
2

Programming and Proving

This chapter introduces HOL as a functional programming language and
shows how to prove properties of functional programs by induction.

2.1 Basics

2.1.1 Types, Terms and Formulas

HOL is a typed logic whose type system resembles that of functional pro-
gramming languages. Thus there are

base types, in particular bool, the type of truth values, nat, the type of
natural numbers (N), and int , the type of mathematical integers (Z).

type constructors, in particular list, the type of lists, and set, the type of
sets. Type constructors are written postfix, i.e., after their arguments. For
example, nat list is the type of lists whose elements are natural numbers.

function types, denoted by ⇒.
type variables, denoted by ′a, ′b, etc., like in ML.

Note that ′a ⇒ ′b list means " ′a ⇒ (′b list)", not (′a ⇒ ′b) list : postfix
type constructors have precedence over ⇒.

Terms are formed as in functional programming by applying functions to
arguments. If f is a function of type τ1 ⇒ τ2 and t is a term of type τ1 then
f t is a term of type τ2. We write t :: τ to mean that term t has type τ.

There are many predefined infix symbols like + and �. The name of the cor-
responding binary function is op +, not just +. That is, x + y is nice surface

syntax (“syntactic sugar”) for op + x y .

HOL also supports some basic constructs from functional programming:

© Springer International Publishing Switzerland 2014
T. Nipkow and G. Klein, Concrete Semantics,
DOI 10.1007/978-3-319-10542-0_2

5

6 2 Programming and Proving

(if b then t1 else t2)
(let x = t in u)
(case t of pat1 ⇒ t1 | . . . | patn ⇒ tn)

The above three constructs must always be enclosed in parentheses if they occur
inside other constructs.

Terms may also contain λ-abstractions. For example, λx . x is the identity
function.

Formulas are terms of type bool. There are the basic constants True and
False and the usual logical connectives (in decreasing order of precedence):
¬, ∧, ∨, −→.

Equality is available in the form of the infix function = of type ′a ⇒ ′a
⇒ bool. It also works for formulas, where it means “if and only if”.

Quantifiers are written ∀ x . P and ∃ x . P.
Isabelle automatically computes the type of each variable in a term. This

is called type inference. Despite type inference, it is sometimes necessary
to attach an explicit type constraint (or type annotation) to a variable
or term. The syntax is t :: τ as in m + (n ::nat). Type constraints may be
needed to disambiguate terms involving overloaded functions such as +.

Finally there are the universal quantifier
∧

and the implication =⇒. They
are part of the Isabelle framework, not the logic HOL. Logically, they agree
with their HOL counterparts ∀ and −→, but operationally they behave dif-
ferently. This will become clearer as we go along.

Right-arrows of all kinds always associate to the right. In particular, the formula
A1 =⇒ A2 =⇒ A3 means A1 =⇒ (A2 =⇒ A3). The (Isabelle-specific1) notation

[[A1; . . .; An]] =⇒ A is short for the iterated implication A1 =⇒ . . . =⇒ An =⇒ A.

Sometimes we also employ inference rule notation:
A1 . . . An

A

2.1.2 Theories

Roughly speaking, a theory is a named collection of types, functions, and
theorems, much like a module in a programming language. All Isabelle text
needs to go into a theory. The general format of a theory T is

theory T
imports T1 . . . Tn

begin
definitions, theorems and proofs
end

1 To display implications in this style in Isabelle/jedit you need to set Plugins >

Plugin Options > Isabelle/General > Print Mode to “brackets” and restart.

2.2 Types bool, nat and list 7

where T1 . . . Tn are the names of existing theories that T is based on. The
Ti are the direct parent theories of T. Everything defined in the parent
theories (and their parents, recursively) is automatically visible. Each theory
T must reside in a theory file named T .thy.

HOL contains a theory Main , the union of all the basic predefined theories like
arithmetic, lists, sets, etc. Unless you know what you are doing, always include

Main as a direct or indirect parent of all your theories.

In addition to the theories that come with the Isabelle/HOL distribution
(see http://isabelle.in.tum.de/library/HOL/) there is also the Archive
of Formal Proofs at http://afp.sourceforge.net, a growing collection of
Isabelle theories that everybody can contribute to.

2.1.3 Quotation Marks

The textual definition of a theory follows a fixed syntax with keywords like
begin and datatype. Embedded in this syntax are the types and formulas of
HOL. To distinguish the two levels, everything HOL-specific (terms and types)
must be enclosed in quotation marks: ". . . ". To lessen this burden, quotation
marks around a single identifier can be dropped. When Isabelle prints a syntax
error message, it refers to the HOL syntax as the inner syntax and the
enclosing theory language as the outer syntax.

2.2 Types bool, nat and list

These are the most important predefined types. We go through them one by
one. Based on examples we learn how to define (possibly recursive) functions
and prove theorems about them by induction and simplification.

2.2.1 Type bool

The type of boolean values is a predefined datatype

datatype bool = True | False

with the two values True and False and with many predefined functions: ¬,
∧, ∨, −→, etc. Here is how conjunction could be defined by pattern matching:

fun conj :: "bool ⇒ bool ⇒ bool" where
"conj True True = True" |

"conj _ _= False"

Both the datatype and function definitions roughly follow the syntax of func-
tional programming languages.

8 2 Programming and Proving

2.2.2 Type nat

Natural numbers are another predefined datatype:

datatype nat = 0 | Suc nat

All values of type nat are generated by the constructors 0 and Suc. Thus the
values of type nat are 0, Suc 0, Suc (Suc 0), etc. There are many predefined
functions: +, ∗, �, etc. Here is how you could define your own addition:

fun add :: "nat ⇒ nat ⇒ nat" where
"add 0 n = n" |

"add (Suc m) n = Suc(add m n)"

And here is a proof of the fact that add m 0 = m :

lemma add_02: "add m 0 = m"
apply(induction m)

apply(auto)
done

The lemma command starts the proof and gives the lemma a name, add_02.
Properties of recursively defined functions need to be established by induction
in most cases. Command apply(induction m) instructs Isabelle to start a proof
by induction on m. In response, it will show the following proof state:

1. add 0 0 = 0

2.
∧

m . add m 0 = m =⇒ add (Suc m) 0 = Suc m

The numbered lines are known as subgoals. The first subgoal is the base case,
the second one the induction step. The prefix

∧
m . is Isabelle’s way of say-

ing “for an arbitrary but fixed m”. The =⇒ separates assumptions from the
conclusion. The command apply(auto) instructs Isabelle to try and prove all
subgoals automatically, essentially by simplifying them. Because both sub-
goals are easy, Isabelle can do it. The base case add 0 0 = 0 holds by def-
inition of add, and the induction step is almost as simple: add (Suc m) 0

= Suc(add m 0) = Suc m using first the definition of add and then the
induction hypothesis. In summary, both subproofs rely on simplification with
function definitions and the induction hypothesis. As a result of that final
done, Isabelle associates the lemma just proved with its name. You can now
inspect the lemma with the command

thm add_02

which displays

add ?m 0 = ?m

2.2 Types bool, nat and list 9

The free variable m has been replaced by the unknown ?m. There is no
logical difference between the two but there is an operational one: unknowns
can be instantiated, which is what you want after some lemma has been
proved.

Note that there is also a proof method induct, which behaves almost like
induction ; the difference is explained in Chapter 5.

Terminology: We use lemma, theorem and rule interchangeably for proposi-
tions that have been proved.

Numerals (0, 1, 2, . . .) and most of the standard arithmetic operations (+, −,
∗, �, <, etc.) are overloaded: they are available not just for natural numbers

but for other types as well. For example, given the goal x + 0 = x, there is nothing
to indicate that you are talking about natural numbers. Hence Isabelle can only
infer that x is of some arbitrary type where 0 and + exist. As a consequence, you
will be unable to prove the goal. In this particular example, you need to include an
explicit type constraint, for example x+0 = (x ::nat). If there is enough contextual
information this may not be necessary: Suc x = x automatically implies x ::nat
because Suc is not overloaded.

An Informal Proof

Above we gave some terse informal explanation of the proof of add m 0 = m.
A more detailed informal exposition of the lemma might look like this:

Lemma add m 0 = m
Proof by induction on m.

Case 0 (the base case): add 0 0 = 0 holds by definition of add.
Case Suc m (the induction step): We assume add m 0 = m, the induction
hypothesis (IH), and we need to show add (Suc m) 0 = Suc m. The proof
is as follows:
add (Suc m) 0 = Suc (add m 0) by definition of add

= Suc m by IH

Throughout this book, IH will stand for “induction hypothesis”.
We have now seen three proofs of add m 0 = 0: the Isabelle one, the terse

four lines explaining the base case and the induction step, and just now a
model of a traditional inductive proof. The three proofs differ in the level of
detail given and the intended reader: the Isabelle proof is for the machine, the
informal proofs are for humans. Although this book concentrates on Isabelle
proofs, it is important to be able to rephrase those proofs as informal text com-
prehensible to a reader familiar with traditional mathematical proofs. Later
on we will introduce an Isabelle proof language that is closer to traditional
informal mathematical language and is often directly readable.

10 2 Programming and Proving

2.2.3 Type list

Although lists are already predefined, we define our own copy for demonstra-
tion purposes:

datatype ′a list = Nil | Cons ′a " ′a list"

Type ′a list is the type of lists over elements of type ′a. Because ′a is a
type variable, lists are in fact polymorphic: the elements of a list can be
of arbitrary type (but must all be of the same type).
Lists have two constructors: Nil, the empty list, and Cons, which puts an
element (of type ′a) in front of a list (of type ′a list). Hence all lists are
of the form Nil, or Cons x Nil, or Cons x (Cons y Nil), etc.
datatype requires no quotation marks on the left-hand side, but on the
right-hand side each of the argument types of a constructor needs to be
enclosed in quotation marks, unless it is just an identifier (e.g., nat or ′a).

We also define two standard functions, append and reverse:

fun app :: " ′a list ⇒ ′a list ⇒ ′a list" where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: " ′a list ⇒ ′a list" where
"rev Nil = Nil" |

"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

By default, variables xs, ys and zs are of list type.
Command value evaluates a term. For example,

value "rev(Cons True (Cons False Nil))"

yields the result Cons False (Cons True Nil). This works symbolically, too:

value "rev(Cons a (Cons b Nil))"

yields Cons b (Cons a Nil).

Figure 2.1 shows the theory created so far. Because list, Nil, Cons, etc.
are already predefined, Isabelle prints qualified (long) names when executing
this theory, for example, MyList .Nil instead of Nil. To suppress the qualified
names you can insert the command declare [[names_short]]. This is not
recommended in general but is convenient for this unusual example.

Structural Induction for Lists

Just as for natural numbers, there is a proof principle of induction for lists.
Induction over a list is essentially induction over the length of the list, al-

2.2 Types bool, nat and list 11

theory MyList

imports Main

begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: "’a list => ’a list" where

"rev Nil = Nil" |

"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

value "rev(Cons True (Cons False Nil))"

(* a comment *)

end

Fig. 2.1. A theory of lists

though the length remains implicit. To prove that some property P holds for
all lists xs, i.e., P xs , you need to prove

1. the base case P Nil and
2. the inductive case P (Cons x xs) under the assumption P xs, for some

arbitrary but fixed x and xs.

This is often called structural induction for lists.

2.2.4 The Proof Process

We will now demonstrate the typical proof process, which involves the for-
mulation and proof of auxiliary lemmas. Our goal is to show that reversing a
list twice produces the original list.

theorem rev_rev [simp]: "rev(rev xs) = xs"

Commands theorem and lemma are interchangeable and merely indicate the
importance we attach to a proposition. Via the bracketed attribute simp we
also tell Isabelle to make the eventual theorem a simplification rule: future
proofs involving simplification will replace occurrences of rev (rev xs) by xs.
The proof is by induction:

apply(induction xs)

12 2 Programming and Proving

As explained above, we obtain two subgoals, namely the base case (Nil) and
the induction step (Cons):

1. rev (rev Nil) = Nil
2.

∧
x1 xs .
rev (rev xs) = xs =⇒ rev (rev (Cons x1 xs)) = Cons x1 xs

Let us try to solve both goals automatically:

apply(auto)

Subgoal 1 is proved, and disappears; the simplified version of subgoal 2 be-
comes the new subgoal 1:

1.
∧

x1 xs .
rev (rev xs) = xs =⇒
rev (app (rev xs) (Cons x1 Nil)) = Cons x1 xs

In order to simplify this subgoal further, a lemma suggests itself.

A First Lemma

We insert the following lemma in front of the main theorem:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"

There are two variables that we could induct on: xs and ys. Because app is
defined by recursion on the first argument, xs is the correct one:

apply(induction xs)

This time not even the base case is solved automatically:

apply(auto)
1. rev ys = app (rev ys) Nil

A total of 2 subgoals ...

Again, we need to abandon this proof attempt and prove another simple
lemma first.

A Second Lemma

We again try the canonical proof procedure:

lemma app_Nil2 [simp]: "app xs Nil = xs"
apply(induction xs)
apply(auto)
done

2.2 Types bool, nat and list 13

Thankfully, this worked. Now we can continue with our stuck proof attempt
of the first lemma:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"
apply(induction xs)
apply(auto)

We find that this time auto solves the base case, but the induction step merely
simplifies to

1.
∧

x1 xs .
rev (app xs ys) = app (rev ys) (rev xs) =⇒
app (app (rev ys) (rev xs)) (Cons x1 Nil) =

app (rev ys) (app (rev xs) (Cons x1 Nil))

The missing lemma is associativity of app, which we insert in front of the
failed lemma rev_app.

Associativity of app

The canonical proof procedure succeeds without further ado:

lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply(induction xs)
apply(auto)
done

Finally the proofs of rev_app and rev_rev succeed, too.

Another Informal Proof

Here is the informal proof of associativity of app corresponding to the Isabelle
proof above.

Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.

Case Nil : app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds
by definition of app.
Case Cons x xs : We assume

app (app xs ys) zs = app xs (app ys zs) (IH)

and we need to show

app (app (Cons x xs) ys) zs = app (Cons x xs) (app ys zs).

14 2 Programming and Proving

The proof is as follows:
app (app (Cons x xs) ys) zs
= app (Cons x (app xs ys)) zs by definition of app
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

Didn’t we say earlier that all proofs are by simplification? But in both cases,
going from left to right, the last equality step is not a simplification at all!
In the base case it is app ys zs = app Nil (app ys zs). It appears almost
mysterious because we suddenly complicate the term by appending Nil on
the left. What is really going on is this: when proving some equality s = t ,
both s and t are simplified until they “meet in the middle”. This heuristic
for equality proofs works well for a functional programming context like ours.
In the base case both app (app Nil ys) zs and app Nil (app ys zs) are
simplified to app ys zs, the term in the middle.

2.2.5 Predefined Lists

Isabelle’s predefined lists are the same as the ones above, but with more
syntactic sugar:

[] is Nil ,
x # xs is Cons x xs ,
[x1, . . ., xn] is x1 # . . . # xn # [], and
xs @ ys is app xs ys.

There is also a large library of predefined functions. The most important ones
are the length function length :: ′a list ⇒ nat (with the obvious definition),
and the map function that applies a function to all elements of a list:

fun map :: "(′a ⇒ ′b) ⇒ ′a list ⇒ ′b list"
"map_list f Nil = Nil" |

"map_list f (Cons x21.0 x22.0) = Cons (f x21.0) (map_list f x22.0)"

Also useful are the head of a list, its first element, and the tail, the rest
of the list:

fun hd :: ′a list ⇒ ′a
hd (x # xs) = x

fun tl :: ′a list ⇒ ′a list
tl [] = [] |

tl (x # xs) = xs

2.3 Type and Function Definitions 15

Note that since HOL is a logic of total functions, hd [] is defined, but we do
now know what the result is. That is, hd [] is not undefined but underdefined.

From now on lists are always the predefined lists.

Exercises

Exercise 2.1. Use the value command to evaluate the following expressions:
"1 + (2::nat)", "1 + (2::int)", "1 − (2::nat)" and "1 − (2::int)".

Exercise 2.2. Start from the definition of add given above. Prove that add
is associative and commutative. Define a recursive function double :: nat ⇒
nat and prove double m = add m m.

Exercise 2.3. Define a function count :: ′a ⇒ ′a list ⇒ nat that counts the
number of occurrences of an element in a list. Prove count x xs � length xs.

Exercise 2.4. Define a recursive function snoc :: ′a list ⇒ ′a ⇒ ′a list
that appends an element to the end of a list. With the help of snoc define
a recursive function reverse :: ′a list ⇒ ′a list that reverses a list. Prove
reverse (reverse xs) = xs.

Exercise 2.5. Define a recursive function sum :: nat ⇒ nat such that sum n
= 0 + ... + n and prove sum n = n ∗ (n + 1) div 2.

2.3 Type and Function Definitions

Type synonyms are abbreviations for existing types, for example

type_synonym string = "char list"

Type synonyms are expanded after parsing and are not present in internal
representation and output. They are mere conveniences for the reader.

2.3.1 Datatypes

The general form of a datatype definition looks like this:

datatype (′a1,. . .,
′an)t = C1 "τ1,1" . . . "τ1,n1

"
| . . .
| Ck "τk,1" . . . "τk,nk

"

It introduces the constructors Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (′a1,. . .,

′an)t
and expresses that any value of this type is built from these constructors in
a unique manner. Uniqueness is implied by the following properties of the
constructors:

16 2 Programming and Proving

Distinctness: Ci . . . �= Cj . . . if i �= j

Injectivity: (Ci x1 . . . xni
= Ci y1 . . . yni

) =

(x1 = y1 ∧ . . .∧ xni
= yni

)

The fact that any value of the datatype is built from the constructors implies
the structural induction rule: to show P x for all x of type (′a1,. . .,

′an)t,
one needs to show P(Ci x1 . . . xni

) (for each i) assuming P(xj) for all j where
τi,j = (′a1,. . .,

′an)t. Distinctness and injectivity are applied automatically
by auto and other proof methods. Induction must be applied explicitly.

Like in functional programming languages, datatype values can be taken
apart with case expressions, for example

(case xs of [] ⇒ 0 | x # _⇒ Suc x)

Case expressions must be enclosed in parentheses.
As an example of a datatype beyond nat and list, consider binary trees:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

with a mirror function:

fun mirror :: " ′a tree ⇒ ′a tree" where
"mirror Tip = Tip" |

"mirror (Node l a r) = Node (mirror r) a (mirror l)"

The following lemma illustrates induction:

lemma "mirror(mirror t) = t"
apply(induction t)

yields

1. mirror (mirror Tip) = Tip
2.

∧
t1 x2 t2.
[[mirror (mirror t1) = t1; mirror (mirror t2) = t2]]
=⇒ mirror (mirror (Node t1 x2 t2)) = Node t1 x2 t2

The induction step contains two induction hypotheses, one for each subtree.
An application of auto finishes the proof.

A very simple but also very useful datatype is the predefined

datatype ′a option = None | Some ′a

Its sole purpose is to add a new element None to an existing type ′a. To
make sure that None is distinct from all the elements of ′a, you wrap them
up in Some and call the new type ′a option. A typical application is a lookup
function on a list of key-value pairs, often called an association list:

fun lookup :: "(′a ∗ ′b) list ⇒ ′a ⇒ ′b option" where

"lookup [] x = None" |

"lookup ((a ,b) # ps) x = (if a = x then Some b else lookup ps x)"

Note that τ1 ∗ τ2 is the type of pairs, also written τ1 × τ2. Pairs can be taken
apart either by pattern matching (as above) or with the projection functions
fst and snd : fst (x , y) = x and snd (x , y) = y. Tuples are simulated by
pairs nested to the right: (a , b, c) is short for (a , (b, c)) and τ1 × τ2 × τ3
is short for τ1 × (τ2 × τ3).

2.3.2 Definitions

Non-recursive functions can be defined as in the following example:

definition sq :: "nat ⇒ nat" where
"sq n = n ∗ n"

Such definitions do not allow pattern matching but only f x1 . . . xn = t,
where f does not occur in t.

2.3.3 Abbreviations

Abbreviations are similar to definitions:

abbreviation sq ′ :: "nat ⇒ nat" where
"sq ′ n ≡ n ∗ n"

The key difference is that sq ′ is only syntactic sugar: after parsing, sq ′ t is
replaced by t ∗ t ; before printing, every occurrence of u ∗ u is replaced by
sq ′ u . Internally, sq ′ does not exist. This is the advantage of abbreviations
over definitions: definitions need to be expanded explicitly (Section 2.5.5)
whereas abbreviations are already expanded upon parsing. However, abbrevi-
ations should be introduced sparingly: if abused, they can lead to a confusing
discrepancy between the internal and external view of a term.

The ASCII representation of ≡ is == or \<equiv>.

2.3.4 Recursive Functions

Recursive functions are defined with fun by pattern matching over datatype
constructors. The order of equations matters, as in functional programming
languages. However, all HOL functions must be total. This simplifies the logic
— terms are always defined — but means that recursive functions must ter-
minate. Otherwise one could define a function f n = f n + 1 and conclude
0 = 1 by subtracting f n on both sides.

2.3 Type and Function Definitions 17

18 2 Programming and Proving

Isabelle’s automatic termination checker requires that the arguments of
recursive calls on the right-hand side must be strictly smaller than the ar-
guments on the left-hand side. In the simplest case, this means that one
fixed argument position decreases in size with each recursive call. The size is
measured as the number of constructors (excluding 0-ary ones, e.g., Nil). Lex-
icographic combinations are also recognized. In more complicated situations,
the user may have to prove termination by hand. For details see [49].

Functions defined with fun come with their own induction schema that
mirrors the recursion schema and is derived from the termination order. For
example,

fun div2 :: "nat ⇒ nat" where
"div2 0 = 0" |

"div2 (Suc 0) = 0" |

"div2 (Suc(Suc n)) = Suc(div2 n)"

does not just define div2 but also proves a customized induction rule:

P 0 P (Suc 0)
∧

n . P n =⇒ P (Suc (Suc n))

P m

This customized induction rule can simplify inductive proofs. For example,

lemma "div2(n) = n div 2"
apply(induction n rule : div2.induct)

(where the infix div is the predefined division operation) yields the subgoals

1. div2 0 = 0 div 2

2. div2 (Suc 0) = Suc 0 div 2

3.
∧

n . div2 n = n div 2 =⇒
div2 (Suc (Suc n)) = Suc (Suc n) div 2

An application of auto finishes the proof. Had we used ordinary structural
induction on n, the proof would have needed an additional case analysis in
the induction step.

This example leads to the following induction heuristic:

Let f be a recursive function. If the definition of f is more complicated
than having one equation for each constructor of some datatype, then
properties of f are best proved via f .induct.

The general case is often called computation induction, because the
induction follows the (terminating!) computation. For every defining equation

f (e) = . . . f (r1) . . . f (rk) . . .

2.4 Induction Heuristics 19

where f (r i), i=1. . .k, are all the recursive calls, the induction rule f .induct
contains one premise of the form

P(r1) =⇒ . . . =⇒ P(rk) =⇒ P(e)

If f :: τ1 ⇒ . . . ⇒ τn ⇒ τ then f .induct is applied like this:

apply(induction x1 . . . xn rule : f .induct)

where typically there is a call f x1 . . . xn in the goal. But note that the
induction rule does not mention f at all, except in its name, and is applicable
independently of f.

Exercises

Exercise 2.6. Starting from the type ′a tree defined in the text, define a
function contents :: ′a tree ⇒ ′a list that collects all values in a tree in a list,
in any order, without removing duplicates. Then define a function treesum
:: nat tree ⇒ nat that sums up all values in a tree of natural numbers and
prove treesum t = listsum (contents t).

Exercise 2.7. Define a new type ′a tree2 of binary trees where values are
also stored in the leaves of the tree. Also reformulate the mirror function
accordingly. Define two functions pre_order and post_order of type ′a tree2
⇒ ′a list that traverse a tree and collect all stored values in the respective
order in a list. Prove pre_order (mirror t) = rev (post_order t).

Exercise 2.8. Define a function intersperse :: ′a ⇒ ′a list ⇒ ′a list such
that intersperse a [x1, ..., xn] = [x1, a , x2, a , ..., a , xn]. Now prove that
map f (intersperse a xs) = intersperse (f a) (map f xs).

2.4 Induction Heuristics

We have already noted that theorems about recursive functions are proved by
induction. In case the function has more than one argument, we have followed
the following heuristic in the proofs about the append function:

Perform induction on argument number i

if the function is defined by recursion on argument number i.

The key heuristic, and the main point of this section, is to generalize the
goal before induction. The reason is simple: if the goal is too specific, the
induction hypothesis is too weak to allow the induction step to go through.
Let us illustrate the idea with an example.

20 2 Programming and Proving

Function rev has quadratic worst-case running time because it calls ap-
pend for each element of the list and append is linear in its first argument.
A linear time version of rev requires an extra argument where the result is
accumulated gradually, using only #:

fun itrev :: " ′a list ⇒ ′a list ⇒ ′a list" where
"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and it returns that second argument
when the first one becomes empty. Note that itrev is tail-recursive: it can be
compiled into a loop; no stack is necessary for executing it.

Naturally, we would like to show that itrev does indeed reverse its first
argument provided the second one is empty:

lemma "itrev xs [] = rev xs"

There is no choice as to the induction variable:

apply(induction xs)
apply(auto)

Unfortunately, this attempt does not prove the induction step:

1.
∧

a xs . itrev xs [] = rev xs =⇒ itrev xs [a] = rev xs @ [a]

The induction hypothesis is too weak. The fixed argument, [], prevents it from
rewriting the conclusion. This example suggests a heuristic:

Generalize goals for induction by replacing constants by variables.

Of course one cannot do this naively: itrev xs ys = rev xs is just not true.
The correct generalization is

lemma "itrev xs ys = rev xs @ ys"

If ys is replaced by [], the right-hand side simplifies to rev xs, as required. In
this instance it was easy to guess the right generalization. Other situations
can require a good deal of creativity.

Although we now have two variables, only xs is suitable for induction, and
we repeat our proof attempt. Unfortunately, we are still not there:

1.
∧

a xs .
itrev xs ys = rev xs @ ys =⇒
itrev xs (a # ys) = rev xs @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that the ys in the induction hypothesis is fixed,

2.5 Simplification 21

but the induction hypothesis needs to be applied with a # ys instead of ys.
Hence we prove the theorem for all ys instead of a fixed one. We can instruct
induction to perform this generalization for us by adding arbitrary : ys .

apply(induction xs arbitrary : ys)

The induction hypothesis in the induction step is now universally quantified
over ys :

1.
∧

ys . itrev [] ys = rev [] @ ys
2.

∧
a xs ys .
(
∧

ys . itrev xs ys = rev xs @ ys) =⇒
itrev (a # xs) ys = rev (a # xs) @ ys

Thus the proof succeeds:

apply auto
done

This leads to another heuristic for generalization:

Generalize induction by generalizing all free variables
(except the induction variable itself).

Generalization is best performed with arbitrary : y1 . . . yk. This heuristic
prevents trivial failures like the one above. However, it should not be applied
blindly. It is not always required, and the additional quantifiers can complicate
matters in some cases. The variables that need to be quantified are typically
those that change in recursive calls.

Exercises

Exercise 2.9. Write a tail-recursive variant of the add function on nat :
itadd. Tail-recursive means that in the recursive case, itadd needs to call
itself directly: itadd (Suc m) n = itadd Prove itadd m n = add m n.

2.5 Simplification

So far we have talked a lot about simplifying terms without explaining the
concept. Simplification means

using equations l = r from left to right (only),
as long as possible.

To emphasize the directionality, equations that have been given the simp
attribute are called simplification rules. Logically, they are still symmetric,

22 2 Programming and Proving

but proofs by simplification use them only in the left-to-right direction. The
proof tool that performs simplifications is called the simplifier. It is the basis
of auto and other related proof methods.

The idea of simplification is best explained by an example. Given the
simplification rules

0 + n = n (1)

Suc m + n = Suc (m + n) (2)

(Suc m � Suc n) = (m � n) (3)

(0 � m) = True (4)

the formula 0 + Suc 0 � Suc 0 + x is simplified to True as follows:

(0 + Suc 0 � Suc 0 + x)
(1)
=

(Suc 0 � Suc 0 + x)
(2)
=

(Suc 0 � Suc (0 + x))
(3)
=

(0 � 0 + x)
(4)
=

True

Simplification is often also called rewriting and simplification rules rewrite
rules.

2.5.1 Simplification Rules

The attribute simp declares theorems to be simplification rules, which the
simplifier will use automatically. In addition, datatype and fun commands im-
plicitly declare some simplification rules: datatype the distinctness and injec-
tivity rules, fun the defining equations. Definitions are not declared as simpli-
fication rules automatically! Nearly any theorem can become a simplification
rule. The simplifier will try to transform it into an equation. For example, the
theorem ¬ P is turned into P = False.

Only equations that really simplify, like rev (rev xs) = xs and xs @
[] = xs, should be declared as simplification rules. Equations that may be
counterproductive as simplification rules should only be used in specific proof
steps (see Section 2.5.4 below). Distributivity laws, for example, alter the
structure of terms and can produce an exponential blow-up.

2.5.2 Conditional Simplification Rules

Simplification rules can be conditional. Before applying such a rule, the sim-
plifier will first try to prove the preconditions, again by simplification. For
example, given the simplification rules

2.5 Simplification 23

p 0 = True
p x =⇒ f x = g x,

the term f 0 simplifies to g 0 but f 1 does not simplify because p 1 is not
provable.

2.5.3 Termination

Simplification can run forever, for example if both f x = g x and g x = f x are
simplification rules. It is the user’s responsibility not to include simplification
rules that can lead to nontermination, either on their own or in combination
with other simplification rules. The right-hand side of a simplification rule
should always be “simpler” than the left-hand side — in some sense. But since
termination is undecidable, such a check cannot be automated completely and
Isabelle makes little attempt to detect nontermination.

When conditional simplification rules are applied, their preconditions are
proved first. Hence all preconditions need to be simpler than the left-hand
side of the conclusion. For example

n < m =⇒ (n < Suc m) = True

is suitable as a simplification rule: both n < m and True are simpler than
n < Suc m . But

Suc n < m =⇒ (n < m) = True

leads to nontermination: when trying to rewrite n < m to True one first has
to prove Suc n < m , which can be rewritten to True provided Suc (Suc n)
< m, ad infinitum.

2.5.4 The simp Proof Method

So far we have only used the proof method auto. Method simp is the key
component of auto, but auto can do much more. In some cases, auto is
overeager and modifies the proof state too much. In such cases the more
predictable simp method should be used. Given a goal

1. [[P1; . . .; Pm]] =⇒ C

the command

apply(simp add : th1 . . . thn)

simplifies the assumptions Pi and the conclusion C using

all simplification rules, including the ones coming from datatype and fun,
the additional lemmas th1 . . . thn, and

24 2 Programming and Proving

the assumptions.

In addition to or instead of add there is also del for removing simplification
rules temporarily. Both are optional. Method auto can be modified similarly:

apply(auto simp add : . . . simp del : . . .)

Here the modifiers are simp add and simp del instead of just add and del
because auto does not just perform simplification.

Note that simp acts only on subgoal 1, auto acts on all subgoals. There
is also simp_all, which applies simp to all subgoals.

2.5.5 Rewriting with Definitions

Definitions introduced by the command definition can also be used as sim-
plification rules, but by default they are not: the simplifier does not expand
them automatically. Definitions are intended for introducing abstract con-
cepts and not merely as abbreviations. Of course, we need to expand the
definition initially, but once we have proved enough abstract properties of the
new constant, we can forget its original definition. This style makes proofs
more robust: if the definition has to be changed, only the proofs of the ab-
stract properties will be affected.

The definition of a function f is a theorem named f_def and can be added
to a call of simp like any other theorem:

apply(simp add : f_def)

In particular, let-expressions can be unfolded by making Let_def a simplifi-
cation rule.

2.5.6 Case Splitting With simp

Goals containing if-expressions are automatically split into two cases by simp
using the rule

P (if A then s else t) = ((A −→ P s) ∧ (¬ A −→ P t))

For example, simp can prove

(A ∧ B) = (if A then B else False)

because both A −→ (A ∧ B) = B and ¬ A −→ (A ∧ B) = False simplify
to True.

We can split case-expressions similarly. For nat the rule looks like this:

P (case e of 0 ⇒ a | Suc n ⇒ b n) =

((e = 0 −→ P a) ∧ (∀n . e = Suc n −→ P (b n)))

2.5 Simplification 25

Case expressions are not split automatically by simp, but simp can be in-
structed to do so:

apply(simp split : nat .split)

splits all case-expressions over natural numbers. For an arbitrary datatype t
it is t .split instead of nat .split. Method auto can be modified in exactly the
same way. The modifier split : can be followed by multiple names. Splitting
if or case-expressions in the assumptions requires split : if_splits or split :
t .splits.

Exercises

Exercise 2.10. Define a datatype tree0 of binary tree skeletons which do not
store any information, neither in the inner nodes nor in the leaves. Define a
function nodes :: tree0 ⇒ nat that counts the number of all nodes (inner
nodes and leaves) in such a tree. Consider the following recursive function:

fun explode :: "nat ⇒ tree0 ⇒ tree0" where
"explode 0 t = t" |

"explode (Suc n) t = explode n (Node t t)"

Find an equation expressing the size of a tree after exploding it (nodes
(explode n t)) as a function of nodes t and n. Prove your equation. You
may use the usual arithmetic operators, including the exponentiation opera-
tor “^”. For example, 2 ^ 2 = 4.

Hint: simplifying with the list of theorems algebra_simps takes care of
common algebraic properties of the arithmetic operators.

Exercise 2.11. Define arithmetic expressions in one variable over integers
(type int) as a data type:

datatype exp = Var | Const int | Add exp exp | Mult exp exp

Define a function eval :: exp ⇒ int ⇒ int such that eval e x evaluates e at
the value x.

A polynomial can be represented as a list of coefficients, starting with the
constant. For example, [4, 2, − 1, 3] represents the polynomial 4+2x−x2+3x3.
Define a function evalp :: int list ⇒ int ⇒ int that evaluates a polynomial at
the given value. Define a function coeffs :: exp ⇒ int list that transforms an
expression into a polynomial. This may require auxiliary functions. Prove that
coeffs preserves the value of the expression: evalp (coeffs e) x = eval e x.
Hint: consider the hint in Exercise 2.10.

http://www.springer.com/978-3-319-10541-3

	2 Programming and Proving

	2.1 Basics
	2.1.1 Types, Terms and Formulas
	2.1.2 Theories
	2.1.3 Quotation Marks

	2.2 Types bool, nat and list
	2.2.1 Type bool
	2.2.2 Type nat
	An Informal Proof

	2.2.3 Type list
	Structural Induction for Lists

	2.2.4 The Proof Process
	A First Lemma
	A Second Lemma
	Associativity of app
	Another Informal Proof

	2.2.5 Predefined Lists

	2.3 Type and Function Definitions
	2.3.1 Datatypes
	2.3.2 Definitions
	2.3.3 Abbreviations
	2.3.4 Recursive Functions

	2.4 Induction Heuristics
	2.5 Simplification
	2.5.1 Simplification Rules
	2.5.2 Conditional Simplification Rules
	2.5.3 Termination
	2.5.4 The simp Proof Method
	2.5.5 Rewriting with Definitions
	2.5.6 Case Splitting With simp

