GenIDLEST application

30 W. Ding et al.

18
16
14
12
= 10

io”

“Good ra

oN B O

0 50 100 150 200 250
of clusters based on cost-model metrics

Fig. 7. Cost-model metric based clusters for GenIDLEST

tering subroutines results in low accuracy (below 46 %) for detecting subroutine
pairs that can be ported or optimized in the same way. To obtain a reasonable
number of clusters for cost-model metrics, we define and use a “Good ratio”
to set the number of clusters. “Good ratio a percentage score of the number of
subroutine pairs with syntactic similarity greater than 50 % over the total num-
ber of subroutine pairs in the clusters. We select a cluster number with highest
“Good ratio” to make structurally similar subroutines aggregated as many as
possible for similar porting experience reuse.

In Fig.7, the Y-axis is the percentage of the number of subroutine pairs
with syntactic similarity greater than 50 % over the total number of subroutine
pairs in the clusters. We use the term “Good ratio” to define this percentage
score in the next text. The X-axis is the number of clusters manually set for
clustering subroutines based on cost-model metrics In this diagram, we can see
that the “Good ratio” is around 16 % when the number of clusters is set to
8 and 41 respectively. When setting up the number of cluster based on cost-
model provided metrics, we want to choose a cluster number which could result
in “Good ratio” while maintaining a moderate group size to void a scenario of
generating too many combined clusters. Considering this, we set the number of
cluster for cost-model metrics to 8 in our experiment.

4.4 Combination of Syntactic and Cost-Model Based Clusters

Relying solely on either syntactic or cost-model-provided metrics results in low
accuracy when detecting similar subroutine pairs that could be optimized or
ported similarly. By incorporating these two metrics we can greatly increase the
accuracy of the process of detecting subroutine pairs to be ported in the same
way.

In Sect. 4.3, we found that we can get a “Good ratio” by setting cost-model
provided cluster number to 8. To discover the relationship between those two
clusters, we tried different combinations of numbers of clusters for the syntactic
and cost-model-based clusters. To control the size of combined clusters, we set
cost-model provided clusters from 1 to 9 in the relationship of syntactic and
cost-model cluster analysis. Our goal is to accurately aggregate similar subrou-
tines into groups as much as possible, which provides the opportunity to find

Porting Applications with OpenMP Using Similarity Analysis 31
0.7

0.6

“Good ratio”

03

0.2

0.1

2 10 18 26 28 30 33 34 38 42 48 49 54 55 57 61 81 190230 ...
of syntactic based clusters

Fig. 8. Combined syntax and cost-model metric clusters for GenIDLEST

subroutines that can be optimized in the same way. In Fig. 8, the X-axis is the
ratio of the number of subroutine pairs with syntactic similarity more than 50 %
over the total number of subroutine pairs based on current combined clustering
methods. The Y-axis is the number of clusters obtained by using different dis-
tance values from 0 to 100. Inside each cluster, we vary the number of clusters
based on the cost-model metrics, resulting in the “heart-beat” shape diagram.
We observe that the ratio reaches a peak in this diagram when setting the cost-
model metrics-based cluster to 8, which is exactly the number of cluster we can
get peak “Good ratio” value in our cost-model metrics analysis described in
Sect. 4.3.

4.5 Improved Verification Methodology

To increase the accuracy of verification, our improved methodology focuses on
the syntax of OpenMP directive comparison directly. We add functions into
the phase of code sequence extraction (described in Sect.3.1). If any OpenMP
directive is detected in a subroutine, a separate “.opt” file will be generated:
this is used to record a loop position index from its corresponding subroutine
code sequence, and optimization sequences by encoding OpenMP directives into
sequences according to the code map defined in Table 3.

Assume we have subroutines A and B in a combined cluster group. There are
three cases that can be classified when comparing their similar optimization or
porting strategy: (1) Neither A nor B have corresponding “.opt” files. We treat
A and B in the same way, meaning neither of them could be optimized. (2) Only
one of A and B has a “.opt” file, which means one was optimized and the other
was not. Therefore A and B do not count as similar for optimization, and do
not use similar directives for porting. (3) Both A and B have “.opt” files. In this
case, we perform code sequence alignments first. We are able to see which loops
have been aligned by referring the loop index obtained from a code sequence

32 W. Ding et al.

back to the corresponding “.opt” file. For aligned loops, we check the OpenMP
encoded directive sequences directly to check if two similar subroutines can have
similar optimization directives applied to them for porting purposes.

4.6 Porting Strategy Verification

Based on analysis of clustering using syntactic and cost-model metrics listed in
Figs. 5 and 6, we found that either using syntactic distance or cost-metric metrics
only as cluster method will results in inaccurate clustering for making porting
planning. Our goal is to minimize the number of clusters while in the meantime
to make sure accuracy for clustering similar subroutines using similar porting
directives. According to Fig.8 shows that we can have maximum similar pairs
ratios for subroutine pairs fall into the same syntactic and cost-model metrics
based cluster So we set up the number of code-model provided metrics cluster (or
short for cost-model cluster) to 8 in our experiment and then make a comparison
of the accuracy of porting. By setting distance value to 50 and depth to 5 based
on the shape of the tree, then we are able to divide the tree into 9 clusters for
syntactic cluster. By merging the syntactic and code feature clustering, we divide
the 254 subroutines into 25 groups. Subroutines within each group fall into the
same syntactic and code-model cluster. After combining syntactic and code-most
metric based clusters or combined cluster, next comes to step of verifying the
correctness of similar directives used for subroutines fall into combined cluster.
The ratio of all subroutine pairs using similar optimization reaches 49.51 % in
our experiment. Figure 9(a) shows the relationship of similar optimization ratio
over the 254 subroutines with respect to the syntactic similarity for subroutine
pairs which fall into the same syntactic and code-model cluster when setting the
cost-metrics based cluster number to 8. As the figure shows, the correctness of
using similar directive for parallelizing the code is almost 80 % for subroutine
pairs who fall into the same syntactic and code-model cluster with syntactic
similarity is greater than 50 %. Figure9(b) shows the number of pairs using
similar porting strategy in detail.

1 700
0.9 o 600 = different opt.
83 T 0o # similar opt.
(]
o 06 £ 400
B 05 3
0 5 300
0.3 2 200 g5 i
02 % 100 |]
= = s o
o o lme B 0 0 |
500 >80 370 60 50 >0 330 20 10 >90 >80 >70 >60 >50 >40
syntactic similarity syntactic similarity
(a)Similar optimization directive (b) Similar optimization directive
verification for GenIDLEST verification for GenIDLEST

Fig. 9. Verification of GenIDLEST porting planning analysis

Porting Applications with OpenMP Using Similarity Analysis 33

Higher syntactic similarity will result in using similar directive parallelization
strategy for subroutine pairs with the same syntactic and code feature cluster.
This result proves that our similarity based methodology is very effective and
accurate in detecting similar subroutines which could use similar porting or
optimization strategy. Using cost-model based metrics are accurate for capturing
code similarity in terms of optimization or porting, which saves the trouble of
running applications to collect profiling information.

5 Conclusions and Future Work

In this paper, we have expanded the notion of code similarity analysis to cost-
model-provided metrics for detecting similar porting strategies for similar sub-
routine pairs, thus avoiding the burden of running applications to gather profiling
information.

We have validated Klonos by applying it to GenIDLEST, a real scientific
application, that was originally written as serial code and then parallelized for
a shared memory environment using OpenMP. By referring to the optimized
OpenMP GenIDLEST code, we discovered that the OpenMP directives proposed
by Klonos are both accurate and effective. This porting approach is quite easily
extended to other directive based approaches for code migration to different
architectures (e.g. PGI, OpenACC, HMPP etc.).

Future work will include exploring cost-models for porting code to other
accelerators. We will also use data mining techniques to create a framework
which can automatically find combinations of syntactic and cost-model clusters
to increase porting accuracy. Additionally, we will implement a GUI to visualize
the process of generating porting plans.

References

1. OpenMP ARB. Openmp arb. http://openmp.org/wp/about-openmp/

2. Machine Learning Group at University of Waikato. Weka 3: Data mining software
in java. http://www.cs.waikato.ac.nz/ml/weka/

3. Jost, G., Chapman, B.M., van der Pas, R.: Using OpenMP: Portable Shared Mem-
ory Parallel Programming. The MIT Press, Cambridge (2007)

4. Buttlar, D., Nichols, B., Farrell, J.P.: Pthreads Programming. O’Reilly & Asso-
ciates Inc., Sebastopol (1996)

5. NASA Ames Research Center. Capo (computer-aided parallelizer and optimizer).
http://people.nas.nasa.gov/~hjin/CAPO/index.html

6. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10. MIT Press, Cambridge (2007)

7. Chen, C., Chame, J., Hall, M.: CHiLL: a framework for composing high-level loop
transformations. Technical report, Technical Report 08-897, USC Computer Sci-
ence Technical Report (2008)

8. Davison, J., Mancl, D., Opdyke, W.: Understanding and addressing the essential
costs of evolving systems. Bell Labs Tech. J. 5, 44-54 (2000)

http://openmp.org/wp/about-openmp/
http://www.cs.waikato.ac.nz/ml/weka/
http://people.nas.nasa.gov/~hjin/CAPO/index.html

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.

26.

W. Ding et al.

Ding, W., Hernandez, O., Chapman, B.: A similarity-based analysis tool for porting
OpenMP applications. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the
Multicore-Challenge III. LNCS, vol. 7686, pp. 13—24. Springer, Heidelberg (2013)
Ding, W., Hsu, C.-H., Hernandez, O., Chapman, B., Graham, R.: Klonos:
similarity-based planning tool support for porting scientific applications. Concur-
rency Comput. Pract. Experience 25, 1072-1088 (2013)

Ding, W., Hsu, C.-H., Hernandez, O., Graham, R., Chapman, B.M.: Bioinspired
similarity-based planning support for the porting of scientific applications. In: 4th
Workshop on Parallel Architectures and Bioinspired Algorithms, Galveston Island,
Texas, USA (2011)

CAPS Entreprise. HMPP: A Hybrid Multicore Parallel Programming Platform.
http://www.caps-entreprise.com/en/documentation/caps_hmpp_product_brief.
pdf

The Portland Group. PGI accelerator compilers (2010). http://www.pgroup.com/
resources/accel.htm

Hernandez, O., Ding, W., Chapman, B., Kartsaklis, C., Sankaran, R., Graham,
R.: Experiences with high-level programming directives for porting applications
to GPUs. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore -
Challenge II. LNCS, vol. 7174, pp. 96-107. Springer, Heidelberg (2012)

Johnson, S., Evans, E., Jin, H., Ierotheou, C.: The ParaWise expert assistant -
widening accessibility to efficient and scalable tool generated OpenMP code. In:
Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 67-82. Springer, Hei-
delberg (2005)

Jost, G., Jin, H., Labarta, J., Gimenez, J.: Interfacing computer aided paralleliza-
tion and performance analysis. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part IV. LNCS,
vol. 2660, pp. 181-190. Springer, Heidelberg (2003)

Kartsaklis, C., Hernandez, O., Hsu, C.H., Ilsche, T., Joubert, W., Graham, R.L.:
Hercules: a pattern driven code transformation system. In: 2012 IEEE 26th Inter-
national Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), pp. 574-583. IEEE (2012)

Levesque, J., Sankaran, R., et al.: Hybridizing s3d into an exascale application using
openacc: an approach for moving to multi-petaflops and beyond. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, p. 15. IEEE Computer Society Press (2012)

Top500 List. Treemap - november 2012 (accelerator/co-processor). http://www.
top500.org/statistics/treemaps/

Mancl, D.: Refactoring for software migration. IEEE Commun. Mag. 39(10), 88-93
(2001)

Mével, Y.: Tsf: an environment for program transformations

Munshi, A.: The OpenCL Specification, October 2009

NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide Version 3.0, March 2010. http://developer.nvidia.com/cuda
The OpenUH compiler project (2005). http://www.cs.uh.edu/~openuh

Sampaio do Prado Leite, J.C., Sant’Anna, M., Francisco do Prado, A.: Porting
cobol programs using a transformational approach. J. Softw. Maintenance: Res.
Pract. 9(1), 3-31 (1997)

Tafti, D.: Genidlest a parallel high performance computational infrastructure
for simulating complex turbulent flow and heat transfer. APS Division of Fluid
Dynamics Meeting Abstracts, vol. 1 (2002)

http://www.caps-entreprise.com/en/documentation/caps_hmpp_product_brief.pdf
http://www.caps-entreprise.com/en/documentation/caps_hmpp_product_brief.pdf
http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/resources/accel.htm
http://www.top500.org/statistics/treemaps/
http://www.top500.org/statistics/treemaps/
http://developer.nvidia.com/cuda
http://www.cs.uh.edu/~openuh

27.

28.
29.

30.

Porting Applications with OpenMP Using Similarity Analysis 35

Vetter, S., Aoyama, Y., Nakano, J.: RS/6000 SP: practical MPI programming, vol.
SG24-5380-00 of 0738413658. vervante, August 1999

The Wikipedia. Software porting. http://en.wikipedia.org/wiki/Porting

Wolf, M.E., Maydan, D.E., Chen, D.-K.: Combining loop transformations consid-
ering caches and scheduling. In: Proceedings of the 29th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 274-286. IEEE Computer Society,
Washington, DC (1996)

Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.J.: POET: parameterized
optimizations for empirical tuning. In: Workshop on Performance Optimization
for High-Level Languages and Libraries, March 2007

http://en.wikipedia.org/wiki/Porting

2 Springer
http://www.springer.com/978-3-319-09966-8

Languages and Compilers for Parallel Computing

26th International Workshop, LCPC 2013, San Jose, CA,
USA, September 25--27, 2013, Revised Selected Papers
Cascaval, C.; Montesinos, P. (Eds.)

2014, XX\, 357 p. 160 illus., Softcover

ISBEN: 978-3-319-009966-8

	Porting Applications with OpenMP Using Similarity Analysis
	1 Introduction
	2 Related Work
	3 Klonos Framework
	3.1 Static Metrics
	3.2 Dynamic Metrics
	3.3 Cost-Model Metrics

	4 Experiments
	4.1 GenIDLEST Similarity Analysis
	4.2 Syntactic Clustering Analysis
	4.3 Cost-Model Metrics Clustering Analysis
	4.4 Combination of Syntactic and Cost-Model Based Clusters
	4.5 Improved Verification Methodology
	4.6 Porting Strategy Verification

	5 Conclusions and Future Work
	References

