
Chapter 2
Distributed Database Management Systems: 
Architectural Design Choices for the Cloud

Joarder Mohammad Mustafa Kamal and Manzur Murshed

J. M. M. Kamal ()
Gippsland School of Faculty of Information Technology, Monash University, Clayton, VIC, Australia
e-mail: Joarder.Kamal@monash.edu

M. Murshed
Faculty of Science and Technology, Federation University, Churchill, VIC, Australia
e-mail: Manzur.Murshed@federation.edu.au

Abstract  Cloud computing has changed the way we used to exploit software and 
systems. The two decades’ practice of architecting solutions and services over the 
Internet has just revolved within the past few years. End users are now relying 
more on paying for what they use instead of purchasing a full-phase license. System 
owners are also in rapid hunt for business profits by deploying their services in the 
Cloud and thus maximising global outreach and minimising overall management 
costs. However, deploying and scaling Cloud applications regionally and globally 
are highly challenging. In this context, distributed data management systems in the 
Cloud promise rapid elasticity and horizontal scalability so that Cloud applications 
can sustain enormous growth in data volume, velocity, and value. Besides, distrib-
uted data replication and rapid partitioning are the two fundamental hammers to nail 
down these challenges. While replication ensures database read scalability and geo-
reachability, data partitioning favours database write scalability and system-level 
load balance. System architects and administrators often face difficulties in man-
aging a multi-tenant distributed database system in Cloud scale as the underlying 
workload characteristics change frequently. In this chapter, the inherent challenges 
of such phenomena are discussed in detail alongside their historical backgrounds. 
Finally, potential way outs to overcome such architectural barriers are presented 
under the light of recent research and development in this area.

Keywords  Cloud computing · Distributed database · ACID · CAP · Replication · 
Partitioning · BASE · Consistency · Trade-offs

23© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks, 
DOI 10.1007/978-3-319-10530-7_2



24 J. M. M. Kamal and M. Murshed

2.1 � Introduction

In recent years, with the widespread use of Cloud computing based platform and 
virtual infrastructure services, each and every user-facing Web application is thrust-
ing to achieve both ‘high availability’ and ‘high scalability’ at the same time. Data 
replication techniques are long being used as a key way forward to achieve fault-
tolerance (i.e., high availability) and improving performance (i.e., maintaining 
system throughput and response time for an increasing number of users) in both 
distributed systems and database implementations [29]. The primary challenges for 
replication strategies include: (1) replica control mechanisms—‘where’ and ‘when’ 
to update replicated copies, (2) replication architecture—‘where’ replication logic 
should be implemented and finally (3) ‘how’ to ensure both the ‘consistency’ and 
the ‘reliability’ requirements for the target application. These challenges fundamen-
tally depend on the typical workload patterns that the target application will be 
going to handle as well as the particular business goals it will try to meet.

Even in the absence of failure, some degree of replication is needed to guarantee 
both ‘high availability’ and ’high scalability’ simultaneously. And, to achieve the 
highest level of these two properties, data should be replicated over wide area 
networks. Thus, the replicated system inherently imposes design trade-offs be-
tween consistency, availability, responsiveness and scalability. And, this is true for 
deployments either within a single data centre over local area network (LAN) or in 
multiple data centres over wide area network (WAN).

A high-level Cloud system block diagram is portrayed in Fig. 2.1, where a typi-
cal layout of a multi-tier Cloud application has been shown in a layered approach.

According to Fig. 2.1, end-users’ requests originate from the typical client-side 
applications such as browsers and desktop/mobile apps through HTTP (which is a 
request/reply based protocol) interactions. Database name server (DNS), Web and 
content delivery network (CDN) servers are the typical first-tier Cloud services 
(typically stateless) to accept and handle these client requests. If it is a read-only 
request, then clients can be served immediately using cached data, otherwise update 
(i.e., insert, update, delete) requests need to be forwarded to the second-tier services.

Application servers, on the other hand, process these forwarded requests based 
on the coded logic and process the operation using in-memory data objects (if avail-
able) or fetch the required data from the underlying database-tier. Model view con-
troller (MVC) pattern-based logic implementation can be considered as an example. 
In an MVC application, user requests (typically URLs) are mapped into ‘controller’ 
actions which then fetch data from appropriate ‘model’ representation and finally 
set variables and eventually render the ‘view’. If in-memory representation of the 
model data is not available then the model component needs to initiate a transac-
tional operation (like using ActiveRecord or DataMapper patterns) in the inner-tier 
database services. Otherwise, in-memory update can take place and updated infor-
mation can be later pushed into the database.

Note that, application servers are typically ‘stateful’ and may need to store state 
values (e.g., login information) as session objects into another highly scalable 
key-value store. While in the inner-tier, database can be partitioned (i.e., Shards) 



252  Distributed Database Management Systems

as well as replicated based on application functionality and requirements. Based 
on the replica control and placement policies, data can be fetched (if read-only) or 
updated accordingly and ultimately reply back to the model component in the MVC 
implementation at the upper-tier.

Our curiosity is to investigate how this end-to-end request–reply procedure 
access and utilise these durable and consistent data objects into different tiers of a 
typical Cloud system. And, gradually this will also clarify the system–design trade-
offs for different components in a large-scale distributed systems. Read-only user 
requests for static information (and some form of dynamic information) can be 
directly served by first-tier Cloud servers based on the data staleness bound. As du-
rability is not guaranteed in this stateless tier, stored information can be lost due to 
failures. Again, high availability (by means of rapid responsiveness) and high scal-
ability are needed to handle client requests with a typically converging consistency 
requirement, which also depend on cache expiration and freshness policies.

For read requests which cannot be served due to expiry now can be fetched 
from the in-memory data objects that reside in the application tier. Update and 
scan requests typically routed to the second-tier services and mapped according-
ly as explained earlier. In this tier, application logics are typically executed using 
the in-memory data representations which offer scalable consistency with semi-
durability. Based on the implementation mechanism of this second-tier services, 

  

First-Tier Cloud Services 
Presenta�on Tier (Stateless) 

(DNS, Cache, CDN, Web Servers) 

Inner-Tier Cloud Services 
Database/Persistence Tier 

(Index Files, Rela�onal/Semi-Rela�onal DDMS) 

Back-End Cloud Services 
Analy�cs Tier 

(Hadoop, Map-Reduce Batch Processing) 

User Request/Reply 

App. Data Request/Reply 

High 
BASE 

Sc
al

ab
ili

ty
 

ACID 

Weak form of 
Convergent Consistency 

(Non-Durable Data ) 

Model 

View 

3-Tier Web App. 
 with MVC Pa�ern Controller 

Client App 
End-User Tier 

(Browser, Desktop/Mobile App) 
Co

ns
is

te
nc

y 

Low 

1 

2 

3 

4 

5 

6 

7 

ACID – Atomicity, Consistency, Isola�on, Durability 
BASE – Basically Available So�-state Eventual consistency 

Hard State Services with 
Sequen�al Consistency 

(Durable Data) 

Second-Tier Cloud Services 
Applica�on/Logic Tier (Stateful) 

(Memcached, Session and Key-Value Stores, App Servers) 

So� State Services with 
Scalable Consistency 
(Semi-Durable Data ) 

Fig. 2.1   Different service tiers of a typical 3-tier Web application and their interactions within 
the Cloud computing model. DNS database name server, CDN content delivery network, DDMS 
distributed database management systems

 



26 J. M. M. Kamal and M. Murshed

consistency guarantees reside in the development of soft-state services with recon-
structible data pieces. If the required data are not available, then the application 
logic initiates transactional operations into the inner-tier databases. And they usu-
ally offer strong consistency (via atomicity, consistency, isolation and durability 
(ACID) properties) and durable data (via replication services). However, scalability 
is hard to achieve in this tier as stronger form of consistency comes with the price 
of responsiveness.

2.1.1 � Why ACID Properties Are Hard to Scale

It is well known that scale-out and utilisation are far more cost-effective using thou-
sands of commodity hardware than through high-end server machines [3]. However, 
deploying user facing Web applications with typical transactional workload in such 
shared nothing architecture [41] is not trivial. Again, the underlying database sys-
tem itself needs to be replicated and/or partitioned to provide required read/write 
scalability for the end users. The problem resides in the fact that if a transaction 
needs to access data which span over multiple machines, it is pretty complex to 
guarantee ACID properties. At the same time, managing distributed transaction and 
executing them in parallel into a number of replicas to ensure atomic success or 
abort is also challenging.

Atomicity property (in ACID) requires a distributed commit protocol such as 
‘2-phase commit’ (2PC) to run across multiple machines involved in a particu-
lar transaction. In the meanwhile, the isolation property insists that the transac-
tions should acquire all of its necessary locks for the total duration of the run of 
a 2PC. Thus, each transaction (whether it is a simple or complex one) requires a 
considerable amount of time to complete a 2PC round while performing several 
round trips in a typical failure-free case. While in case of failure of 2PC coordinator, 
the total system blocks and a near-success transaction can be aborted due to a single 
suddenly failed replica.

Again, having data replication schemes in action, to achieve strong system-wise 
consistency (e.g., possibly via synchronous update) requires to make trade-off with 
the system response-time (as well as transactional throughput). Finally, in a shared-
nothing system with failing hardware ensuring durable transactional operation in 
the face of strong consistency is far away from reality and practice. As mentioned 
earlier, real system designers have to make diverse set of trade-offs to ensure differ-
ent levels of consistency, availability and latency requirements in face of scalable 
ACID semantics.

2.1.2 � CAP Confusion

Current Cloud solutions support a very restricted level of consistency guarantees 
for systems which require high assurance and security. The issue develops from the 



27

misunderstanding of the design space and principle like consistency, availability and 
partition (CAP) devised by Eric Brewer [10], and later proved by Gilbert and Nancy 
[16]. According to the CAP principle, the system designer must choose between con-
sistency and availability in the face of network partition. And, this trade-off comes 
from the fact that to ensure ‘high availability’ in case of failure (i.e., crash-recovery, 
partition, Byzantine, etc.) data should be replicated across physical machines.

In recent years, due to the need for higher system throughput in the face of in-
creased workload and high scalability, distributed database systems (DDBS) have 
drawn the utmost attention in the computing industry. However, building DDBSs 
are difficult and complex. Thus, understanding of the design space alongside with 
the application requirement is always helpful for the system designers. Indeed, the 
CAP theorem has been widely in use to understand the trade-offs between the im-
portant system properties—the CAP tolerance.

Unfortunately, today’s development trend indicates that many system designers 
have misapplied CAP to build somewhat restrictive models of DDBSs. The narrower 
set of definitions presented in the proof of CAP theorem [16] may be one of the 
reasons. In their proof, Gilbert and Nancy considered ‘atomic/linear consistency’ 
which is more difficult to achieve in a DDBS while being at fault and partition tol-
erant. However, Brewer actually considered a more relaxed definition of the ‘Con-
sistency’ property referring to the case considered in the first-tier of a typical Cloud 
application as shown in Fig. 2.1.

In reality, the probability of partition in today’s highly reliable data centre is rare 
although short-lived partitions are common in WANs. So, according to CAP theo-
rem, DDBSs should provide both ‘availability’ and ‘consistency’, while there are 
no ‘partitions’. Still, due to extreme workload or sudden failure, it might be the case 
that the responsiveness of inner-tier services is lagging behind comparing to the 
requirements for the first-tier and second-tiers services. In such a situation, it would 
be better to value quick responses to the end users using cached data to be remaining 
act as available. The goal is to have a scalable Cloud system that remains available 
and responsive to the users even at the cost of tolerable inconsistency, which can be 
deliberately engineered in the application logic to hide the effects.

In his recent article [11], Eric Brewer has revisited the CAP trade-offs and men-
tioned the unavoidable relationship between latency, availability and partition. He 
argued that a partition is just time bounded on communication. It means that fail-
ing to achieve consistency in a time-bound frame, i.e. facing P, leads to a choice 
between C and A. Thus, to achieve strong ACID consistency in cases either there 
is a partition or not, a system should both compensate responsiveness (by means of 
latency) and availability. On the other hand, a system can achieve rapid responsive-
ness and high availability within the same conditions while tolerating acceptable 
inconsistency.

To this end, it is fair enough to suggest that design decisions should be made 
based on specific business requirements and application goals. If an application 
strives for consistent and durable data, all time scalability will be limited, and high 
availability will not be visible (due to low responsiveness). Otherwise, if the target 
is to achieve scalability and high availability, the application should be able to live 
with acceptable level of inconsistency.

2  Distributed Database Management Systems



28 J. M. M. Kamal and M. Murshed

In Sect. 2.2, important components and concepts of distributed databases, i.e., 
transactional properties, are discussed. Strategies to update replicated data and dif-
ferent replication architectures, partitioning schemes and architectures along with 
classifications based on update processing overhead and in context of multi-tier 
Web application have been elaborated in Sect. 2.3. In Sect. 2.4, the evolution of 
modern distributed database systems has been explored in parallel with the archi-
tectural design choices and innovative management of replicated and partitioned 
databases in details. Finally, Sect. 2.5 concludes with the remarks on the important 
characteristics (i.e., data replication and partitioning) of modern distributed data-
base systems which have been shaped the Cloud paradigm over the past years and 
thus provided the opportunity to build Internet-scale applications and services with 
high availability and scalability guarantees.

2.2 � Background of Distributed Database Concepts

In the following sub-subsections, the building blocks of a modern distributed da-
tabase management system is discussed, which will eventually help the reader to 
understand the ACID properties and their implications in great extent.

2.2.1 � Transaction and ACID Properties

A transaction Ti is a sequence of read operation ri( x) and write operation wi( x) on 
data items within a database. Since, a database system usually provides ACID prop-
erties within the lifetime of a transaction, these properties can be defined as shown 
below:

•	 Atomicity—guarantees that a transaction executes entirely and commits, or 
aborts and does not leave any effects in the database.

•	 Consistency—assuming the database is in a consistent state before a transaction 
starts, it guarantees that the database will again be in a consistent state when the 
transaction ends.

•	 Isolation—guarantees that concurrent transactions will be isolated from each 
other to maintain the consistency.

•	 Durability—guarantees that committed transactions are not lost even in the case 
of failures or partitions.

In contrast to a stand-alone database system, a replicated database is a distributed 
database in which multiple copies of same data items are stored at multiple sites. 
And, replicated database systems should be acted as a ‘1-copy equivalence’ of a 
non-replicated system providing ACID guarantees. Thus, within a replicated envi-
ronment the ACID properties can be redefined as below:



29

•	 1-copy atomicity—guarantees that a transaction should have the same decision 
of either all (commit) or nothing (abort) at every replicas which it performs the 
operation. Thus, some form of ‘agreement protocol’ is necessary to run among 
the replicas which should force this guarantee.

•	 1-copy consistency—guarantees that a consistent database state should be main-
tained across all replicas in such a way that the restrictions imposed by the ‘in-
tegrity constraints’ (e.g., primary/foreign key) while executing a transaction, are 
not violated after it ends.

•	 1-copy isolation—guarantees that concurrent executions of a set of transactions 
across multiple replicas to be equivalent to a serial execution (i.e., order) of this 
set (as if the set of transactions are running serially in a non-replicated system). 
Also defined as the ‘1-copy-serialisability’ (1SR) property.

•	 1-copy durability—guarantees that when a replica fails then later recovers, it 
does not only require to redo the transactions that had been committed locally 
but also make itself up-to-date with the changes that committed globally during 
the downtime.

2.2.2 � Distributed Transactions and Atomic Commit

When a transaction attempts to update data on two or more replicas, 1-copy-atomi-
city property needs to be ensured which also influences consistency and durability 
properties of the data item. To guarantee this, 2PC protocol [17] is typically used. 
As shown in Fig.  2.2, initially 2PC is originated from the local replica and the 
scheme includes all the other remote replicas that hold a copy of the data items that 
are accessed by the executing transaction.

At phase-1, the local replica sends a ‘prepare-to-commit’ message to all partici-
pants. Upon receiving this message, the remote replica, if it is willing to commit 
replies with a ‘prepared’ message, otherwise sends back an ‘abort’ message. The 
remote replicas also write a copy of the result in its persistent log which can be 
used to perform the ‘commit’ in case of failure recovery. While the coordinating 
local replica receive ‘prepared’ messages from all of the participants (means all 
remote replicas have persistently written the result into log), only then it enters into 
phase-2.

Replica-A Replica-B 

Replica-A 
(Transac�on Coordinator) 

Phase-1 (Prepare) 

Replica-A Replica-B 

Replica-A 
(Transac�on Coordinator) 

Phase-2 (Commit) 

Fig. 2.2   The 2-phase commit 
protocol
 

2  Distributed Database Management Systems



30 J. M. M. Kamal and M. Murshed

The second round message from the coordinator tells the replicas to actually 
‘commit’ the transaction. 2PC aims to handle every possible failure and recovery 
scenarios (like in case of the coordinator fails); thus, transactions are often ‘blocked’ 
for an unbounded amount of time. ‘3-phase commit’ [40] protocol was proposed 
lately which is non-blocking. However, it requires more costly implementation in 
real system as well as only assumes fail-stop-failure model. Thus, in face of net-
work partition, the protocol simply fails to progress. A more elaborate description 
of distributed transaction processing can be found in [8].

Note that, both 2PC and 3PC protocols are within the solution family of Con-
sensus [50] problems. More recently, Paxos [27, 51], which is another family of 
protocols (more resilient to failures) to solve the consensus problems, has received 
much attention in both academia and industry.

2.2.3 � Distributed Concurrency Control

Concurrency control mechanism [8] in a database system maintains an impression 
that concurrent transactions are executing in isolation. There are two families of 
concurrency control protocols that exist: ‘pessimistic’ and ‘optimistic’. Pessimistic 
approach is typically implemented using ‘locking’. A ‘shared lock’ is acquired by a 
transaction to get read-access in the database record (typically the whole ‘row’ in a 
database ‘table’) and an ‘exclusive lock’ is acquired to have write-access. If a lock 
cannot be granted by the concurrency control manager, then the involving transac-
tion is blocked in waiting until conflicting locks are released. A shared lock can be 
granted if there are at most other shared locks currently held on to a record.

On the other hand, an exclusive-lock can only be granted if there are no other 
locks currently on hold. Thus, read operations are permitted to execute concurrently 
while write operations must go through serially. Also note that read-only operations 
may also ‘block’ during a period of exclusive-lock holds by another transaction. Al-
ternatively, a write operation may also ‘block’ during a period of shared-lock holds 
by another transaction. In order to ensure strict serialisability, all acquired locks are 
typically released only after the transaction commit or abort. This total mechanism 
can be implemented through either using ‘2-phase locking (2PL)’ or ‘strong strict 
2-phase locking (SS2PL)’ protocol. In phase-1, all required locks are requested and 
acquired step-by-step from the beginning of a transaction towards its execution. In 
phase-2, all locks are released in one step based upon commit/abort decision.

As shown in Fig. 2.3, deadlocks can be created by due concurrent transactions 
racing to acquire locks. In such situations, the concurrency control manager should 
be able to detect such deadlocks. 2PL/SS2PL can still be used to guarantee 1-copy 
serialisability; however, it pays the costly penalty in system throughput and latency, 
i.e., responsiveness. One of the conflicting transactions has to be aborted in all rep-
licas to release its locks, which allow the other transaction to proceed and complete 
its operations. Sometimes, locking may create unwanted delays through blocking, 
while the transactional operations could be serialisable.



31

Alternatively, simple ‘atomic commitment protocol’ could be used where all the 
transactional executions are done within an atomic operation in the participating 
replicas. Optimistic approach on the other hand, allows concurrent transactions to 
proceed in parallel. A transaction can create its local copy and perform all the nec-
essary update operations in it. At the end of transaction, a validation phase takes 
place and checks whether the read-sets of the considered transaction overlaps with 
the write-set of any transaction that has already successfully validated. If true, it has 
to be aborted, otherwise it can be committed successfully via writing its changes 
persistently back to the database.

In DDBS with replication mechanism enabled, a distributed lock manager is 
required which will try to detect and resolve distributed deadlocks among conflict-
ing replicas in a pessimistic approach. Atomic commit protocols like 2PC/3PC 
could still be used along with 2PL/SS2PL. One such approach is to achieve global 
serialisation order instead of distributed locking by using 2PC atomic commit glob-
ally while locally applying 2PL/SS2PL. However, achieving global serialisation 
order is costly and pays the price with restricted system performance. On the other 
hand, an optimistic approach would try to perform distributed or centralised conflict 
detection and resolution procedure to rescue. Whichever the case is, the bottom line 
is implementing distributed concurrency control through locking always creates 
‘race condition’ locally which may lead to deadlocks or alternatively require costly 
conflict and serialisation order management schemes globally.

Cursor stability (CS) is another kind of concurrency control mechanism which 
uses short ‘read’ locks. A read lock on a data item x is acquired and released directly 
after the read operation is executed. In situations when a data item is accessed 
by a read-only operation simultaneously and a write operation is blocked for an 
unbounded amount of time CS can be used in rescue. Short ‘read’ locks gradu-
ally upgraded to exclusive write locks to prioritise the blocked write operations to 
complete. However, inconsistencies may occur due to ‘lost update’ from another 
transaction in progress.

S1(x) 
R1(x) 
 
 
X1(y) 
W1(y) 
C1 
U1(x, y) 

X2(x) 
 
 
 
 
 
W2(x) 
X2(y) 
W2(y) 
C2 
U2(x, y) 

T1 T2 

S1(x) 
R1(x) 
 
 
X1(y) 

X2(y) 
W2(y) 
 
X2(x) 

T1 T2 

Deadlock 

Locking without Deadlock Locking with Deadlock 

Fig. 2.3   Deadlocks with pes-
simistic concurrency control 
using 2PL

 

2  Distributed Database Management Systems



32 J. M. M. Kamal and M. Murshed

2.2.4 � Multi-Version Concurrency Control and Snapshot Isolation

In multi-version concurrency control (MCC or MVCC) approach, a database sys-
tem always performs update operation by creating a new version of the old data 
item instead of overwriting it. MVCC typically utilises timestamps or transaction 
IDs in increasing order to implement and identify new data version copies. The ben-
efit of using MVCC is reads will be never blocked by write operations. Read-only 
access in the database will always retrieve a committed version of the data item. 
Obviously, the cost incurs in the storing of multiple versions of the same data items. 
Database that supports MVCC implementation typically adopts snapshot isolation 
(SI) [8] which performs better with low overhead working with such multiple data 
versions. However, SI is less restrictive in nature than serialisability thus may allow 
non-serialisable operations leading to anomalies. In practice, commercial systems 
also provide lower level of isolation as it is always hard to scale with increasing 
number of concurrent transactions with serialisability.

SI assumes whenever a transaction writes a data item x, it creates a new version 
of x; and when the transaction commits, the version is installed. Formally, if trans-
action Ti and Tj both write data item x, then Ti commits before Tj and if no other 
transaction commits in between Ti and Tj and writes x, then Ti’s version is directly 
ordered before Tj’s version of x. SI adopts two important properties:

•	 Snapshot reads—provides each transaction a snapshot of the database as of the 
time it starts, i.e., last installed version. It guarantees high transaction concur-
rency for read-only operations and reads never interfere with writes.

•	 Snapshot writes—writes that occur after the transaction are not visible. It disal-
lows two concurrent transactions (neither commits before the other starts) to 
update the same data item. It avoids well-known anomalies that can occur in the 
use of lower-level isolation guarantee.

2.2.5 � Isolation Anomalies

Based on the above discussion on different concurrency control mechanism and 
isolation levels, it would be better to introduce few isolation anomalies which are 
typically used to appear in the system [21, 8]:

•	 Dirty read—reading an uncommitted version of a data item. For example, a 
transaction Tj reads an uncommitted version a data tuple x which has been up-
dated by another transaction Ti. However, if Ti later aborts due to any reason, this 
will also force Tj to abort as well. This is called ‘cascading aborts effect’.

•	 Lost update—overwriting updates by concurrent transactions. For example, Tj 
writes (i.e., overwrites) x based upon its own read without considering the new 
version of x created by Ti. Ti’s update will be lost.

•	 Non-repeatable read—reading two different versions of a data item during a 
transaction execution period.



33

•	 Read skew—if MVCC is allowed, then it might be possible that by reading dif-
ferent versions of multiple data items which are casually dependent on any ap-
plied constraint, is violated.

•	 Write skew—similar to read skew, constraints between casually dependent data 
items may be violated due to two concurrent writes.

2.3 � Replication and Partitioning Mechanisms

2.3.1 � Replica Control Strategies

Replica control strategies can be categorised based on two primary dimensions: 
where updates will be taken place and when these updates will be propagated to 
remote replicas. Considering these criteria, the classification based on [14] is shown 
in Table 2.1. Considering the ‘when’ dimension, there can be two classes of replica 
control mechanisms. One is the ‘eager’ replication that is a proactive approach, 
where tentative conflicts between concurrent transactions are detected before they 
commit while synchronously propagate updates among replicas. Thus, data consis-
tency can be preserved while in the cost of high communication overhead which 
increases the latency. It is also called the active replication. The second is the lazy 
replication which is a reactive approach which allows concurrent transactions to 
execute in parallel and make changes in their individual local copies. Therefore, 
inconsistency between replicas may arise as update propagations are delayed by 
performing asynchronously after the local transaction commits. It is also called as 
passive replication.

Again, based on the ‘where’ dimension, both ‘eager’ and ‘lazy’ replication 
scheme can be further divided into two categories. One is the primary copy update 
which restricts data items to be updated in a centralised fashion. All transactions 
have to perform its operations in the primary copy first which then can be prop-
agated either synchronously or asynchronously to other replicas. This scheme is 
benefited from a simplified concurrency control approach and reduces the number 
of concurrent updates in different replicas. However, the single primary copy itself 
may be a single point of failure and potentially create bottleneck in the system. On 

Table 2.1   Typical classification of replica control strategies [18]
Propagation vs. 
ownership

Eager Lazy Remark

Primary copy 1 transaction
1 owner

N transactions
1 owner

Single owner (can be 
potential bottleneck)

Update anywhere 1 transaction
N owners

N transactions
N owners

Multiple owner (harder 
to achieve consistency)

Synchronous update
(converging consistency)

Asynchronous update 
(diverging consistency)

2  Distributed Database Management Systems



34 J. M. M. Kamal and M. Murshed

the other hand, the second category of update anywhere approach allows transac-
tional operations to be executed at any replicas in a distributed fashion. Coordina-
tion between different replicas is required which may lead to high communication 
cost while using eager update propagation. While using lazy propagation poten-
tially leads to potential inconsistencies which require expansive conflict detection 
and reconciliation procedure to resolve.

A trade-off is typically considered where high performance can be achieved by 
sacrificing consistency via using ‘lazy’ replication schemes. Alternatively, one can 
get consistency in the price of performance and scalability via using ‘eager’ replica-
tion scheme. Further classification of replica control mechanisms can be deduced 
in this regard. One of the popular replication technique is to implement read-one-
write-all (ROWA) solution where read operations acquire local locks while write 
operations need distributed locks among replicas.

The correctness of the scheme can be satisfied with ‘1SR’. 2PC and SS2PL are 
also required to ensure atomic transactional commits. An improved version of this 
approach is read-one-write-all-available (ROWAA) which improves the concurren-
cy control performance in the face of failure. Quorum-based replication solutions are 
also an alternative choice which typically reduces the replication overhead through 
only allowing a subset of replicas to be updated in each transaction. However, quo-
rum systems also do not scale well in situations where update rates are high. An 
excellent analytical comparison can be found at [21] regarding this analogy.

In [18], Jim Gray was the first to explore the inherent dangers of replication in 
these schemes when scalability matters. Gray pointed out that as the number of rep-
licas increase, it also exponentially increases the number of conflicting operations, 
response time and deadlock probabilities.

For ‘eager’ schemes, the probability of deadlocks increased by the power of three 
of the number of replicas in the system. Again, disconnected and failed nodes also 
cannot use this approach. In the ‘lazy’ scheme, the reconciliation rates (in update 
anywhere) and the number of deadlocks (in primary copy) sharply rise with the 
increase of the number of replicas.

Alternatively, Gray [18] proposed the convergence property instead of strict seri-
alisability provided by the ACID semantics. It considers that if there are no updates 
within a sufficient amount of time, then all participating replicas will gradually 
converge to a consistent state after exchanging ongoing update results. He coined 
the examples of Lotus Notes, Microsoft Access and Oracle 7 which were typically 
proving such kind of convergence property at that time.

Commercial implementation of replica control schemes also followed the ‘lazy’ 
approaches and offered different options for appropriate reconciliation procedure 
for a long time. Research efforts were also engaged in solving and optimising the 
inconsistencies that arise from ‘lazy’ approaches like weak consistency models, epi-
demic strategies, restrictive node placement, using ‘lazy’ primary approach and dif-
ferent kinds of hybrid solutions. However, maintaining consistency over the impacts 
of inconsistency is much simpler to implement, but hard to optimise for scalability.

To meet this challenge, Postgres-R [22] was developed which provides replication 
through an ‘eager’ approach using group communication primitives, thus totally 



35

avoids the cost of distributed locking and deadlocks. The Postgres-R approach uses 
a ‘shadow copy’ of the local data item to perform updates, check integrity con-
straints, identify read-write conflicts and fire triggers. The changes that are made 
into a shadow copy propagate to the remote replicas at commit time, thus vastly 
decreases the message/synchronisation overhead in the system. Read operations are 
always performed locally as following a ROWA/ROWAA approach.

Thus, there are no overheads for read operations in the system. Update (i.e., write) 
operations of a transaction are bundled together into a write-set message and multi-
cast in total order to all replicas (including itself) to determine the serialisation orders 
of the running transactions. Each replica uses this order to acquire all locks required 
by that transaction in a single atomic step. The total order is used to serialise the read/
write conflicts at all replicas at the same time. Thus, by acquiring locks in the order 
in which the transactions arrive, all replicas are performing the conflicting operations 
in the same order. As a plus point, there will be no chance for deadlocks. In case of 
read/write conflicts, reads are typically aborted as a straightforward solution while 
different optimisations can also be possible. After completion/abortion of the write 
operations in the local replica, the decision is propagated to the remote replicas.

Performance results from [22] indicate that Postgres-R can scale well with 
increasing workloads and at the same time boost system throughput by reducing 
communication overheads and by eliminating the possibility of deadlocks. A more 
detail of this work can be found at [23]. However, replica control, i.e., coordination 
is still a challenging task in practical systems and two essential properties always 
need to ensure: (1) Agreement—every non-faulty replicas receive every intended 
request and (2) order—every non-faulty replica processes the request it receives in 
the same order. Interested readers can find an elaborate discussion in [51] on how 
we can maintain these properties, thus understand how state machine replication 
works using consensus protocol like Paxos [27] and what determinism in database 
replication really means.

2.3.2 � Replication Architectures

One of the most crucial choices is ‘where’ to implement the replication logic. It 
might be implemented tightly with the database in its kernel. Alternative approach 
might be using a middleware to separate the replication logic from the concurrency 
control logic implemented in the database. Based on these choices, replication logic 
can be implemented in the following ways (see Fig. 2.4):

•	 Kernel-based—replication logic is implemented in the database kernel and 
therefore has the full access to database internals. The benefit is that clients can 
directly communicate with the database. On the other hand, any change in the 
database internals (e.g., concurrency control module) will directly impact the 
functionalities of replica control module. Again, refactoring database source 
code is cumbersome and the implementation is always vendor specific. Also 
called as ‘white-box replication’.

2  Distributed Database Management Systems



36 J. M. M. Kamal and M. Murshed

•	 Centralised middleware-based—replication logic can be separately implement-
ed into a middleware layer. It provides much flexibility and independence to 
integrate with any database. However, the functionalities of concurrency control 
module have to be re-implemented. It is also called as ‘black-box replication’. 
A modified version of this scheme can be called ‘gray-box replication’ where the 
database itself should expose the required concurrency control functionalities 
through specific interface for the middleware to utilise in replica control scheme.

•	 Replicated centralised middleware-based—to avoid single point of failure and 
bottlenecks, backup middleware can be introduced. However, failover mecha-
nisms are hard to implement to support hot-swap for running transactions and 
coordinating with the application layer modules.

•	 Distributed middleware-based—every database replica is coupled with a mid-
dleware instance and act as a single unit of replication. In case of failover, the 
total unit can be swapped. Again, the approach is more suitable in WANs reduc-
ing the overhead of clients to communicate with the centralised middleware each 
time it wants to initiate transactional operations.

2.3.3 � Partitioning Architecture

It is obvious that replicating data to an extent will increase the read capacity of the 
system. However, after a certain replication factor, it might be difficult to main-
tain consistency even if ‘eager’ replication and synchronous update processing are 
used. On the other hand, write capacity can be scaled through partial replication 
where only subsets of nodes are holding a particular portion of the database. Thus, 

Backup 

DB Replica DB Replica DB Replica 

Kernel-based Replica�on 

Clients 

DB Replica DB Replica DB Replica 

Clients 

Middleware-based Replica�on 

DB Replica DB Replica DB Replica 

Clients 

Replicated Middleware-based Replica�on 

DB Replica DB Replica DB Replica 

Clients 

MW 

Distributed Middleware-based Replica�on

MW MW Middleware 

Middleware 

Fig. 2.4   Different replication architectures

 



37

write operations can be localised and the overheads of concurrent update processing 
can be reduced. Sharding is a technique to split data into multiple partitions (i.e., 
Shards). There are two basic ways of partitioning data as shown in Fig. 2.5:

•	 Vertical partitioning—by splitting the table attributes (i.e., columns) and thus 
creating tables with small number of attributes. It only offers limited scalability 
in spite of the ease of deployment. The main idea is to map different functional 
areas of an application into different partitions. Both the datasets and workload 
scalability are driven by different functional aspects of an application. Thus, it 
is necessary to pick up the right tables and column(s) to create the correct parti-
tion, because the ‘join’ operations in a relational database will now need to be 
performed within the application code. Hence, the underlying database will no 
longer support relational schema, and apparently the application scalability is 
restricts to its hosting node’s resource capacity.

Col1 Col2 Col3 

Col1 Col3 Col2 

Col1 Col2 Col3 

Row1 

Row2 

Row3 

Col1 Col2 Col3 

Row4 

Row5 

Row6 

Node ‘A’  Node ‘B’  

Node ‘A’  

Node ‘B’  

Ver�cal 
Par��oning 

Horizontal 
Par��oning 

Fig. 2.5   Database partitioning techniques—vertically and horizontally

 

2  Distributed Database Management Systems



38 J. M. M. Kamal and M. Murshed

•	 Horizontal partitioning—by splitting the tuples (i.e., rows) across different 
tables. It allows scaling into any number of partitions. The tuples are partitioned 
based on a key which can be hash based, range based or directory based. Join 
operations are similarly discouraged to avoid cross-partition queries. The per-
formance of write operations mostly depends on the appropriate choice of shard 
key. If sharding is done properly, then the application controller can route the 
write operations towards the right server.

The bottom line is that sharding a database results in partitioned datasets spread 
over single-to-multiple data centres, thus forcing the beauty of relational model to 
reduce. In recent years, NoSQL communities have picked up the trend to abandon 
relational properties and SQL in favour of high-scalability by only supporting key-
value type accesses in their data stores. However, many researchers have already 
pointed out that abandoning SQL and its feature has nothing to do scalability. 
Alternatively, many have also indicated ways where careful system and applica-
tion design can lead to the desired level of scalability [39]. There has been a debate 
going on in the recent years between these two communities and interested readers 
may head towards [42, 44, 28] to get a glimpse of it.

2.3.4 � Classification Based on Update Processing Overheads

Replication architecture also depends on ‘how’ data is actually replicated. Depending 
on the overheads incurred by the update processing operations, data items can be 
replicated into all nodes participating in the system or into a subset of nodes. The 
former one is called full replication while the later one is called partial replication. 
It is to be noted here that the primary overhead in replication resides in the update 
processing operations for the local and remote submissions.

There are two basic choices: symmetric update processing and asymmetric 
update processing. The former choice requires a substantial amount of resources 
(i.e., CPU, I/O in the remote replicas); it may also initiate divergence consistency 
for non-deterministic database operations (like updating a value with current time). 
Alternatively, in the asymmetric update processing, the operations are first per-
formed locally and only the changes (along with corresponding primary identifiers 
and after-image values) are bundled together in the write sets, then forwarded to the 
remote replicas in a single message. This approach of processing still holds even if 
the system is using ‘eager’/‘active’ replication scheme.

Depending on the update processing approaches, we can consider the trade-offs 
between using the full replication and partial replication schemes. Full replication 
technique requires an exact snapshot of the local database into every other remote 
replicas, which may face high-system overheads in the face of increased update 
workloads. Both symmetric and asymmetric update processing introduce a level of 
overhead as data needs to be updated into every replicas. However, by using partial 
replication scheme, one can reduce this overhead and localise the update processing 
based on their origination.



39

Surprisingly, partial replication also comes with its own challenges. There are 
several variants of the partial replication, e.g., (1) pure partial replication—where 
each node has only copies of a subset of the data items, but no node contains a full 
copy of the total database and (2) hybrid partial replication—where a set of nodes 
contain a full set of the data items, while another set of nodes are partial replicas 
containing only a fraction of the data sets.

Now, depending on the transaction, it might want to access data items on dif-
ferent replicas in a pure partial replication scheme. It is non-trivial to know which 
operation will access which data items in the partial replicas. Thus, flexibility is 
somehow reduced by typical SQL transactions which often need to perform ‘join’ 
operations between two tables. However, if the database schema can be partitioned 
accordingly and workload pattern is not changing frequently, then the benefits of 
localising of update processing can be revealed.

Considering the case of hybrid partial replication, update operations need to be 
applied fully in the replicas which contain the full set of database. With the increase 
in the number of transactions, these nodes might create hotspots and bottlenecks. 
The beauty of the hybrid approach is that while read operations can be centralised 
to provide more consistent snapshots of data items, the write operations can be 
distributed among partial replicas to reduce writing overheads. The bottom line is 
that it has been always challenging to know the transactional properties (like which 
data items need to access) and apply partial replication accordingly. However, if the 
application requirements are understood properly and workload patterns are more 
or less static, then partial replication can exploit the scalability goals.

2.3.5 � Classification Based on Multi-Tier Web Architecture

Recalling the example drawn in Fig. 2.1, real-life Web applications are typically 
deployed in multi-tier Cloud platforms. Each tier is responsible to perform spe-
cific functionalities and coordination between these tiers and is necessary to pro-
vide the expected services to the end users. Hence, replicating a single tier always 
restricts scalability and availability limits. Again, apart from being read-only or 
update operations, workloads can be compute intensive (require more resource and 
scalability at the application/logic tier) or data intensive (require more ability in the 
inner database tier).

Again, considering failure conditions, replication logic should work in such 
ways that the interdependencies between multiple tiers should not lead to multiple 
workload execution both in the database and application servers [24]. For exam-
ple, despite failure, ‘exactly-one’ update transaction should be taken place in the 
corresponding database tier and its entire replica for a single transactional request 
forwarded from the application tier. Based on this analogy, there can be two archi-
tectural patterns for replicating multi-tier platforms [20] as listed below:

•	 Vertical replication pattern—this pairs one application and one database server 
to create a unit of replication. Such units can be then replicated vertically to 

2  Distributed Database Management Systems



40 J. M. M. Kamal and M. Murshed

increase the scalability of the system. The benefit of this approach is that replica-
tion logic is transparent to both application and database servers; thus, they can 
work seamlessly. However, challenges reside in the fact that particular applica-
tion functionalities and corresponding data need to be partitioned appropriately 
across the whole system to get the target scalability. Much engineering cost and 
effort are needed for such kind of implementation; thus, in reality, these systems 
can be still seen very few in numbers.

•	 Horizontal replication pattern—here, each tier implements replication indepen-
dently and requires some ‘replication awareness’ mechanism to run in between 
to make necessary coordination. In contrast to the vertical replication pattern, the 
beauty here is that one can scale flexibly based on the necessity across individual 
tier. However, without any awareness support to know whether the cooperating 
tier is replicated or not, it is not able to provide the utmost performance the sys-
tem could achieve. In reality, this type of systems can be seen almost everywhere 
in the computing industry; however, they are still in lack of appropriate replica-
tion awareness mechanism which is still left as an open challenge.

To support these two categories, other architectural patterns also need to be consid-
ered like replica discovery and replication proxy, session maintenance, multi-tier 
coordination, etc. Several examples of real implementations based on these patterns 
can be found at [20, 33, 34, 35]. However, replication control via multi-tier coordi-
nation is still an open research problem both in academia and industry.

2.4 � Distributed Database Systems in the Cloud

2.4.1 � BASE and Eventual Consistency

The BASE (Basically Available, Soft state, Eventually consistent) acronym 
[36] captures the CAP reasoning. It devises that if a system can be partitioned 
functionally (by grouping data by functions and spreading functionality groups 
across multiple databases, i.e., shards), then one can break down sequence of opera-
tions individually and pipeline them for asynchronous update on each replicas while 
responding to the end user without waiting for their completion. Managing database 
transactions in a way that avoids locking, highly pipelined, and mostly depends on 
caching raise all kinds of consistency worries into surface.

While ACID can be seen as a more pessimistic approach, BASE, in contrast, 
envisions for a more optimistic approach. Availability in BASE systems is ensured 
through accepting partial partitions. Let us consider a ‘user’ table in a database 
which is sharded across three different physical machines by utilising user’s ‘last_
name’ as a shard key which partitions the total datasets into the following shards 
A-H, I-P and Q-Z. Now, if one of the shards is suddenly unavailable due to failure or 
partition, then only 33.33 % users will be affected and the rest of the system is still 



41

operational. But, ensuring consistency in such kind of system is not trivial and not 
readily available like ACID systems. Thus, the consideration of relaxed consistency 
guarantees arises. One can consider achieving consistency individually across func-
tional groups by decoupling the dependencies between them. As proposed in [36], 
a persistent pipelined system can tackle the situations where relative ordering and 
casual relationship is necessary to maintain or one consider de-normalised database 
schema design.

The ‘E’ in BASE which stands for ‘eventual consistency’ [45, 46] guarantees that 
in the face of inconsistency the underlying system should work in the background to 
catch up. The assumption is that in many cases it is hard to distinguish these incon-
sistent states from the end-user perspective which is usually bounded by different 
staleness criteria (i.e., time-bounded, value-bounded or update-based staleness). 
Later, Eric Brewer [11] had also argued against locking and actually favoured the 
use of cached data but only for ‘soft’ state service developments, while DDBSs 
should continue to provide strong consistency and durability guarantees. However, 
this implication of inconsistency requires a higher level of reconfigurability and 
self-repair capability of a system that tends to expansive engineering effort.

In [45], Werner Vogels from Amazon described several variations of eventual 
consistency which can also be combined together to provide a stronger notion while 
ensuring client-side consistency as follows:

•	 Casual consistency—guarantees that if there is any casual dependencies between 
two processes, then a committed update by one process will be seen by another 
process and can be superseded by another update.

•	 Read-your-writes consistency—guarantees that after an update of a data item, 
consecutive reads always get that updated value.

•	 Session consistency—guarantees that as long as the session exist, read-your-
write consistency can be provided.

•	 Monotonic read consistency—guarantees if a process reads a particular value 
of an object, then any subsequent reads will not see any previously committed 
value.

•	 Monotonic write consistency—guarantees to serialise writes by the same process.

At the server-side consistency, Vogels [45] argues that one should look at the flow 
of update propagation. One can consider a quorum-based replicated DDBS [35] 
with N nodes where W nodes replicas are responsible to accept a write and R repli-
cas are contacted while performing a read. Then, if W + R > N, then read and write 
sets are always overlapped, and the system provides stronger form of consistency. 
Again, if W < ( N + 1)/2, then there is a definite possibility of conflicting writes as the 
write sets do not overlap. On the other hand, if the read and writes do not overlap as 
W + R < = N, then a weaker form of eventual consistency is provided by the system 
where stale data can be read. In case of network partitions, quorum systems can still 
handle read and write requests separately as long as these sets can communicate 
with a group of clients independently. And, later reconciliation procedures can run 
to manage conflicting updates within replicas.

2  Distributed Database Management Systems



42 J. M. M. Kamal and M. Murshed

In [9], Ken Birman has effectively shown ideas that it is possible to develop scal-
able and consistent soft-state services for the first tier of the Cloud system if one is 
ready to give up durability guarantee. He argues that the ‘C’ from the CAP theorem 
actually relates to both ‘C’ and ‘D’ in ACID semantics. Therefore, by sacrificing 
durability, one can scale through first to inner-tier Cloud services while at the same 
time can guarantee strong consistency.

In reality, systems that utilises group communication semantics (e.g., mem-
bership management, message ordering, failure coordination, recovery, etc.) can 
achieve consistent replication schemes to support both high availability and high 
scalability. Google’s Spanner [14] is one of the most prominent examples of this 
kind. Although these systems can exploit the requirements for first-to-inner service 
tiers, the consistency guarantee usually comes with a high engineering cost and 
lacks generalised patterns/solutions.

Lastly, based on the current usage of Cloud systems, inconsistencies can some-
what be tolerated for improving read/write performances under increasing work-
loads and handling partition cases. However, the level of scalability that Cloud 
systems can achieve is a long cherished dream for system which prefers high 
assurance (i.e., both availability and consistency), reliability and security.

2.4.2 � Revisiting Architectural Design Space

To overcome the confusion that arises from the CAP theorem, it is necessary to 
revisit the design space in the light of distributed replication and data partitioning 
techniques. This insight will also enable to clarify the relationship between the re-
lated challenges with ACID and BASE as discussed above. In [1], Daniel Abadi was 
the first to pinpoint the exact confusion that arises from CAP and clarifies the rela-
tionship between consistency and latency. He proposed a new acronym PACELC 
which he believed to be the actual representation of reality.

PACELC in a single formulation: if there is a partition (P), how does the system 
trade-off exist between availability and consistency (A and C); else (E) when the 
system is running as normal in the absence of partitions, how does the system trade-
off exist between latency (L) and consistency (C)?

The PACELC formulation is shown in Fig. 2.6 under several considerations like 
based on replication factor, consistency level, system responsiveness and partition-
tolerance level. We will explain this phenomenon with respect to PACELC classi-
fication for distributed system design. As Abadi explained in [2], there can be four 
possible system types as follows:

•	 A-L systems—always give up consistency in favour of availability in case of 
partition otherwise prefer latency during normal operating periods. Example– 
Apache Cassandra [4], Amazon’s DynamoDB [3] and Riak [38] (in their default 
settings).

•	 A-C systems—provide consistent reads/writes in the typical failure-free scenar-
ios; however, in failure cases, consistency sacrifices (for limited period until 



43

the failure recovers) would remain available. Example: MongoDB [31] and 
CouchDB [5].

•	 C-L systems—provide baseline consistency (as defined by the system, e.g., time-
line consistency) for latency during normal operations, while in case of partitions 
it prioritises consistency over availability (or, being slow responsiveness which 
imposes high latency). Example: Yahoo! PNUTS [13].

•	 C-C systems—disallow to give up consistency either in the case of partition or 
not and thus incur availability (i.e., responsiveness), and latency costs as the 
trade-off. Example: BigTable [12]/HBase [6] and H-Store [19]/VoltDB [46].

This is to be noted here that, completely giving up availability is not possible at all; 
otherwise it will be a useless system. Availability actually spans over two dimen-
sions: (1) resilient to failures, and (2) responsiveness in both failure and failure-free 
cases. Interested readers are also encouraged to read Dan Weinreb’s blog entry [49] 
which further clarifies how availability and latency relate to each other. Similarly, 
completely inconsistent systems are also useless; thus, the level of consistency var-
ies in between its weaker and stronger forms. Let us now discuss these system 
design choices in more detail under the light of the above mentioned considerations.

2.4.2.1 � Consistency Factor

Stronger consistency models which are tightly coupled with a DBMS always ease 
the life of the application developer. Depending on the application requirement, giv-
ing up ACID properties in favour of BASE is also inadequate in many situations. 
However, stronger consistency levels can also be viable to achieve by decoupling 
logic from the underlying DBMS and implementing along with the replica control 
scheme.

Quorum-based systems are one of the possible choices in this regard where one 
can control the level of consistency by restricting read/write quorum requirements. 
Alternatively, consistency can be ensured in a much fine-granularity [37]. Ensuring 
entity-level or object-level consistency within a single database can also provide a 
notion of ACID semantics. Furthermore, entity groups can be considered as a unit 
of consistency and even multiple groups might act as a unit.

A 

L 

C 

C 

If Par��on: 

Else: 

ACID BASE 

Replica�on Factor 
Low High 

Consistency Factor 

Fig. 2.6   Design space for 
large-scale distributed system 
development. BASE basi-
cally available, soft state, 
eventually consistent; ACID 
atomicity, consistency, isola-
tion and durability

 

2  Distributed Database Management Systems



44 J. M. M. Kamal and M. Murshed

A-L systems which can be viewed as the BASE equivalent tend to provide dif-
ferent variations of eventual consistency all the time. Similar adaption is also true 
while the system design space gradually shifts towards C-L systems in failure cases. 
On the other hand, A-C and C-C systems by default tend to achieve stronger form 
of consistency either in the case of failure or not. However, as indicated earlier 
providing ACID level consistency (i.e., serialisability) is challenging and costly in 
DDBSs. Therefore, providing soft level of consistency guarantees like snapshot 
isolation or even timeline consistency (as provided in Yahoo’s PNUTS [13]) seems 
to be more adaptable in such scenarios.

2.4.2.2 � Responsiveness Factor

Responsiveness is the perceived ‘delay’ between when an end-user or internal sys-
tem component takes an action such as clicking on a link or forwarding a request, 
and when the user/component perceives a response. It wraps up two other technical 
pieces, namely: (1) latency—initial delay to start receiving replies for a correspond-
ing request, and (2) throughput—total time taken for all the contents of a reply to be 
received completely. These factors are imposed by the service level objective (SLO) 
goals while considering the design spaces.

One can consider the ‘8 second rule’ [30] which still fits well to measure the 
responsiveness of modern Cloud applications. It states that ‘if a computer system 
responds to a user action within 100 ms, it’s perceived as ‘instantaneous’; within 
1 s, the user will still perceive a cause-and-effect connection between their action 
and the response, but will perceive the system as ‘sluggish’; and after about 8 s, the 
user’s attention drifts away from the task while waiting for a response’.

Based upon this observation, A-L systems should be chosen where strict and 
rapid responsiveness is the requirement. Both the A-C and C-L systems will be 
better on ensuring flexible responsiveness requirements in the face of failure and 
failure-free cases, respectively. C-C systems pay the costs to keep the system up-
to-date and consistent, therefore, slow responsive will be incurred while they are 
overloaded.

2.4.2.3 � Partition-Tolerance Factor

Partitions are not always created from network/communication outage. Sometimes, 
it might be the case that the system is overloaded and may not be able to respond 
within the timeout period. Improper network configurations in the intermediate 
nodes can also cause similar results. Again, the possibility of partition highly de-
pends on whether the system is deployed in a WAN across multiple data centres 
or LAN within a single data centre. An interesting discussion of practical database 
errors which can lead to partitioned networks in DDBS can be found in [43].

Primarily based on the deployment strategies, one can consider choosing A-L 
or C-L system to deploy across multiple data centre distributed over WAN due to 



45

their latency awareness during normal operation periods. On the other hand, A-C 
and C-C systems will be more preferred in deploying within single data centre over 
the LAN.

2.4.2.4 � Replication Factor

The scalability of today’s Cloud systems and DDBS primarily depends on how they 
are replicated to provide high read/write throughput, although increasing the num-
ber of replicas blindly will not make the success. It may create potential bottlenecks 
and unresponsiveness in the system. As discussed in [2], three types of replication 
strategies are popularly seen in today’s deployment, viz.: (1) Data updates sent to 
all replicas at the same time (synchronous), (2) data updates sent to an agreed-upon 
location first (synchronous/asynchronous/hybrid), and (3) data updates sent to an 
arbitrary location first (synchronous/asynchronous).

Considering the above analogies, option-1 provides stronger consistency level in 
the costs of increased latency and communication overhead. Thus, it might primari-
ly be suitable for C-C systems. Option-2 with synchronous-update propagation also 
ensures consistency but only limited to while deployed in LAN/single data centre. 
With asynchronous propagation, option-2 provides several options for distributing 
read and write operations. If a primary/master node is responsible for providing 
read replies and accepting writes, then inconsistencies can be avoided. However, 
it may be the source of potential bottleneck in case of failures. On the other hand, 
if reads are served from any node, while the primary node is only responsible for 
accepting writes, then read results probably reflect inconsistencies.

A combination of synchronous and asynchronous is also possible considering a 
quorum-based replication strategy. If R + W > N, then the system will provide consis-
tent results while gradually divergent in the condition where R + W < = N. Both A-L 
and C-L systems are well suited for the approaches mentioned above under option-2 
as they are flexible and dynamic with latency-consistency trade-offs. Option-3, 
which is similar to option-2 apart from preferring any node to accept reads and 
writes, can also be used either in a synchronous or asynchronous fashion. While 
synchronous setting can incur increased latency, potential inconsistencies will arise 
using asynchronous setting. A-C and some of the C-L systems might be suitable to 
fit in this category.

To this end, it seems worthwhile to revisit the design choices as it broadens 
our mind to think beyond what the CAP theorem actually meant. It also helps to 
visualise how we can fit the multi-tier Cloud application within the architectural 
model. Although a more analytical approach to explain these trade-offs will be defi-
nitely profound. Modern software-as-a-service (SaaS) applications deployed over 
very large-scale distributed systems strive for the following performance goals: 
(1) Availability or uptime—what percentage of time the system is up and prop-
erly accessible, (2) responsiveness—measure of latency and throughput, and (3) 
scalability—as the number of users, i.e., workloads increase how to maintain the 
target responsiveness without increasing cost/user.

2  Distributed Database Management Systems



46 J. M. M. Kamal and M. Murshed

2.4.3 � Data Partitioning and Replication Management

Typical distributed database systems (e.g., HBase [6], Cloud SQL, MongoDB [31] 
and MySQL Cluster [32]) which usually provide automatic partitioning and load-
balancing features only support pre-configured partitioning rules. The system splits 
and merges the partitions based on the number of nodes (e.g., MySQL Cluster [32]), 
predefined data volume size (e.g., in HBase [6]), predefined key (e.g., MongoDB 
[31]) or even based on partitioned schema (Cloud SQL). All of these approaches 
are unable to adopt to dynamic workload patterns and current resource utilisation 
profile of the system. Again, sudden increase in workload volume, occurrences 
of data spikes and hotspots can also influence the change in normal workload 
characteristics.

However, dynamic partitioning decision making is not possible and often re-
quires human intervention. Hence, these systems normally suffer from sudden 
workload spikes in any particular partition, hot-spotted partition or database table, 
partitioning storm and load-balancing problems. These are the potential reasons of 
restricted system behaviour, unresponsiveness, failures and bottlenecks. In a WAN 
setting, this leads to replication nightmare and inconsistency problems on top of 
added latency.

As Cloud systems are growing bigger and bigger day by day with the explosion 
of big data, automated management of these large-scale distributed systems are 
often desirable to maintain high scalability and elasticity. Automatic replication/
partitioning management schemes are believed to stand as the solution towards 
these worries and opportunities. These systems can exploit the self-managerial 
properties (i.e., healing, optimisation, and provisioning) of a typical Cloud platform 
and ensure more reliability to achieve the target SLO.

Automatic management of partitioning and replication are also necessary 
in cases where the database is spanned in multiple data centres over WAN in a 
geographically distributed fashion. It can be also recognised as a classical match for 
the case of partial replication where individual partitions of the distributed database 
management systems can be distributed over WAN. The primary challenge here 
is to maintain rapid consistency among the replicas with an acceptable latency 
requirement. The trade-offs between replication and partitioning considering parti-
tioning size as an impacting factor can be also explored in this context.

The particular emphasis is on how to find an optimal partition size for load distri-
bution (arise from hot-spotted partitions due to workload pattern) in geo-distributed 
data centres. Determining an optimal partition size is essential for effective rep-
lication and data transfer between physical machines over WAN. In overall, the 
choice of availability, consistency, and latency play an important role in developing 
a scheme over WAN where network partitions occur very often and usually are not 
avoidable.

To understand the significance, one can be motivated by the scenarios of mas-
sively multi-player online role playing games (MMOG) and virtual worlds. Scal-
ability in such environment is really challenging and not trivial in contrast to other 



47

Cloud applications. Game and virtual world users are geographically distributed 
and can personalise the game environment as well as make interactions with other 
online users. Two kinds of partitioning strategies are generally seen: one is to de-
compose the game or virtual world based on the application design and functional-
ity, while another possibility is to partition the system, based on the current work-
load pattern.

Distributing the workloads evenly among the physical servers is really tedious 
for both of the cases as they may spread in a WAN over several geographical loca-
tions. Again, users residing in one system partition are naturally forbidden to access 
or interact with other users in different partitions. Even if they wish to do so, costly 
replication process needs to be taken out. Games and virtual worlds like World of 
Warcraft, Farmville, SimCity, and Second Life are a few of the examples which 
have such evolving architectures and geographically distributed workload patterns 
over the WAN; thus, face these challenges. Jim Waldo has mentioned these chal-
lenges from a real-world point in [48] while others like the authors in [52, 25, 26] 
have also discussed related challenges and the significance of reliable scalability 
issues in MMOG.

Recent development of the Google’s Big Data platform Spanner [14] also focused 
on a geographically distributed consistent data service platform which spans over 
multiple data centres in the WAN. The argument of whether existing NoSQL solu-
tions are adequate to handle such scalability challenges effectively is still an active 
topic of discussion among the community [15], and it is believed that the above 
mentioned approach can direct an appropriate pathway towards the right vision.

2.5 � Conclusion

Cloud computing backed up by modern scalable distributed databases provides sig-
nificant opportunities for the start-up and established businesses as well as presents 
potential challenges for the system administrators. The development of distributed 
databases has been continuing over the past four decades, and is still emerging to 
adopt the Cloud paradigm. However, system designers and administrators should be 
well aware of the past trials and potential pitfalls. The design space should be well 
adopted and possible user cases need to be well studied beforehand. This is required 
to fit target application scenarios into the architectural design space. Although, re-
cent developments have shown notable promises over the past years, most of the 
approaches are static in nature and not adaptable with dynamic workload behav-
iours. SaaS applications deployed within Cloud platforms also span over multiple 
geographical regions and thus require special attentions to adopt with distributed 
workload characteristics.

Designing a scalable Cloud system requires a high level understanding of the 
life-cycle management of a modern multi-tier Web application and characterisa-
tion of system workloads. These interpretations lead us straight to the exploration 
of available architectural design choices and off-the-shelf distributed databases to 

2  Distributed Database Management Systems



48 J. M. M. Kamal and M. Murshed

support underlying high scalability and availability requirements. However, the 
misunderstanding of CAP theorem over the past decade, and consequent develop-
ments of hundreds of NoSQL systems providing relaxed consistency guarantees did 
not hold us back. In reality, all these efforts have helped the system architects to 
understand the actual design space for Cloud applications and thus have provided 
the necessary momentum to modernise the development of distributed database sys-
tems in a whole. Again, the core building blocks of a distributed database system 
have also helped in shaping the general ideas behind effective data replication and 
partitioning strategies. Eventually these apprehensions have influenced the devel-
opment of high available, high scalable and partition tolerance Internet-scale Cloud 
applications. Nowadays, without having a clear picture of the architectural design 
choices in front, it is tedious to design a scalable Cloud platform. The PACELC 
acronym clearly identifies this challenge and helped us grasp the relationship be-
tween ACID and BASE properties. Still, automatic management of data replica-
tion and partitioning in line with workload characteristics and issues arise from 
multi-tenant environments that are potential challenges to deal with. With the rapid 
advancement in database and system research and development, it can be hoped that 
innovative solutions will be soon in place to rescue us from back-breaking labours 
of system administrations and disaster response situations.

In this chapter, a trail of modern distributed database systems has been 
drawn alongside the challenges which require urgent attention from the research 
community. The relationship between how to adopt the past to overcome the chal-
lenges at present has been also discussed in a great extent. Different data replica-
tion and partitioning techniques have been discussed in details which are essential 
to achieve massive scalability and elasticity for the Cloud applications. Finally, 
several approaches have been shown as potential way out to achieve Cloud scale 
modernisation of distributed database management systems in a dynamic environ-
ment for the years to come.

References

1.	 Abadi DJ (April 2010) Problems with CAP, and Yahoo’s little known NoSQL system. http://
dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html. Accessed 
31 Jan 2014

2.	 Abadi DJ (2012) Consistency tradeoffs in modern distributed database system design: CAP is 
only part of the story. Comput IEEE 45(2):37–42

3.	 Amazon DynamoDB—NoSQL Cloud Database Service (2014) http://aws.amazon.com/dy-
namodb. Accessed 31 Jan 2014

4.	 Apache Cassandra Project. http://cassandra.apache.org. Accessed 31 Jan 2014
5.	 Apache CouchDB. http://couchdb.apache.org. Accessed 31 Jan 2014
6.	 Apache HBase—Apache HBase Home. http://hbase.apache.org. Accessed 31 Jan 2014
7.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Paterson DA, 

Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing. 
Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley

8.	 Bernstein PA, Newcomer E (2009) Principles of transaction processing, 2nd  edn. Morgan 
Kaufmann, San Francisco

http://dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html
http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb
http://cassandra.apache.org
http://couchdb.apache.org
http://hbase.apache.org


49

  9.	 Birman K, Freedman D, Huang Q, Dowell P (2012) Overcoming CAP with consistent soft-
state replication. Comput IEEE 45(2):50–58

10.	 Brewer EA (2000) Towards robust distributed systems (abstract). In: Proceedings of the nine-
teenth annual ACM symposium on principles of distributed computing (New York, NY, USA, 
2000), PODC’00, ACM, p. 7

11.	 Brewer E (2012) CAP twelve years later: how the “rules” have changed. Comput IEEE 
45(2):23–29

12.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, 
Gruber RE (2008) BigTable: a distributed storage system for structured data. ACM Trans 
Comput Syst 26(2), 4(1–4):26

13.	 Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen H.-A, Puz 
N, Weaver D, Yerneni R (2008) PNUTS: Yahoo!’s hosted data serving platform. Proc VLDB 
Endow 1(2):1277–1288

14.	 Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser 
C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle 
D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D (2012) 
Spanner: google’s globally distributed database. In: Proceedings of the 10th USENIX con-
ference on operating systems design and implementation (Berkeley, CA, USA) OSDI’12, 
USENIX Association, pp 251–264

15.	 Floratou A, Teletia N, Dewitt DJ, Patel JM, Zhang D (2012) Can the elephants handle the 
NoSQL onslaught? Proc VLDB Endow 5(12):1712–1723

16.	 Gilbert S, Lynch N (June 2002) Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2):51–59

17.	 Gray J (1978) Notes on database operating systems. In: Gray J (ed) Operating systems, an 
advanced course. Springer-Verlag, London, pp 393–481

18.	 Gray J, Helland P, O’Neil P, Shasha D (1996) The dangers of replication and a solution. SIG-
MOD Rec 25(2):173–182

19.	 H-Store: Next Generation OLTP Database Research (2014) http://hstore.cs.brown.edu. 
Accessed 31 Jan 2014

20.	 Jimenez-Peris R, Patino Martinez M, Kemme B, Perez-Sorrosal F, Serrano D (2009) A system 
of architectural patterns for scalable, consistent and highly available multi-tier service-orient-
ed infrastructures. Architecting dependable systems VI. Springer-Verlag, Berlin, pp 1–23.

21.	 Kemme B (2000) Database replication for clusters of workstations. PhD thesis, Swiss Federal 
Institute of Technology, Zurich

22.	 Kemme B, Alonso G (2000) Don’t be lazy, be consistent: Postgres-R, a new way to im-
plement database replication. In: Proceedings of the 26th international conference on very 
large data bases (San Francisco, CA, USA), VLDB ’00, Morgan Kaufmann Publishers Inc., 
pp 134–143

23.	 Kemme B, Alonso G (2000) A new approach to developing and implementing eager database 
replication protocols. ACM Trans Database Syst 25(3):333–379

24.	 Kemme B, Jimenez-Peris R, Pantino Martinez M, Salas J (2000) Exactly once interaction in 
a multi-tier architecture. In: VLDB workshop on design, implementation, and deployment of 
database replication

25.	 Kohana M, Okamoto S, Kamada M, Yonekura T (2010) Dynamic data allocation scheme for 
multi-server web-based MORPG system. In: Proceedings of the 2010 IEEE 24th international 
conference on advanced information networking and applications workshops (Washington, 
DC, USA), WAINA ’10, IEEE Computer Society pp 449–454

26.	 Kohana M, Okamoto S, Kamada M, Yonekura T (2012) Dynamic reallocation rules on multi-
server web-based MORPG system. Int J Grid Utility Comput 3(2/3):136–144

27.	 Lamport L (1998) The part-time parliament. ACM Trans Comput Syst 16(2):133–169
28.	 Lerner RM (2010) At the forge: NoSQL? I’d prefer some SQL. Linux J. 2010:192. (http://

www.linuxjournal.com/article/10720. Accessed 31 Jan 2014)
29.	 Lindsay BG, Selinger PG, Galtieri CA, Gray JN, Lorie R A, Price TG, Putzulo F, Traiger 

IL, Wade BW (July 1979) Notes on distributed databases. Research Report, IBM Research 
Laboratory (San Jose, California, USA) 247–284

2  Distributed Database Management Systems

http://hstore.cs.brown.edu
http://www.linuxjournal.com/article/10720
http://www.linuxjournal.com/article/10720


50 J. M. M. Kamal and M. Murshed

30.	 Miller RB (1968) Response time in man-computer conversational transactions. In: Proceed-
ings of the December 9–11, 1968, fall joint computer conference, part I (New York, NY, 
USA), AFIPS ’68 (Fall, part I), ACM pp 267–277

31.	 MongoDB http://www.mongodb.org. Accessed 31 Jan 2014
32.	 MySQL MySQL Cluster CGE. http://www.mysql.com/products/cluster. Accessed 31 Jan 2014
33.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Peris R, Kemme B (2007) Consistent and 

scalable cache replication for multi-tier J2EE applications. In: Proceedings of the ACM/
IFIP/USENIX 2007 international conference on Middleware (New York, NY, USA), 
Middleware ’07, Springer-Verlag New York, Inc., pp 328–347

34.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Pereis R, Kemme B (2007) Consistent and 
scalable cache replication for multi-tier J2EE applications. In: Proceedings of the 8th ACM/
IFIP/USENIX international conference on Middleware (Berlin, Heidelberg), Middleware 
2007 Springer-Verlag pp 328–347

35.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Peris R, Kemme B (2011) Elastic SI-Cache: 
consistent and scalable caching in multi-tier architectures. VLDB J 20(6):841–865

36.	 Prichett D (May 2008) BASE: an ACID alternative. Queue ACM 6(3):48–55
37.	 Ramakrishnan R (2012) CAP and Cloud data management. Computer IEEE 45(2): 43–49
38.	 Riak | Basho Technologies (2014) http://basho.com/riak. Accessed 31 Jan 2014
39.	 Schram A, Anderson KM (2012) MySQL to NoSQL: data modeling challenges in support-

ing scalability. In: Proceedings of the 3rd annual conference on systems, programming, and 
applications: software for humanity (New York, NY, USA), SPLASH ’12, ACM, pp 191–202

40.	 Skeen D, Stonebraker M (1983) A formal model of crash recovery in a distributed system. 
Software engineering. IEEE Trans SE 9(3): 219–228

41.	 Stonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9
42.	 Stonebraker M (4 Nov 2009) The “NoSQL” discussion has nothing to do with SQL. http://

cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/
fulltext. Accessed 31 Jan 2014

43.	 Stonebraker M (5 April 2010) Errors in database systems, eventual consistency, and the cap 
theorem. Blog, Communications of the ACM

44.	 Stonebraker M (2010) SQL databases v. NoSQL databases. Commun ACM 53(4):10–11
45.	 Vogels W (Oct 2008) Eventually consistent. Queue ACM 6(6):14–19
46.	 Vogels W (2009) Eventually consistent. Communications of the ACM 52(1):40–44
47.	 VoltDB http://voltdb.com. Accessed 31 Jan 2014
48.	 Waldo J (2008) Scaling in games and virtual worlds. Commun ACM 51(8):38–44
49.	 Weinreb D Improving the PACELC taxonomy. http://danweinreb.org/blog/improving-the-

pacelc-taxonomy. Accessed 27 Feb 2013
50.	 Wikipedia. Consensus (computer science). http://en.wikipedia.org/wiki/Consensus_(computer_

science). Accessed 31 Jan 2014
51.	 Wikipedia. Paxos (computer science). http://en.wikipedia.org/wiki/Paxos_(computer_science). 

Accessed 31 Jan 2014
52.	 Zhang K, Kemme B, Denault A (2008) Persistence in massively multiplayer online games. 

In: Proceedings of the 7th ACM SIGCOMM workshop on network and system support for 
games (New York, NY, USA), NetGames’ 08, ACM, pp 53–58

http://www.mongodb.org
http://www.mysql.com/products/cluster
http://basho.com/riak
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://voltdb.com
http://danweinreb.org/blog/improving-the-pacelc-taxonomy
http://danweinreb.org/blog/improving-the-pacelc-taxonomy
http://en.wikipedia.org/wiki/Consensus_(computer_science)
http://en.wikipedia.org/wiki/Consensus_(computer_science)
http://en.wikipedia.org/wiki/Paxos_(computer_science)


http://www.springer.com/978-3-319-10529-1


	Part I
	Limitations and Challenges of Cloud Environments
	Chapter 2
	Distributed Database Management Systems: Architectural Design Choices for the Cloud
	2.1 Introduction
	2.1.1 Why ACID Properties Are Hard to Scale
	2.1.2 CAP Confusion

	2.2 Background of Distributed Database Concepts
	2.2.1 Transaction and ACID Properties
	2.2.2 Distributed Transactions and Atomic Commit
	2.2.3 Distributed Concurrency Control
	2.2.4 Multi-Version Concurrency Control and Snapshot Isolation
	2.2.5 Isolation Anomalies

	2.3 Replication and Partitioning Mechanisms
	2.3.1 Replica Control Strategies
	2.3.2 Replication Architectures
	2.3.3 Partitioning Architecture
	2.3.4 Classification Based on Update Processing Overheads
	2.3.5 Classification Based on Multi-Tier Web Architecture

	2.4 Distributed Database Systems in the Cloud
	2.4.1 BASE and Eventual Consistency
	2.4.2 Revisiting Architectural Design Space
	2.4.2.1 Consistency Factor
	2.4.2.2 Responsiveness Factor
	2.4.2.3 Partition-Tolerance Factor
	2.4.2.4 Replication Factor

	2.4.3 Data Partitioning and Replication Management

	2.5 Conclusion
	References







