
Preface

This book is two books. Part I is a practical introduction to working with
the Isabelle proof assistant. It teaches you how to write functional programs
and inductive definitions and how to prove properties about them in Isa-
belle’s structured proof language. Part II is an introduction to the semantics
of imperative languages with an emphasis on applications like compilers and
program analysers. The distinguishing features are that every bit of mathe-
matics has been formalized in Isabelle and that much of it is executable. Part I
focusses on the details of proofs in Isabelle. Part II can be read even without
familiarity with Isabelle’s proof language: all proofs are described in detail
but informally. The Isabelle formalization, including the proofs, is available
online: all the material, including accompanying slides, can be downloaded
from the book’s home page http://www.concrete-semantics.org.

Although the subject matter is semantics and applications, the not-so-
hidden agenda is to teach the reader two things: the art of precise logical
reasoning and the practical use of a proof assistant as a surgical tool for formal
proofs about computer science artefacts. In this sense the book represents a
formal approach to computer science, not just semantics.

Why?

This book is the marriage of two areas: programming languages and theo-
rem proving. Most programmers feel that they understand the programming
language they use and the programs they write. Programming language se-
mantics replaces a warm feeling with precision in the form of mathematical
definitions of the meaning of programs. Unfortunately such definitions are of-
ten still at the level of informal mathematics. They are mental tools, but their
informal nature, their size, and the amount of detail makes them error prone.
Since they are typically written in LATEX, you do not even know whether they



VIII Preface

would type-check, let alone whether proofs about the semantics, e.g., compiler
correctness, are free of bugs such as missing cases.

This is where theorem proving systems (or “proof asistants”) come in, and
mathematical (im)precision is replaced by logical certainty. A proof assistant is
a software system that supports the construction of mathematical theories as
formal language texts that are checked for correctness. The beauty is that this
includes checking the logical correctness of all proof text. No more ‘proofs’
that look more like LSD trips than coherent chains of logical arguments.
Machine-checked (aka “formal”) proofs offer the degree of certainty required
for reliable software but impossible to achieve with informal methods.

In research, the marriage of programming languages and proof assistants
has led to remarkable success stories like a verified C compiler [53] and a
verified operating system kernel [47]. This book introduces students and pro-
fessionals to the foundations and applications of this marriage.

Concrete?

The book shows that a semantics is not a collection of abstract symbols
on sheets of paper but formal text that can be checked and executed
by the computer: Isabelle is also a programming environment and most
of the definitions in the book are executable and can even be exported
as programs in a number of (functional) programming languages. For a
computer scientist, this is as concrete as it gets.
Much of the book deals with concrete applications of semantics: compilers,
type systems, program analysers.
The predominant formalism in the book is operational semantics, the most
concrete of the various forms of semantics.
Foundations are made of concrete.

Exercises!

The idea for this book goes back a long way [65]. But only recently have
proof assistants become mature enough for inflicting them on students without
causing the students too much pain. Nevertheless proof assistants still require
very detailed proofs. Learning this proof style (and all the syntactic details
that come with any formal language) requires practice. Therefore the book
contains a large number of exercises of varying difficulty. If you want to learn
Isabelle, you have to work through (some of) the exercises.

A word of warning before you proceed: theorem proving can be addictive!



Preface IX

Acknowledgements

This book has benefited significantly from feedback by John Backes, Harry
Butterworth, Dan Dougherty, Andrew Gacek, Florian Haftmann, Peter John-
son, Yutaka Nagashima, Andrei Popescu, René Thiemann, Andrei Sabelfeld,
David Sands, Sean Seefried, Helmut Seidl, Christian Sternagel and Carl Witty.
Ronan Nugent provided very valuable editorial scrutiny.

The material in this book has been classroom-tested for a number of years.
Sascha Böhme, Johannes Hölzl, Alex Krauss, Peter Lammich and Andrei
Popescu worked out many of the exercises in the book.

Alex Krauss suggested the title Concrete Semantics.
NICTA, Technische Universität München and the DFG Graduiertenkolleg

1480 PUMA supported the writing of this book very generously.

We are very grateful for all these contributions.

Munich TN
Sydney GK
October 2014



http://www.springer.com/978-3-319-10541-3




