Chapter 2
Expectation, and Its Connection
with Quadratic Fields

2.1 Computing the Expectation in General (I)

The diophantine sum

n

&mr=ZX&w—§) @1

k=1

introduced in Sect. 1.2 [see (1.43)] is highly irregular as n — oo, but its mean value

1 N
Mo(N) = =3 Saln) (2.2)
n=1

exhibits a particularly simple and elegant asymptotic behavior for quadratic
irrationals.
Let

o =a0+—1 = [30;31,32,613,...] 2.3)

a + ...

denote the continued fraction for «; a; denote the partial quotients and
l[ao;ai,...,aj—1] = p;j/q; is the jth convergent. By using (2.3) we can formulate

Proposition 2.1. For any irrational @ > 0 given with (2.3) and any integer N > 1,

—ay+ay—as+ ...+ (—Dka;
12

My(N) = + O(Imaxk aj), 2.4)
<Jj=
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where k = k(a, N) is the last index j for which the jth convergent denominator
q;j < N, ie, g = N < qi41, and the implicit constant on the right-hand side
of (2.4) is absolute (less than 10).

Proposition 2.1 is particularly useful for quadratic irrationals. Indeed, for a
periodic sequence a; it is easy to evaluate the alternating sum in (2.4). As an
illustration, consider first

a=+3=[1:1,2,1,2,1,2,..] = [1: 1,2]. (2.5)
The least solution of Pell’s equation x> — 3y = lis x = 2, y = 1, and so
P E@iV3=02£V3), j=1,2,3,... (2.6)

where p»;/q»; is the 2jth convergent of V3 (we get every second convergent
in (2.6), because the length of the period of V3is2 [see (2.5)]. By (2.6)

1 ) )
a2 =55 (VI -e- V),
and so we have

log N

N=¢j= j=—"-+
! log(2 + v/3)

o(1). 2.7)

Combining (2.4) with (2.7), for o = /3 we have with k = 2 Jj

—ay+ay—az £ ...+ (—Dka;

M j5(N) = 5 +0(1) =
—1+2-142F...—1+42 —1+2  logN
= +0(1) = : +0(1) =
12 M 12 log(2 + V/3) M
log N
o8 + o). 2.8)

" 121022 + V3)

proving our claim in (1.53).

Here are two more examples like (2.8): for ﬁ = [2;1, 1, 1, 4] the least solution
x = 8,y = 3 of Pell’s equation x> — 7y> = 1 comes from the fourth convergent
[2:1,1,1] = 8/3 of +/7, and so

—14+1-144 log N
12 log(8 + 3+/7)

M 5(N) = o) =
log N

= togs 1 3vm T CW:
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and for ~/67 = [8;5,2,1,1,7,1,1,2,5,16] the least solution x = 48,842,
y = 5,967 of Pell’s equation x> — 67y> = 1 comes from the tenth convergent
[8:5,2,1,1,7,1,1,2,5] = 48842 /5967 of +/67, and so

—542—141-7+1—-142-5+16 log N
12 10g(48842 4 5967+/67)

M /&z(N) =

log N
= +
410g(48842 + 5967/67)

+0(1) o(1).

In sharp contrast, for « = +/2 = [1;2] the alternating sum in (2.4) cancels out,
and M ;5(N) = O(1); this proves (1.52).

Similarly, any quadratic irrational ¢, for which the length of the period (of the
continued fraction) is odd, has the property that the mean value is basically zero:
My(N) = O(1) = O,(1) (because the alternating sum in (2.4) cancels out). Note
that in Sect. 1.5 we proved the fact M, (N) = O(1) in the special case of the golden
ratio

a=((5-1)/2=[1,1,1,1,..] =[1]

by a long, direct computation; see (1.177). This direct computation becomes
hopelessly messy even for an arbitrary quadratic irrational, not to mention the
general case of an arbitrary irrational number.

Unfortunately, we cannot characterize the quadratic irrationals for which the
period is odd/even (what we mean here is that the length of period in the continued
fraction is odd or even). However, if @ = ,/p where p is an odd prime, we have a
perfect characterization: the period is odd if p = 1 (mod 4), and the period is even
if p = 3 (mod 4).

The proof of this elegant characterization is based on the well-known number-
theoretic fact that the “negative” Pell equation x> — dy? = —1 (where d > 0 is an
integer, but not a complete square) has an integral solution if and only if the period
of /d is odd. If p is a prime with p = 1 (mod 4), then we will find an integral
solution of x2 — py? = —1, and this will imply that the period of /P is odd. To
find a solution of x> — py? = —1, we start with the fundamental solution (x1, y;)
of the ordinary Pell’s equation x> — py? = 1, which always has a solution (the
fundamental solution is the least positive solution). The equation x> — 1 = py?
leads to the factorization

(x1 — D> + 1) = pyi. 2.9)

If p = 1 (mod 4) then (2.9) implies that x; is odd, and also by using that p is a
prime, we have either (1) x; — 1 = 2pu? and x; + 1 = 2v? or (2) x; + 1 = 2pu?®
and x;—1 = 2v? holds for some positive integers u and v satisfying y; = 2uv. Hence
v2—pu? = %1. The case v>*— pu® = 1 is impossible, since (v, «) is a smaller solution
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than (x1, y), the fundamental solution—a contradiction. Thus V2 — pu2 = —1,1.e,,
the negative Pell’s equation does have a solution, and we obtain the following.

Corollary 2.2. If p is a prime with p = 1 (mod 4) then

M /5(N) = 0(1).

The proof above is prime specific: if d = 1 (mod 4) is not a prime, then
the length of the period of +/d can be both even and odd. For example, ~/21 =
[4;1,1,2,1,1, 8] gives length 6 (even) and V65 = [S;E] gives length 1 (odd).

On the other hand, if d = 3 (mod 4), then by a simple (mod 4) analysis we have
x2 —dy* # —1 (mod 4) (it is irrelevant that d is a prime or not), implying that the
length of the period of +/d has to be even.

Actually, we have a stronger result: if d has a prime factor ¢ = 3 (mod 4), the
period of +/d is always even. Indeed, then x> — dy? = —1 implies x> = —1 (mod
q), which contradicts Fermat’s little theorem:

1=x7" = ()2 = (=1)l@D/2 = _1 (mod g¢).

What happens in Proposition 2.1 if we go beyond quadratic irrationals? How
about the special number e:

e=1[2;1,2,1,1,4,1,1,6,1,1,8,1,--- ,1,2i,1,---]?

Well, the alternating sum (—1+2—1)+(1—=4+1)+(=1+6—1)+-- -+ (=1)"(1—
2i + 1) equalsi — 1 if i is odd and —i if i is even. Thus by Proposition 2.1 we have

M,(N) = O(log N/ loglog N), (2.10)
which is the true order of magnitude.

Note in advance that Proposition 2.1 also gives the constant factor Ci (¢, x) in
Theorem 1.1 in the special case x = 1/2. It is a consequence of the identity

020 -3 = (21-3) -2(1-3).

where of course {y} denotes the fractional part of y, and y;,2(y) is L if {y} < 1/2
and 0 otherwise. We will return to this later in Sect. 2.2; see (2.87) and (2.88).

2.1.1 An Important Detour: How to Guess Proposition 2.1?

The proof of Proposition 2.1 is not easy, but it was equally difficult to find the
right conjecture. What was our motivation to guess formula (2.4)? Well, this is an
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interesting long story, which involves algebraic number theory. To explain it, we
briefly outline an alternative approach to find the average M, (N). We start with the
well-known Fourier series expansion of the fractional part function (warning: it is
not absolutely convergent)

>, sin(2wnx)
Z sin '

1
=5 - — 2.11)

n=1

Substituting it back to (2.1) and (2.2), after some long but standard manipulations
we end up with

N
1 1
My(N) = —— _— o(l), 2.12
V) 27 ’; ntan(mwno) + o) ( )
ifa; = O(1), i.e., the partial quotients of « are bounded (this is certainly true for the
quadratic irrationals). (Note that Eq. (2.12) is exactly our Proposition 2.16 coming
later.)
Let o = +/d, where d = 3 (mod 4) is a positive square-free integer. We clearly
have (m denotes the nearest integer to n Vd )

—(m?—dn?)

2nvd '

In view of (2.12) and (2.13), the following formula is not too surprising:

%tan(nn«/g)w:tﬂn«/gllzn«/z—mw (2.13)

Vd 1 log N
M ~(N)= — O ((loglog N)?),
vatv) 2 Z 2 —dy? | log na + O ((loglog N)’)

(x.y)#(0.0):

primary representations
(2.14)
where 7, is the fundamental unit of Q(+/d). Note that Eq.(2.14) is exactly
Proposition 2.20; the meaning of “primary representations” will be explained later
at the beginning of Sect. 2.6—actually the reader can jump ahead and read it right
now.
If d = 3 (mod 4) then x2 — dy? is the norm of the algebraic integer x + y+/d in
the real quadratic field Q(+v/d).

2.1.2 Quadratic Fields in a Nutshell

Let D be a square-free positive or negative integer, and consider the quadratic field
Q(+/D). The discriminant A of Q(+~/D) is 4D if D = 2 or 3 (mod 4), and D if
D = 1 (mod 4). The quadratic irrational (@ + b~/D)/2 is an algebraic integer in
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Q(+/D)iffa and b € Z are integers satisfying a = b = 0 (mod 2) when D = 2
or 3 (mod 4), and a = b (mod 2) when D = 1 (mod 4). So the norm

a+bvD a—b\/ﬁ_az—sz
2 2 B 4

of (a + b~/D)/2 is always an integer. An algebraic integer in Q(+/D) is called a
unit if its norm is £1. If D > 0, then there exists a unit 7 = 7p in Q(+/D) such
that any unit in Q(+/D) is representable as 1", n = 0, £1, %2, .... This number
n = np is called the fundamental unit in Q(~/D).

Let F(x,y) = ax? + bxy + cy? be an integral binary quadratic form of
discriminant A = b?>—4ac (a, b, c €Z are integers). If an integral binary quadratic
form F(x,y) is transformed into the form Fij(x;, y;) by an integral unimodular
transformation x = Ux1+Vy;,y = Wx1+Zy, where UZ—-V W = 1, then F and
F\ are called equivalent. The class number h(D) (where A = 4D or D) is basically
the number of nonequivalent integral binary quadratic forms of discriminant A.
More precisely, by computing the class number we do not distinguish a quadratic
form from its negative, though they may be nonequivalent (which is exactly the case
if D > 0, and x> — Dy?> = —1 does not have an integer solution). For example,
let D = 79, then the discriminant is 4 - 79 = 316, and there are six nonequivalent
integral binary forms of discriminant 316: F; = x> — 79y2, —F; = —x? 4 79y2,
F, = 3x? +4xy — 25y%, —F, = —3x% —4xy + 25y%, F3 = 3x? + 2xy — 26)2,
—F; = —3x%2 — 2xy + 26y2. So the class number 4(79) of the quadratic field
Q(+/79) is 3 (and not 6). If /(D) = 1 then the algebraic integers in Q(+/D) have
unique factorization into algebraic primes. The “first” quadratic field with class
number > 1 is Q(+/=5). The discriminant is 4 - (—5) = —20, and there are two
nonequivalent integral binary quadratic forms of discriminant —20: x> + 5y and
2x2 + 2xy + 3y2. So the class number 4(—5) is 2. A counterexample to the unique
prime factorization is

(1+V=5)-(1-VH=6=2-3,

where all the 4 factors (1 + +/=5), (1 — ~/=5), 2, and 3 are primes in the ring of
integers of Q(v/=5).

Now let us return to (2.14). If we make the extra hypothesis that d = p = 3
(mod 4) is a prime and the class number /(p) of the real quadratic field Q(,/p)
is one, then the middle sum on the right-hand side of (2.14) becomes a special L-
function at s = 1:

1
Z pem—— L(1, x). (2.15)
(x)#(0.0): Py

primary representations

Here y* is the so-called norm-sign character: a unique character with values +1
defined for all ideals in the ring of the algebraic integers of Q(+/d) (in fact, y*
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depends only on the narrow ideal class), and satisfies y*((a)) = sign Norm(a)
for the principal ideals (a). Note that, in our special case d = p with h(p) = 1,
every ideal is principal.

The L-function

*(A

A:ideals Norm(A)S

(here we don’t have to write |[Norm(A)|, because the norm of an ideal is by
definition an integer > 1; in sharp contrast the norm of an algebraic integer in a
real field can be both positive and negative) has the product decomposition

L(Ss X*) = L(Ss X_4)L(S, X—p) (216)
where
o0 o0
x—4(n) X—p(n)
L(s, y—4) = d L(s, y_,) = L7PV7
(s, X—4) nZ::l —— and L(s. 1-p) 2

are the (ordinary) L-functions of the complex quadratic fields Q(+/—4)=Q(+/—1)
(“Gauss integers”) and Q(,/—p); the characters y_4 and y_, are defined as follows:
x—4a(n) = x£1ifn = £1 (mod 4) and y_4(n) = O if n is even, and

(3

is the usual Legendre symbol (quadratic residue symbol). Note that (2.16) is
basically an Euler product, and it is “explained” by the elementary factorization
4p = (—4)(—p) of the discriminant of x> — py?; see, e.g., Zagier’s book [Za4].

In the special case s = 1 Eq. (2.16) gives

L(1, x*) = L, x—4)L(1, x—p), (2.17)
and by Dirichlet’s (analytic) class number formula,

wh(—p)
7

if p > 3. Now this is where the remarkable Hirzebruch-Meyer—Zagier formula
(HMZ-formula, in short) enters the story: 2(—p) can be expressed in terms of an
alternating sum of the partial quotients (i.e., the “digits” of the continued fraction)
in the period of ,/p; see, e.g., in Zagier [Zal].

But before formulating the HMZ-formula, we note that quadratic irrationals
all have periodic continued fraction, and the least solution of Pell’s equation

L(l,)(_4)=% and L(1, y_,) = 2.17")



86 2 Expectation, and Its Connection with Quadratic Fields

x2 —dy? =1 can be determined from the period of Vd; the least solution is

basically the fundamental unit. Moreover, the parity of the length of the period
describes the sign of the norm of the fundamental unit: odd length means +1, even
length means —1. Combining Dirichlet’s class number formulas with the ineffective
Siegel theorem, we obtain the deep asymptotic formulas

h(d)logng = d'/**, (2.18)
h(—d) — dl/2:|:£’ (218//)

where h(d) and h(—d) are the class numbers of the real and complex quadratic
fields Q(+v/d) and Q(~/—d), respectively, n is the fundamental unit of Q(v/d),
and & > 0 is arbitrarily small but fixed. Note that the order of magnitude of log 1,4
is roughly around the length of the period of the continued fraction for Vd.

The elegant Hirzebruch-Meyer-Zagier formula (HMZ-formula) was discovered
in the 1970s. It states that

—ayt+ay—az£---+ax
3 ,

h(-p) = (2.19)
where p = 3 (mod 4) is a prime > 3, h(p) = 1, and ay,ay, ..., azs forms the
period of ,/p (since p = 3 (mod 4), the length of the period has to be even).
(Note that both (2.17) and (2.19) fail for p = 3, because Q(+/—3) has too many
automorphisms: 6 instead of the usual 2—a technical nuisance in algebraic number
theory.)

Combining the HMZ-formula with (2.14)—(2.17), we conclude

h(—p) logN
4 logn

M /5(N) = + O ((loglog N)’) =

— . logN
_ ap +ax + + as; log L0 ((loglog N)3) _
12 logn

— —az -+ (=1
el “312 TEDA L b (oglogNYY). (220

where £ is the last index for which g < N and 7 is the fundamental unit of Q(,/p)
(in the last equation we heavily used the periodicity of the continued fraction
for /p).

Summarizing, by using the HMZ-formula, we just managed to prove (2.20), at
least under some strong technical conditions (for example, we assumed that p = 3
(mod 4) is a prime > 3 with A(p) = 1, and also in (2.20) we have the ugly
but negligible error term O ((log log N )3)). Nevertheless, from (2.20) it was quite
easy to guess that Proposition 2.1 must hold for arbitrary a (not just for quadratic
irrationals), and this is exactly how we came up with the right conjecture (2.4).
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Because we know a completely elementary proof of Proposition 2.1, reversing
the argument, we can produce an elementary proof for the HMZ-formula. Later we
will give a precise proof of (2.12) and (2.14); (2.12) is Proposition 2.16 and (2.14)
is Proposition 2.20.

(The interested reader can find all the details, and much more, about quadratic
fields in the well-written book of Zagier [Za4] (it is in German), or in the classic
Borevich—Safarevich: Number Theory.)

2.1.3 Another Detour: Formulating a “Positivity Conjecture”

The first line in (2.20) raises a very interesting question. If a prime p satisfies the
condition of the HMZ-formula, the expectation equals

h(—p) logN
4 logn

M ;5(N) = + negligible error.

Here the class number is trivially > 1, and also n > ,/p > 1, implying logn > 0;
therefore,

M ;5(N) =c-logN + negligible error,

where ¢ = c¢(p) > 0 is a positive constant. By Proposition 2.1, the error term here
is in fact O(1), and in general, for any quadratic irrational «,

My(N)=c-logN + 0(1),

where ¢ = c(«) is a constant (expressed in terms of the period of «). Is it true
that if @ = +/d, the corresponding constant factor is always nonnegative, that is,
M ;7(N) = c-logN + O(1) with ¢ > 07 We guess the answer is “yes,” and I
refer to this as the “positivity conjecture.”

If the length of the period of Vd is odd, the “positivity conjecture” is trivial.
Indeed, by formula (2.4) the corresponding alternating sum “cancels out,” implying
that the constant factor is zero, i.e., M 57(N) = O(1) (the same holds for any
quadratic irrational with odd period). Thus, the nontrivial case is when the length of
the period of Vd is even. It is well known that then the period has the symmetric
form with a central term

Vd = lag;ar,az, ... a;,ai41,a4,...,az,a1,2ap]

where ag = L\/g | and @, denotes the central term. Applying the alternating sum
in formula (2.4), we have



88 2 Expectation, and Its Connection with Quadratic Fields

—a;+a,—azx---
M ;= = + o) =

log N

t
= (2D =Da; | + (=)' a1 + 240 + o).

Jj=1

The positivity of the constant factor ¢ = ¢(d) in M ;7 = clogN + O(1) is,
therefore, equivalent to the positivity of the alternating sum formed from the period

t
23 (-1Ya; + (=)' a;41 > 0.
j=0

We checked the tables for d < 100, and this alternating sum is indeed positive when
the period of Vd is even. Since the “positivity conjecture” is certainly not true for
arbitrary quadratic irrational «, its hypothetical truth in the special case ¢ = Vd
is probably closely related to the arithmetic of the real quadratic field Q(x/g ) (or
perhaps the complex field Q(v/—d)).

Let’s return now to Proposition 2.1. We include an elementary (but far from easy)
proof.

Proof of Proposition 2.1. We use Dedekind sums. To explain where the Dedekind
sum comes from, we rewrite (2.1) and (2.2) in the following form:

N
My(N) = %Z(N +1—k) ({ka} - %) =
k=1

> (E-1) (war-1). eon

where the last sum

% (-3 (b 3)

in (2.21) strongly resembles a Dedekind sum

K—1 .
DH.K)=Y (’? — %) ({jH/K} — %) , (2.22)

=1

where we always assume that H and K > 1 are relatively prime integers.
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Dedekind sums [i.e., (2.22)] originally appeared in Dedekind’s study of elliptic
functions and theta-functions. Luckily we don’t need to know anything about these
(rather technical) subjects; we can just work with definition (2.22). The key fact
about Dedekind sums is the following reciprocity formula, a highly surprising and
nontrivial result.

Lemma 2.3 (Dedekind’s reciprocity formula). We have

1 (H K 1 1
DH.K)+DK.H)=—(—4+—+— ) —-. 2.23
(H.K) + D(K. H) 12(K+H+HK) 4 (2.23)

Note that the definition of D(H, K) and D(K, H) automatically includes the
condition that “H > 1 and K > 1 are relatively prime integers.”

For a proof of this classical result, see, e.g., the book [Ra-Gr].
From Lemma 2.3 we will derive

Lemma 24. If1 < H < K are relatively prime then

a—ar+az ¥+ ()" ay
12

D(H,K) = +0(1), (2.24)

where

~| =

= = [a1,a2,0a3,...,a. (2.25)

a +

as + ...

Note that the error term O(1) in (2.24) has absolute value < 1/4.

Proof. The continued fraction % = lay,az,as,...,a¢] is equivalent to the

Euclidean algorithm
K=aH+H, H=a0H +H,, HH =a3H,+ Hy,..., Hi_» =a,Hy_;

where Hi—; = gcd(H,K) = 1 (gcd denotes the greatest common divisor). We
apply Lemma 2.3 with the short notation

1 (x y 1 1

V) =—|-"+=+—])—=
g(x.y) 12 (y X xy) 4
as follows: write K = H_;, H = H,, then

D(H,K) = D(Hy, H-) = g(H-1, Hy) — D(H-1, Hp) =

= g(H-1, Hy) — D(H\, Hp);
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here we used the first equation of the Euclidean algorithm. Repeating the same
argument, we have

D(H,K) = g(H-y, Hy) — D(H\, Hy) =
= g(H_y, Hy) — (g(Hy, H) — D(Hy, Hy)) =
= g(H_, Hy) — g(Hy, H\) + D(H>, Hy);

here we used the second equation of the Euclidean algorithm.
Repeating the same argument several times, we have

D(H,K) = g(H-, Hy) — g(Ho, Hy) + g(H, H;) — g(H>, H3) &+ - --
ok (1) g (Hoo, He—y) + (1) D(Hy—2, He—y).
Note that the last term here is in fact zero; indeed, Hy—; = gcd(H, K) = 1 implies

that D(H[_Z, Hf—l) =0.
Moreover, by using the notation

X y
f(xvy):_+_7
y  x
we have
—1 —1
; (Hi-1 | H,
Y f(Hi—, H) = Y (=1) -
Z( ) f(H;—y. H;) Z( )(H,- +H,-_1)
i=0 i=0
H Hi_y — Hiy
i Hi—1— H;y
= — —1 - T =
TR
=1 —1
H .ai_lHi H :
== ~1y == —Dai_.
K+;( i K+;( ) aio
Since

1 1 1
e = 1)+ (5= 7).
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combining the facts above, we conclude
D(H,K) =g(H-1, Hy) — g(Ho, Hi) + g(H\, Hy) — g(H,, H3) £ -- -+

ay—ay+ay ¥+ (=)l
12 *

H 1+D50 1 1 1 1 (-1H!
- + — - + Fooot —>t .
12K 8 12\KH HH, HH Hy_,Hi_,

(=) g(Hp—n, Hi—y) = =

+

The last alternating sum has absolute value < 1/12, and because 1 < H < K, the
total error is at most max{1/4,1/12 4+ 1/12} = 1/4, completing the deduction of
Lemma 2.4 from Lemma 2.3. O

Next we derive Proposition 2.1 from Lemma 2.4 in the special case N = ¢,, i.e.,
when N happens to be a convergent denominator of «; see Lemma 2.5. But first we
introduce a notation that simplifies the treatment of Dedekind sums. Let

(x) = {{x} — 1. ifxis notan integer;

0, otherwise.

Note that y = ((x)) is usually called the “sawtooth function.” By using this new
notation, we can rewrite (2.22) in a shorter form:

o F(H)(%) e

Jj=1

where, as usual, we assume that H and K > 1 are relatively prime integers. Notice
that extending the summation in (2.26) from 1 to K makes no difference (just adds
a zero to the sum).

Now we are ready to formulate and prove an important special case of Proposi-
tion 2.1.

Lemma 2.5. We have

—a1+ar—az £ ...+ (=D""a,

—1
> + 0(1), (2.27)

Ma(‘]r) =

where @ = [ay,as,as3,...] and p,/q, = la1,az,...,a,-1] is the rth convergent
of a. The implicit error term O(1) is less than 5 for all « and r.
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Proof. We recall (2.21) with N = g,

= (452 1) (5 -2) (o).

ar k=1 k=1 N
(2.28)

First we focus on the following subsum of (2.28):
q’" qr
ST = kzzjl (; - 5) ({koz} — 5) = kZ::l ((q_,)) (ka)). (2.29)

We compare S* to the Dedekind sum

v =2 (G () @

where p, /g, is the rth convergent of «.
We recall the well-known fact from diophantine approximation that

o<
qr qrz ’
which implies that the inequality
k k 1
ko — o)< < — 2.31)
qr q; qr
holds for all 1 < k < ¢,. By (2.31) we have
|S*_D(pr’Qr)| < 1. (2.32)

On the other hand, by Lemma 2.4,

_ vt (=1)a,— 1
D(pr.q) — a—ay+a3F---+ (—1)a— L (233)
12 4
Combining (2.32) and (2.33) we have
_ e (=D ar— 1 5
gx_ 4 a+ayF -+ (=1)"a, L (2.34)
12 4 4
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Another application of (2.31) gives

qr—1 qr—1 . 1 1
> ket —1/2)| < |3 (i +— - —) =
N qr qr 2
k=1 =1
qr—1 .
j 1) 1
; (‘Ir 2 ar

Applying (2.34) and (2.35) in (2.28), we conclude that

- —D'a,—
Ma(qr)_al ar+azF ...+ (1) a— <
12
5 F+1 1 F+1 1 1 5 F+1 1
§_+q+ - = @12 {CIrOl}——S—+2q+ —=| <5,
4 qr 2 qr 2 2174 qr 2
and Lemma 2.5 follows. O

The last step is to derive the general Proposition 2.1 from the special case
Lemma 2.5. There are many ways to reduce the general case to Lemma 2.5; see,
e.g., Beck [Be4]. Here we follow a nice idea of Schoissengeier [Scho], involving
telescoping sums, which seems to be the best treatment of the general case.

Let N > 1 be an arbitrary integer. Consider the Ostrowski expansion of N
[see (1.54)]:

,
N = Z bigi, where 0 < b; < a; and (2.36)

i=1

b; = a; implies b;_; = 0 (“Extra Rule”). Here a; is the ith partial quotient of
the continued fraction of « = [a1,a2,a3,...] and p;/q; = [ai1,...,a;—1] is the ith
convergent of o.

We are motivated by the following telescoping sum equation:

Sras(e)- en

i=1 qr
1 r Ny lpk Ni—1 ka |
- L (Nk+1_i)((—))— (Ni +1—j)(( ‘)) ,
N = ; dk ; : qr—1

where Ny is the kth partial sum of (2.36): Ny = Zi;l biq;.
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We are going to evaluate the terms of the telescoping sum (2.37). The next
lemma, clearly motivated by Eq.(2.37), can be considered as a generalization, or
new version, of Lemma 2.5. The idea is to involve the Dedekind sum D(py, gx),
just like we did in the proof of Lemma 2.5.

Lemma 2.6. If N; = 3"/_, big; then

Beraf(2)- B on(22)

j=1

bj—
= —biqi D(pr. qr) + %(1 + (=DM @Nj—t + 1= (b=t + Dge—1)+

Ni—1(Ne—1 + 1)(Nk—1 + 2)

(2.38)
6qkqr—1

+ (_1)k+1

Proof of Lemma 2.6. We basically repeat the proof of Lemma 2.5. Write

;(Nk +1-1i) (( )) = Zl + Zz, (2.39)

where

- S n()

and

£ £ weeo(2)

i=brqr+1

We evaluate ), first. Since (x)) = 0 if x is an integer, we take out the i’s that are
divisible by gy :

55 E ()

t=0 i=tqr+1

—bkzlqkzl(Nk+1—tqk—J)(( ))

t=0 j=1

qr—1 .
— b Y ((ﬂ)) , (2.40)
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since

Thus by (2.40),

qr—1
>, = b Z ( ) ((qu k)) = —bigi D(pi. q). (2.41)

justifying the first term on the right-hand side of (2.38).
Next we evaluate ) , — ) 5, where ), is the second term in (2.39) and ), is
the negative term on the left-hand side of (2.38):

>, = Z(Nk 1+1—j)((ka 1)) (2.42)

We recall the well-known fact from the theory of continued fraction:

1 (=D
Pk _ Pkt L, (2.43)

qk qk—1 qk—19k

and so, if j < Nj_ then

((ka)) ((ka 1 (—1)k_lj)) _ ((jpk—l)) 4 (—1)k_lj’ (2.44)
qk qk—1 qk—19k qk—1 qk—19k

when j is not divisible by gx—;, and

k=1 _1\k—1
() = (=) + 5L+ 57— (245)
qx qk—1 qrk—19k 2

when j is divisible by gx—;. Thus we can rewrite D, [see (2.39)] in the form

N
weron(2)-
i=bkzq;+1 Ik
Ni—1 .
= > (Ne—bigi + 1 - j) ((];::1)) =

=1

—Z(Nk+1—1)(( LS ‘))

i=1 qk—1
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and applying (2.44) and (2.45) we have [note that ), is defined in (2.42)]

1 . Ng—1
(=D N
= 4+ — (Ne +1—j)j+
Zz 23 qk—19k ; ¢ e
14 (=11 br—1 + 1)gq—
+ bk—l# Neey +1— (-1 + D1 _ (2.46)
2 2
Combining (2.41), (2.42), and (2.46), Lemma 2.6 follows. ]

By using Lemma 2.6, we are ready to complete the proof of Proposition 2.1. Let’s
return to (2.36). First we extend the definition of N, = Zle brgy forall k > r
in the trivial way: put b; = 0 for i > r. We sum up both sides of Lemma 2.6 as
k =1,2,3,...; the left-hand side of (2.38) gives

(N + 1=k (k). (2.47)
k=1

and the right hand side of (2.38) gives

3 Y+ where e
r
3
Zl = ; biqi D(pi.qi),

b ;
Zz _ Z T](l + (=D)/THCN; +1—(b; + 1)g)),
j=1

Z* _ i(_l)j Ni(Nj + DWN; +2) _
o 649 +1

= Xr:(_l)]’ N;j(N; +1)(N; +2) N N(N + I)(N +2) (oz— p,,+1)’

=1 69,9;+1 6 Gr1

where in the last step we used (2.43) and the fact p; /q; — o asi — oo.
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First we evaluate Y ;. By Lemma 2.4,

r L fm—ayEe+ (a6
> bigiD(pi.gi) =Y bigi ( . 5 L4 Z) -
i=l1 i=1

Z(l)ajl Nj—1)+9—N=

4
j=1
r i r i —
(-D/a;— (-1)/"lajy Njoy 6
=N . -1, 2.49
]Z=:1 12 +,Z=:1 12 N +4 ( )

where |6;| < 1 and |#| < 1 are appropriate constants. Since the sequence N; =
>"!_, big; increases at least exponentially fast, an upper bound like

k

D Ni < 4Nt (2.50)
i=1

is trivial. Combining (2.49) and (2.50),

i ay—ayx---+ (-)a,—
> biqiD(pi’CIi)zN( — Cat | g aj)+9”)’
=j=r

= 12
(2.51)
where |0’| <4 and |0”] < 1/4.
Next we estimate Y, from above:
Z ZbN <—(max a,)ZN <3N(max a;). (2.52)

i=l1

where in the last step we used (2.50).
Finally, we estimate ) 5 from above. Since

J
= Zbiqi and gj41 > a;q; = bjq;.
i=1
we have

Z( l)jN(N + D(N; +2)

Z(b +1)%q; < 2N( max a,). (2.53)
64,4+

j=1
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We also have

NN + 1)(N +2 N3 N
(N + 1)( +).’a_pr+1 NN (2.54)
6 gre1|~ 3q7,, T 3
Combining (2.47), (2.48), (2.51)~(2.54), we obtain
1 ¢
Mo(N) = = 3 (N + 1= k)(ka) =
k=1
—art -+ (=Da._
S + DA, 0( max a;), (2.55)
12 I<j<r
where |6| < 10. Equation (2.55) completes the proof of Proposition 2.1. O

Note that our original proof of Proposition 2.1 was a much longer, brute force
deduction from Ostrowski’s formula (1.55) (see [Be2, Be3]). Later Schoissengeier
[Scho] pointed out the connection with Dedekind sums and some related results of
Knuth [Kn1], which made the proof substantially shorter. The proof above follows
the Schoissengeier—Knuth approach.

2.1.4 Proposition 2.1 and Some Works of Hardy
and Littlewood

It is interesting to note that, a few weeks after we completed our proof of
Proposition 2.1 (November 1995), we accidentally noticed the following technical
lemma in Hardy-Littlewood [Ha-Li2].

“Lemma 14”:  Ifa = [ag;a1,az,-- -] then

1
1 1
Mo(N) = ?:1:(_1)1{ (a,- + 07) L0 ((1‘2?;‘, a,-)Z) , (2.56)

where [ is the least index such that q; > N, and

1
o =a; + 1 = [a;;ait1,ai12,--].

Aiyp + -

ai+1 +
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By using the trivial identity o; = a; + ﬁ, the alternating sum in “Lemma 14”

becomes
1 1 1
o +— )+ |+ —)—|az+—) -
(03] (0%) (0%}

=—ai+a—as+---+ (=Dia; £--- . (2.57)

The surprising conclusion is that from “Lemma 14” we can obtain a somewhat
weaker version of Proposition 2.1 in one line. Note that (2.56) is weaker, because the
error term O ((maxlsisg a,-)z) is the square of the linear error term O(max;<;<; d;)
in Proposition 2.1.

Note that Hardy and Littlewood proved their “Lemma 14” by using a different
kind of reciprocity formula (namely, the reciprocity formula for the theta functions).

A related development is that, about 10 years later, in 1930, Hardy and
Littlewood [Ha-Li3] studied the following (diophantine) series:

s 1
Z n sin(wne) (2.58)

n=1

and made a very interesting discovery. Though the terms of the series (2.58) do
not tend to zero for any o, Hardy and Littlewood managed to prove the next best
thing; namely, that for the special value & = +/2 the partial sums of (2.58) remain
uniformly bounded, i.e.,

N
1

n=1

In general, if @« = +/a? + 1, a is odd, then the partial sums are similarly O(1).

On the other hand, Hardy and Littlewood noticed that for « = J6 /2—1the Nth
partial sum is ¢ log N + O(1) with ¢ # 0.

What is going on here? The proof of the “O(1)-theorem” for @ = a2+ 1, a
is odd, was so complicated, mysterious, and ad hoc that in his Introduction to the
Collected Papers of G.H. Hardy, Vol. 1, Davenport listed the “real understanding”
of this paper as a major research problem in diophantine approximation.

Now here is our “real understanding”: the “O(1)-theorem” of Hardy and
Littlewood is a simple corollary of Proposition 2.1. Indeed, all that we need is the
simple identity

N

Z n sin(wna)

= 4nMy2(N) 2w My (N) + O(max a), (2.60)
<i<
n=1 -

where [ is the last index such that g; < N.
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Equation (2.60) is an easy consequence of two facts. The first one is (2.12):

N
1 1
My,(N)=—— —— 4+ O(max a;
(V) 2 ’;ntan(nna) (l§i§k )
where k is the last index for which ¢, < N, and the second fact is a simple
trigonometric identity:

1 1 _ 2 cos?(B) — cos(2B) 1
tan(B) a tan(28)  2sin(B)cos(B)  sin(2B)’

It seems very likely that Hardy and Littlewood overlooked the simple application
of Proposition 2.1 via (2.60) (the weaker error term (2.56) would be fine here). This
is why they had to develop a complicated ad hoc method in [Ha-Li3].

We will return to the Hardy—Littlewood series ), 1/n sin(na) in Sect. 2.3.

2.2 Computing the Expectation in General (II)

2.2.1 The Expectation in Theorem 1.1

Next we switch from the saw-tooth function ((x)) to the characteristic function

1, if0<x<op;
L= P @.61)
0, ifp<x<l,

of the interval [0, p), where 0 < p < 1, and extend it periodically modulo 1. Then
we get the simple equation

1o(x) —p = (x — p) — (x). (2.62)

The sum

> xolka)
k=1

is the counting function for the irrational rotation: it counts the integers k in
1 < k < n for which ka € [0, p) modulo 1. Theorem 1.1 is about this counting
function. Therefore, to prove Theorem 1.1, we have to determine the corresponding
expectation: by (2.62) we need to evaluate the generalized Dedekind sum
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() e

Jj=1

where ¢, the “shift constant,” is an arbitrary real number (by (2.62) we use ¢ = —p
or ¢ = 1 — p; it doesn’t matter which one).

The following lemma, a reciprocity law due to Dieter [Di], describes the
connection between the ordinary Dedekind sum and its generalization (2.63). For
later application, we have to include a proof.

Lemma 2.7. Let 1 < H < K be relatively prime integers, and let 0 < ¢ < K be a
real number. Then

D(H,K:;c) + D(K,H:c) = D(H,K) + D(K, H)+

lelfe] 1 1
T 5LC/HJ + ZE(H, c), (2.64)

where

0, i 0 mod H;
E(H,c) = ife # 0mo (2.657)
1, ifc =0mod H.

Proof. First assume that ¢ is a natural number; we prove (2.64) by induction on c.
Clearly

JHAc+ N ((jH+e\\ 1 1 (jH+e\ 1 (jH+c+]1
(( K ))_(( K ))+1< 25( K )+25( K )
(2.66)

where in this section we use the notation §(x) = 1 if x is an integer and 0 otherwise
(“Kronecker delta”). By (2.63) and (2.66),

o= () () -7 5 (%)

Jj=1 1=

B () e

Since | < H < K are relatively prime, there exist two integers 4’ and k’ such that

Hh' + Kk' =1. (2.68)
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If
j = —h'c (mod K) then jH + ¢ =0 (mod K),

and because the saw-tooth function ((x)) is odd, we can rewrite (2.67) as follows:

D(H,K:c +1) = D(H, K:c) + ~ ((h]'< )) N % ((h’(cK+ 1))).

It follows by induction on ¢ that

D(H,K:c) = D(H,K;0) + Z ((h/ )) + % ((%)) . (2.69)

j=

Forevery j with1 < j < K — 1 [see (2.68)]

(- () (5) -
) R

Adding (2.69) to itself with H and K interchanged, and using (2.70), we have
D(H,K:c)+ D(K.H:c) = D(H,K) + D(K.H) + S,

where

i—1 . ;- /
J 1, (k'j ¢ 1, (kK¢
S = —— -5 = —-5l—). 2.71

X_:(HK 2 (H))+2HK 4 \H ( )
The evaluation of the last line in (2.71) is easy: we have
c? 1) c 1 c

= —> =]+ 78 (5)- 2.72

2HK 2 LH J + 4 \H ( )

Equations (2.71) and (2.72) complete the proof when c is any integer.
For an arbitrary real number ¢ we use the identity

D(H.K:c+6)=D(H,K;c) + - ((hK )) (2.73)
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where ¢ > 0 is an integer and 0 < 6 < 1 [/ is defined by (2.68)]. The proof

of (2/3) is e€asy:
K l((]))((]H+C+9))
=1

J

=

-1

SR 5059

j
1 ((—=Hhc
=D(H,K,c)+0—§(( < ))

because —h' He + ¢ = 0 (mod K), and (2.73) follows.
When 0 < 6 < 1, Egs. (2.73) and (2.70) imply that

D(H,K;c+60)+ D(K,H;c+60)=D(H,K;c)+ D(K,H;c)+

c 1 c
2HK 4 (ﬁ) ‘
This completes the proof of Lemma 2.7. O

Lemma 2.7 leads to the following analog of Lemma 2.4; see Knuth [Kn1]. Again
we need the proof.

Lemma 2.8. Let 1 < H < K be relatively prime integers and let 0 < ¢ < K be a
real number. Let

H 1 [ ]
— = — =ay,a2,a3,...,4ay4,
X I 1,a2,03 ¢
a) +
a + ..
then
b4 by—by £+ (=)
D(H,K:¢) — D(H, K) = 2712 32 Do,
2 2 2 2
Co €1 ) -1 S
_ -1 — = 1+ 0(), 2.74
+2KH 2HH1+2H1H2:F +=D 2H£—2H4—1+ M ( )

where the terms b;, ¢;, H; in (2.74) are determined by two Euclidean algorithms as
follows. Let H_y = K, Hy = H, and define H; by the first Euclidean algorithm

K=aH+H,, H=aH + H,, HH =a3H, + Hy,..., Hi_» = a;H;_,
(2.75)



104 2 Expectation, and Its Connection with Quadratic Fields

where Hy—y = gcd(H, K) = 1 (gcd denotes the greatest common divisor); then
by using (2.75), we define the integers b; and the real numbers c; via the second
Euclidean algorithm

c=cy=bHy+ci, ci =bH +ca, co=bsHy+c¢3,..., co—1 =byHy_1 + ¢y,

(2.76)
where 0 < ¢y < Hyp, 0 < ¢y < Hy, ..., and 0 < ¢y < 1 (note that Hy = 0). The
error term O(1) in (2.74) has absolute value < 1.

Proof. First assume that c is an integer; then ¢, = 0. Write
A(h,k;c) = D(h,k;c) — D(h, k)
and
Flhk.c) = c? 1LCJ+13(C)
= o T2 TG
then by Lemma 2.7,
A(h,k;c) = F(h,k,c) — Ak, h;c) =
= F(h,k,c) — A(k (mod h), h;c (mod h)). 2.77)

Combining the Euclidean algorithms (2.75) and (2.76) with (2.77), we have
AHj,Hj_1;¢;))=F(Hj, Hj_1,¢c;) — A(Hjy1,Hj;cj41) (2.78)
forj =0,1,2,...,€— 1. Write
Fi=FH;,Hj,cj),
then by repeated application of (2.78), we have
AH,K:¢c)=Fo—F +F—F+ ...+ (=)""F_ =

- 2
Z-V (mv i ‘3(H,.)):

-1 2 —

—b, +b2—b3ﬂ:"'+(—1)£b[ . ¢ (—1)[ 1
= -1)/ . 2.79
2 + ]Z=:0( ) 2H; 1H; + 4 ( )

Equation (2.79) proves Lemma 2.8 if ¢ is an integer.
If ¢ is not an integer then we simply apply (2.73). O
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2.2.2 An Analog of Proposition 2.1

Let 0 < o < 1 be any irrational and let 0 < p < 1 be any rational number. To
prove Theorem 1.1 about the irrational rotation, first we need to know the average
(“expectation”)

1 N
Ma(piN) = = 3 Salpin), (2.80)
n=1
where
Sa(pin) =y (xp(ka) = p) (2.81)
k=1

and the characteristic function y,(x) is defined in (2.61).
By using (2.62) we have

Sulpin) =Y (ke = p) — (k) ,
k=1
and
N
1
Ma(p:N) = - 3 (N +1 =) ((ket = p) = (ke) .
n=1
Repeating the proof of Proposition 2.1 with some natural modifications, we obtain

the following analogous result.

Proposition 2.9. For any irrational @ > 0, any real number 0 < p < 1, and any
integer N > 1,

by—by+byF -+ (=)
My(p; N) = 2
2 2 2 2
o G P ¢ S
_ _ +.oo (=D —=L 1. bi, 2.82
2KH " 2HH, 2HH, D g L T max by (282)

where |0] < 10, « = [ay,az,...], the index £ = L(a, N) is defined as the last
integer j such that q; < N, where p;/q; is the j-th convergent of o, and finally
the terms b;, ¢;, H; in (2.82) are determined by the two Euclidean algorithms (2.75)
and (2.76)withc = co = (1 — p)K, K =gy, H = py (i.e., H/K = p¢/qq). O

Next we show some illustrations.
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Example 2.10. First let p = 1/2. We begin with ¢ = V2, and evaluate
M ﬁ(l /2; N), i.e., the corresponding expectation in Theorem 1.1. The continued
fraction /2 — 1 =[2,2,2,...] = [2] gives that 2 = a; = a, = a3 = --- in (2.75).

Next we compute b;, ¢;, H; in (2.76) as follows:
1 1
C:C():(l—p)K:§(2H+H1):H+§H1,
implying b; = 1, and

1 1
¢1 = H\ =0-H + ZHy, implying b =0, and

1 1 1
Cy) = EHl = §(2H2H + H3) = H2 + §H3, 1mply1ng b3 =1,
and so on. Thus we obtain the periodic sequences
1 i—1
b1=1,b2=0,b3=1,b4=0,...,bi=§(1+(—1) );

1 1 1
COZEKv C 202=§H1, C3=C4=§H3, 05206251‘15,

Hence we have

by—by+by—bsy+--+- 1-04+1-0+1—-0+---
1 2 + b3 4 _ + + + (2.83)
2 2
and
T -
2KH 2HH, 2HH, N
K H (1 1\ Hi (1 1\ Hs(1 1
~ 8H 8 \H, H 8 \H, H, 8 \Hy¢ H,
(2.84)
Since
H2i+1( 1 _L):H2i+1'H2i_H2i+2:H2i+l. 2Hi 11 _
8 Hy» Hy 8 Hy; o Hy; 8 Hyi 42 Hy;
H2 1
2+l — _ 4 exponentially small, (2.85)

- 4Hy 4o Hyy 4
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applying (2.83)—(2.85) in Proposition 2.9, by (2.82) we have

1 1-0 1\ 1 log N
Ms(=N)=(— =) = —=" 1+ 0.
V2 (2 ) ( 2 4) 2 log(l + +/2) W

where in the last step we used the fact that [see (2.79)]

1 2)t — (1 - v2)" log N
qe = (+v2) - (-2 = N implies £ = _o8Y + O(1).
22 log(1 + v/2)
Thus we obtain
1 1 log N
M N )=-—— + 0(1), (2.86)
ﬁ(z ) 8 log(l + +/2) W
which proves (1.32).
In the special case p = 1/2 we have the ad hoc identity
1
11200 = 5 = (@¥) = 2()). @.87)
which gives the equation [see (2.62) and (2.80)]
1
M, (E;N) = M, (N) —2M,(N). (2.88)

By using (2.88), we can easily double-check (2.86). What it means is that we apply
Proposition 2.1 for both o = +/2 = [2] and

20 =22 =+8=1[2:1,4,1,4,1,4,..] = [2:1,4].

The length of the period of @ = /2 is odd, so the corresponding alternating sum in
Proposition 2.1 cancels out. Thus we have

1 —1+4-14+4-1+4F---
Mﬁ(E,N) ZMzﬁ(N)Z B +0() =

1 —-1+4 log N 1 log N
L 08 ofl)y=-.— &%
8 log(l + +2)

T2 2 log(l+42)

+0(1), (2.89)

which gives back (2.86). In Eq. (2.89) we used the fact that the (2i)th convergent
D2i/q2i of /8 satisfies the equation

D2i + qu\/g = (3 + \/g)l
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(due to the fact that the least positive solution of x> — 8y? = £1isx =3,y = 1),
which implies

1 ‘ . . .
i=——=(B+V8) —(3-v8))~ 3+ V8 =(1+ V2.
=5 = (G VO - VB )~ G+ VB =1+ VD)
The ad hoc equation (2.88) gives a shortcut for p = 1/2 with any quadratic
irrational . For example, if o = V3= [1;1,2] then

20 =243 = V12 = [3;2.6].

Thus by (2.88) and Proposition 2.1,

1

1 (—2+6 log N -1+2 2log N

20 2 e2+v3) 2 '1og(2+ﬁ))+0(1): ow.

(2.90)
since the (2i)th convergent p,; /g2 of +/3 satisfies the equation

pai £ i3 = 2+ V3),

which implies

1 i i\ A i
i 2ﬁ((z+d§) @ ﬁ))~(2+ﬁ),
similarly, the i th convergent denominator for 2+/3 is about (2 + +/3)’ (because the
least positive solution of x2 — 12y? = +lisx = 7,y = 2, and 7 + 2/12 =
2+ /3)?).
Next consider the golden ratio = (v/541)/2. Thena = [1; 1] and 20 = [3; 4].
Since the length of the period is odd for both continued fractions, by (2.88) and
Proposition 2.1,

1
M /511)2 (E?N) = O(1). (2.91)

The last example in this section is @ = +/7 (again p = 1/2). We need the
following facts: ~/7 = [2:1,1,1,4], ¥/28 = [5:3,2,3,10], the least positive
solutions of x> — 7y? = +1 and x> — 28y? = =1 are, respectively, x = 8,y = 3
and x = 127, y = 24 with the relation 127 + 24/28 = (8 + 3+/7)%. Combining
these facts with (2.88) and Proposition 2.1, we have
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Mﬁ(%,N) :Mzﬁ(N)—zMﬁ(N) =

_ng(-3+z—3+1o —1+1—1+4)
12 \log(127 + 24v/28)  log(8 + 3v/7)

log N

+ o= " 410g(8 + 37

o). (2.92)

Next we discuss examples where p # 1/2.

Example 2.11. Nextlet p = 1/3 and & = +/2. Then +/2 = [1;2] gives that 2 =
a; = a; = az = --- in (2.75). We compute b;, ¢;, H; in (2.76) as follows:

2 2 1 2

implying b; = 1, and similarly

1 2 1 2 1 1 . .
co=-H+-H =-QH, + H,))+ -H, = H + -H, + = H,, implying b, =1, and
3 3 3 3 3 3
1 1 1 1 1 . .
= ng + 5H2 = 5(2H2 + H3) + §H3 =H, + §H3, implying b3 = 1, and

1 1
3= §H3 =0-H;+ §H3, implying by = 0, and

1 1 2 1
¢y =—-H3;=—-Q2Hs+ Hs) =0-Hy + §H4 + §H5, implying b5 = 0, and

3 3
2 1 2 1 2 2 . .

cs = §H4 + §H5 = 5(2H5 + Hg) + §H5 = Hs; + §H5 + §H6, implying bg = 1, and
2 2 2 2 2 . .

g = §H5 + §H5 = 5(2H6 + H;) + §H6 =2H¢ + §H7, implying b7 =2, and

3 2
¢ = §H7 =0-H;+ §H7, implying bg = 0, and

2 2 1 2
g = §H7 = 5(2H6 + Hy) = Hg + gHg + §H9, implying by = 1, and so on,

back to the beginning. Thus we get the periodic sequence for by, by, b3, . . .

1,1,1,0,0,1,2,0, 1,1,1,0,0,1,2,0, 1,1,1,0,0,1,2,0, ...
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Therefore, we obtain

bi—by +b3—by+---

2
1 1-141-040-142-0  logN
S S e s el e e - +o(1), (2.93)
2 8 log(1 + v/2)
and
G N g B
2KH ' 2HH, 2HH, B
1 ( (2K)? L H+ 2H)?:  (H\+ H)?  H? ) log¥N .
18 KH HH, H H, HyH3 ) 8log(1 + +/2)

N 1 H?  (2H4+ Hs)®>  (2Hs +2Hg)>  (2H7)? log N o
18\ H3H4 HyHs HsHg HgH7 | 8log(l + +/2) '
(2.94)
Since by (2.75)
H;, — H;y» )
—— = diy2 = 2,
Hji 41

we can rewrite (2.94) as follows:

(2.94) 1 4(K — Hy) +4+H - H, ) H, — H; H; —H5+
sum(2.94) = —( — —2— -
Y 18 H H, H, H,
+4(H4 —He) g _ 4(Hs — H7) _
H5 H6
1 2
= (-84+4+42-2-2-2+4+4+8-8§—8) =—_,
18 3
implying

log N

294) = ——————
sum(2.94) 121og(1 + +/2)

+ 0(1). (2.95)
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Applying (2.93)—(2.95) in (2.82), we have

1 1 1 log N
M “N|=-—"=)]—+0(1) =
ﬁ(3 ) (8 12)1og(1+ﬁ) @
log N

=——<=" 41 0(). 2.96
24log(1+x/§)+ W (290

Nextlet p = 2/3 and @ = +/2, then a similar calculation gives the same answer:

2 ) log o). (2.97)

M - N|)|=—"—
V2 (3 241og(1 + v/2)

We can easily double-check (2.96) and (2.97) by using the ad hoc equation

(m(x) - %) + (m(x) _ g) — (Bx) - 3(0). (2.98)

which leads to [see (2.62) and (2.80)]
1 2
My (5) M (3 ) = M) = 30,0, 299)
Notice that (2.98) and (2.99) is an analog of (2.87) and (2.88).
We have 3+/2 = +/18 = [4:4, 8], and so by Proposition 2.1,

M (N)—l —448 log N
WA log(1 + v2)

o(1), (2.100)

because the least positive solution of x> — 18y? = +1isx = 17,y = 4, and so the
(2i)th convergent p»; /g2 of ~/18 satisfies the equation

pai £ quiV18 = (17 £ 4V18)’,
which implies

2 ~ (17 + 4V18) = (1 + V2)".
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Since the length of the period of V2 is odd, by (2.99) and (2.100),

1 2

log N

" 121og(1 + V2) o,

which is in agreement with (2.96) and (2.97).

Example 2.12. Letp = 1/4anda = (v/5+1)/2=[1:1]. Then 1 = a; = a, =
az = --- in (2.75),

3 3 1
c=c=0-pK=K=1(H+H)=H+ GH—H). (210

implying b; = 1. Note that 3H, > H, since H/H, is very close to the golden ratio
o = (v/5+1)/2 < 3. We have

3H— H =3H,— (H,+ Hy) =2H,— H, = 2(H, + H3) — H, = H, + 2Hj;,

(2.102)
and so
1 1 . .
¢ = ZHZ+EH3 =0-H; +c¢;, =0-Hy+ c3, implying b, = b3 =0, and
1 1 1 1 3 1 . .
C3 = ZHz + 51‘13 = Z(H3 + H4) + §H3 = ZH3 + ZH4 < H3, 1mp1y1ng b4 =0, and
3 1 3 1 3 . .
¢4 =-Hs+-Hy=-(Hy+ Hs) + —H, = Hy + — Hs, implying b5 = 1, and
4 4 4 4 4
3 3 . .
c5s = yRiE =0-Hs+ ZHs, implying bg = 0, and
3 3 1
¢ =y Hs = 7 (Hs+ Hy) = Hs + ; (3H; — He).

which is the same as the beginning. Thus we get the periodic sequence for
bl, bz, b3, s

1,0,0,0,1,0, 1,0,0,0,1,0, 1,0,0,0,1,0, ...,
implying

bi—by +b3—by+---
2 =

1 1-04+40-04+1-0 logN
=—. . o), 2.103
2 6 log«/§2+1+ M ( )
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and
2 2 2
¢ cy ¢ 1 log N
- - 4= — Sy —2 " L 0(l), (2104
2KH ' 2HH,  2HH 27 Glog L M. @109
where
5 = 92+(H+2H)2 1 Lo, ! (3Hs + Hy)*  9H?
OT "kH VP \HH,  H H,  H)H; HsH, H,Hs

The critical sum S in the middle of (2.104) equals (with @ = (/5 + 1)/2)

(Ba + 1)?
o

So=-9a+ (@+2)* (¢’ —a +a ') - + 9o, (2.105)
and using the simple facts o> = 1 + « and @™ = 1 — ™!, it is easy to
evaluate (2.105): Sy = —24. Returning to (2.104), we have

log N

o + 0(1). (2.106)

1
sum(2.104) = — - (—24) -
32 6log =+

Applying (2.103)—(2.106) in (2.82), we have

1 24 log N
o (:) = (1 3) 80+ 000 -
(V5+D/2\ 4 32 61og Vot

log N

= ——F—7+ 0(1). (2.107)
24log@

2.2.3 Periodicity in Proposition 2.9

Let’s return to Proposition 2.9 and Eq. (2.82). The periodicity of by, b, b3, ... in the
examples above was not an accident: we prove that if the sequence a;, a», as, ... is
periodic and ¢/ K is a rational number, then by, b,, b3, ... is also periodic (but the
length of the period is not necessarily the same).

Indeed, write ¢/K = s/t where 1 < s < t are relatively prime integers. Then
by (2.75) and (2.76),

N N
C =Cy= ;KZ ;(a1H+H1) =b1H+C1,
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where (| x| and {x} denote the lower integral part and the fractional part of x)
saq

sa s s s
b1=L—J and Cl={—l}H+—H1=—1H+—H1,
t t t t t

and here we assume that c; < H.
Similarly,

s s s s
€= TIH + ;Hl = ?l(aZHl + Hy) + ;Hl = byH| + ¢,

where
siaz + s siaz + s s soHy 4 51 H
b2={12 JandQ:{lZ }H_’__le:zl 12’
t t t t
and again we assume that ¢, < H;.
Repeating this argument, for every i > 0 we have
siHi—1 + si—1 H;
¢ = % (2.108)

where 0 < s;, 5;—] < t are integers, and we always assume that ¢; < H;_.
The periodicity of a; means that

a; = a;+1 holds for (say) M, <i <M,, (2.109)

and here we assume that (M, — M;)/L is a very large integer. Consider now the
sequence with gap L [see (2.109)]:

CMy> CM{+L> CM{+2Ls CM{+3L, """ s CM,;
by (2.108) we have

/ "
SiHm 4 jr—1 + 8 Hyy v
t

CMy+jL = < Hyy+jL-1, (2.110)

where 0 < s}, s}’ < t are integers. If (M, — M)/ L is larger than 2, then by the
Pigeonhole Principle there is a repetition among the pairs (s;- , s}’), j=0,12,..,
and the first repetition implies the periodicity of the sequence by, by, b3, ... in the
rest of the interval M| < i < M, [see (2.109)]. Of course, we cannot predict the
length of the period, but it is certainly less than L (> + 1).

Warning! It may happen that our assumption

siHi—1 + si—1 H;
G =——""—"<Hi, 0<s;,5<t,
t
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in (2.108) is violated; for example, see Eq.(2.101) in Example 2.12 (where o =
(V54 1)/2and p = 1/4):

3
co = Z(H + i) > H,
since H/H, is very close to @ = (+/5 4 1)/2 < 3. This is why we cannot write
) 3
co=0-H +c; with ¢; = Z(H+H1),

instead we have to use

3H,— H

where in ¢; we face a negative(!) coefficient:

1 3
0<c = (—Z)H+ZH1 < H. (2.111)

For o = (+/5 + 1)/2 < 3 we can use the ad hoc fact [see (2.102)]
3H, — H = H, + 2H3, (2.112)

which simply eliminates the “negativity problem” in (2.111).

Next we show that this trick always works; we can always eliminate the
“negativity problem.” To prove this, assume that for some i we have—just like
in (2.110)—the reverse of (2.108):

siHi—1 + si—1 H;
Ci :+>Hi_1 0<s;,8-1<t. (2.113)

Then we rewrite (2.113) in the form

sio1Hy — (t —s;)Hi—

¢i = Hi—y + ¢! where ¢/ = ;

and 0 < ¢/ < H,;_;. In (2.75) we have the recurrence formula H;—, = a;+1H; +
H;yy,sowithr; =t —s;,

*
SiciHy —riHi—y = si . Hy —ri(ajp H; + Hiyy) =57 H —riHiyy,

where s/ | = s;—1 —riai41 > 1.

Case l: s, >r;.
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By using H; = a4+, H;+; + H,+2, we have the following analog of (2.112):
Si o Hi —riHiy1 = s/ (@i2Hip1 + Higo) —riHipy =
= s\ ait2—r)Hip1 + 57 Hiq, (2.114)

which eliminates the “negativity problem.”
Case2: s, <r;.

Then again we use (2.114):
si_ Hi —riHipyr = (5] aiv2 —ri)Hiv1 + 57 Hiyo. (2.115)

If (s_,ai 4> — r;) is positive, then we are done; if it is negative, then clearly r; 1, =
|s*_ ai42 —ri| < s, and we can rewrite (2.115) in the form

* *
si—lHi - riHH_l = Si—lHi+2 — r,'+2Hi+1 where ri > Tiy2 > 0. (2116)

The decreasing property in (2.116) guarantees that, repeating this argument less
than 7 times, the negative coefficient eventually disappears [i.e., turns into a positive
coefficient like in (2.112)]. In other words, in both cases we can eliminate the
“negativity problem.”

By getting rid of the “negativity problem,” we are safe to say that the Pigeonhole
Principle argument above always works. As a consequence, we obtain the periodic-
ity of by, by, b3, . ... Combining this periodicity with Lemma 2.7 and Proposition 2.9
[see Eq. (2.82)], we have

Proposition 2.13. [fa is a quadratic irrational and 0 < p < 1 is a rational number,
then there is a constant ¢ = c(«, p) such that

My(p, N) =c-logN + O(1) (2.117)

holds for every integer N > 2.

2.3 Fourier Series and a Problem of Hardy
and Littlewood (I)

It is a standard exercise in every Fourier analysis course to compute the Fourier
coefficients of the sawtooth function

() = —ZM (2.118)

T
=
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where (x)) = {x} — 1/2 if x is not an integer and O otherwise. We want to
apply (2.118) in both

n N N
Suln) = (k) and M(N) = - > 5.0 = 5N 1 - Rk,
n= n=1

k=1

but we have to be a little bit careful, since the Fourier series in (2.118) is not
absolutely convergent. Instead of (2.118) we actually use a finite version with a
small error term. First we recall Abel’s transformation (“discrete integration by
parts”):

Y ajbj = ai(by —by) + (a1 + ar)(by — b3)+

j=1

+(ai+az+az)(b3—bs)+. .. +(ar1+. . .+am—1)(bu—1—bm)+(ai+...+ay)by.

(2.119)
We also need the well-known summation formula
“ 2) — 2 1)B/2
> sin(jp) = cos(p/2) — cos(@m + 1)A/2) (2.120)
— 2sin(B/2)
which implies the useful upper bound
- 1
sin(jB)| £ ——5——- (2.121)
2 [sin(B/2)]

The pointwise convergence of the Fourier series in (2.118) follows from (2.119)
and (2.121), and the equality of the two sides in (2.118) follows from Fejér’s well-
known theorem in Fourier analysis.

By (2.119) and (2.121), forany T > 1,

ZT:sin(27rjx) B 2 _ !
j ~ xaT|sin(zx)|  Tlx|’

(x) + (2.122)

j=1

where ||x| denotes, as usual, the distance of x from the nearest integer. It follows
that

T 2 sinQ@ujka)| 1< 1
Se(n) + S T N (2.123)
L2 | T
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2.3.1 Badly Approximable Numbers

We need to estimate the diophantine sum

Z”: 1
= k|l

from above for the class of quadratic irrational . Our argument below—a standard
application of the Pigeonhole Principle—will work even for a larger class of reals,
called badly approximable numbers. A real number « is called badly approximable,
if there is a positive constant ¢y = co(e) > 0 such that

k|lka| = co > 0 holds for all integers k > 1.

One can easily characterize this class in terms of the continued fraction: « is badly
approximable if and only if the sequence a, a,, as, ... of partial quotients in @ =
[ag;ay,az,as,...]is bounded, i.e., there is a threshold My = My(«) < oo such that
ar < My holds for all k > 1. The well-known fact from diophantine approximation

. & (_1)i+1
gi  qi(qiv1+0q;)

where p;/q; = [ao;ai,...,a;—1] is the ith convergent of o, ¢;+1 = a;q; + qi—1,
and 0 < 0 = 0(i) < 1, implies that ¢y and M, are basically reciprocals of each
other (apart from an absolute constant factor). Note that every quadratic irrational is
badly approximable, since periodicity implies boundedness.

Lemma 2.14. Assume that a is badly approximable, and k||ka| > ¢y > 0 holds
for all integers k > 1. Then for any integer n,

1 4 n
Z < —n (log (—) /logZ) .
2kl ~ < &

In general, for any m > 2 we have

1
—— = O(nlogm).
2 kel £

n<k<2n:
kllka|<m

Proof. What we do is a routine application of the Pigeonhole Principle. To prove
the first part, we define the set

2j=1 2/
A; = %lgkfn: —c¢ =< |lka| < —co
n n
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Of course A; is empty if

2/=1 1
> . (2.124)
n

We claim that the set A; has at most 2/11 elements. Indeed, if | A il > 2711 then by
the Pigeonhole Principle there exist 1 < k; < k» < nsuchthatk; € 4;,i = 1,2,
and

[t — et} < .

By choosing £ = k, — k1, we have ||[€a|| < co/n, which contradicts the hypothesis
L||€e|| > co > 0. Thus we have

I 1
2 rad = 2 2 Tk =

j=1keA;

n 1 n .
<) 2j_lCOIAJI = ) 512

izl j=1

4 4
= Z 1<—n10g£/log2,
Co €o

jzl2i=n/c
where at the end we used (2.124). This proves the first part in Lemma 2.14.
The same Pigeonhole Principle argument proves the second part. O
By Egs. (2.120), (2.123) and by Lemma 2.14, we obtain

Lemma 2.15. Assume that « is badly approximable, and k ||ka|| > ¢y > 0 for all
integers k > 1. Then for anyn and T,

T . .
S, (1) = Z cos((2n + 1)mjo) — cos(mja)

25j sin(mjo)

Jj=1

4nlog(n/co)
|

2.125
log2coyT ( )
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and
1 < d 1
«(N) N nZ::l «(m) ]Z::l 27 tan(mjer)
XT: sinrja) — sinr(N + 1) jo) 4nlog(n/co) (2.126)
= 47N sin®(rwjor) 2 log2coT '
where |01| < 1 and |6;] < 1. O

The only novelty in the proof of (2.126) is the use of the summation formula

N . 1 1
sin((N + 3)B +y) —sin(z8 + y)
= , 2.127
; cos(nf +y) 25n6/3) 2.127)
instead of (2.120).
2.3.2 The Hardy-Littlewood Series
Now we return to the numerical series
> 1
Y ————. « is irrational, (2.128)
—n sin(wno)

briefly mentioned at the end of Sect. 2.1. First notice that the series (2.128) cannot
be convergent, since the terms do not tend to zero for any «. Indeed, the inequality
lna| < 1/n holds for infinitely many values of n, for example, let n = ¢; where
pj/q; is the jth convergent of . The inequality ||na| < 1/n combined with
the trivial fact | sin(mno)| < 7||nea| implies that (2.128) contains infinitely many
terms that have absolute value > 1/m. Thus the convergence is out of the question.
Nevertheless, Hardy and Littlewood made the very interesting discovery that for the
special value & = +/2 the partial sums of (2.128) remain uniformly bounded, that is,

al 1
Y ———— =0(. (2.129)
n sin(wna)

n=1

Equation (2.129) represents a miraculous cancellation; we can consider it the next
best thing to convergence.

Note that Hardy and Littlewood actually proved the slightly more general result
thatif @ = /a2 + 1, a is odd, then the partial sums always remain bounded. On the
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other hand, for many other quadratic irrationals the Nth partial sum is clog N +
O(1) with ¢ # 0 (Hardy and Littlewood gave the example @ = +/6/2 — 1).

What is going on here? We will give a very transparent proof of (2.129) by using
the following improved version of (2.126).

Proposition 2.16. If « is badly approximable, then for any N,

N
My(N)==-)" . o(1), (2.130)

= 27j tan(mjor)

where the implicit constant O(1) = Oy (1) is independent of N.

We postpone the proof of Proposition 2.16 to the next section.
Besides Proposition 2.16, we also need the following simple trigonometric
identity:

1 1 2cos’(B)—cos(2) 1 2.131)
tan(8) tan(2B)  2sin(B)cos(f)  sin(2B)’ '
By using (2.131), we obtain
—n sin(rna) —n tan(mwna/2) —n tan(wna)’
and combining this with Proposition 2.16, we get the equation
al 1
Y ———— =27My(N) = 2xM,2(N) + O(1). (2.132)
n sin(mwno)

n=1

If @ is a quadratic irrational, then «/2 is also a quadratic irrational; therefore,
combining Eq. (2.132) with Proposition 2.1, we obtain

Proposition 2.17. If « is a quadratic irrational, then there is a constant ¢* =
c* () such that

N

1
Y ———— =c*-logN + 0(1), (2.133)
n sin(wno)

where the constant factor ¢* = c*(«) can be determined by using (2.132) and
Proposition 2.16.

Now we are in a position to understand why the constant factor ¢*(«) in (2.133)
equals O for @ = /2, and why in general it equals O for any & = +/m? + 1 where
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m > 1is an odd integer. The advantage of @ = ~/m? + 1 is that it has a particularly
simple continued fraction: « = [m;2m,2m,2m,---] = [m;2m] and

Case 1: ifmisodd,thena/2 =[(m—1)/2;1,1,m—1];
Case 2: if miseven,then /2 = [m/2;4m,m].

In Case 1 both o and «/2 have periods of odd length, so by Proposition 2.1
and (2.132), the partial sums of the series (2.128) are O(1).

On the other hand, in Case 2, «/2 has a period of even length, so the partial sums
of the series (2.128) have the form ¢*(«) log N + O(1) where c*(«) is never zero.
Now we clearly understand why in the “O(1)-theorem” of Hardy and Littlewood
the condition “m is odd” was necessary. Indeed, if « = +/m? + 1 and m is even,
then there is no O(1)-theorem: by (2.132) and Case 2 above,

N

Z n sin(wna)

n=1

= 0(1) = 2nMy)r(N) =

_ 2 4dm—m log N

12 2 log(m + vm?2 + 1) )

T

m
B 4log(m + vm? + 1)

log N + O(1),

since x = m and y = 1 is the least solution of Pell’s equation x> — (m? + 1)y?
= *£l1.

In view of (2.132) it is natural to ask the following related question: How to
compute the continued fraction for /2 from the continued fraction for o? Well, if
o = [ap;ai, az, as,---] then

/2 =lao/2;2a1,a2/2,2a3,a4/2, -+ ,a2 /2,202 41, ]

if this formula does make sense, i.e., if ay; is even for every i > 0. Under this “parity
condition,” by using (2.132) and Proposition 2.16, it is very easy to characterize
those quadratic irrationals for which the partial sums of the series (2.128) are O(1).

Indeed, if the length s of the period a;41,a; 42, ,a;4s of a is odd, then the
necessary and sufficient condition for an “O(1)-theorem™ is >/ :; (=Dia; =0.

On the other hand, if the length of the period is even, then there is no “O(1)-
theorem” whatsoever.

For example, if o = Va1l = [6:2,2,12,2,2,12,...] = [6;2,2,12] then the
“parity condition” holds:

Nz} -
% = =[34.1.241.464.1.24.1.46... ] = 34124 1.4.6].
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and by (2.132) we have

N
1
Z ————— = O0(1) =271 M,yp(N) =
= n sin(wna)
2r 4—14+24—-1+4-6 log N
_ 2 . g +0() =
12 6 31og(32 4 5+/41)

_ 2w log N
91og(32 4 5+/41)

o),

since x = 32 and y = 5 is the least solution of Pell’s equation x> — 41y? = +1.

The general case, when the “parity condition” is violated, is technically more
complicated and somewhat unpleasant. We guess that this technical difficulty was
the reason why Hardy and Littlewood restricted their study to the very special
quadratic irrationals @ = +/m2 4 1 = [m;2m] having the simplest possible (“one
digit period”) continued fraction.

How to obtain the continued fraction for «/2 in general, assuming we know
a = [ag;ay,as,as,---]? There is an interesting general procedure to answer this
question, even when the “parity condition” is violated. We learned it from Richard
Bumby (Rutgers University), an expert in continued fractions, who claims that the
procedure goes back to Hurwitz. What Hurwitz was really interested in was to find
the continued fraction for e/2 and 2e, based on the knowledge of Euler’s classical
solution for e:

e=1[2;1,2,1,1,4,1,1,6,1,1,8,1,...,1,2i,1,...]. (2.134)

2.3.3 Doubling and Halving in Continued Fractions

The procedure consists of three operations. The first two, H =*halving,” D =“dou-
bling,” are perfectly natural; the third, S =“special operation,” is the tricky one. For
example, to get the continued fraction for e /2, first we apply the “halving operation”
H to the first “digit” 2 in (2.134): this gives 1, and next comes the “doubling
operation” D applied to the second “digit” 1 in (2.134), and so on. There are nine
rules.

. H@2n) =nD (i.e., D comes next)
. Dn=02n)H

. H@2n +1)=n,18
.Dn,1=2n+1)S

. S@2n)=1,n—1,18
.S@2n+1)=1,nD

AN AW =
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7.S1,;n=2n + DH
8. S, 1=(2n +2)S
9. S2=2S

Note that rules 1 and 2 are obvious, but the rest of the rules require a little bit of work
with continued fraction. For example, to prove rule 3, we may proceed as follows
(n > 1, m > 1 are integers and x > 1 is a real):

1
- =n —_ —_— =N —_—
2 2 2m+ 1) 2m + 2
1 1 1 1
B S Qup S prip—
PR L ”ﬂif R
m— x 2

Assume now that m = 2k + 1 where k > 1 is an integer, then

1
2 7 " 14+ —L °
1+ @

which proves the combination of rules 3 and 6. Similar argument proves the rest of
the cases—we leave the details to the reader.

We illustrate the application of these rules by determining the continued fractions
of e/2 and 2e (first published by Hurwitz).

To get e/2 we proceed on the “digits” in (2.134); we start with the “halving

operation” applied on 2 (the first “digit” of e):

H2 = rule ] = 1 (D comes next)
Dl = rule 2 = 2 (H comes next)
H2 = rule ] = 1 (D comes next)
D1,1 = rule 4 = 3 (S comes next)
S4 = rule 5 = 1,1,1 (S comes next)
S1,1 = rule 7= 3 (H comes next)
H6 = rule 1 = 3 (D comes next)
D1,1 = rule 4 = 3 (S comes next)
S8 == rule 5 = 1,3,1 (S comes next)
S1,1 = rule 7= 3 (H comes next)
H(10) = rule 1 = 5 (D comes next)
D1,1 = rule 4 = 3 (S comes next)
S(12) = rule 5 = 1,5,1 (S comes next)
S1,1 = rule 7= 3 (H comes next)

and so on. We applied the following rules:

1,3’ 1,4,5’7, 194,597, 194,597, 194,597,.'.
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This sequence shows periodicity; the period is 1,4,5,7, and we obtain
e/2=1[1;2,1,3,1,1,1,3,3,3,1,3,1,3,5,3,1,5,1,3,.. ]. (2.135)

It is easy to recognize the linear pattern in (2.135):

e/2 = [1;2,1,3,1,1,1,3,3,3,1,3,1,3,5,3,1,5,1,3,...,2i +1,3,1,2i +
1,1,3,..].

Similarly, to get 2e we proceed on the “digits” in (2.134), but of course here we
start with the “doubling operation” applied on 2:

D2,1 = rule 4 = 5 (S comes next)

S2 = rule 9 = 2 (S comes next)

S1,1 = rule 7= 3 (H comes next)

H4 = rule 1 = 2 (D comes next)

D1,1 = rule 4 = 3 (S comes next)

S6 = rule 5 = 1,2,1 (S comes next)
S1,1 == rule 7= 3 (H comes next)

H8 = rule 1 = 4 (D comes next)

D1,1 = rule 4 = 3 (S comes next)
S(10) = rule 5= 1,4,1 (S comes next)
S1,1 == rule 7= 3 (H comes next)
H(12) = rule 1 = 6 (D comes next)
D1,1 = rule 4 = 3 (S comes next)
S(14) = rule 5 = 1,6,1 (S comes next)

and so on. We applied the following rules:
4,997, 1,495,79 1,495,79 1,495,79 1,495,“‘

This sequence shows periodicity with the same period as for e/2, and we obtain
2e =[5;2,3,2,3,1,2,1,3,4,3,1,4,1,3,6,3,1,6,1,.. ].
It is easy to recognize the linear pattern here:

2e =1[5;2,3,2,3,1,2,1,3,4,3,1,4,1,3,6,3,1,6,1,...,2i,3,1,2i,1,3,.. ]
(2.136)

2.3.4 A Geometric Interpretation

We conclude Sect. 2.3 with the interesting observation that the partial sums of the
Hardy-Littlewood series [see (2.128)]

N
1
Y ————. « is irrational, (2.137)
n sin(mwno)
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have a nice geometric meaning: the partial sums represent the “average error” in
yet another natural lattice point counting problem. To justify this claim, we go back
to Sect. 1.2, where we counted lattice points inside the axes-parallel right triangle
bounded with the lines y = ax, y = 0, x = n (we excluded the lattice points on
the boundary). Here we slightly modify the problem: let 0 < p < 1, we shift the
line y = ax to the parallel line y = a(x — p) passing through the point (p, 0)—
this point is the left corner of our new triangle; the lines y = 0, x = n remain
unchanged. In other words, we just shift the left corner of the right triangle from the
origin (0, 0) to (p, 0). Counting the lattice points inside the new triangle vertically,
we obtain the following sum [an analog of (1.47)]:

la — pa + |20 — pa] + 3o — pa] + -+ |[(n — Da — pa] =

=]§(ka—pa—%—({ka}—%))=

=E;,(n=1)=S8;,(n—1), (2.138)

Ey,(m) = ot(m ;_ 1) —-m (pa + %)

where

and

Sa,(m) = (ko — pa)).

k=1

Just like in Sect. 1.2, we consider E; ,(n — 1) the “expectation,” and Sy ,(n — 1) is
the “error term” (i.e., the deviation from the expected value). By using the Fourier
series of the sawtooth function [see (2.118)], we have

o

(= pay = =y ST Zpe))

j

Jj=1
and so we have the (formal) equation

o0 1 m
Sy, (m) = — Z e Z sin27j (ko — pa)) =
k=1

=1

_ 1 cos(27rja(% —p)) — COS(27thl(mT+l —-p)
T Z i 2 sin(mja) '
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Now we choose p = 1/2, that is, the left corner of our right triangle is the point
(1/2,0) (instead of the origin). Then

. cos2mmjor) — 1

Sayplm) = e (2.139)

o 27j sin(mja)

implying that in the average

N
* 1 *
Ma,l/Z(N) = N Z Soc,l/Z(m)
m=1

we have the new factor sin(zzj) in the denominator instead of tan(mj«) that we
have in My(N); see (2.125), (2.126) and (2.139). Now assume that « is badly
approximable; then the proof of Proposition 2.16 can be easily adapted for the
similar M7, /2(N ), and it gives the following analog of (2.130):

N

* N o S
v1(N) = ]; s smoay T O (2.140)

where the implicit constant O (1) = O,/(1) is independent of N.

Comparing (2.137) to (2.140), we see the geometric interpretation of the initial
segment of the Hardy-Littlewood series. It represents the “average error” in a
lattice point counting problem. Namely, counting lattice points in axes-parallel right
triangles of slope « (where « is badly approximable), bounded by the horizontal
axis, where the left corner is the fixed half-integer point (1/2,0); see the picture
below.
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2.4 Fourier Series and a Problem of Hardy
and Littlewood (II)

The whole section is devoted to the proof of Proposition 2.16. By using
Lemma 2.15 with the choice T > N log N, we have

N

1
My(N) =— — =851 =5+ 0(), 2.141
«(N) ; 27j tan(mjor) ! 2+ 00) ( )
where
5o YOO L)
= 4 Nj sin”(mjar)
and
T . . . .
1 1 2 —sin2r(N + 1
=Y —( __ sin@mjo) S“_l(zn(, + )’“)). (2.143)
=N+ 27j \ tan(rjor) 27N sin”(7ja)

Since the irrational rotation is uniformly distributed, we have the “plausible”
approximation

1

1
M, — M, > f(k“)%/o f(x)dx, (2.144)

M <k<M,

where f(x) is a “nice” periodic function with period one. We can make the “plau-
sible” approximation (2.144) precise by using the so-called Koksma’s inequality.

Lemma 2.18 (“Koksma’s inequality”). Let X = {xi,...,x,} be an arbitrary
n-element point set in the unit interval [0,1), then

n 1 1
I /0 foydn| = 20 /0 /()] dx,
i=1

where of course f' is the derivative of f (i.e., we assume that f is smooth), and

(2.145)

is the discrepancy of the set X.
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Notice that the discrepancy defined in (2.145) measures the deviation of X =
{x1, ..., x,} from the perfect uniform distribution in the unit interval. The integral

1
/ ()] dx
0

is usually called the variation of f.

Proof of Lemma 2.18. Assume that the elements of X are in increasing order: 0 <
x1 < x3 <...=<x, <1.Using integration by parts, we have

/01 f(x)dx = f(1) — /01 xf'(x)dx. (2.146)

The discrete analog of (2.146) is
- ; fea) = £() - ; L (fen) = £, (.147)
where x,4+; = 1; Equation (2.147) is a routine application of Abel’s transforma-

tion (2.119). Putting xo = 0, by (2.146) and (2.147),

%if(x,-) —/01 fx) dx

i=1

=

1 n .
= ‘/0 xf/(X)dX—Zl;(f(xi+l)_f(xi))
i=0

. A 1
x—l—‘lf’(x)ldxf D [ ila
n 0

n

n Xi41
=2
i=0"Y%i

and Lemma 2.18 follows.

It is easy to rescale Lemma 2.18 to any interval [a,b]: ifa < x] < x; < ... <
X, < b then

1 1 AP,
o>t - [ swar =2 [N wla (2.148)
n ‘= b—al, nJg
where
y—a
A:ai‘j‘;b Zl—nb_a , (2.149)

Xi =y

an analog of the discrepancy in (2.145).
Let’s return to the Discrepancy Lemma in Sect. 1.1 [see (1.22) and (1.23)]: it
implies that the discrepancy of the irrational rotation ko (mod 1), 1 < k < n,



130 2 Expectation, and Its Connection with Quadratic Fields

is O(logn), if « is badly approximable. Next we show that, for a given interval
I C [0, 1], we can replace the upper bound O(logn) for the discrepancy in I with
O(log(n|I| + 2)). This is a substantial improvement if | /| is “close” to 1/n.

Lemma 2.19. If « is badly approximable then

Zy:I)= Y 1=n|I|+ O(ogn|I| +2)).

1<k<n:
ka€l (mod 1)

Proof. We repeat the argument in (1.15)—(1.21) with a twist at the end. Assume
qe—1 < n < qg; in view of (1.20) we can write

n=by_1qi—1 + bi—2qi— + ...+ biqi,
where 1 <bp 1 <a¢1,0<b; <ajfor2<j<{€—-1,0<b;<a;—1,and
j—1
Zbiq,- <gqj forl <j <t
i=1
Let r be the largest index j such that ||| > |/|, and write n = M + m where
M =by_1qe—1+br—2qe—2+...+brqr and m = by_1qr—1+b;—2qr—2+...+b1q1 < gr.
By (1.22) and (1.23),
| Ze(M;T) — M|IT|| <3(be—1 + be— + ...+ b;). (2.150)
Notice that the end sequence (M + j)a (mod 1), 1 < j < m, of the irrational
rotation contains at most one member in the interval /. Indeed, otherwise there
existn; < mpsuchthatl <n, —ny <m < g, withnjae € I (mod 1),i = 1,2,
and so ||(n, —ny)a| < |I| < ||grc||. But this contradicts the following well-known
minimum property of the convergent denominators g; of a: || por|| < ||g;cr| implies
that p > g;. Thus we have
Zo(n; 1) = Zo(M; 1) + O(1),
and so by (2.150),
|Zo(n; 1) —nll|| = |Zo(M; 1) = M|I| + O(1) —n|l|| <

< |Zo(M: 1) = M|I]|+ O(1) +n|l| =

= (max b,-) L0 —r) + m|I|=0—r) + O). 2.151)

r<j<t



2.4 Fourier Series and a Problem of Hardy and Littlewood (II) 131

In the last step we used that « is badly approximable, and also
mlI| < qr|I| < grllgrall = O(1),

where in the last step we used (1.9).
Again using the fact that « is badly approximable, we have

1
n=qeand |I|~ |graf ~ —,
r

implying
9t o nl1) and € —r = O(log(n|I] + 2)). (2.152)
Combining (2.151) and (2.152), Lemma 2.19 follows. |

Now we are ready to estimate S, in (2.143). We define the set

k k+1

2

Depending on whether {jo} is small or 1 — {jo} is small, we split A into two
parts: Ay = A]'(" U Aj . More precisely, let [|x||* = ||x|| if the interval (x — 1/2, x]

contains an integer and 0 otherwise, and similarly let || x|~ = ||x| if the interval
(x,x + 1/2] contains an integer and 0 otherwise. Then || x|| = ||x||* + ||x|~, and
write
+ 2k + 2k+1
AT ={N<j<T: —<|jo|" < — 2.154
F=iv<isTi G <t <2 (154
and
2k k+1
A, ={N<j<T: —<|jo|” < 2.155
= <isr L s <2 @.155)

The proof of Proposition 2.16 proceeds in several steps: Step One, Step Two, and
SO on.

Step One:  We estimate the sum
1
> ———— foreveryk > 1, (2.156)

fan tan(mrja)

where Ay is defined in (2.153). For technical reasons, we decompose Ay into
several parts: for 1 < £ < k? let
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1 —1 1 4
Ay = jeAk:N-(l—l-—) <j§N-(1+—)§, (2.157)

k? k?

and for £ > k2 + 1 let
Are=1{j € Ar: N(k,{—-1)<j <Nk}, (2.158)

where

k2
N(k,k?) = N-(l + %) and N(k,£) = N(k,{—1) (1 + %) . (2.159)

Again we split
A = A, U 4, (2.160)

exactly the same way as we did in (2.153)—(2.155).
We estimate the sum

Z 1

jea tan(jo)

by using Lemmas 2.18 and 2.19. The reason why we defined the “short” sets Ay ¢
is that the factor j hardly changes in such a short set. We apply Eq. (2.148) with

Zk k+1 1

a=y b= W=

tan(rrx)’ (2.161)

and the finite point set X" in the interval [a, b] is the following [see (2.160)]:

X = {ja (mod 1): j € A }; (2.162)
then we have
1 |AF | P b
> — = /f(x)dx SA/ | f/(x)] dx. (2.163)
tan(wjo) b—a J, .
jeat,

Notice the difference between (2.156) and (2.163): in the latter factor j is missing
from the denominator.
Write

E(k,0) = (N(k,£) — N(k.£ — 1)) fv—k (2.164)
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where N (k, {) is defined in (2.159) for £ > k2, and
1\¢
N(k,t) =N - (1 + p) for 0 < < k2. (2.165)

We may call E(k, £) the “expectation,” because by Lemma 2.19,
A = O(log(E(k,%) + 2)), (2.166)

and
b
/ Lf'()ldx = | f(b) = f(a)l, (2.167)

because f(x) = (tan(7rx))~" is monotonicin @ < x < b as long as 2 < N/4.
Combining (2.161)—(2.167), we have

1 Ek.0) [
> = k.9 / f(x)dx + O(N2 Flog(E(k,€) + 2)).
tan(mjo) b—a J,
jeAd,
(2.168)
We repeat the same argument for A4; ,: the only difference is that a; = 1 —

2KtIN=1and by = 1 —2¥N~! are the new endpoints instead of a, b in (2.161).
Thus we have the analog of (2.168):

1 E(k,¢) (b
> = .9 / f(x)dx + O(N2%log(E(k,€) + 2)).
“—~ tan(mja) b —ai Jg
JEAk.E
(2.169)
Since tan(x) is an odd function,
by b
fx)dx + / f(x)dx =0,
aj a
and by (2.168) and (2.169),
1
> ——— = 02 log(E(k. ) + 2)). (2.170)
) tan(rjo)
J€Aky
By (2.157)—(2.159),if ji, j» € Ay then with j; < j, we have
' 1
<2 <14 ife<k 2.171)
J1 k
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and

; 1
1<£51+Zif6>k2. (2.172)
J1

By (2.170)—(2.172), we can control the effect of the extra factor of j in the

denominator as follows:

1
> o~ Ok L~ 1)"'N2* log(E (k. £) + 2)) +

J €Ak

1

+min{k2 077 Yy ———— (2.173)
& Jlan(rjo)]
By the definition of A, [see (2.153)—(2.159)]
1 Ak
2 FTancia)] = NI k(ﬁ’ﬁ)ll N
& Jlan(mje)] = N €=1)
so by (2.173) we have
1
Y ——— =0(H) (2.174)

P tan(jo)

where

Hip = (N(k, £ — 1)"'"N27" (log(E (k, £) + 2) + min{k ™2, €72} - |Ak]) .
(2.175)
By (2.164)~(2.166),

ZHk,( = Z Hio + Z IS

=3 1<t<k? k2<t

= Y 27 (0() + 0GK42)) + Y 27 0tk + k) + 02 ) =
1<(<k? k<t

= 0(k™?). (2.176)

Combining (2.175) and (2.176), for every k > 1 we have

> S o(k™?), (2.177)

fen tan(7rjor)

which completes Step One.



2.4 Fourier Series and a Problem of Hardy and Littlewood (II) 135

Adding up (2.177) forall k = 1,2, 3,... we have

1 o0
Yo ———=00_k?=o0q). (2.178)
N<j<T: J tan(rje) k=1
I jali=2/N

Of course, if || jor|| is “around” 1/ N, then the method of Step One still works, for
example,

1
Y =0, (2.179)
N j tan(mjo)
2/N>| jel=1/16N

but if || je|| is much smaller than 1/ N, then we switch to

Step Two: Let

. 1 ) 1
BkZ{N<J§TZ WZHJO[”>M}’ (2.180)

then we estimate the sum [see (2.143)]

Z ( 1 . sin2mja) — sinRmx (N + l)ja))

Pt j tan(mjo) 2jN sin®(wja)

for every k > 4. We repeat the argument of Step One with the new function

1 sin(2rx) — sin(2w (N + 1)x)
" tan(7rx) 2N sin(mx)

(2.181)

instead of f(x) = 1/tan(xx) [see (2.161)] that we used in Step One. Note that
g(x) is also odd (which is crucial for the cancellation part); and g(x) is also
monotonic at least in the interval 0 < x < 1/16/N; and

2 1
~ Nxif0<x < —. 2.182
g(x) ~ —=N'xi X< Tew (2.182)
Applying the method of Step One with By and g(x) instead of A and f(x), and
heavily relying on (2.182) (what we need is monotonicity: smaller x = || jo||
leads to smaller g(x)), we obtain the following analog of (2.178):
>y M = 0(1). (2.183)
k>4 jE€By J

This completes Step Two.
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Let’s return to .S, in (2.143). In view of (2.178)—(2.183), the last step is

Step Three: We have to estimate the sum

Z sin2z(N + 1)jo) —sin(2wja)

— (2.184)
NE=r 2jN sin“(wjo)
lljel=1/16N
Again we repeat the argument of Step One: this time with the function
hx) = sin@x(N + 1)x) — sin(271x)’ (2.185)

2N sin’(x)

and as an analog of the set Ay ¢ [see (2.157)—(2.159)], we introduce the new set
A} ; defined as

{—1 4
1 1 k k41
[ I R—— <N (14— ) = < el < S
{ ( +1og2(§+2)) == ( +1og2(§+2)) oy < el = 16N}

where k = 1,2,3,...and £ = 1,2,3,.... Similarly to Step One, we estimate
the sum

Z h(j:a)

J
. *
]EA,M

by combining Koksma’s inequality [in fact, we use the form (2.148) and (2.149)]
with Lemma 2.19 and taking advantage of the fact that the function A (x) is odd
(which gives the crucial cancellation); also we use the fact that the factor j hardly
changes in the “short” set A; ;- A simple calculation gives

sum(2.184) = O(1); (2.186)
a key reason why (2.186) holds is that the square sin?(x) in the denominator
of (2.185) implies the appearance of the convergent series Zkz kT2 = 0()
(instead of the divergent harmonic series).
Summarizing, by (2.178)—(2.184) and (2.186) we have

S21n (2.143) = O(1). (2.187)

It remains to show that

Syin (2.142) = O(1). (2.188)
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To prove (2.188) we don’t need the sophisticated method of Step One; instead
we can succeed by simply using the trivial upper bound

N

1
S| < —_—. 2.189
| 1|_;Nk”ka”2 (2.189)

By repeating the proof of Lemma 2.14 (Pigeonhole Principle), we obtain

N

1
)R —— T} 2.190
£ Nklka|? M (2190)

due to the fact that the square ||ka||? leads to the convergent series D ks k™2 =
O(1) (instead of the divergent harmonic series). Combining (2.141)—(2.143)
with (2.187)—(2.190), Proposition 2.16 follows.

|

The next section is a (very important) detour: it is a short essay about the
paradigm of determinism versus randomness, providing a broader perspective for
our main results, Theorems 1.1 and 1.2.

2.5 A Detour: The Giant Leap in Number Theory

2.5.1 Looking at the “Big Picture”

As we already said in the Preface, we did not choose the (otherwise catchy and quite
fitting) subtitle randomness of ~/2 to avoid misleading the reader. Our objective
is not to prove the apparent “randomness” of the digit distribution of +/2 (which,
unfortunately, remains open). Nevertheless, this notorious and totally untouchable
problem is a perfect illustration of what we like to call the “Giant Leap” in number
theory.

Historically the first attempt to prove something vaguely similar to the apparent
randomness of the digit distribution of /2 was a measure-theoretic result. About
100 years ago, in 1909 E. Borel proved that almost every real number is normal
in all bases b = 2,3,...,10,.... Of course, almost every means “all but a set of
Lebesgue measure zero,” and a real number is said to be normal in a particular base
if every block of digits of any length occurs with the same density depending only
on the length and the base. In particular, if the base is » > 2 and the length is [ > 1
then the density is b=/, that is, normality is an equidistribution property.

Unfortunately, the measure-theoretic approach says nothing about individual
numbers such as /2 or 7. This is why now, 100 years later, we still don’t know
any explicit example of a number that is normal in all bases (such a number is often
called absolutely normal).
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To be fair, we have to admit that there are some very indirectly defined numbers,
such as the Chaitin’s number—defined as the halting probability of a universal
Turing machine—and the so-called Sierpinski’s number (which gives a little bit
of extra information beyond Borel’s measure-theoretic existential proof), that are
absolutely normal, but most mathematicians are not happy with them—they are not
considered “properly explicit.” For example, the so-called Champernowne number,
see below, is undoubtedly “properly explicit,” and perfectly satisfies everybody. The
core problem is that we don’t have a rigorous definition of “concrete example.”
For example, Sierpinski, mainly a set theorist, has a very broad interpretation and
considers everything “explicit” if it does not use the Axiom of Choice. Sierpinski’s
“explicit example” is the minimum of a bounded countable set of real numbers.
For most number theorists this is some sort of cheating; they want something more
explicit, something “similar” to the Champernowne number. We concede, at this
point the discussion becomes very murky—so we just stop this inserted remark.

When we say we don’t know any explicit example of an absolutely normal
number, we mean that we don’t have a rigorous mathematical proof. We have,
however, a very convincing “experimental proof,” because there is an overwhelming
numerical evidence that the famous special numbers, such as 7 = 3.14..., e =
2.718 ..., ﬁ, \/3, 3/5, log 2 (meaning the natural logarithm of 2), and log 3/ log 2
(meaning the base 2 logarithm of 3), are all absolutely normal.

We cannot help but insert here two historic remarks. One of the early (pure
mathematical) experimentations with the electronic computer—in 1949 von Neu-
mann and his group working on ENIAC, the first fully electronic computer—was
to determine the first two thousand decimal digits of 7 and to carry out a statistical
treatment of the digit distribution. The second remark is a prediction of the great
Dutch mathematician L.E.J. Brouwer. Almost 100 years ago, well before the
revolution of the electronic computer, Brouwer wanted to show an example of an
“unsolvable” problem—or at least unsolvable in his lifetime—and he came up with
the following question: In the decimal expression for 7, do we ever come to a place
where a thousand consecutive digits are all zero? The answer is still unknown (but
of course we all expect a positive answer).

As illustration, here are the first 50 digits of 7 in bases 10 and 2:

= 3.141592653589793238462643383279502884197169399375105820.. . .
7 = 11.00100100001111110110101010001000100001011010001100001 . ..
And here are the first 50 digits of ﬁ in bases 10 and 2:
V2 = 1.414213562373095048801688724209698078569671875376948 . . .
V2 =1.0110101000001001111001100110011111110011101111001100 . ..

But much more is true—or seems to be true—here: according to Wolfram’s book
A New Kind of Science (especially Chap. 4), every single irrational special number



2.5 A Detour: The Giant Leap in Number Theory 139

ever tried so far seems to be normal in all bases. This observation is supported by an
enormous computational evidence. For example, the frequency of digit 7 among the
first 10" decimal digits of = is 8 %, 9.5 %, 9.7 %, 10.025 %, 9.980 %, 10.002 % as
n =12,3,4,5,6, 7—the occurrence ratios for digit 7 seem to be converging to %.

The vaguely defined notion special number means a real number expressed
in terms of standard mathematical functions. The rational numbers are trivial
exceptions: they are eventually periodic in every base, and periodicity (i.e., the
repetition of the same block) is the complete opposite of the equidistribution of
the blocks.

Note that normality is much less than “randomness”: the number

0.123456789101112131415161718192021...99100101102.. ...

is normal in base 10 in spite of exhibiting a very clear and predictable anti-
randomness pattern. The pattern is that the digits are those of all natural numbers in
succession; this is called the Champernowne number. Is the Champernowne number
normal in base 2 or base 3?7 No one knows.

Irrational special numbers seem to exhibit digit equidistribution (i.e., normality),
and what is more, far beyond normality they all seem to exhibit “full-blown
randomness,” including the trademark square root size fluctuation of the random
walk (physicists call it the “square root law”). For example, a statistical analysis
of the first 10 million decimal digits of m tells us something interesting. The
frequencies of 0, 1, 2, .. ., 9 differ from the expected number 106 by

—560, —667, 306, —36, 1093, 466, —663, 207, —186, 40.

Since the standard deviation of the corresponding binomial distribution
Vnp(1 — p) withn = 107, p = 1/10is 300, the fluctuations are close to what one
would expect by the central limit theorem.

Among the first 2- 10! (200 billion) decimal digits of 7, the frequencies of 0, 1,
2, ..., 9 differ from the expected number 2 - 10'° by

30841, —85289, 136978, 69393, —78309, —82947, —118485, 32406, 291044,
—130820;

the data are from Wolfram’s book, see p. 912. Now the standard deviation of the
corresponding binomial distribution \/np(1 — p) withn = 2- 10", p = 1/10is
roughly 135,000, and again the fluctuations are well predicted by the central limit
theorem. We have similar data for +/2. The decimal expansions of 7 and +/2 seem
to exhibit normality, or using an alternative probabilistic name: the law of large
numbers, and what is much more, they also seem to exhibit the square root law, or
perhaps even the delicate central limit theorem. (Note that these results, the law of
large numbers, the square root law, and the central limit theorem, are the benchmarks
of Probability Theory.)
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Summarizing, we can say that for the “interesting” real numbers (or “special”
numbers) the decimal expansion, and in general any base b > 2 expansion, either
features a simple behavior (such as the periodicity for the rationals) or features full-
blown “randomness” (which seems to be the case for all special irrationals ever
tried). We refer to this striking phenomenon as the Giant Leap. What makes the
Giant Leap so uniquely interesting is the sharp contrast between the overwhelming
numerical evidence and the total lack of rigorous mathematical proof. We don’t
even know whether or not each of the ten digits keeps occurring infinitely often in
the decimal form of 7 (or \/5, or e, etc.).

How come that these questions are mathematically untouchable? We are sure
the reader’s first reaction is to turn to Probability Theory for help. But here
is the big dilemma: the decimal expansion of 7 (or +/2 or e) is an individual
sequence, and traditional probability theory says nothing about the “randomness” of
individual sequences. In fact, the basic idea of Kolmogorov’s axiomatic foundation
for probability theory is to scrupulously avoid the notion of “individual random
sequence,” and right now we simply do not have any workable, agreed-on definition
of “randomness.”

Note that in the 1920s, before Kolmogorov’s axioms, von Mises made an attempt
to come up with a definition, but his work remained incomplete and controversial
(we can actually say that von Mises’s failure was a key motivation for Kolmogorov’s
axiomatic approach). Von Mises’s basic idea was to express the apparent lack
of successful gambling schemes in a formal definition for random sequences.
Many years later Information Theory (Shannon) suggested the new idea to define
randomness via inability to compress data. Combining Mises’s old idea with this
new idea, people like Chaitin, Kolmogorov, Solomonoff, and Martin-Lof introduced
and developed the notion of algorithmic randomness. An individual sequence of
length n features algorithmic randomness if the program-size complexity (i.e., the
length of the shortest program describing the sequence) is close to n (i.e., the length
of the sequence). The intuitive meaning is that the sequence is “patternless”; we
cannot really compress the information: we have to write down the whole sequence.

Notice that algorithmic randomness is an extremely restrictive notion. Any
sequence generated by a simple program (i.e., every “long” sequence we know) can
by definition never be algorithmically random. For example, we know very long
initial segments of the decimal digits of /2 and 7; they are generated by simple
programs. For /2 we have the ancient Babylonian Algorithm: let ¢y = 1 and define
asequence ay, ds, a3, . . . inductively by letting

a, + al
——, n>0. (2.191)

an+l - 2 ) -

The convergence a, — +/2 is extremely rapid: the number of correct decimal
digits doubles with each iteration. Since (2.191) is a very short program, the
program-size complexity of the digit sequence of +/2 is very low, so the algorithmic
randomness of the digit sequence of /2 is also very low. This means the concept
of algorithmic randomness is quite irrelevant in our quest for understanding the
apparent randomness we clearly see in these digit sequences.
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The message of von Mises’s failure is that there is no “absolute randomness”; in
each case one has to decide on a cutoff. For example, in this book we say “enough”
and stop around the central limit theorem; this is where we draw the line in the
infinite hierarchy of notions of randomness.

Most mathematicians would agree that “randomness up to the central limit
theorem” is already a high, advanced level in the hierarchy.

For more readings about “randomness” and “random numbers,” we recommend
Chap. 3 in Knuth [Kn2].

In our search for finding further evidence supporting the Giant Leap, we switch
now from the decimal expansion to the continued fraction. To represent a real
number x as a continued fraction, first we take the integral part of x, then we take
the reciprocal 1/{x} of the fractional part of x, write it as the sum of the integral
part and the fractional part, then take the reciprocal of the fractional part, and keep
repeating the process:

X =ao+ , (2.192)
ap +

a +

1
as + ...
or by using the space-saving notation, x = [ao; a1, az,as, .. .]. Note that continued
fractions play a key role in diophantine approximation, in uniform distribution, and
in the solution of some diophantine equations. Continued fractions provide another
perfect illustration for the Giant Leap phenomenon. Indeed, for every “interesting”

real number ever tried the continued fraction either has a simple behavior or it
exhibits full-blown randomness.

Examples of Simple Behavior:

1. rational numbers have finite continued fraction;
2. quadratic irrationals, such as «/f, «/5, «/§, «/6, V7 , all have periodic continued
fractions—here are a few examples:
V2=11;2,2,2,2,2,.. ],
V3=1[1:1,2,1,2,1,2,1,2,.. ],
V5=[2:4,4,4,4,4,..],
V6 =1[2:2,4,2,4,2,4,.. ],
V7= [2:1,1,1,4,1,1,1,4,1,1,1,4,..],

1+ /5
+T“/_=[1;1,1,1,1,1,...],
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where the last one, representing the golden ratio, has the simplest form. A more
complicated example is

V67 =1[8:52,1,171,1,2,516,52,1,1,7,1,1,2,5,16,.. ],

where the period of /67 is the block 5,2,1,1,7,1,1,2,5,16 of length 10. Note that
the length of the period of /7 in general remains a big mystery. The maximum
length of the period for 4/ can be asymptotically as large as (roughly) /7 itself,
or it can be very short like /65 = [8; 16, 16, 16, . . ], where the period has length
one.

3. special number e and its “family”: we know from Euler that

e=1[2:1,2,1,1,4,1,1,6,1,1,8,1,....1,2n,1,.. ],
Ve=[1;1,1,1,5,1,1,9,1,1,13,1,.... Ldn + 1, 1,.. ],
e?=1[7:2,1,1,3,18,5,1,1,6,30,....3n — 1,1,1,3n,12n +6,.. ],
Ye=1[1;2,1,1,8,1,1,14,1,1,20,1,...,1,6n + 2, 1,.. .

Notice that they all have a simple linear pattern. The list is in fact infinite,
including all numbers of the form e?/¥ where k > 1 is an integer; for more
about it, see, e.g., Lang [La]. By the way, the “simplest” member of the family is

e [1,3,5,7,9,....2n +1,.. ]

- =135 /7,...,2n yeee

er+1

(when the integral part is zero, we often delete O and the semicolon from the
beginning).

Examples of Random Behavior: The rest of the special numbers, including e3, all
seem to exhibit full-blown randomness with a common limit distribution for the
digits. Unlike the familiar decimal expansion, where we have ten possible digits,
in the continued fraction the jth digit a; (often called the jth partial quotient) can
be any integer > 1, so equidistribution does not make any sense. The particular
limit distribution for the continued fraction comes from the invariant measure of the
relevant mapping

T: x—{1/x}, (2.193)
which maps the open unit interval (0,1) onto itself. Note that 7" is not one-to-one:

the inverse image of an interval (a, b), where 0 < a < b < 1, is the infinite union
of disjoint intervals
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1 1 1 1 1 1 . 2.194)
140 14+a)’ \24b'24+a )’ \34+b’34+a)’ ’

each one of these intervals is mapped to the whole (a,b) by T'.
If we define the measure of an interval (a, b) to be

m(a,b) =

1 b 1 1
/ dx +b (2.195)

= ()g .
log2 I4+x log2 I +a

then one can easily check that this m-measure of the interval (a, b) equals the sum of
the m-measures of the intervals in (2.194). We can extend (2.195) to any measurable
set A C (0, 1) by the integral

m(A) = 1 dx
Clog2 Ju 1+ x°

(2.196)

where log stands for the natural (base e) logarithm. Measure (2.195) and (2.196)
was already known to Gauss (who, for number-theoretic reasons, carried out an
extensive numerical experimentation on continued fractions). The key property of
measure (2.195) and (2.196) is that it is preserved by the transformation 7. By
definition the first partial quotient a; of a real x € (0, 1) equals an integer k > 1 if
and only if x falls into the interval (k+r1’ %), which has m-measure

1 1k g 1 1 1
/ o (log(l + ) —log(l + —)) =
| 2 k

log2 Jijk41 1+ x  log k+1
log LEE 1
k(k+2)
- = log[1+—"). 2.197
log2  log2 Og( +k(k+2)) (2.197)

A well-known theorem of Kusmin states that, for almost every x € (0, 1), the
density with which an arbitrary integer k > 1 appears in the sequence a, a;, a3, . . .
of partial quotients in (2.192) is exactly (2.197). For example, for almost every
x € (0, 1), the density of the digit 1 is exactly

M =0415...~ 41.5%. (2.198)
log?2

It was realized later that both Borel’s theorem and Kusmin’s theorem are special
cases of the very general Ergodic Theorem of Birkhoff. Note, however, that
Birkhoft’s general theorem doesn’t give any error term; on the other hand, in Borel’s
theorem and also in Kusmin’s theorem we can prove a basically square root size
error term (the sharpest form of Borel’s theorem is the well-known Law of the
Iterated Logarithm).
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Kusmin’s theorem clearly fails for x = e [where the frequency of the digit 1 is
2/3, which differs from the 41.5 % in (2.198)] and fails for the quadratic irrationals
(which are periodic). By contrast, higher roots (cube roots, fourth roots, etc.) never
appear to show any simple pattern like what e or /e or e* does. Unlike “regularity,”
they all seem to show “randomness” with Kusmin’s rescaling [see (2.197)].

For example, among the first million partial quotients in the continued fraction
for the cube root of 2 the digit 1 appears 414,983 times, which is remarkably close
to the 41.5 % in (2.198), i.e., Kusmin’s limit (2.197) with k = 1.

The same remarkable fact holds for the special number 77: among the first million
partial quotients the digit 1 appears 414,526 times, again very close to 41.5 %.

These are striking numerical facts, but, unfortunately, we cannot prove any
theorem—not even the most plausible conjecture. For example, we don’t know for
sure whether the sequence ay, a;, as, ... of partial quotients for the cube root of
2 is bounded or not. What is worse, we don’t know a single algebraic number of
degree > 3 for which the sequence ay, a;, as, ... of partial quotients is unbounded.
We don’t know this in spite of the well-known conjecture (raised by Khinchin in
the 1930s) claiming that a;, a;, as, . .. is unbounded for every single real algebraic
number of degree > 3.

Summarizing, we can safely say that computer experimentation strongly supports
the Giant Leap phenomenon for both the decimal (or any other base) expansion and
the continued fraction expansion of special numbers: they either exhibit very simple
behavior or they exhibit full-blown randomness. The only technical difference is in
the scaling: in continued fractions the ordinary uniform Lebesgue measure in the
unit interval (0,1) has to be replaced by the nonuniform Gauss measure (2.195) and
(2.196).

In spite of the overwhelming numerical evidence, we don’t have the slightest idea
how to prove the Giant Leap phenomenon. A good illustration of what contemporary
mathematics can do versus the conjectured truth is the concrete special number x =
/2 and a brief discussion of the celebrated works of two Fields medal winners, K.F.
Roth and A. Baker. We begin with recalling a classical result of Dirichlet: for every
irrational « there are infinitely many rationals p/g such that

<. (2.199)

In the 1950s K.F. Roth completed a long line of research initiated by Thue and
Siegel and proved the following basic theorem in diophantine approximation (he
was awarded a Fields medal in 1958): for any real algebraic number of degree > 3,
including the case @ = +/2, and for any & > 0,

c(o, )
q2+£ ’

a_£\>
q

(2.200)

where ¢ = c(«, &) > 0 is a constant (note that the case of quadratic irrationals is
trivial). In view of (2.199) Roth’s inequality (2.200) is nearly best possible (since
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& > 0 can be arbitrarily small), but a more delicate analysis reveals that there is
plenty of room for improvement in (2.200). Indeed, (2.200) is equivalent to

c(o, €)

&

q-llgall > (2.201)

for every integer ¢ > 1, where ||x| denotes the distance of a real x from the nearest
integer. On the other hand, for every real algebraic number of degree > 3, including
« = /2, computer experimentation seems to support the much stronger inequality

c(o, )
logq - (loglogg)'*¢

q-lliqall > (2.202)

for every integer ¢ > 3, and also that (2.202) is best possible in the sense that
we cannot delete ¢ > 0. Notice that there is an exponential gap between (2.201)
and (2.202).

By the way, (2.202) is certainly true for almost every real «; the proof is easy.

A serious handicap of Roth’s theorem (or Thue-Siegel-Roth theorem) is that
the constant ¢ = c(«, &) > 0 is ineffective: we cannot replace it with an explicit
constant. The reason is that the proof technique (“Thue method”) is indirect—it
involves a hypothetical assumption that there is a large “bad” g, which behaves
wickedly, and the constant ¢ = ¢(«, €) > 0 depends on the size of this “bad” g (g is
finite, but in principle it can be arbitrarily large). Nevertheless effective results have
been obtained by A. Baker in the 1960s (for which he was awarded the Fields medal
in 1970). For example, in 1964 Baker proved the explicit result

—6

10
q-lgv2] > s (2.203)

that holds for every integer ¢ > 1. The point here is the effective constant 107° in
the numerator and the exponent 0.955 < 1 in the denominator (notice that (2.203)
with 1 instead of 0.955 is trivial, since +/2 is a cubic number).

We have to admit, therefore, that there is a humiliating exponential gap between
the apparent truth [i.e., conjecture (2.202)] and what contemporary mathematics can
do: the ineffective (2.201) and the effective (2.203), due to two Fields’ medalists.
(Nevertheless, even a “weak” result like (2.203) has remarkable consequences in the
theory of diophantine equations.)

Conjecture (2.202) for real algebraic numbers (of degree > 3)—a special case
of the vague Giant Leap phenomenon—features “randomness.” Where does this
pseudorandomness come from? This is a fundamental open problem, and we are
nowhere near to understand it (not to mention answering it). For more about this
exciting general issue, see Wolfram [Wo] and Beck [Be6]].
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With some exaggeration we may even include the celebrated Riemann Hypoth-
esis as another example of the Giant Leap. In the history of mathematics the set
of primes served the first example of what one would call a “random set.” The
Riemann Hypothesis (arguably the most famous open problem in mathematics) is
equivalent to a problem about the “randomness” of the primes in the following way.
The starting point is Riemann’s remarkable Explicit Formula for the prime-counting
function 7(x) = Y p<x 1, which involves the nontrivial zeros of the Riemann zeta
function. Instead of the original formula, nowadays it is customary to discuss a
simplified version, due to von Mangoldt, where the plain prime-counting function
7 (x) is replaced with a weighted version (“Mangoldt sum”)

Yo(x) = Y A(n). (2.204)

1<n<x

where A(n) = log p if n is a power of p (p always stands for a prime) and A(n) = 0
if n is not a prime power. Riemann’s Explicit Formula in prime number theory goes
as follows:

Yolx) =x— )%) +0(), (2.205)

P

where p runs through the nontrivial zeta-zeros (meaning the zeros in the vertical
strip with real part between 0 and 1). Riemann described the number of the nontrivial
zeta-zeros (say) in the vertical box where the imaginary part has absolute value < T
(T is “large”): the number is

1 + log(27)

T 4+ O(logT). (2.206)
2

1
o TlogT
In sharp contrast to the number, we can prove very little about the location of
the nontrivial zeta-zeros. What we can prove is much, much less than the Riemann
Hypothesis, which claims that the nontrivial zeta-zeros are all on the critical line
(vertical line with iz = 1/2; we cannot even prove the existence of any zero-free
strip between 0 < Mz < 1). Applying the Riemann Hypothesis to (2.205), we obtain

Yo(x) = x + O(x'/2HoW), (2.207)

or equivalently (via integration by parts)

n(x) = / m+ O(x'/?+oWy, (2.208)

The square root size error term O (x!/2T°(D) nicely fits the so-called random set
simulation of the primes. By the Prime Number Theorem, the density of the primes
atx is . This motivates the following simulation (due to Cramer): starting from

log x°
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n = 3, for every integer n > 3 we toss a “loaded n- coin” that shows Heads with
probability Togn and shows Tails with probability 1 — 10 —. Keeping n if the outcome
of the trial is Heads and rejecting it if the outcome is Tails, we obtain a Random
Subset of the natural numbers; we call the elements of this random set “random
primes.” The expected number of “random primes” is exactly

— + 0(1), (2.209)
logn logt

and the actual number of “random primes” < x fluctuates around the expected
number (2.209) with the usual square root size standard deviation O(x!/2+°(),
In other words, formula (2.208), which is equivalent to the Riemann Hypothesis,
is in perfect harmony with the O (x!/2+°() size fluctuation of the Random Subset
(i.e., the Monte Carlo simulation of the primes).

The converse is also true: if the Riemann Hypothesis fails then the fluctuation
in (2.205) is much larger than the standard deviation O(x!'/?*°() Indeed, if there
is a nontrivial zeta-zero p = B+iy with 8 # 1/2,then p* = (1—f)+iy is another
zeta-zero (follows from a symmetry of the Functional Equation of the zeta function),
and max{f, 1 — B} = o > 1/2. Then in (2.205) the fluctuation around x is at least
as large as x*~°(, and also the fluctuation of 7 (x) around the logarithmic integral
is at least as large as x* 1), which is asymptotically much larger than the standard
deviation O(x!/2t°()) of the Random Subset (it is not too difficult to make this
argument precise). In other words, the failure of the Riemann Hypothesis implies
that the “random prime” model is grossly incorrect.

Even if no one has a rigorous mathematical proof, everyone would agree that the
Riemann Hypothesis is “true”—just like everyone would agree that 7, e, +/2 are
all normal. Indeed, we have an overwhelming “computer science proof™: it cannot
be an accident that the first billion zeta-zeros are all on the critical line. Since the
Riemann Hypothesis is “true,” the Random Prime model predicts the fluctuations in
the global distribution of primes very accurately.

The common feature of the digit sequences of special numbers and the set of
primes is the “apparent randomness” and the (almost) total lack of rigorous proofs.
Our main goal is to prove results, such as Theorems 1.1 and 1.2, which support the
Giant Leap phenomenon. These results are admittedly modest first steps only. Our
second goal is to challenge the reader to participate in the long-term research project
of exploring this exciting mystery.

What we do here has some vague formal similarities to the Erd6s—Kac theorem
(about the number of prime divisors of typical integers) and other probabilistic
results about multiplicative and additive number theoretic functions (see, e.g.,
Elliott’s book [El] or Kac [Ka]). However, in spite of the formal similarity, the two
subjects are rather different.
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2.6 Connection with Quadratic Fields (I)

After the philosophical detour of Sect.2.5, now we return to the proofs of our
central limit theorems (Theorems 1.1 and 1.2); in particular, to the computation
of the expectation and the variance. In Sect. 2.4 we proved Proposition 2.16, which
evaluates the mean value as follows:

1 1
Mo(N) = =5~ Z_:l preeY + 0(1), (2.210)
assuming « is a badly approximable number. The following result is an alternative
formula for M, (N) in the special case when @ = v/d, d = 3 (mod 4) is a square-
free positive integer. The necessary distinction between the cases d = 1 or 3 (mod 4)
is one of the characteristic peculiarities of algebraic number theory—a subject that
we are going to heavily use below.

Proposition 2.20. Assume that d is a square-free positive integer with d = 3
(mod 4), then

Jd 1 log N
M ;(N) = — § : 5 + O ((loglogN)?),
—dy? | 1
T oo @Y ogd
primary representatlons

(2.211)
where ng = up + vox/g comes from the least solution x = ug, y = vo of Pell’s
equation x* — dy* = 1 (“least” means that xo > 0, yo > 0 and yq is least).

The meaning of “primary representations” in (2.211) will be explained in the proof
below.

Proof. First we give a precise definition of the infinite series

1
> . (2.212)

2 _ gy2

wnzoo: Y

primary representations

in the middle of (2.211), and prove the convergence. Note that x> — dy? is the
principal (binary quadratic) form of discriminant 4d, and the theory of quadratic
forms of discriminant 4d is equivalent to the theory of the real quadratic field
Q(v/d). We assume that the reader is somewhat familiar with the simplest concepts
and facts about quadratic forms and quadratic fields (see, for example the book
[Za4]).

We recall the well-known fact that, given any integer A # 0, if the equation
x2—dy? = A has one integral solution (x, y), then the equation has infinitely many
integral solutions. Indeed, if x} — dy? = A and u*> — dv* = 1, then the product
formula
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(xl—i-yl\/g)(u—i-vﬁ) = (xlu—i-ylvd)—i-(xlv—i-ylu)x/g = xz—i-yz\/g (2.213)

leads to a new solution x, = xju+ y1vd, y, = x1v+ yju of the equation xz—a’y2 =
A. Since Pell’s equation u?> — dv?> = 1 has infinitely many solutions, generated by
the least solution, product formula (2.213) gives rise to infinitely many solutions
of x2 — dy? = A. The two solutions, (x;, y;) and (x2, y2), related by the product
formula (2.213), are called associates—this defines an equivalence relation on the
set of all solutions of x> — dy?> = A. Let R;(A) denote the number of equivalence
classes. Note that R;(A) is always finite and satisfies the inequality

Ra(A) = (|4]), (2214

where 7(n) is the divisor function, i.e., () is the number of (positive) divisors
of n, including 1 and n itself. Inequality (2.214) is a classical result (it is in fact a
corollary of an exact formula for R;(A), due to Dirichlet). Now we are ready to
define the precise meaning of series (2.212):

1 Ri(A) < Ry(n) — Ry(—n)
Z e Z == Z — (2.215)
(x.y)#(0,0):

AF#0 n=1
primary representations

To prove the convergence in (2.215), we describe a definite way of selecting a
representative solution from each equivalence class—we call these representatives
the primary solutions of x> — dy* = A. First we take the conjugate of the product
formula (2.213):

(x1 = »iVd)(u—vVd) = x; — y23/d, (2.216)
and then take the ratio of (2.213) and (2.216):

xl—i-yl\/g'u—l—vx/g_xz—}-yzx/g

= . (2.217)
xl—yl\/g M—V\/E XQ—yz\/g

We have u + vv/d = +n™ for some integer m (where n = 7, is the fundamental
unit), and so u — vWd = +n~". Returning to (2.217), we have

Xt ypvd  x +y1\/3' 2m
XQ—yz\/g xl—yl\/g '

In view of (2.218) there is just one choice of m (for a given x; and y;) which will
ensure that

(2.218)

1<XQ+Y2\/E<772

R < (2.219)
X2 — yz\/g d
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Equation (2.219) does not change if we replace (x7, y2) with (—x2, —y;), S0 we can
further ensure that

X2 — yav/d > 0. (2.220)

The particular solution x = x;, y = y, of x> — dy> = A that satisfies (2.219)
and (2.220) will be called primary.
To prove the convergence in (2.215), we estimate the sums

N N
Z R;(n) and Z R;(—n)
n=1 n=1

by employing a simple lattice point counting argument. (It is worthwhile to point
out that the same lattice point counting argument is used in the proof of Dirichlet’s
class number formula for real quadratic fields 4 (d) logn, = VdL(1, yq).) We will
show that

N
Y " Ry(n) = co(d)N + O(VN) (2.221")
n=1
and
N
> " Ry(—n) = co(d)N + O(V'N) (2.221”)
n=1

with the same constant factor cy(d) (which is of course independent of N).

Y

y=z/Vd
T+Vd _ 2
o—va

hyperbolic
triangle H(N)

y:—z/\/d—
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To prove (2.221), we use (2.219) and (2.220), which tells us that the sum
Z;iv=1 Ry (n) equals the number of lattice points (x, y) € Z satisfying the three
requirements:

x+yx/g
x —yd

The region defined by Eq.(2.222) is a sector of a hyperbola bounded by two
half lines through the origin—we call it a “hyperbolic triangle,” and denote it with
H(N) = Hy(N); see the picture. The left corner of the “hyperbolic triangle”
H(N) = Hy(N) is the origin (0, 0), the lower right corner is the point (+/N, 0),
and the upper right corner is the intersection of the hyperbola x> — dy?> = N and
the positive side of the line

0<x2—dy?<N, x—yJd>0,1< <13 (2.222)

x—}—y\/g_nz
x—yva ¢

It is not too difficult to determine the area of H(N): we have

Area(H;(N)) = logng. (2.223)

N
2V/d
We outline the proof of (2.223). First we change the coordinates from x, y to u,v
where u = x — y\/g andv = x + y«/g and compute the determinant

du,v) _ '1 —Vd| _, = (2.224)

Ax.y) |1 Vd
In the u, v-plane, the hyperbolic triangle H(N) [defined by (2.222)] is given by
O<uv <N, u>0, u<v§m72.
These conditions are equivalent to
0<u<+~N, u<v<min{up’, N/u}. (2.225)
Since un? < N/u is equivalent to u < ~/N /n, the area of (2.225) is
VN/n VN N
/ (m]z—u)du+/ (——u) du = Nlogn.
0 N/ \ U

This has to be divided by the determinant in (2.224) to obtain the area in the x, y-
plane and this gives (2.223).
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To estimate the number of lattice points inside the hyperbolic triangle H(N), we
use the general inequality (see Proposition 1.9)

Area(H) — O(Perimeter(H)) < |H N Z*| < Area(H) + O(Perimeter(H)) + 1.

(2.226)
The perimeter of the hyperbolic triangle H(N ) is O(+/N). Indeed, the three vertices
of H(N) are (0,0), (\/W 0), and (xo, yo), where the point (xo, yo) satisfies both
equations

x+y«/3_ 5

2 2
x2—dy*=N, —=— =p>.
x—yva

(2.227)

It follows from (2.227) that xo + yo JVd =N na4. The coordinates of the vertices of
H(N) are all in the range O(~/N ), implying that the perimeter of H(N) is O(+/N).
Applying (2.226) we have

N
Z Ri(n) = Area(H(N)) + O(Perimeter(H(N))) =
n=1

logna + O(V/N). (2.228)

N
2/d
Repeating the same argument for 0 < dy*> —x? < N instead of 0 < x> —dy?> < N,
we obtain the same right-hand side:

N
N
Ri(—n) = 1 O(v/'N), 2.229
;d(n) 2ﬁ0g0d+ (VN) ( )

proving (2.221’) and (2.2217).
Taking the difference of (2.228) and (2.229), we have

N
> _(Ra(m) = Ry(=m)) = O(V/N). (2.230)

n=1

Now it is easy to prove the convergence of the series in (2.215). Indeed, by
using (2.230) and Abel’s transformation (2.119), we have forany 1 < N < M,

i Ry(n) = Ra(-=n) _ MZ“ Son(Ra(n) = Rq(—n)

= n = m(m + 1)

I ¢ - oWm) | 0/M)
+ﬁn;v(Rd(n)—Rd(—n))=Z St

m=N

= O(N7'?.

(2.231)
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Equation (2.231) immediately implies the convergence of the infinite series
in (2.215):

1 o~ Ra(n) — Ra(—
§ : - = E M is convergent. (2.232)
x2 —dy? n
(x.y)#(0.0):

n=1
primary representations

If x =w >0,y =z > 0is a primary solution of x> — dy? = A with A > 0, then
by definition

w+zvd 2

A=w?—d=Ww+zvVd)w—zVd), 1 < —= <2,
( o=/, 1< DT <)

implying

VA <w4zVd < VAn,. (2.233)

It follows from the product formula (2.213) that for every integer j, (w + d ) ng
gives another solution of x> — dy? = A, and by (2.233) we have

w4z, <2+ o()NVd < j < +0(0). (2.234)

log(N/+/A)
logn
The same holds for x> — dy? = A with A < 0, the only minor difference is that

in (2.234) we have to replace ~/A with \/|A].
Thus by (2.234) we obtain the key formula:

1 Ry(A) — Ry(—A) [log(N/~A
> X2—dy? > L A “ )_<0g1(0 /f)+0(1))’
1<y<N.1<x<N+/d: Y l<A<m &4
|x2—dy?|<m
(2.235)

which holds for any 1 < m < N. Equation (2.235) is the key to prove
Proposition 2.20; in the application below we will use (2.235) with the choice
m = (log N ), where ¢ > 1 is an absolute constant to be specified later.

We divide the left-hand side of (2.235) into two parts:

1
Z xz——dyz = Zl + Zz, (2.236)

|x2—dy?|<m
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where
= —1 2.237
Zl o Z x2 —dy? (2.237)
1<y<N,1<x<N+/d:
[x2—dy?|<m.|x—y~/d|<1/2
and

1

x> —dy?|<m.|x—y~/d|>1/2

First we show that

ZZ = 0 ((logm)*). (2.239)
To prove (2.239), notice that the conditions

X2 —dy? | <m, |x—yvd|>1/2

in (2.238) clearly imply

0<x+yvd <2m. (2.240)
Since the number of solutions of x> —dy? = A withx >0,y > 0, x + y«/g <2m

is estimated from above by R;(A4) - O(logm), by (2.238) and (2.240) we have the
following trivial upper bound on ) _,:

Zz -0 (logm 3 Ra(4) - AR"’ (_A)) . (2.241)
A=1

We recall (2.214): R;(A) + R;(—A) < 1(A) where 7(n) is the divisor function
(number of divisors of #) and using this in (2.241) we obtain

Zz =0 (logm i %k)) . (2.242)

k=1

We recall the following well-known fact about the divisor function (see, e.g., in
[Ha-Wr]):

> (k) = O(nlogn). (2.243)
k=1
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An application of (2.243) in formula (2.242), combined with the Abel’s transforma-
tion (2.119), gives (2.239).

Next we study >, defined in (2.237). We are motivated by the vague approxi-
mation

kvd +¢
kvd + ¢ 2¢3

tan(rkvd) ~ w(kNd — ) = w(k~/d — £) (dk? — %),
(2.244)

where £ = £(k, d) is the nearest integer to k+/d . It is easy to make (2.244) precise
by using the beginning of the Taylor series of tan(x): tan(x) = x + O(x?); then a
simple calculation gives the following precise equality:

1 2/d

- = O(|[kVd||/ k) + O(1/k?). 2.245
K anGrk V) 7dk =) (I /&) + O(1/k") ( )
Thus we have [see (2.237) and (2.245)]
1 24/d
- X% Nd) 2 2 —dk)
1<k<N: tan(x ) 1<k<N.I<{<N+/d:
2/dklkN/d| <m |2—d k2| <m [—k/d|<1/2

+0)_ k) +0 > lkvd|l/k | =

k>1 1<k<N:
24/dk||k/d|| <m
Vd
—> +tom+o S kVdl/k | (2.246)
1<k<N:
2V dk|lk~/d|| <m
provided
. . . . 1

m is a half-integer, i.e., m = integer + > (2.247)

To explain the role of “half-integer m” [see condition (2.247)] in (2.246), note that
|dk* — €% = (k~/d + £)|k~/d — €] is clearly an integer, and

2Vdk|kNd| = 2Vdk|kNd — €] = (Vdk + £) + (Vdk — 0)|kv/d — £] =

= |dk?> — | + (Vdk — £)* = integer + (Vdk — £)*. (2.248)
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Since £ is the nearest integer to /dk, (v/dk — £)® < 1/4, and so by (2.247) and
(2.248) with m = m; + 1/2, where m is an integer, we have

1
2V dk|kNd | sm=mi+ 5= |dk® — 2] < my. (2.249)
It is easy to estimate the error term in (2.246):

> kVadl/k< > 1/k+ Y m/k*= O(ogm).  (2.250)
1<k<N: 1<k<m m<k<N

2/dk|k~/dl|<m

Next we apply the following general result, which holds for any badly approximable
o (we will choose @ = V/d).

Lemma 2.21. If o is badly approximable, then for any N > 2 and ju > (log N)°,

1 1
My(N)=—— _
«(V) 2w 1<nz<:N. ntan(rwno)

nflnell<p

+ o).

Here the error term O(1) depends only on the upper bound on the partial quotients
of the badly approximable o.

First we show how to use Lemma 2.21 to complete the proof of Proposition 2.20.
We make the choice & = (log N)® 4+ O(1); here I choose the constant O(1) in such
a way that

1
24/dp = m = integer + > (2.251)

Combining (2.246)—(2.251) with Lemma 2.21—where o = V/d—we obtain

d
M 7(N) = ﬂ_le + O(loglog N). (2.252)

By (2.235)~(2.239) and (2.252),

Mﬁ(N) -z A log ng4

1<A<m

Vd 3 Ry(A) — Rd(—A)_(log(N/ﬂ) n 0(1)) ) ((loglong)’
(2.253)
where by condition (2.251),

m = 2+/dp = 23/d ((log N)® + O(1)) = half-integer. (2.254)
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Note that

5 Ry(4) = Ra(=4) <log(N/ VA)

o)) =
A log 14 * ())

1<A<m

_ logN Ra(A) — Ra(—4) (Rq(A) — Rq(—A))log A
- lognd lﬂZ;m A " ¢ (l;m A ) '

(2.255)

Again using (2.214), (2.243), and Abel’s transformation (2.119), a routine calcula-
tion gives

) (Ra(4) — Ra(=4))log4 _

1 ((logm)’). (2.256)

1<A<m

Moreover, by (2.231) and (2.254),

5 Rl = Rac)

v Om™"*) = 0 ((log N)™%). (2.257)

A>m

Combining (2.255)—(2.257), we have

Ry(A) — Ry(—A) [log(N/~/A) _
15,42,” 7 - ( o 70 + 0(1)) =
_ el s R = RaCA 1 5 ((loglog NYY) (2.258)

~ logng = A

Finally, (2.253) and (2.258) imply Proposition 2.20.
It remains to give a

Proof of Lemma 2.21. We basically repeat the argument of Step One in the proof
of Proposition 2.16 (see Sect. 2.4). This means, we are going to combine Koksma’s
inequality [in fact, we use the form (2.148) and (2.149)] with Lemma 2.19 and try to
force the usual cancellation of the “positive and negative sides.” Since the notation
“||x||=small” does not tell us whether x is slightly less or slightly more than an
integer, we will use the notation || x||™ and ||x|~ introduced in Sect.2.4, see the
definition between (2.153) and (2.154). Let

1 1
AYM, p.g.r)= 1M1 -~y <k <M: L < ket < Z(1+-)
r M M q
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and
_ 1 p _ p 1
A M, p,q,r) =M1 — - k<M: —<|k —((1+ -
(M, p,q,r) ( r)< < M_II of <M( +q)

where M > 2p, p > 2,q > 1, r > 1 are real numbers (to be specified later).
We apply Lemma 2.18—in fact, we use Eq. (2.148)—with

b=La+ ). re =

- r -
““w N q” tan(mrx)’

and the finite point set in the interval [a, b] is

X = {ka (mod 1): ke AT(M,p,q.r)}:

then we have

1 AT M, p,q, b b .
> S CLPI I [ fyax] < a [ 15 @,

tan(rk b
keAt(M,p.q.r) (7{ Ol)

where by Lemma 2.19, A = O(log p). Also, we have

b
[ 1riax =15e) - s@i = 0 (M(l L M) _o (ﬂ) ,
a P q P prq

and again using Lemma 2.19—in fact, we use it twice: first for n = M, then for
n = M(1 —1/r), and finally, take the difference—we can estimate the number of
elements |[AT (M, p,q,r)| of the set AT (M, p, q,r) as follows:

M
|[AY (M, p.q.r)| = —(b—a)+ OQlog(M(b —a) +2)) =

M
= ——(b—a) + O(log((p/q) +2).

It follows that

1
Z tan(wko) -

keAt(M.p.q.r)

_M / F)dx -+ O(M log p/ pg) + 00((p/) +2)) s [ Fx) dx =

b
= 2 [ 1w dx + 0M0g p)/ pa) + O Iox((p/a) + 2/ p).
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Ifki, ko € AY(M, p,q,r) thenk,/ky = 1 + O(1/r), and so we have

1 1 [
2 Ktan(rka) ?L SOy dx+

keAt (M, p.q.r

b
+ O(L log p) + 0(llog((p/q) +2)+ O(r_z)/ f(x)dx. (2.259)
pq p a

Note that

/ab S(x)dx = /ab tanczj'crx) =

<log(b/a) =log(1+ 1/q) = O(1/q). (2.260)

Since we can repeat the argument for A~ (M, p,q,r), by (2.259) and (2.260) we
have for both AT (M, p,q,r)

1 1 [?
2.  Klan(rka)| :?/a Sy dx+

keAS(M,p.q.r

+0(—log p)+ O loe((p/a) + 2) + 04 ™) (2261)

holds for both “6 = +” and “§ = -

Applying (2.261) with p; = p(1 + 1/¢)’, j = 0,1,2,..., we have for both
|x||" and |x||~, i.e., formally for both “§ = +” and “§ = —” (note that the value
of parameter ¢ > 1 will be specified later):

1 1 1/2
2 k|tan(zka)|  r J,

M(1—1/r)<k<M:
lkell®>p/M

f(x)dx+

1 1 y _
+0( log ) O(glog M) + O(g log M)O(-log((p/q) +2)) + O(g log M) O(r g7,
(2.262)
since we can clearly stop at j = O(glog M).

What we really want to estimate is a slightly different variant of (2.262), where
the condition ||ka||* > p/M is replaced by k||ka||® > p:

1
2 (ke (2.263)
MA—=1/r)<k<M: kl tal’l(jtka)|

kllkell®=p
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Since M(1 —1/r) <k < M, |ka|® > p/M in (2.262) implies k|[lka|® > (1 —
1/r)p. By changing pto p’ = (1 —1/r)p,a = p/M changes to a’ = (1 —
1/r)p/ M, and this gives the additional error term

1 [ 1M d 1 M
-/ f(x)dx = -/ Y oo 2T o). 2204
rJo r Ja=i/np/m tan(wx) —r Mr p
Thus, by using (2.262) and (2.264) in (2.263), we have (“§ = +” and “6 = —7)
1 1 1/2 J
2. KanGka)] 1), /4

M(1—1/r)<k<M:
klkel?=p

log M -log p

+0( )+ 0(% log M -log((p/q) +2)) + O(r~2 -log M) + o(r2).

(2.265)
In (2.265) we take the difference for “§ = +” and “6 = —:

Y :
M(1—1/r)<k<M: k tan(rrke)
kllkall=p

log M -log p

- 0( )+ 0(% log M -1og((p/q) +2)) + O(-2 -log M) + O(r ).

(2.266)
Next we choose r = (log M)? and apply (2.266) with M; = M(1 —1/r)/, j =
0,1,2,...,r=1.Since (1 = 1/r)" = e~ +0(1), (2.266) implies that for every M
there is a constant times smaller M * = (1 4+ o(1)) M /e such that

1
Z ktan(rka)
M*<k<M:
kllkell=p

4 .
_ o(leeM) - logp, 0% (log M)* -10g((p/q) +2) + O((log M) ),
(2.267)

We use (2.267) repeatedly: with M = N, M = (1 + o(1))Ne™', M = (1 +
0o(1))Ne™2, M = (1 + o(1))Ne™3, and so on—at the end we obtain

Y e
S k tan(mko)
kllkall=p

(log N)’ -log p

= 0( ) + 0(%(10g N)*-log((p/q) +2)) + O((log N)™1)).

(2.268)
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By choosing ¢ = 1 and p > (log N)® in (2.268), we conclude that

1
2. kan(rka) 0

1<k<N:

kllkal=p
Combining this with Proposition 2.16, Lemma 2.21 follows. O
This completes the proof of Proposition 2.20. O

2.6.1 A Detour: Another Class Number Formula

We recall that Proposition 2.20 is exactly Eq. (2.14) in Sect. 2.1, and it quickly leads
to a proof of the elegant Hirzebruch—-Meyer—Zagier class number formula (HMZ-
formula, in short) as follows. Assume that d = p = 3 (mod 4) is a prime > 3, and
the class number of the real quadratic field Q(+/d) is one, or using the traditional
h-notation, #(d) = h(p) = 1. Then we have the equality

1
Z PR~ L1, "), (2.269)
(x,)#(0,0): py

primary representations

where x* is the so-called norm-sign character and L(1, y*) is the corresponding
L-functionats = 1.

More precisely, y* is a unique character with values £ 1 defined for all ideals in
the ring of the algebraic integers of Q(+/d) (in fact, y* depends only on the narrow
ideal class) and satisfies y*((a)) = sign Norm(a) for the principal ideals (a).
Notice that, in our special case d = p with h(p) = 1, every ideal is principal.

The special L-function

L(S, X*) — Z X (A)

S
A:ideals Norm(A)
has the product decomposition

L(s, x*) = L(s, y—4)L(s, x—p) (2.270)

where

Lx) = Y and L5 g = 3 220

n
n=1 n=1
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are the (ordinary) L-functions of the complex quadratic fields Q(v/—4)=Q(+/—1)
(“Gauss integers”) and Q(,/—p); the characters y_4 and y_, are defined as follows:
x—4(n) = £lifn = £1 (mod 4) and y_4(n) = 0if n is even, and

(3

is the usual Legendre symbol (i.e., the quadratic residue symbol). Note that (2.270)
is “explained” by the elementary factorization 4p = (—4)(—p) of the discriminant
of x2 — py?; for a precise proof, see, e.g., Zagier’s book [Za4].

In the special case s = 1 Eq. (2.270) gives

L(1, x*) =LA, x—4)L(1, x—p). (2.271)
and by Dirichlet’s class number formula,

nh(=p)
N

L(l,)(_4):% and L(1,y_,) = : (2.272)

if p > 3.

Let ay,as, ..., as be the period of the continued fraction for ,/p (since p = 3
(mod 4) prime, the length of the period has to be even). (We have to exclude p = 3,
because Q(+/—3) has too many automorphisms—a technical nuisance in algebraic
number theory.) By Proposition 2.1,

—ay+a; —az £+ (—1)°
Mﬁ(N): ay — a 0312 (=1)a + 0(1) =

- . logN
_ 4 tar+---+ax log + o), 2.273)
12 logn

where £ is the last index for which g < N and 7 is the fundamental unit of Q(,/p)
(in the last equation we heavily used the periodicity of the continued fraction

of /p).
On the other hand, combining Proposition 2.20 with (2.269)—(2.273), we have

h(—p) logN

loglog N)?). 2.274
1 10gn+0(<ogog )%) (2.274)

M ;(N) =

Comparing (2.273) and (2.274), we obtain the beautiful equation

_ —ga .
h(—p) = U@ ‘;3 + (2.275)
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As far as we know this equation was discovered (or rediscovered) in the 1970s
by Hirzebruch, and it is called the Hirzebruch or Hirzebruch—-Meyer—Zagier class
number formula.

Note that, among the primes p = 3 (mod 4), the majority (in fact, about 80 % )
seems to satisfy the requirement 2(p) = 1 (i.e., the real quadratic field Q(,/p) has
class number one)—at least this is what we can read out from the numerical tables.
Unfortunately, despite the overwhelming computational evidence, nothing is proved
here.

It is more than surprising that the “mean value” M /5(N), associated with the
irrational rotation k,/p (mod 1), k = 1,2,..., N, is intimately bound up with
the class number /(—p) of the complex quadratic field Q(,/=p). This leads to the
following question.

2.6.2 How to Compute the Class Number in General:
The Complex Case

One way to do it is to use Dirichlet’s finite class number formula, which expresses
the class number in terms of the Dirichlet character of the corresponding discrim-
inant. The formula is the simplest when —d = —p, where p = 3 (mod 4). We
form the sum, say R, of all quadratic residues (mod p), and the sum, say N, of all
quadratic non-residues. Then A(—p) = (N — R)/p. For example, if p = 7, the
quadratic residues are 12,22, and 32 = 2 (mod 7), and the quadratic non-residues
are the remaining 3, 5, 6 (mod 7). The formula gives

B+5+6)—(1+4+2) 14-7
7 7

=1

h(=7) =

In the general case, the formula is the following: if K = Q(+/—d) is a complex
quadratic field, then

D

w(—d)
o I;X—D(k)k,

h(—d) = —

where —D(=—d or —4d) is the discriminant of K, y_p (k) is the real character
of K periodic modulo D (it is a product of certain Legendre symbols), and finally
w(=1) = 4, w(=3) = 6, w(—d) = 2 for the rest (the number of roots of unity in
the field). An equivalent form is

1
h(=d) = ———+ -p(k
(=d) 2_X_D(2)0<;)/2x p(k)

for all square-free d > 2.
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An alternative—in fact, more efficient—way to compute the class number is to
use “reduction theory.” There is an elegant reduction theory for positive definite
quadratic forms (i.e., when the discriminant is negative; we denote it (— D)), which
leads to a surprisingly simple algorithm to determine the class number 2(—D) of a
complex quadratic field Q(v/— D). We summarize it in a nutshell. By using a finite
sequence of simple unimodular substitutions of the form x = y’, y = —x’ and
x =x’ £y, y =y, any binary form can be transformed into another binary form
ax? + bxy + cy?, for which |b| < a < c. In fact, we can even force that either

—a<b<a<c or 0<b<a=c.

Such a form is called a reduced form. It is an important theorem that there is one
and only one reduced form equivalent to any given form. The number of reduced
forms with discriminant — D is the class number i2(—D).

For example, to calculate the class number when —D = —7, the inequality »? <
a® < ac and the fact 4ac —b*> = D give 3b> < D,ie., |b| < \/D/3 = \/7/_3 <2.
Since 4ac — b*> = D = 7 implies that b is odd, we have b = £1. Now 4ac =
1+7 = 8givesa = 1, ¢ = 2. The requirement —a < b < a < c excludes
the case b = —1, so there is only one reduced form of discriminant —7—namely,
x2 4 xy + 2y>—yielding h(-7) = 1.

A more complicated example is —D = —23. The inequality |b| < /D/3 =
V/23/3 < 2 and the fact 4ac = b? + 23 imply that b is odd and b = £1. Now
4ac = 1 +23 = 24 givesa = 1,¢c = 6ora = 2,c¢c = 3. The requirement
—a < b < a < cexcludes the case a = 1,b = —1,¢ = 6, so there are three
reduced forms of discriminant —23—namely, x> + xy + 6y? and 2x? £ xy + 3y?—
yielding h(—23) = 3.

Since h(7) = h(23) = 1 (i.e., the class numbers in the real cases are both one;
we omit the proof), we can double-check the facts #(—7) = 1 and h(—23) by using
the HMZ-formula, see (2.275). Since +/7 = [2; 1,1, 1,4] and +/23 = [4:1,3, 1, 8],
we have

=1 and h(-23) = #_14_8 =3,

—1+1-1+4
T = —————

We conclude this section with the remark that if o is an arbitrary quadratic
irrational

-B+ D
0= —

74 R thatis,aisarootofo2+Bx+C =0,and D = B% —4AC > 0,



2.6 Connection with Quadratic Fields (I) 165

then we have the following analog of formula (2.211):

VD 1 log N
2

My(N) = — ligible,
«(N) 22 Ax? + Bxy + Cy? | logn + negligible

(x.y)#(0.0):

primary representations

(2.276)
where 7 is the fundamental unit in Q(/D).
The proof of (2.276) is the same as that of Proposition 2.20. The guiding intuition
is that if y« is very close to an integer x, then

lyellVDy = £A(x—ya)(ya—ya') ~ A(x—ya)(x—ya') = Ax*+Bxy+Cy?,

where o’ = (—B — v/D)/2A is the other root of Ax2 + Bx + C = 0.
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