
Preface

We could choose randomness of
p
2 as an alternative subtitle of the book. Indeed,

the book connects two seemingly unrelated concepts, namely, (1)
p
2: symbolizing

the class of quadratic irrationals, including the theory of the quadratic number
fields in general and (2) randomness. These two concepts, representing algebra
(the science of order and structure) and probability theory (the science of disorder),
are the endpoints of a long chain of relations/implications. The periodicity of the
continued fraction of

p
2 (or any other quadratic irrational) means self-similarity.

Self-similarity leads to independence (e.g., via Markov chains; here we refer to
the well known probabilistic concept), and independence ensures (nearly) perfect
randomness. In particular, we prove some unexpected probabilistic results:

quadratic irrational H) periodic continued fraction H)

H) self-similarity H) independence .or independence via Markov chains/ H)

H) randomness W central limit theorem and the law of the iterated logarithm

This diagram may summarize the book in a nutshell.
The reason why we decided not to choose randomness of

p
2 to be the subtitle

is that it would perhaps mislead the reader. The reader would probably expect us
to prove the apparent randomness of the digit distribution in the usual decimal
expansion

p
2 D 1:414213562373095048801688724209698078569671875376948 : : : :

Unfortunately, we cannot make any progress with this famous old problem; it
remains open and hopeless (to read more about this and other related famous
open problems the reader may jump ahead right now to Sect. 2.5: A Giant Leap
in number theory). What we study instead is the “irrational rotation” by any
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quadratic irrational, say, by
p
2. We study the global and local behavior of the

irrational rotation from a probabilistic viewpoint—this explains the title of the book
probabilistic diophantine approximation.

Consider the linear sequence n˛, n D 1; 2; 3; : : :: it is perfectly regular, it
is an infinite arithmetic progression. Even if we take it modulo one, and ˛ is
an arbitrary (but fixed) irrational, the sequence n˛ (mod 1)—called irrational
rotation—still features a lot of regularities. For example, (1) we have infinitely
many Bounded Error Intervals, (2) we have infinitely many Bounded Error Initial
Segments, (3) every initial segment has at most three different “gaps,” and (4) there
is an extremely strong restriction on the induced permutations—these are all strong
“anti-randomness” type regularity properties of the irrational rotation n˛ (mod 1),
n D 1; 2; 3; : : : (properties (1)–(4) will be explained in depths in Sect. 1.1). These
regularities show that the irrational rotation is highly non-random in many respects.
This is why the irrational rotation (with an underlying nested structure) is also called
a quasi-periodic sequence.

Also we know from number theory that the key to understand the irrational
rotation n˛ (mod 1), n D 1; 2; 3; : : : ; is to know the continued fraction for
˛. The quadratic irrationals have the most regular continued fraction: the class
of quadratic irrationals is characterized by the property of (ultimately) periodic
continued fraction, for example,

p
2 D 1C 1

2C 1
2C���

D Œ1I 2; 2; 2; : : :� D Œ1I 2�:

Despite these regularities of the irrational rotation, our first main result exhibits
“full-blown randomness.” For example, how much time does the irrational rotation
n˛ (mod 1), n D 1; 2; 3; : : : ; spend in the first half Œ0; 1=2/ of the unit interval
Œ0; 1/? Well, we prove a central limit theorem for every quadratic irrational ˛ (e.g.,
˛ D p

2). More precisely, let ˛ be an arbitrary real root of a quadratic equation
with integer coefficients, say, ˛ D p

2. Given any rational number 0 < x < 1

(say, x D 1=2) and any positive integer n, we count the number of elements of the
sequence ˛; 2˛; 3˛; : : : ; n˛ modulo 1 that fall into the subinterval Œ0; x�. We prove
that this counting number satisfies a central limit theorem in the following sense.
First, we subtract the “expected number" nx from the counting number and study
the typical fluctuation of this difference as n runs in a long interval 1 � n � N .
Depending on ˛ and x, we may need an extra additive correction of constant times
logarithm of N ; furthermore, what we always need is a multiplicative correction:
division by (another) constant times square root of logarithm ofN . IfN is large, the
distribution of this renormalized counting number, as n runs in 1 � n � N , is very
close to the standard normal distribution (bell-shaped curve), and the corresponding
error term tends to zero as N tends to infinity. This is one of the main results of
the book (see Theorem 1.1). The proof is rather complicated and long; it has many
interesting detours and by-products. For example, the exact determination of the
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key constant factors (in the additive and multiplicative norming), which depend on
˛ and x, requires surprisingly deep algebraic tools such as Dedeking sums, the class
number of quadratic fields, and generalized class number formulas.

Perhaps the reader is wondering: why are the quadratic irrationals (like
p
2)

special and worth spending hundreds of pages on. The answer is that the quadratic
irrationals play a central role in diophantine approximation for several reasons.
They are the “most anti-rational real numbers” (officially called badly approximable
numbers), and at the same time they represent the most uniformly distributed
irrational rotations. A third reason is the Pell’s equation x2 � dy2 D ˙1 (d � 2 is
square free), which is of course closely related to

p
d . Also, and this is the message

of our book, the best way to understand the local and global randomness of the
irrational rotation is to focus on the class of quadratic irrationals. This class gives
the most elegant and striking results with the simplest proofs. Some of these results
extend to almost every real number, some of them do not extend. We will elaborate
on each one of these issues later.

The quadratic irrational rotation demonstrates the coexistence of order and
randomness; a novelty here is the much smaller norming factor

p
logn (instead

of the usual
p
n). The logn comes from the fact that the underlying problem is

about “generalized digit sums” with the surprising twist that the base of the number
system is an irrational number (namely, the fundamental unit, e.g., it is 1C p

2 for
˛ D p

2). Also logn represents the minimum; it corresponds to the most uniformly
distributed irrational rotations.

Our second main subject is motivated by the classical Pell’s equation. Finding the
integral solutions of (say) x2 � 2y2 D ˙1 means counting lattice points in a long
and narrow tilted hyperbolic region that we call a “hyperbolic needle.” Of course,
we basically know everything about Pell’s equation (this is why Pell’s equation is
included in every undergraduate number theory course), but what happens if we
translate the “hyperbolic needle”? What is the asymptotic number of lattice points
inside (note that the area is infinite)? Well, for a typical translated copy of the
“hyperbolic needle”—which corresponds to an “inhomogeneous Pell inequality”—
we prove a “law of the iterated logarithm,” which describes the asymptotic number
of integral solutions in a strikingly precise way. In other words, the classical Circle
Problem of Gauss is wide open, but here we can solve an analogous Hyperbola
Problem. This result is a good illustration of the full power of the probabilistic
viewpoint in number theory. In general, consider the inhomogeneous diophantine
inequality

kn˛ � ˇk < c

n
; (0.1)

where ˛ is an arbitrary irrational, ˇ, c > 0 are arbitrary real numbers, and n is
the variable. An old result of Kronecker states that inequality (0.1) has infinitely
many integral solutions n if c D 3; this is how Kronecker proved that the irrational



viii Preface

rotation n˛ (mod 1) is dense in the unit interval. What can we say about the number
of solutions n of inequality (0.1)? Consider the special case ˛ D p

2 of (0.1):

knp
2 � ˇk < c

n
; (0.2)

and let F.p2IˇI cIN/ denote the number of integral solutions n of inequality (0.2)
satisfying 1 � n � N ; this counting function is about the local behavior of the
irrational rotation n

p
2 (mod 1). We can describe the true order of F.p2IˇI cIN/,

as N ! 1, in an extremely precise way for almost every ˇ. We prove that the
number of solutions F.p2IˇI cI en/ of (0.2) oscillates between the sharp bounds
(" > 0)

2cn��p
n
p
.2C "/ log logn < F.

p
2IˇI cI en/ < 2cnC�p

n
p
.2C "/ log logn

(0.3)
as n ! 1 for almost every ˇ; see Theorem 5.6 in Part 1.3 of the book. Note that
� D �.

p
2; c/ > 0 is a positive constant, and (0.3) fails with 2� " instead of 2C ".

(The reason why in (0.3) we switched from N to the exponentially sparse sequence
en is that the counting function F.p2IˇI cIN/ is slowly changing in the sense that,
as N runs in en < N < enC1, F.p2IˇI cIN/ makes only an additive constant
change.)

Observe that inequality (0.2) is (basically) equivalent to the inhomogeneous Pell
inequality

� c0 � .x C ˇ/2 � 2y2 � c0; (0.4)

where c0 D 2
p
2c. Notice that equation (0.4) determines a long and narrow tilted

hyperbola region (“hyperbolic needle”). The message of (0.3) is, roughly speaking,
that for almost all translations, the number of lattice points in long and narrow
hyperbola segments of any fixed quadratic irrational slope equals the area plus an
error term which is never much larger than the square root of the area.

Notice that (0.3) is a perfect analog of Khinchin’s law of the iterated logarithm
in probability theory (describing the maximum fluctuations of the digit sums of
a typical real number ˇ; the factor log logn in (0.3) explains the name “iterated
logarithm”).

We also have an analogous central limit theorem: the renormalized counting
function

F.p2IˇI cI en/� 2cn

�
p
n

; 0 � ˇ < 1;

has a standard normal limit distribution with error termO.n�1=4.logn/3/ as n ! 1
[� D �.

p
2; c/ > 0 is the same positive constant as in (0.3)].
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Formally,

max
�

ˇ
ˇ
ˇmeasure

n
ˇ 2 Œ0; 1/ W F.

p
2IˇI cI en/� 2cn � ��

p
n

o

� 1p
2�

Z 1

�

e�u2=2 du

ˇ
ˇ
ˇ̌ D O�

�
n�1=4.logn/3

�
; (0.5)

where the maximum is taken over all �1 < � < 1 (and of course measure means
the one-dimensional Lebesgue measure).

The proofs of the innocent-looking results (0.3) and (0.5) are quite difficult
(in spite of the fact that most of the arguments are “elementary”). Note that
here “independence” comes from a good approximation by modified Rademacher
functions.

The book is basically “lattice point counting” in disguise. This explains the
subtitle randomness in lattice point counting. The main results are proved by the
same scheme: we represent a natural lattice point counting function in the form

X1 CX2 CX3 C : : : C negligible;

where X1;X2;X3; : : : are independent random variables. This way we can directly
apply some classical results of probability theory (such as the central limit theorem
and the law of the iterated logarithm). We have the following questions: (a) how
to construct the independent random variables X1;X2;X3; : : :, (b) how to compute
the expectation, and finally (c) how to compute the variance. These are surprisingly
difficult questions.

Of course (0.3) and (0.5) extend to all quadratic irrationals. They also extend to
some other special numbers for which we know the continued expansion (e.g., e,
e2,

p
e).

Some of the main results about quadratic irrationals (e.g., Theorems 1.1 and 1.2)
do not extend to almost every ˛. The reason is that the continued fraction digits
(officially called partial quotients) of a typical real number ˛ exhibit a very irregular
behavior (see Sect. 6.10).

Some other results, including (0.3) and (0.5), do have an analog for almost every
˛. There is, however, a difference: the norming factor

p
n is replaced by

p
n logn,

and also the error term is much weaker (see Sect. 6.10).
The kind of “randomness” we prove in the book requires some knowledge about

the continued fraction expansion of the real number ˛. This is why the best way
to demonstrate this “randomness” is to study the class of quadratic irrationals.
Unfortunately, we know very little about the continued fraction of algebraic numbers
of degree � 3. This explains why we cannot prove anything about (say) the
“randomness of 3

p
2”; this is why we can prove strong results about the “randomness

of e,” and can prove nothing about the “randomness of � .”
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Besides “randomness,” the other main subject of the book is “Area Principle
versus superirregularity” (see Part 1.3, starting with Sect. 5.1).

The traditional meaning of probabilistic diophantine approximation is that it is a
collection of results best illustrated by the following classical 0�1 law of Khinchin.
If  .n/ > 0 is a nonincreasing sequence, then the diophantine inequality nkn˛k <
 .n/ has infinitely many integral solutions n for almost every ˛ if

P1
nD1  .n/ D

1; on the other hand, if
P1

nD1  .n/ < 1 then nkn˛k <  .n/ has only finitely
many integral solutions n for almost every ˛.

The subtitle of our book (randomness in lattice point counting) emphasizes the
fact that what we do here is very different. We develop a new direction of research on
the borderline of probability theory and number theory (including algebraic number
theory). We switch the focus from almost every ˛ to special numbers (like quadratic
irrationals and e), and switch from 0 � 1 laws to more sophisticated probabilistic
results such as the central limit theorem and the law of the iterated logarithm.

One of the challenges we faced in writing this book was that the experts in
probability theory tend to know very little algebraic number theory and vice versa:
the experts in algebraic number theory do not really care much about probability
theory. These two groups, “algebraists” and “probabilists,” are in fact very different
kinds of mathematicians with totally different taste and different intuitions. It is hard
to find a middle ground satisfying both groups, not to mention the readers who know
little probability theory and little algebraic number theory. This forced us to include
a lot of examples and “detours.”

The book grew from five partly-survey-partly-research papers of ours written
between 1991 and 2000 (see [Be1,Be2,Be3,Be4,Be5]) and four more recent papers
starting from 2010 (see [Be7, Be8, Be9, Be10]). In a nutshell, our work is a far-
reaching extension of some classical results of Hardy–Littlewood and Ostrowski
from the period of 1914–1920. In particular, we added the unifying “probabilistic
viewpoint,” which is completely missing from the old papers. It is interesting to
point out that for the generation of Hardy, number theory and probability sounded
like a strange mismatch. Hardy once dismissively declared: “probability is not
a notion of pure mathematics but of philosophy or physics” (Hardy made this
statement before Kolmogorov’s axioms “legitimized” probability theory as a well-
founded chapter in measure theory).

The main results of the book are Theorems 1.1, 1.2, 5.4, 5.6 (all about
“randomness”) and the subject of “Area Principle versus superirregularity” (see,
respectively, Proposition 1.18, Theorems 5.7 and 5.3, Sects. 5.4–5.10).

Since the two parts of the book are quite independent, the reader may
start reading Part 1.3 first. We would recommend the reader to start with
Sects. 1.1, 1.2, 5.1, and 5.2. An alternative way is to start with Sect. 2.5 and then go
to Sects. 1.1, 1.2, 5.1, and 5.2.

The book is more or less self-contained. It should be readable to everybody with
some basic knowledge of mathematics (second-year graduate students and up) who
is interested in number theory and probability theory.
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A few words about the notation. We constantly use the (rather standard) notation
fxg, kxk, bxc, dxe, which mean, in this order, the fractional part of a real number x,
the distance of x from the nearest integer, and the lower and upper integral parts of
x (for example, x D fxg C bxc and kxk D minffxg; 1 � fxgg). A less well-known
notation is

..x// D
(

fxg � 1
2
; if x is not an integerI

0; otherwise

for the “sawtooth function,” which is permanently used in Part I of the book starting
from Sect. 2.1. Throughout the letter c (or c0, c1, c2; : : :) denotes a generic constant,
i.e., a positive constant that we could but do not care to determine. This constant
may be absolute, or may depend upon the parameters involved in the theorem in
question; it will not generally be the same constant. The well-known O-notation
which occurs involves constants implicitly. It will generally be obvious on what, if
any, parameters these constants depend. The natural (base e) logarithm is denoted
by log (instead of ln that we don’t use in the book). We use log2 for the iterated
logarithm, so log2 x D log logx; we use logx= log 2 to denote the binary (i.e.,
base 2) logarithm of x.

We are sure there are many errors in this first version of the book. We welcome
any corrections, suggestions, and comments.

Piscataway, NJ, USA József Beck
March 2014
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