A Risk-Averse Differential Game Approach
to Multi-agent Tracking and Synchronization
with Stochastic Objects and Command
Generators
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Abstract This chapter presents the formulation of a class of distributed stochastic
multi-agent systems where local interconnections among cautious and defensive
decision makers and/or trackers are supported by connectivity graphs. Associated
with autonomous decision makers and/or trackers are finite-horizon performance
measures for conflict-free coordination and cohesive object and/or command track-
ing. The current analysis is limited to the class of distributed linear stochastic
systems and measurement subsystems. It is shown that optimal rules for ordering
uncertain prospects are feasible for all self-directed decision makers and/or trackers
with output-feedback Nash decision making and risk-averse utility functions.

Keywords Distributed Control * Performance-Measure Statistics * Downside
Performance Risk Measure ¢ Connectivity Graphs * Person-by-Person Decision
and Control

1 Introduction

One of the best ways to understand the growing interest in multi-agent tracking and
distributed control systems is to review the history of these old and new engineering
problems. Examples include multi-agent architectures for tracking and estimation
[7,10, 15] and control design with pre-specified information structures and control
under communication constraints [8]. Yet relatively little work has focused on
understanding quantitatively the downside risk measures in multi-agent systems for
various tasks in terms of performance robustness and risk aversion.

In noncooperative stochastic games and distributed controls, there are more
than two capable decision makers who optimize different goals and utilities. Each
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decision maker wishes to influence to his/her advantage a shared interaction process
by exerting his/her control decisions. To the best knowledge of the authors, most
studies, e.g., [2] and [4], have mainly concentrated on the selection of open-
and/or closed-loop Nash strategy equilibria in accordance of expected utilities under
the structural constraints of linear system dynamics, quadratic cost functionals,
and additive independent white Gaussian noises corrupting the system dynamics
and measurements. Very little work, if any, has been published on the subject
of higher-order assessment of performance uncertainty and risks beyond expected
performance.

For this reason attention in the research investigation that follows is directed
primarily toward a linear-quadratic class of noncooperative stochastic games and/or
distributed controls, which in turn has linear system dynamics, quadratic rewards
and/or costs, and independent white zero-mean Gaussian noises additively cor-
rupting the system dynamics and output measurements. Notice that, under these
conditions, the quadratic rewards or costs are random variables with the generalized
chi-squared probability distributions. If a measure of uncertainty such as the
variance of the possible rewards or costs was used in addition to the expected
reward or costs, the decision makers should be able to correctly order preferences
for alternatives. This claim seems plausible, but it is not always correct. Various
investigations have indicated that any evaluation scheme based on just the expected
reward or cost and reward/cost variance would necessarily imply indifference
between some courses of action; therefore, no criterion based solely on the two
attributes of means and variances can correctly represent their preferences. See [14]
and [9] for further details.

The present research contributions include significant extensions of the existing
results [11] toward some completely unexplored areas as such: i) the design of
distributed filtering via private observations for self-directed decision makers and/or
autonomous controllers with distributed noisy information structures about the
uncertain interaction process; ii) an efficiently computational procedure for all the
mathematical statistics associated with the generalized chi-squared rewards/costs
when respective mean-risk aware utilities are formed; and iii) the synthesis of
distributed risk-sensitive decision policies with output feedback for distributed
noncooperative solutions of Nash type that now guarantee performance robustness
with certainty much stronger than ensemble averaging measures of performance.

The remainder of the chapter is organized as follows: In Sect. 2, the setting
which involved necessary background and terminologies associated with a class
of distributed multi-agent tracking and synchronization is provided. The purpose
of Sect. 3 is to continue the discussion of the research development in using
preferences of risk, dynamic game decision optimization, and distributed decision
making with local output-feedback measurements tailored toward the worst-case
scenarios. The feasibility of person-by-person risk-averse strategies supported by
distributed Kalman-like estimators is subsequently put forward in Sect. 4. Some
final remarks are given in Sect. 5.
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2 The Setting

In this section, some preliminaries are in order. For instance, a fixed probability
space with filtration is denoted by (£2,F,{F,, : t € [t,tr],P}) where all
filtrations are right continuous and complete. In addition, LJZF[f ([to. 1 /]; R™) denotes
the space of I, -adapted random processes {z(f) : ¢ € [fo,27]} such that

E{fyy i 201130 d1} < 00 and By, 2 {Fyy, : 1 € [to, 241}

2.1 Distributed Multi-agent Tracking and Synchronization

As for a model specification, there is a stochastic object or command generator that
evolved in the fixed probability space (£2,FF, {IF,,, : ¢t € [fo, ], P}) and is subject
to the following stochastic dynamical decision system

dx,(t) = Axo(t)dt + Godw,(t),  x,(to) (1)

where the initial state x,(¢y) = xg, the state space is in R"?, and the exogenous state
noise {w,(t) : t € [fo, 2]} is an R"-valued stationary Wiener process adapted to
IF; ,, independent of x, (fo) and having the correlation of independent increments

E {[Wo(fl) - W()(TZ)][WU(TI) _W()(TZ)]T} = I/V()I‘Lrl - 72| 5 v 71, T2 € [tO,tf]'

Moreover, there are N identical decision makers and/or trackers which are also
described by

dxn’(t) = (Axri(t) + Bun'(l))dt + Gde’(t) > xn’(to) . (2)

Of note, each stochastic dynamical decision system i and i € N & {1,...,N}
has an initial state x,(¢y)) = xg, state space R"%, an action space Al C R™ and
an exogenous state noise space {w;(f) : t € [fo, ]} defined by an R”%-valued
stationary Wiener process adapted to F,,, independent of x;(f) and having the

correlation of independent increments
E {[wi(t1) — wi(m)]wi(t1) — wa()]"} = Wilti — |, ¥ 11,72 € [t0, 1],

The decentralized partial information structure available to decision maker i or
u; s generated by noisy relative observation

dy,i(t) = C(x4(t) — x,(t))dt + Hdv,(t), i€ N 3)
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where the exogenous measurement noise is an R%-valued stationary Wiener process
adapted to F;, and independent of {wy(¢) : 1 € [fo,7¢]} with the correlation of
independent increments

E{vi(t1) = vi(@)lvi(m) —va(@)]"} = Vilti =l . ¥ 11,72 € [t0. 1],

A concern has grown in the relative states, e.g., X; e X; — X, that the evolutions
are then described by

dxi(t) = (Ax;(t) + Buy(1))dt + Gdw,(t) — Godw,(t), xi(to) = x0 (4)
with the local noisy observations
dy(t) = Cx;(t)dt + Hdvu(t), i€N. 5)

With the advent of connectivity graphs widely used in cooperative control and
formation among unmanned systems [5] and [16], the role of formation graphs
supporting networks of local decision makers or trackers herein has also been
significant. To this end, a vertex of the graph corresponds to a decision maker or
tracker and the edges of the graph convey the dependence of the interconnections.
For instance, a directed graph G' = (V', ") associated with decision maker or
tracker i consists of a set of vertices V' £ Vi, -, viy, }, indexed by local decision

makers or trackers in the N;-neighborhood and a set of edges &’ £ {(vi,,vi,) €
Vi x V'}, containing ordered pairs of distinct vertices.

As part of the effort to approach distributed multi-agent tracking and synchro-
nization, a local neighborhood of N; immediate decision makers (or trackers)
associated with decision maker (or tracker) i and supported by an appropriate
directed graph includes two key elements. First, the augmented vectors are sought
to be

Xi Wriy Vi
] . 1
A . A . A . . -~
= o, wm= : s Vi =] , LEN.
WtiN-
xiNj WTI vtiN,'

o

Second, the Kronecker product of matrices are defined as follows:

ANi 2 IN,'XN,' ®A, GNi = [INiXNi ®G 1y ® Go]

1>

[0..010...0]' ®B,  Cx 2 1Iyxn®C

i

B;

HNi é IN,'XN,' &® H
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where Iy, xn; is the N; x N; identity matrix and 1y, 2 [1 1 ]T is the column
vector of one of size N; and will result in the distributed stochastic system dynamics
with controls and observations from decision maker or tracker i and all of its
immediate neighbors ‘N; and N; 2 {it, .. in}

dzi(t) = (Anzi (1) + Biu(?) + Z ei; Bi, (Duy(1))dt + Gy, dwi(t)  (6)
J€N;
dyi(t) = Cy,zi(t)dt + Hy,dvi(t) )

where e;; is the edge weights and z; (f) is the initial system state with the value of

T
Al T T
2[5 w) . xf )]
Continuing the practice of private observations, each decision maker or

tracker i can presumably observe a noise corrupted version of all best responses
3 jew, €i; Bi; (t)u,;(¢) from the immediate neighbors

du(t) & u_y(t)dt = Y e, Bi, (uy(1)dt + dni (1) . ®)
JEN;

Notice that decision makers or trackers i operate within their own noisy environ-
ments modeled by the uncorrelated p;-, n;-, and g;-dimensional stationary Wiener
processes adapted for [fo, 7]

E {[wi (11) = w; (@)]wi (1) —wi()]" } = Wit — 1
E {[n;(x)) = 0 (@)][ni (1) — i ()]} = My — 1o
E{[vi(t) —vi(@)]vi(r) —vi()]"} = Vil — o

whose a priori second-order statistics W; 2 diag(Wy,, ..., Wi, » w,) >0, M; > 0,

and V; 2 diag(Vii,» .. .. Vn'/v,-) > 0 fori € N are also assumed known.
For decentralized filtering, each decision maker or tracker i has o-algebras

Fi. £ o4z (to). wi(s). vi(s) s fg <5 <1} )
Gy Botyi() it <s<t}, telot) ieN (10)
and the minimum o -algebras generated by (9)—(10) are therefore given by

Fto,t é VIN=1Fi (11)

1ot

iu

viL.Gr 12)

>

yll
gl‘o,t
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2.2 Distributed Decision/Control and Filtering

As a critical element of the effort to move toward the distributed decision strategies,
g,%'f'“ 2 {g,{;,',“ it € [to,t7]} C {Fyyy : t € [to. 7]} is denoted for the information
available to decision maker and/or tracker i and i € N. The admissible set of
distributed feedback strategies for decision maker and/or tracker i is defined by

iu

U [to, t 7] 2 {u, € Léy,z,‘([to, 1 R™) s ul € A" € R™  almost everywhere
iy

t € [to,tr], P — almost surely}, i € N (13)

where U2 [0, 2] is a closed convex subset of L%tf ([to, ¢]; R™) fori € N.

At this point, each of the N distributed filters whose outputs are the state
estimates Z; () 2 E{z (t)|gtf),t} of (6) has the form

dzi(t) = (An; ()2 () + Bi () uu(t) + u—u(2))dt
+L;i (t)(dyi(t) — Cn2:(t)dt),  2i(to) = 20 (14)

where the local filter gain L;(¢) is given by

Li(t) = Zi(t)Cy. (Hy, ViHy,) ™' (15)

and the estimate error covariance 3; (1) £ E{[z (t) — % (1)][z: (t) — % (1)]T Ig,ff,}

d
2, i) = Ay i) + Ti()AL, + Gy WGl + M;
—X%i()Cy (Hy,ViHy)'Ch Zi(t) . Zi(te) =0.  (16)

In the background is the substitution of (6), (8), and (14) in a setting shaped by
the estimate errors, e.g., Z; (t) 2 zi (t) — z; (¢). Thus, it can be shown that

dzi(t) = (An, — Li(t)Cn;)z; (t)dt
+Gn;dw;(t) — Li()Hy, dvi(t) —dni(t), Zi(to) =0. (17)

2.3 Person-by-Person Performance Measure

Recall that decision maker or tracker i is assumed to act purely on the basis of his
own information, e.g.,

S A S
G, =Gy 1t €ltots]} C ATy, 1t € [to,24]}
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And the set of admissible decentralized feedback policies U” i'“ [fo,2/] is a closed
convex subset of LJZF[f ([to, tf]; R™) for i € N. The objective of distributed multi-

agent tracking and synchronization is then to regulate the dynamical states of
all the decision makers or trackers to those of stochastic command generators or
objects while being subject to transient trade-offs between the state regulatory and
effectiveness of decision policies and/or control inputs.

Associated with each admissible 2-tuple (uy(-), u—;(-)) is the person-by-person
performance measure with the generalized chi-squared type for each decision maker
and/or tracker i defined as

1y —
J[(Mn’, u—l‘i) = gl(tfvzl(tf)) +/ Ci(ts Zi(t)v Mti(r)su—l‘i(t))dts ieN (18)
fo
where the cohesive tracking and regulation criteria are given by
ity z(tp) = D willx (i) = xa(t )P + ka5, = 1z @)1,
(viy vig )EE!

and

Cilw 2 (0), ua(@),u—a (D) = D vy llx, () = xi, (0|
(viy vig)EET

Hlx@II5, + ua(@llz, = 1z (@5, + i)l

provided that the design parameters Si, S;, and R; are positive semidefinite with
R; invertible and

Qi = DiWy DI 4 diag(Opsnss - - - » Onnsss Sifs O - - - » Oy )

Qi = DiW; DT + diag(0p,xn,- - - -+ Onyxngs Si- Onxng - - - » Opcnys)
Di=D;® Lyixnys Wi =W ® Lyixnys Wif = Wi ® Liixn,

Wiy = diag(w;,;,) of dimension |E']: Wi = diag(v;,;,) of dimension |’ |

D; = incidence matrix of the directed graph G' (V', £') withsize N; x |E'].

2.4 Person-by-Person Decision and/or Control Policies

The realization of admissible feedback policies is discussed next. In the case of
incomplete information, an admissible feedback policy u,; for a local best response
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to relevant immediate decision makers or trackers u_; must be of the form, for
some o' (-, -),

u;(t) = Bi(t,y,-(t)), TE [ty,t], i€ N. (19)

In general, the conditional density p’(z; (z)|g}0'f,), which is the density of z;(¢)
conditioned on Q,y[f, (i.e., induced by the observation {y; (t) : T € [ty, t]}), represents
the sufficient statistics for describing the conditional stochastic effects of future
feedback policy u,;. Under the linear-Gaussian assumption the conditional density
Pl(z (t)|gty(;ljt) is parameterized by the locally available state estimate Z;(¢) and
estimate error covariance ¥; (¢). In addition, 3; (¢) is independent of feedback policy
u,;(t) and observations {y;(t) : t € [to,t]}. Henceforth, to look for an optimal
control and/or decision policy u;(t) of the form (19), it is only required that

ui(t) = y'(t,%:(t)), t€lto.ty], i€N.

Given the linear-quadratic properties of the distributed multi-agent tracking and
synchronization problem governed by (6), (7), and (18), the search for an optimal
feedback solution is productively restricted to a linear time-varying feedback policy
generated from the locally accessible state Z; (¢) by

ui(t) = K'()2: (1), te€lt,ty], ieN (20)

with K' € C([ty, t7]; R™ ") an admissible feedback form whose further defining
properties will be stated shortly.

For the admissible pair (¢, z?), the a priori knowledge about neighboring
disturbances u—(-) and the admissible feedback policy (20), the aggregation of the
dynamics (14) and (17) associated with decision maker or tracker i, is described by
the controlled stochastic differential equation

dZ (1) = (F'()Z (1) + E'(Ou—(t))dt + G ()dw' (1), (1) =z (21

and the performance measure (18) is rewritten as follows:

) A LV , .
TG u—) = @) (LN (1) + / @ ON (0 (dr 22)

fo

where the aggregate dynamical states and system coefficients are given by

i A | Zi() ion o[ An, + BiK'(t)  Li(1)Cy,
¢ (t) N I:Z,(t):| ’ F (t) N [ 0 ANi _Li(t)CNi:|
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i A 0 0 Li(Z)HN. i A | Lpyxn; i A
1) = ! E'(t) = e =
¢ () [GNI _Inani _Li(t)HNi:|’ () [ 0 :|’ 4

c o=
oX o
N o o

Ni@) A [Qi + (KD (R (K (¢) Q,} S [Qif Qifi| 7

oF oF Oy Qi

whereas the aggregate Wiener process noise w' = [WIT ’7,-T vl.T ]T has the correlation
of independent increments E {[w' (1) — w' (2)][W (1)) — W (©2)]"} = W' |11 — 1o
forall 7y, € [Zo, l‘f].

2.5 Person-by-Person Downside Risk Measures

In the sequel, moving from the background of the generalized chi-squared random
performance (22) and its complex behavior, one productive step involved in the
discussion of the use of downside risk measures in person-by-person decision and/or
control analysis is modeling and management of all the mathematical statistics (also
known as semi-invariants) associated with (22). The major target in the downside
risk measure debate is the measure of all the higher-order statistics associated with
(22) as used in mean-risk optimization. To this end, the results that follow highlight
the rather crucial role played by the endeavor of extracting higher-order statistics
pertaining to random distributions of (22).

Theorem 1 (Person-by-Person Cumulant-Generating Function). Let the states
7 () of the distributed stochastic dynamics (21) subject to the performance measure
(22) be associated with risk-averse decision maker or tracker i. Further, let initial
states 7 (t) = 7. and © € [ty, 1] and moment-generating functions with risk-
sensitive parameter 0' be defined by

¢ (v.7.,0") 2/ (r.0") exp {(z)" Y (x, 0"z, + 2(Z) ' (z.6")} (23)
v (2, 0) £ Info’ (¢,07)}, O eRT. (24)

Then, the cumulant-generating function is quadratic affine
Y (1.2.0") = @)1 (2,007 +2) 0 (x,0") + v (2. 0") (25)

where the backward-in-time scalar-valued v’ (r, o ) satisfies

%Uf (1’, Qi) = —Tr {Ti(r, )G (1) WI(GHT (r)} , v (tf, Qi) =0, (206)
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whereas the backward-in-time matrix Ti(r, 0') and vector Ei(r, 07) solutions are
satisfying

%Ti(r, 0") = —(F)HYT (0)Y(1,6") — Y (.0 ) Fi () — ' N' (7) 27
—27' (2. 0)G' (W (G (DT (r.6)). Y'(t7.6") =6'N}
%Ei(r, 0') = —1'(r,0)E (u_u(zr), L(t;,0")=0. (28)

Proof. For notional simplicity, it is convenient to define

o’ (r, zi,@i) 2 exp {GiJi (1’, z;)} , ieN

in which the person-by-person performance measure (22) is rewritten as the cost-to-
go function from an arbitrary state z. at a running time 7 € [fo, /]

. . o o . .
Ji(t,2) = (z’)T(tf)N}z’ (tr) +/ T (ON )7 (1)dt (29)
subject to
dZ (1) = (F' ()2 (t) + E' (u—()dt + G'(1)dw' (1), 2 (1) =z,. (30)
By definition, the moment-generating function is
¢'(v.2.0) & E{w' (r.4.6))}.
Thus, the total time derivative of ¢/ (7, z, 67) is obtained as
d i pi i NT ATE (o i i pi
E(p (r,zt,e ) =—0'(Z) N'(v)z;p (t,zr,H ) .
Using the standard Ito’s formula, it follows
d¢' (t,Zi,@i) =E {dwi (r,zi,@i)} = E{wi (t,zi,@i) dt + zUZii (t,zi,@i)dzi
+ lTr{wf (%.2.0)G" (WG (1)} d=|
) zigi T,3;s T T T
= ¢l(r.2..0)d T + ¢}, (1,2, ) (F ()7 + E'(D)u_u(r))d <

1 . . . . . .
+ 5 Tr {qoé,-lz,-r(t, 2.00)G (r)W' (G’)T(r)} dt
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which under the definition of the moment-generating function or the first character-
istic function

o' (1.2..0") = o' (v, 0") exp {(Z)" Y (r. 0"z, + 2(Z)" ¥ (z,6")}
and its partial derivatives leads to the result

70 (.9)

—0' )N ()¢ (t,2:,0") = ‘ ‘
TN @z (r2e.6) = L 55

cod o
+ @) T (67

£2) w0

+ @ [FHY @ T (. 6) + T (.00 F ()]
+2E) T (x, 0 E (t)u—u(x)

+22) T (@, 60)G (WG ()T (z,0)7

+Te{Y (r.0)G ()W (G (1)} ¢ ¢’ (r.2L.6").

To have constant, linear, and quadratic terms independent of arbitrary z/, it requires
that the following expressions hold true:

%Ti (7,0") = —(F)HYT ()Y (1,6") = Y (x,0")F' (r) — 0" N' (1)

—2Y (1, 0)G ()W (GHT (1) Y (¢, 0")

iéi (7.8 = =Y (. 0 E (v)u_;(7)
dt

EQ’ (r,0") = —¢' (‘C, 91) Tr {T’ (z,0")G' (r)W! (GI)T(‘E)}
where the terminal-value conditions Y/ (7,,6") = HiN}, l(ty,0") = 0, and

o' (t7,60") = 1. Finally, the backward-in-time differential equation satisfied by
vi(z, 07) becomes

%Ui(l’, 6"y = —Tr {Ti (z, Hi)Gi(r)Wi(Gi)T(t)} , vi(tf', 6') =0,

which completes the proof.
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Specifically, a MacLaurin series expansion of the cumulant-generating function (25)
is employed to infer behaviors regarding probabilistic distributions of (22) through
the knowledge representation of the mathematical statistics

00 .
i i pi LA i pi 0"
vi(ea. o) = Z_jl gen?V (| T Gb
where all k! £ %W (r,2,0 ))91_:() are performance-measure statistics avail-
able at risk-averse decision maker or tracker i
i i 9" i i i
Kk, = (2)) B(Qf)(’)T (z,0") 0[=OzI
iNT o i A i
+2(z}) 8(9")(’)6 (z,0") o + WU (z,6") o (32)
For notational convenience, the change of variables
) a(r)Ti , ei .. a(r)gi , 91‘
Hi 2 ET@OF iy s 06
AOH iz AOH pi—y
: 0Vl (¢, 0%)
Di()& ——————=| | tefwt]; reN 33
(1) 3D |y " [to.17); 1 (33)

is introduced so that the next result will provide an effective and accurate capability
for forecasting all the higher-order characteristics associated with performance
uncertainty (22).

Theorem 2 (Person-by-Person Performance-Measure Statistics). Let (Ay,, B;)
and (Cy;, An,) associated with the coupling constraint (21) and the goal function
(22) be stabilizable and detectable. For k' € N, the k'th performance-measure
statistic of (22) concerned by risk-averse decision maker or tracker i andi € N is
given by

ki = ()" H, (to)zh + 2(z))" D}, (to) + DL, (t0) (34)

where the supporting variables { H! (t)}lr‘i:l, {Dv,’ (t)}lr‘i:l, and {D! (‘c)}lr"=1 evaluated
at T = 1y satisfy the differential equations (with the dependence of H'(z), ﬁ} (),
and D, (1) upon the admissible feedback policy gain K'(t) and other observable

policies u_,;(t) suppressed)

d . , , o :
T HiO= ~(F)T (0 H{(t) = H{ (1) F'(r) = N'(7) 35)
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1] (2) = () (@) H](2) ~ ] () F'(2) (36)
—g;ﬁ%&ﬂ@@@WmeEJﬂ,2yfﬁ
and
%Ei(r) =-H@OE @u'(x), 1<r<Kk 37)
and, finally,
Lpi) = T {HI@GC OWI(G) @}, 1=r=ki (8

dt

provided that the terminal-value conditions H{ (t;) = N, H (t;) = 0 for 2 <
r<ki, Di(t;) =0for1 <r <ki,and Di(ty) = 0for1 <r <k'.

Proof. The expression of performance-measure statistics described in (34) is readily
justified by using the result (32) and the definition (33). What remains is to show
that the solutions H'(t), Di(z), and Di(z) for 1 < r < k' indeed satisfy the
dynamical equations (35)—(38). Notice that these backward-in-time equations (35)—
(38) satisfied by the matrix-valued H/(t), vector-valued Dv; (1), and scalar-valued
Di(t) solutions are then obtained by successively taking derivatives with respect to
0 of the supporting equations (26)—(28) and subject to the assumptions of (Ay;, B;)
and (Cy;, Aw,) being uniformly stabilizable and detectable on [fo, ¢ /].

3 Problem Statements

In the context of risk-averse decision making, cautious decision makers or trackers
who realize performance risk akin to a costly preference for certainty will have to
leverage higher-order statistics of the probability distribution (22) for downside risk
measures and optimizing risk-averse decisions. For such a problem it is important
to have a compact statement of the risk-averse decision and control optimization so
as to aid mathematical manipulations. Precisely, one may think of the k' -tuple state
variables

H ()2 MO, HL ),
D'() & (Di(),.... DL (),

D'() & (Di(),.... D (),
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whose continuously differentiable state variables H. € C'([to, ¢ ]; R *?"), Di €
Cl([to. t7); R?"*1), and DI € C'([ty, 1 7); R) having the representations

ML) £ HI(). Di()2DL(). Di()& Di()

with the right members satisfying the dynamics (35)—(38) are defined on [fo, ¢ /].
In the remainder of the development, the convenient mappings are introduced as

H . [to,tf] « (Rzmxzm)ki « RNy R2mi X2
g“lz . [to,tf] « (Rzmxl)k" s R21i¥1
Gl lto,tr] x (R X2k R
where the rules of action are given by
Fie, 1K) & —(F)T (/M| (x) = H{ (1) F'(t) = N' (1)
Fie, "', K') & —(F)T (0)Hi(x) — Hi(D)F' (v)

r—1 2r! i i i ; ; i
_ ; mHs(r)G @OWI (GH (OH._ (1), 2<r<k

Gl 1) & M (E (@u (), 1<r <k
Gt H) & —Tr {(H ()G @W (G (1)), 1<r<k.

The product mappings that follow are necessary for a compact formulation; for
example,

]:i S ]:]i" : [ZOJf] « (RZn,-XZn,-)ki « R™Mi¥ni (RZn,-XZn,-)ki
Gl x oo x Gl o, t7] x (RPPDE s (R2F
gi N g]ld . [tO’ tf] X (RZniXZni)kl N Rkl
where the corresponding notations
A . o A s o A .
fl:fin-X]:;(i, gl:gix"'xg;cis gl:gix"'Xg/lci

are used. Thus, the dynamical equations (35)—(38) can be rewritten as

%Hi () =F (. H@.K (). H@)=H, (39)
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d .. o . oy <
D=7 (. #H' (@), Dty =D} (40)
E,Dl (r) =G (‘L’, A (‘L’)) ) Di ([f) = 'D’f 41

where the k' -tuple terminal conditions Hi A (N}, 0,...,0), 15’f 2 0,...,0),and

D £(0.....0).

Notice that the product system (39)—(41) uniquely determines the state matrices
H!, D', and D' once the admissible feedback policy gain K’ and observable
policies u_,; by decision maker and/or tracker i are specified. Henceforth, these
state variables are considered as

H =H K uy), D'=DK uy), D=DCK uy).

Given terminal data (77, H' ,Dv"f,D"f), the class of admissible person-by-person
feedback decision/control gains employed by risk-averse decision maker and/or
tracker i is next defined.

Definition 1 (Person-by-Person Feedback Decision/Control Gains). Let com-
pact subset K' C R™*" be the set of allowable feedback form values. For the
given k' € N and sequence u' = {ul > O}f;l with pfl > 0, the set of feedback
gains ’C;_, iy B, D is assumed to be the class of C([fo, ¢ s]; R™*"") with values
Ki() e fi, for which the solutions to thfe dynamicu equations (39)—(41) with the
terminal-value conditions H' (t ) = H’f’ Di(ty) = fo., and D' (t7) = D’f exist on
the interval of optimization [fo, ¢ s].

An obvious fact about the private set of design freedom pu’ = {ul > 0}];;1
with ui > 0 is that risk sensitivity entails the lack of certainty equivalence, in the
sense that any performance index formed only by the first statistic of (22) does not
lead to optimal decisions. In addition, it is important to recognize that this finite set
of custom weights is quite different from those of infinite sets of series expansion
coefficients as in [1, 6, 17], just to name a few.

On K . .. .  the performance index with mean-risk considerations is

1y Hy Dy Dyt
subsequently defined as follows.

Definition 2 (Mean-Risk Aware Performance Index). Let cautious decision
maker and/or tracker i select k' € N and the set of custom weights u' = {u! >

0}1;":1 with p,’l > 0. Then, for the given z{), the mean-risk aware performance index

B« {0} x (R o (RMYK X RF 15 RF
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pertaining to person-by-person risk-averse decision making over [fo, ¢ ] is

Pi(to, H', D'\ D) & pinl + phich + -+ + pb ikt
Mean Risk
ki
= 21l M ()2 + 2) D (to) + Dplig)] - (42)

r=1

where additional design freedom p!’s utilized by cautious and defensive decision
maker and/or tracker i are tailored to meet different levels of performance-based
reliability requirements, e.g., mean, variance, anti-symmetry, heavy tails of the
reward/cost density (22), etc., pertaining to closed-loop performance uncertainties

and whereas the supporting solutions {#:(7)}<_,, {Di(r)}*_, and {Di(r)}_,

r=1»

evaluated at T = f, satisfy the dynamical equations (39)—(41).

The technical challenge faced by a cautious decision maker and/or tracker i and
i € N is that the correspondent mean-risk aware performance index (42) depends on
the observable decision and/or control policies from neighboring decision makers
or trackers u_,. The basic question the decision maker and/or tracker i faces is
whether or not a sort of noncooperative equilibrium or Nash solution is possible
at all. Defensive decision maker and/or tracker i’s rationale for choosing K is to
force the immediate neighbors to hold u* ;, so as to secure the Nash payoff. Thus, it
is precisely in this sense that a Nash solution is risk-averse by nature.

Definition 3 (Feedback Nash Equilibrium). Let Ki constitute a feedback Nash
strategy such that

Po(KL u*,) < ¢b(K' u*,), i €N; (43)

—ti

. . ’ l
for all admissible K' € Ith B D
systems (39)—(41) exist on [y, ¢ 7].
Then, (K ,,{, ..., K iv" when restricted to [, 7] is still a N;-tuple feedback Nash
equilibrium solution for the multiperson Nash decision problem with the appropriate
terminal-value condition (z, #. (t), D\ (t), D,(r)) for all T € [to,/].

.» upon which the solutions to the dynamical

Of note, an N;-tuple of decision and/or control policies (Ki, e, Kiv") is said

to constitute an interactive feedback Nash equilibrium solution for an N;-agent
differential graphical game if, for all i € N;, the following Nash condition holds

¢6(Kiv "‘iti) = ¢(§(Ki’ “tti) .



Multi-agent Tracking and Synchronization 37

In addition, there exist decision and/or control policies K/ and K’ such that

PO(K u* ) # h(K' u*). Vi jeN;.

The interpretation is that the variation of person-by-person performance index
pertaining to decision maker and/or tracker i is resulted while the rest of the
immediate decision makers and/or trackers in the local neighborhood of decision
maker and/or tracker j supported by the corresponding connectivity graph assume
their optimal strategies.

Now, the objective of cautious decision maker and/or tracker 7 is to minimize

(42) over K' = K'(-) in K;/,H’),ﬁ", D and subject to the neighboring feedback

-
Nash policies u* ;.

Definition 4 (Person-by-Person Optimization). Given the profile of risk-averse

attitudes p' = {ul > 0}*_, with u! > 0, the decision optimization problem
defined by
_ min PO (K u* ) (44)
K (")Eth.Hif-ﬁiPD‘ifiﬂi

is subject to the dynamical equations (39)—(41) on [to, ¢ r].

In conformity with the dynamic programming approach, the terminal time and
states (7, Hif, D"},, Dif) are parameterized as (s, ', 2/, Z1) whereby J' & Hi (e),
Z1 2 Di(e), and Z' £ Di(e). Thus, the value function of (44) now depends on the
parameterization of the terminal-value conditions.

Definition 5 (Value Function). Let (s,)', 2", Z') € [to, 7] x (R2n>2ni )k 5
(R2%*1)K" 5 R¥' Then, the value function Vi (e, }', Z', Z') is defined by

Vie, Y 21, 2) 2 inf KT ).

Kl() S Icgqyiqzuiqzi;ux

For convention, Vi (g, Y, Z, Z1) 2 5o when Keyi i zi, is empty. Some
candidates for the value function are also constructed with the help of the concept
of reachable set.

Definition 6 (Reachable Sets). Let a reachable set of decision maker i be
defined by Q' £ {(&, V', 21, Z) € [to.17] x (RZ2MK x (RZHF 5 R
’ngyi’zuiqzi;ﬂi 7é @}

Formally, it can be shown that the value function associated with decision maker
i is satisfying partial differential equation (e.g., Hamilton-Jacobi-Bellman (HJB)
equation) at interior points of Q' at which it is differentiable.
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Theorem 3 (HJB Equation-Mayer Problem). Let (¢,)", 2!, Z') be any interior

point of Q', at which the value function V' (e, V", Z', Z') is differentiable. If there

exists a feedback Nash strategy K. € IC; B D then the partial differential
Dy Dy

equation is satisfied:

.0y i S i 4 i i S i i i
0= KI}lel%i{gv (V22D 4 g GV @ Y B B e e VLK)
Vl i Zl Zl i i
* dvec(Z7) €V, pec('e. )

a i i i i i 1
+ Treen V) EY 2, Zyvec(d (6.3 (45)

and V' (to. V' (10). Z' (19). Z' (t9)) = ¢y(H' (10). D' (15). D' (to))-
Proof. Similar to that of [12] and hence is omitted.

Finally, the sufficient condition for verification of a feedback Nash strategy by
cautious decision maker and/or trackeri and i € N is given below.

Theorem 4 (Verification Theorem). Letr Wi (e, Y, Z', Z) be continuously dif-
ferentiable solution of the HIB equation (45) with the boundary condition

W (to, H' (t0), D' (t0), D' (10)) = i (to, H' (1), D' (t0), D' (10)) -

Let (t7. M, D/, D)) € O, K' e K 4, 5 Dt (H' (), D (), DI (-)) be the

trajectory solutions of (39)—(41). Then, Wi(x, 7-[' (‘E),D’ (), D' (v)) is a time-
backward increasing function of T € [ty, t r].
If Ki is in IC; 340, B Dy with the associative solutions (H' (-), Yv)ﬁk(), Di ()
s Hy Dy Dl
of the equations (39)—(41) such that

0= %Wf (t.H. (1), DL(r), Di(x))

b Wi ML (o). BL(x). Dl (0) el F (. Ho (7). KL (2))
dvec(Y')

+ mwi (0, He.(2), D (1), DL(0)vee(& (. H. (7))
3

T Fvec@) Vi@ He (0. DL(@). Do ()vec(d (1. 1o (1)), (46)
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i ki
then K| is a feedback Nash strategy in /th H B D

Wi, V', 21, 20 = Vi, V', 21, 2. (47)

Proof. The proof follows the same manner as [12].

4 Person-By-Person Risk-Averse Strategies

To this end, the initial state z}, is recognized to contribute linearly and quadratically
to the mean-risk performance index (42). Henceforth, it is beneficial to infer that a
candidate for the value function is expected to take the form

ki
Wi, V' 21, 2") = ()" D uh (Vi + El(e) 2}
r=1
+220)" Y W(EL+THE) + Y w2+ T} (¢))
r=1 r=1

(48)

where the functions &' € C!([tg, 1 7]; R?" "), '7;i € Cl([to, t; R?"*Y), and T €
C'([to, 17]; R) are time parameterized and yet to be determined.
As reported in [13], the time derivative of Wi (e, Y, Zi, Z') can be shown as
follows:
iwi(s yi Zi Zl) — (Zi)Ti i[]:i(é‘ yi Kl) + igl(g)] i
de ’ ’ ’ 0 AT ’ de " 20

r=1

ki
. Lo . d ..
+2(Z)" Z pilGie, V') + %7;1 (e)]

r=1

kl
o . d .
il , i — T . 49
+;ur[9,(e;v)+d£ HO) (49)
The substitution of this candidate (48) for the value function into the HIB equation
(45) and making use of (49) yield

ki

_ : iNT i i i i i i
0= Krll_lel% {(zo) ;:1 W[ Fr(e. V' K" + —dSS,. &)z
+2@)" Y uilGie V)

r=1

d

ki
i it i d
g T O Ll + 3T, ©1}-

(50)
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Taking the gradient with respect to K’ of the expression within the bracket of (50)

yields the necessary conditions for an extremum of (42) on [fo, &] where /] 2

[ L, 0]
. kl . .
K'=—R7'(B)" 1] Y m Y Io((Ig o) ™" (51)

in which 2! 2 w./ ,u’i for pfl > 0. With the feedback Nash strategy (51) replaced in

the expression of the bracket (50) and having {y’} 1
solution trajectories (39)—(41), the time parametric functions £’ (e), 7;i (¢), and
7? (&) are thus chosen so that the sufficient condition (46) in the verification theorem
is satisfied in spite of the arbitrary values zf); for example,

evaluated on the optimal

El(e) = (F)T (e)Hi (e) + Hi,(e)Fi(e) + Ni(e). Ei(to) =0
Ele) = (F)T(e)H! . (¢) + H', () Fi(e)

+z;sl(r M @G @OWH(GH (@OHyyu(e), El10) =0, r =2

Fle) = HL O @t o). T =0, 1<r<k
Tie) = Te{Hi ()G ()W G'T(e)}, Ti(to) =0, 1<r=<k'.

Before closing the section, it is important to note that the sufficient condition (46)
of the verification theorem is satisfied. Hence, the extremizing feedback strategy
(51) associated with cautious decision maker i becomes optimal.

Theorem 5 (Person-by-Person Risk-Averse Decision/Control Strategies). Con-
sider the multi-agent tracking and synchronization supported by connectivity graphs
wherein cautious and defensive decision maker and/or tracker i and i € N have
complete knowledge of the coupling constraints (6), (7), (18), and mean-risk aware
performance index (42). When all decision makers i have the similar risk attitudes,
an imitative or Nash equilibrium exists and is enabled by the risk-averse class of
feedback strategies

wi(t) = KLz (@0), 120+t —7 (52)

Ki(t) =—R"(B)" 1§ > pHL () Io((g 1))

r=1

where all the parametric design freedom through [i’ represent the risk-averse
preferences toward performance distributions; the optimal trajectory solutions

H:, () are satisfying (39).
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Distributed Dynamics

R ke
22 R

Fig. 1 Distributed decision architecture for performance risk aversion

Notice that, to have the distributed feedback Nash policy (52) of decision maker
i be defined and continuous for all T € [fy, ¢ /], the solutions ., (7) to the equations
(39) when evaluated at t = #p must also exist. Therefore, it is necessary that
Hi,(t) are finite for all T € [f,77). Moreover, the solutions of (39) exist and
are continuously differentiable in a neighborhood of 7. Under the assumption
of (An,, Bi) and (Cy,, Ay,) being stabilizable and detectable, the result from [3]
concludes that these solutions can further be extended to the left of 7 as long as
H!, () remain finite. Hence, the existence of unique and continuously differentiable
solutions to the equations (39) is certain if H', (t) are bounded for all T € [f, 7).
As the result, the candidate value functions W! (t, Hi,ﬁi D ) are continuously
differentiable as well.

As illustrated by Fig. 1, the person-by-person decisions and controls, generated
by risk-averse policies u};(t) for r = 1,..., N, not only depend on the basis
of information Z} (t) about the conditional probability distribution for coupling
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interactions from the local neighborhood supported by connectivity graphs, but
also rely on the robust prediction of higher-order characteristics for person-by-
person performance uncertainty, e.g., mean, variance, skewness, etc. The need for
the control decision laws to take into account accurate estimations of performance
uncertainty is one form of interaction between two interdependent functions of a
decision and/or control strategy: i) anticipation of performance uncertainty and ii)
proactive decisions for mitigating downside performance risk measures. This form
of interaction between these two decision and/or control strategy functions gives
rise to what are now termed as performance probing and performance cautioning
and thus are of particular importance in the newly developed theory of statistical
optimal control.

5 Conclusions

In this chapter, the research emphasis and contributions have been the generalization
of the results known for linear-quadratic classes of noncooperative stochastic games
and distributed controls. Specifically, under risk attitudes toward performance
uncertainties, the risk-averse feedback decision laws are not only the functions of
higher-order statistics of the chi-squared rewards or costs but also dependent of
a priori knowledge of common process noises as well as subjective observation
noises. Thus, both certainty equivalence and separation principle do not hold.
Also important is that the existence of the Nash equilibrium as proposed herein
is conditional upon the custom sets of selective weights, which in turn relate to risk
parameters residing at cautious decision makers or controllers. An extension of the
results obtained in this exposition may be worthy of future investigation, when there
are presence of mistrust and excessive risk aversion; such results could constitute
fundamentals and principles in adversarial systems sciences and flexibly survivable
decision making.
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