
Chapter 2
Expectation, and Its Connection
with Quadratic Fields

2.1 Computing the Expectation in General (I)

The diophantine sum

S˛.n/ D
nX

kD1

�
fk˛g � 1

2

�
(2.1)

introduced in Sect. 1.2 [see (1.43)] is highly irregular as n ! 1, but its mean value

M˛.N/ D 1

N

NX

nD1
S˛.n/ (2.2)

exhibits a particularly simple and elegant asymptotic behavior for quadratic
irrationals.

Let

˛ D a0 C 1

a1 C 1

a2 C : : :

D Œa0I a1; a2; a3; : : :� (2.3)

denote the continued fraction for ˛; ai denote the partial quotients and
Œa0I a1; : : : ; aj�1� D pj =qj is the j th convergent. By using (2.3) we can formulate

Proposition 2.1. For any irrational ˛ > 0 given with (2.3) and any integerN � 1,

M˛.N/ D �a1 C a2 � a3 ˙ : : :C .�1/kak
12

CO. max
1�j�k

aj /; (2.4)
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80 2 Expectation, and Its Connection with Quadratic Fields

where k D k.˛;N / is the last index j for which the j th convergent denominator
qj � N , i.e., qk � N < qkC1, and the implicit constant on the right-hand side
of (2.4) is absolute (less than 10).

Proposition 2.1 is particularly useful for quadratic irrationals. Indeed, for a
periodic sequence ai it is easy to evaluate the alternating sum in (2.4). As an
illustration, consider first

˛ D p
3 D Œ1I 1; 2; 1; 2; 1; 2; : : :� D Œ1I 1; 2�: (2.5)

The least solution of Pell’s equation x2 � 3y2 D 1 is x D 2, y D 1, and so

p2j ˙ q2j
p
3 D .2˙ p

3/j ; j D 1; 2; 3; : : : (2.6)

where p2j =q2j is the 2j th convergent of
p
3 (we get every second convergent

in (2.6), because the length of the period of
p
3 is 2 [see (2.5)]. By (2.6)

q2j D 1

2
p
2

�
.2C p

3/j � .2 � p
3/j
�
;

and so we have

N D q2j H) j D logN

log.2C p
3/

CO.1/: (2.7)

Combining (2.4) with (2.7), for ˛ D p
3 we have with k D 2j

Mp
3.N / D �a1 C a2 � a3 ˙ : : :C .�1/kak

12
CO.1/ D

D �1C 2 � 1C 2� : : : � 1C 2

12
CO.1/ D �1C 2

12
� logN

log.2C p
3/

CO.1/ D

D logN

12 log.2C p
3/

CO.1/; (2.8)

proving our claim in (1.53).
Here are two more examples like (2.8): for

p
7 D Œ2I 1; 1; 1; 4� the least solution

x D 8, y D 3 of Pell’s equation x2 � 7y2 D 1 comes from the fourth convergent
Œ2I 1; 1; 1� D 8=3 of

p
7, and so

Mp
7.N / D �1C 1 � 1C 4

12
� logN

log.8C 3
p
7/

CO.1/ D

D logN

4 log.8C 3
p
7/

CO.1/;



2.1 Computing the Expectation in General (I) 81

and for
p
67 D Œ8I 5; 2; 1; 1; 7; 1; 1; 2; 5; 16� the least solution x D 48,842,

y D 5,967 of Pell’s equation x2 � 67y2 D 1 comes from the tenth convergent
Œ8I 5; 2; 1; 1; 7; 1; 1; 2; 5�D 48842=5967 of

p
67, and so

Mp
67.N / D �5C 2 � 1C 1 � 7C 1 � 1C 2 � 5C 16

12
� logN

log.48842C 5967
p
67/

CO.1/ D logN

4 log.48842C 5967
p
67/

CO.1/:

In sharp contrast, for ˛ D p
2 D Œ1I 2� the alternating sum in (2.4) cancels out,

andMp
2.N / D O.1/; this proves (1.52).

Similarly, any quadratic irrational ˛, for which the length of the period (of the
continued fraction) is odd, has the property that the mean value is basically zero:
M˛.N/ D O.1/ D O˛.1/ (because the alternating sum in (2.4) cancels out). Note
that in Sect. 1.5 we proved the factM˛.N/ D O.1/ in the special case of the golden
ratio

˛ D .
p
5� 1/=2 D Œ1; 1; 1; 1; : : :� D Œ1�

by a long, direct computation; see (1.177). This direct computation becomes
hopelessly messy even for an arbitrary quadratic irrational, not to mention the
general case of an arbitrary irrational number.

Unfortunately, we cannot characterize the quadratic irrationals for which the
period is odd/even (what we mean here is that the length of period in the continued
fraction is odd or even). However, if ˛ D p

p where p is an odd prime, we have a
perfect characterization: the period is odd if p � 1 (mod 4), and the period is even
if p � 3 (mod 4).

The proof of this elegant characterization is based on the well-known number-
theoretic fact that the “negative” Pell equation x2 � dy2 D �1 (where d > 0 is an
integer, but not a complete square) has an integral solution if and only if the period
of

p
d is odd. If p is a prime with p � 1 (mod 4), then we will find an integral

solution of x2 � py2 D �1, and this will imply that the period of
p
p is odd. To

find a solution of x2 � py2 D �1, we start with the fundamental solution .x1; y1/
of the ordinary Pell’s equation x2 � py2 D 1, which always has a solution (the
fundamental solution is the least positive solution). The equation x2 � 1 D py2

leads to the factorization

.x1 � 1/.x1 C 1/ D py21 : (2.9)

If p � 1 (mod 4) then (2.9) implies that x1 is odd, and also by using that p is a
prime, we have either (1) x1 � 1 D 2pu2 and x1 C 1 D 2v2 or (2) x1 C 1 D 2pu2

and x1�1 D 2v2 holds for some positive integers u and v satisfying y1 D 2uv. Hence
v2�pu2 D ˙1. The case v2�pu2 D 1 is impossible, since .v; u/ is a smaller solution
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than .x1; y1/, the fundamental solution—a contradiction. Thus v2 � pu2 D �1, i.e.,
the negative Pell’s equation does have a solution, and we obtain the following.

Corollary 2.2. If p is a prime with p � 1 (mod 4) then

Mp
p.N / D O.1/:

The proof above is prime specific: if d � 1 (mod 4) is not a prime, then
the length of the period of

p
d can be both even and odd. For example,

p
21 D

Œ4I 1; 1; 2; 1; 1; 8� gives length 6 (even) and
p
65 D Œ8I 16� gives length 1 (odd).

On the other hand, if d � 3 (mod 4), then by a simple (mod 4) analysis we have
x2 � dy2 6� �1 (mod 4) (it is irrelevant that d is a prime or not), implying that the
length of the period of

p
d has to be even.

Actually, we have a stronger result: if d has a prime factor q � 3 (mod 4), the
period of

p
d is always even. Indeed, then x2 � dy2 D �1 implies x2 � �1 (mod

q), which contradicts Fermat’s little theorem:

1 � xq�1 D .x2/.q�1/=2 � .�1/.q�1/=2 D �1 .mod q/:

What happens in Proposition 2.1 if we go beyond quadratic irrationals? How
about the special number e:

e D Œ2I 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; � � � ; 1; 2i; 1; � � � �‹

Well, the alternating sum .�1C2�1/C.1�4C1/C.�1C6�1/C� � �C.�1/i .1�
2i C 1/ equals i � 1 if i is odd and �i if i is even. Thus by Proposition 2.1 we have

Me.N/ D O.logN= log logN/; (2.10)

which is the true order of magnitude.
Note in advance that Proposition 2.1 also gives the constant factor C1.˛; x/ in

Theorem 1.1 in the special case x D 1=2. It is a consequence of the identity

�1=2.y/ � 1

2
D
�

f2yg � 1

2

�
� 2

�
fyg � 1

2

�
;

where of course fyg denotes the fractional part of y, and �1=2.y/ is 1 if fyg < 1=2

and 0 otherwise. We will return to this later in Sect. 2.2; see (2.87) and (2.88).

2.1.1 An Important Detour: How to Guess Proposition 2.1?

The proof of Proposition 2.1 is not easy, but it was equally difficult to find the
right conjecture. What was our motivation to guess formula (2.4)? Well, this is an
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interesting long story, which involves algebraic number theory. To explain it, we
briefly outline an alternative approach to find the averageM˛.N/. We start with the
well-known Fourier series expansion of the fractional part function (warning: it is
not absolutely convergent)

fxg D 1

2
�

1X

nD1

sin.2�nx/

�n
: (2.11)

Substituting it back to (2.1) and (2.2), after some long but standard manipulations
we end up with

M˛.N/ D � 1

2�

NX

nD1

1

n tan.�n˛/
C O.1/; (2.12)

if ai D O.1/, i.e., the partial quotients of ˛ are bounded (this is certainly true for the
quadratic irrationals). (Note that Eq. (2.12) is exactly our Proposition 2.16 coming
later.)

Let ˛ D p
d , where d � 3 (mod 4) is a positive square-free integer. We clearly

have (m denotes the nearest integer to n
p
d )

1

�
tan.�n

p
d/ � ˙jjn

p
d jj D n

p
d �m � �.m2 � dn2/

2n
p
d

: (2.13)

In view of (2.12) and (2.13), the following formula is not too surprising:

Mp
d
.N / D

p
d

�2

0

BB@
X

.x;y/¤.0;0/W
primary representations

1

x2 � dy2

1

CCA
logN

log �d
C O

�
.log logN/3

�
;

(2.14)

where �d is the fundamental unit of QQ.
p
d/. Note that Eq. (2.14) is exactly

Proposition 2.20; the meaning of “primary representations” will be explained later
at the beginning of Sect. 2.6—actually the reader can jump ahead and read it right
now.

If d � 3 (mod 4) then x2 � dy2 is the norm of the algebraic integer xC y
p
d in

the real quadratic field QQ.
p
d/:

2.1.2 Quadratic Fields in a Nutshell

Let D be a square-free positive or negative integer, and consider the quadratic field
QQ.

p
D/: The discriminant � of QQ.

p
D/ is 4D if D � 2 or 3 (mod 4), and D if

D � 1 (mod 4). The quadratic irrational .a C b
p
D/=2 is an algebraic integer in
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QQ.
p
D/ iff a and b 2 ZZ are integers satisfying a � b � 0 (mod 2) when D � 2

or 3 (mod 4), and a � b (mod 2) when D � 1 (mod 4). So the norm

aC b
p
D

2
� a � bp

D

2
D a2 � b2D

4

of .a C b
p
D/=2 is always an integer. An algebraic integer in QQ.

p
D/ is called a

unit if its norm is ˙1. If D > 0, then there exists a unit � D �D in QQ.
p
D/ such

that any unit in QQ.
p
D/ is representable as ˙�n; n D 0; ˙1; ˙2; : : : : This number

� D �D is called the fundamental unit in QQ.
p
D/.

Let F.x; y/ D ax2 C bxy C cy2 be an integral binary quadratic form of
discriminant� D b2�4ac (a; b; c 2ZZ are integers). If an integral binary quadratic
form F.x; y/ is transformed into the form F1.x1; y1/ by an integral unimodular
transformation x D Ux1CVy1, y D Wx1CZy1 whereUZ�V W D 1, thenF and
F1 are called equivalent. The class number h.D/ (where� D 4D orD) is basically
the number of nonequivalent integral binary quadratic forms of discriminant �.
More precisely, by computing the class number we do not distinguish a quadratic
form from its negative, though they may be nonequivalent (which is exactly the case
if D > 0, and x2 � Dy2 D �1 does not have an integer solution). For example,
let D D 79; then the discriminant is 4 � 79 D 316; and there are six nonequivalent
integral binary forms of discriminant 316: F1 D x2 � 79y2; �F1 D �x2 C 79y2;

F2 D 3x2 C 4xy � 25y2; �F2 D �3x2 � 4xy C 25y2; F3 D 3x2 C 2xy � 26y2;

�F3 D �3x2 � 2xy C 26y2: So the class number h.79/ of the quadratic field
QQ.

p
79/ is 3 (and not 6). If h.D/ D 1 then the algebraic integers in QQ.

p
D/ have

unique factorization into algebraic primes. The “first” quadratic field with class
number > 1 is QQ.

p�5/. The discriminant is 4 � .�5/ D �20, and there are two
nonequivalent integral binary quadratic forms of discriminant �20: x2 C 5y2 and
2x2 C 2xy C 3y2: So the class number h.�5/ is 2. A counterexample to the unique
prime factorization is

.1C p�5/ � .1 � p�5/ D 6 D 2 � 3;

where all the 4 factors .1 C p�5/; .1 � p�5/; 2, and 3 are primes in the ring of
integers of QQ.

p�5/.
Now let us return to (2.14). If we make the extra hypothesis that d D p � 3

(mod 4) is a prime and the class number h.p/ of the real quadratic field QQ.
p
p/

is one, then the middle sum on the right-hand side of (2.14) becomes a special L-
function at s D 1:

X

.x;y/¤.0;0/W
primary representations

1

x2 � py2
D L.1; ��/: (2.15)

Here �� is the so-called norm-sign character: a unique character with values ˙1
defined for all ideals in the ring of the algebraic integers of QQ.

p
d/ (in fact, ��
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depends only on the narrow ideal class), and satisfies ��..a// D sign Norm.a/

for the principal ideals .a/. Note that, in our special case d D p with h.p/ D 1,
every ideal is principal.

The L-function

L.s; ��/ D
X

AW ideals

��.A/
Norm.A/s

(here we don’t have to write jNorm.A/j, because the norm of an ideal is by
definition an integer � 1; in sharp contrast the norm of an algebraic integer in a
real field can be both positive and negative) has the product decomposition

L.s; ��/ D L.s; ��4/L.s; ��p/ (2.16)

where

L.s; ��4/ D
1X

nD1

��4.n/
ns

and L.s; ��p/ D
1X

nD1

��p.n/
ns

are the (ordinary) L-functions of the complex quadratic fields QQ.
p�4/=QQ.

p�1/
(“Gauss integers”) and QQ.

p�p/; the characters��4 and ��p are defined as follows:
��4.n/ D ˙1 if n � ˙1 (mod 4) and ��4.n/ D 0 if n is even, and

��p.n/ D
�
n

p

�

is the usual Legendre symbol (quadratic residue symbol). Note that (2.16) is
basically an Euler product, and it is “explained” by the elementary factorization
4p D .�4/.�p/ of the discriminant of x2 � py2; see, e.g., Zagier’s book [Za4].

In the special case s D 1 Eq. (2.16) gives

L.1; ��/ D L.1; ��4/L.1; ��p/; (2.170)

and by Dirichlet’s (analytic) class number formula,

L.1; ��4/ D �

4
and L.1; ��p/ D �h.�p/p

p
; (2.1700)

if p > 3. Now this is where the remarkable Hirzebruch–Meyer–Zagier formula
(HMZ-formula, in short) enters the story: h.�p/ can be expressed in terms of an
alternating sum of the partial quotients (i.e., the “digits” of the continued fraction)
in the period of

p
p; see, e.g., in Zagier [Za1].

But before formulating the HMZ-formula, we note that quadratic irrationals
all have periodic continued fraction, and the least solution of Pell’s equation
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x2 � dy2 D 1 can be determined from the period of
p
d ; the least solution is

basically the fundamental unit. Moreover, the parity of the length of the period
describes the sign of the norm of the fundamental unit: odd length means C1; even
length means �1: Combining Dirichlet’s class number formulas with the ineffective
Siegel theorem, we obtain the deep asymptotic formulas

h.d/ log�d D d1=2˙"; (2.180)

h.�d/ D d1=2˙"; (2.1800)

where h.d/ and h.�d/ are the class numbers of the real and complex quadratic
fields QQ.

p
d/ and QQ.

p�d/, respectively, �d is the fundamental unit of QQ.
p
d/,

and " > 0 is arbitrarily small but fixed. Note that the order of magnitude of log �d
is roughly around the length of the period of the continued fraction for

p
d .

The elegant Hirzebruch-Meyer-Zagier formula (HMZ-formula) was discovered
in the 1970s. It states that

h.�p/ D �a1 C a2 � a3 ˙ � � � C a2s

3
; (2.19)

where p � 3 (mod 4) is a prime > 3, h.p/ D 1, and a1; a2; : : : ; a2s forms the
period of

p
p (since p � 3 (mod 4), the length of the period has to be even).

(Note that both (2.17) and (2.19) fail for p D 3, because QQ.
p�3/ has too many

automorphisms: 6 instead of the usual 2—a technical nuisance in algebraic number
theory.)

Combining the HMZ-formula with (2.14)–(2.17), we conclude

Mp
p.N / D h.�p/

4
� logN

log �
C O

�
.log logN/3

� D

D �a1 C a2 � � � � C a2s

12
� logN

log �
C O

�
.log logN/3

� D

D �a1 C a2 � a3 ˙ � � � C .�1/`a`
12

C O
�
.log logN/3

�
; (2.20)

where ` is the last index for which q` � N and � is the fundamental unit of QQ.
p
p/

(in the last equation we heavily used the periodicity of the continued fraction
for

p
p).

Summarizing, by using the HMZ-formula, we just managed to prove (2.20), at
least under some strong technical conditions (for example, we assumed that p � 3

(mod 4) is a prime > 3 with h.p/ D 1, and also in (2.20) we have the ugly
but negligible error term O

�
.log logN/3

�
). Nevertheless, from (2.20) it was quite

easy to guess that Proposition 2.1 must hold for arbitrary ˛ (not just for quadratic
irrationals), and this is exactly how we came up with the right conjecture (2.4).
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Because we know a completely elementary proof of Proposition 2.1, reversing
the argument, we can produce an elementary proof for the HMZ-formula. Later we
will give a precise proof of (2.12) and (2.14); (2.12) is Proposition 2.16 and (2.14)
is Proposition 2.20.

(The interested reader can find all the details, and much more, about quadratic
fields in the well-written book of Zagier [Za4] (it is in German), or in the classic
Borevich–Safarevich: Number Theory.)

2.1.3 Another Detour: Formulating a “Positivity Conjecture”

The first line in (2.20) raises a very interesting question. If a prime p satisfies the
condition of the HMZ-formula, the expectation equals

Mp
p.N / D h.�p/

4
� logN

log �
C negligible error:

Here the class number is trivially � 1, and also � � p
p > 1, implying log � > 0;

therefore,

Mp
p.N / D c � logN C negligible error;

where c D c.p/ > 0 is a positive constant. By Proposition 2.1, the error term here
is in fact O.1/, and in general, for any quadratic irrational ˛,

M˛.N/ D c � logN C O.1/;

where c D c.˛/ is a constant (expressed in terms of the period of ˛). Is it true
that if ˛ D p

d , the corresponding constant factor is always nonnegative, that is,
Mp

d
.N / D c � logN C O.1/ with c � 0? We guess the answer is “yes,” and I

refer to this as the “positivity conjecture.”
If the length of the period of

p
d is odd, the “positivity conjecture” is trivial.

Indeed, by formula (2.4) the corresponding alternating sum “cancels out,” implying
that the constant factor is zero, i.e., Mp

d
.N / D O.1/ (the same holds for any

quadratic irrational with odd period). Thus, the nontrivial case is when the length of
the period of

p
d is even. It is well known that then the period has the symmetric

form with a central term

p
d D Œa0I a1; a2; : : : ; at ; atC1; at ; : : : ; a2; a1; 2a0�

where a0 D bp
dc and atC1 denotes the central term. Applying the alternating sum

in formula (2.4), we have
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Mp
d D �a1 C a2 � a3 ˙ � � �

12
C O.1/ D

D
0

@2

0

@
tX

jD1
.�1/j aj

1

AC .�1/tC1atC1 C 2a0

1

A � logN

log �
C O.1/:

The positivity of the constant factor c D c.d/ in Mp
d D c logN C O.1/ is,

therefore, equivalent to the positivity of the alternating sum formed from the period

2

tX

jD0
.�1/j aj C .�1/tC1atC1 > 0:

We checked the tables for d < 100, and this alternating sum is indeed positive when
the period of

p
d is even. Since the “positivity conjecture” is certainly not true for

arbitrary quadratic irrational ˛, its hypothetical truth in the special case ˛ D p
d

is probably closely related to the arithmetic of the real quadratic field QQ.
p
d/ (or

perhaps the complex field QQ.
p�d/).

Let’s return now to Proposition 2.1. We include an elementary (but far from easy)
proof.

Proof of Proposition 2.1. We use Dedekind sums. To explain where the Dedekind
sum comes from, we rewrite (2.1) and (2.2) in the following form:

M˛.N/ D 1

N

NX

kD1
.N C 1 � k/

�
fk˛g � 1

2

�
D

D
�
N C 1

N
� 1

2

� NX

kD1

�
fk˛g � 1

2

�
�

NX

kD1

�
k

N
� 1

2

��
fk˛g � 1

2

�
; (2.21)

where the last sum

NX

kD1

�
k

N
� 1

2

��
fk˛g � 1

2

�

in (2.21) strongly resembles a Dedekind sum

D.H;K/ D
K�1X

jD1

�
j

K
� 1

2

��
fjH=Kg � 1

2

�
; (2.22)

where we always assume that H and K � 1 are relatively prime integers.
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Dedekind sums [i.e., (2.22)] originally appeared in Dedekind’s study of elliptic
functions and theta-functions. Luckily we don’t need to know anything about these
(rather technical) subjects; we can just work with definition (2.22). The key fact
about Dedekind sums is the following reciprocity formula, a highly surprising and
nontrivial result.

Lemma 2.3 (Dedekind’s reciprocity formula). We have

D.H;K/CD.K;H/ D 1

12

�
H

K
C K

H
C 1

HK

�
� 1

4
: (2.23)

Note that the definition of D.H;K/ and D.K;H/ automatically includes the
condition that “H � 1 and K � 1 are relatively prime integers.”

For a proof of this classical result, see, e.g., the book [Ra-Gr].
From Lemma 2.3 we will derive

Lemma 2.4. If 1 � H < K are relatively prime then

D.H;K/ D a1 � a2 C a3 � � � � C .�1/`�1a`
12

CO.1/; (2.24)

where

H

K
D 1

a1 C 1

a2 C 1

a3 C : : :

D Œa1; a2; a3; : : : ; a`�: (2.25)

Note that the error term O.1/ in (2.24) has absolute value � 1=4.

Proof. The continued fraction H
K

D Œa1; a2; a3; : : : ; a`� is equivalent to the
Euclidean algorithm

K D a1H CH1; H D a2H1 CH2; H1 D a3H2 CH4; : : : ; H`�2 D alH`�1

where H`�1 D gcd.H;K/ D 1 (gcd denotes the greatest common divisor). We
apply Lemma 2.3 with the short notation

g.x; y/ D 1

12

�
x

y
C y

x
C 1

xy

�
� 1

4

as follows: write K D H�1, H D H0, then

D.H;K/ D D.H0;H�1/ D g.H�1;H0/�D.H�1;H0/ D

D g.H�1;H0/ �D.H1;H0/I
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here we used the first equation of the Euclidean algorithm. Repeating the same
argument, we have

D.H;K/ D g.H�1;H0/�D.H1;H0/ D

D g.H�1;H0/ � .g.H0;H1/�D.H0;H1// D

D g.H�1;H0/ � g.H0;H1/CD.H2;H1/I

here we used the second equation of the Euclidean algorithm.
Repeating the same argument several times, we have

D.H;K/ D g.H�1;H0/ � g.H0;H1/C g.H1;H2/� g.H2;H3/˙ � � �

� � � C .�1/`�1g.H`�2;H`�1/C .�1/`D.H`�2;H`�1/:

Note that the last term here is in fact zero; indeed,H`�1 D gcd.H;K/ D 1 implies
that D.H`�2;H`�1/ D 0.

Moreover, by using the notation

f .x; y/ D x

y
C y

x
;

we have

`�1X

iD0
.�1/if .Hi�1;Hi / D

`�1X

iD0
.�1/i

�
Hi�1
Hi

C Hi

Hi�1

�
D

D H0

H�1
C

`�1X

iD0
.�1/i Hi�1 �HiC1

Hi

D

D H

K
C

`�1X

iD0
.�1/i ai�1Hi

Hi

D H

K
C

`�1X

iD0
.�1/iai�1:

Since

g.x; y/ D 1

12
f .x; y/C

�
1

12xy
� 1

4

�
;
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combining the facts above, we conclude

D.H;K/ D g.H�1;H0/� g.H0;H1/C g.H1;H2/� g.H2;H3/˙ � � � C

C.�1/`�1g.H`�2;H`�1/ D D a1 � a2 C a3 � � � � C .�1/`�1a`
12

C

C H

12K
� 1C .�1/`�1

8
C 1

12

�
1

KH
� 1

HH1

C 1

H1H2

� � � � C .�1/`�1
H`�2H`�1

�
:

The last alternating sum has absolute value � 1=12, and because 1 � H < K , the
total error is at most maxf1=4; 1=12C 1=12g D 1=4, completing the deduction of
Lemma 2.4 from Lemma 2.3. ut

Next we derive Proposition 2.1 from Lemma 2.4 in the special case N D qr , i.e.,
when N happens to be a convergent denominator of ˛; see Lemma 2.5. But first we
introduce a notation that simplifies the treatment of Dedekind sums. Let

..x// D
(

fxg � 1
2
; if x is not an integerI

0; otherwise:

Note that y D ..x// is usually called the “sawtooth function.” By using this new
notation, we can rewrite (2.22) in a shorter form:

D.H;K/ D
K�1X

jD1

��
j

K

����
jH

K

��
; (2.26)

where, as usual, we assume that H and K � 1 are relatively prime integers. Notice
that extending the summation in (2.26) from 1 to K makes no difference (just adds
a zero to the sum).

Now we are ready to formulate and prove an important special case of Proposi-
tion 2.1.

Lemma 2.5. We have

M˛.qr/ D �a1 C a2 � a3 ˙ : : :C .�1/r�1ar�1
12

CO.1/; (2.27)

where ˛ D Œa1; a2; a3; : : :� and pr=qr D Œa1; a2; : : : ; ar�1� is the r th convergent
of ˛. The implicit error term O.1/ is less than 5 for all ˛ and r .
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Proof. We recall (2.21) with N D qr :

M˛.qr/ D
�
qr C 1

qr
� 1

2

� qrX

kD1

�
fk˛g � 1

2

�
�

qrX

kD1

�
k

qr
� 1

2

��
fk˛g � 1

2

�
:

(2.28)
First we focus on the following subsum of (2.28):

S� D
qrX

kD1

�
k

qr
� 1

2

��
fk˛g � 1

2

�
D

qrX

kD1

��
k

qr

��
..k˛//: (2.29)

We compare S� to the Dedekind sum

D.pr ; qr / D
qrX

kD1

��
k

qr

����
kpr

qr

��
; (2.30)

where pr=qr is the r th convergent of ˛.
We recall the well-known fact from diophantine approximation that

ˇ̌
ˇ̌˛ � pr

qr

ˇ̌
ˇ̌ < 1

q2r
;

which implies that the inequality

ˇ̌
ˇ̌k˛ � kpr

qr

ˇ̌
ˇ̌ <

k

q2r
� 1

qr
(2.31)

holds for all 1 � k � qr . By (2.31) we have

jS� �D.pr ; qr /j < 1: (2.32)

On the other hand, by Lemma 2.4,

ˇ̌
ˇ̌D.pr ; qr /� a1 � a2 C a3 � � � � C .�1/rar�1

12

ˇ̌
ˇ̌ � 1

4
: (2.33)

Combining (2.32) and (2.33) we have

ˇ̌
ˇ̌S� � a1 � a2 C a3 � � � � C .�1/rar�1

12

ˇ̌
ˇ̌ � 1

4
C 1 D 5

4
: (2.34)
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Another application of (2.31) gives

ˇ̌
ˇ̌
ˇ

qr�1X

kD1
.fk˛g � 1=2/

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ̌
qr�1X

jD1

�
j

qr
˙ 1

qr
� 1

2

�ˇ̌ˇ̌
ˇ̌ �

�
ˇ̌
ˇ̌
ˇ̌
qr�1X

jD1

�
j

qr
� 1

2

�ˇ̌ˇ̌
ˇ̌C qr

1

qr
D 0C 1 D 1: (2.35)

Applying (2.34) and (2.35) in (2.28), we conclude that

ˇ̌
ˇ̌M˛.qr/ � a1 � a2 C a3 � : : :C .�1/rar�1

12

ˇ̌
ˇ̌ �

� 5

4
C
ˇ̌
ˇ̌qr C 1

qr
� 1

2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌qr C 1

qr
� 1

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌fqr˛g � 1

2

ˇ̌
ˇ̌ � 5

4
C 2

ˇ̌
ˇ̌qr C 1

qr
� 1

2

ˇ̌
ˇ̌ < 5;

and Lemma 2.5 follows. ut
The last step is to derive the general Proposition 2.1 from the special case

Lemma 2.5. There are many ways to reduce the general case to Lemma 2.5; see,
e.g., Beck [Be4]. Here we follow a nice idea of Schoissengeier [Scho], involving
telescoping sums, which seems to be the best treatment of the general case.

Let N � 1 be an arbitrary integer. Consider the Ostrowski expansion of N
[see (1.54)]:

N D
rX

iD1
biqi ; where 0 � bi � ai and (2.36)

bi D ai implies bi�1 D 0 (“Extra Rule”). Here ai is the i th partial quotient of
the continued fraction of ˛ D Œa1; a2; a3; : : :� and pi=qi D Œa1; : : : ; ai�1� is the i th
convergent of ˛.

We are motivated by the following telescoping sum equation:

NX

iD1

N C 1 � i

N

��
ipr

qr

��
D (2.37)

D 1

N

rX

kD1

0

@
NkX

iD1
.Nk C 1 � i/

��
ipk

qk

��
�
Nk�1X

jD1
.Nk�1 C 1 � j /

��
jpk�1
qk�1

��1

A ;

where Nk is the kth partial sum of (2.36):Nk D Pk
iD1 biqi .
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We are going to evaluate the terms of the telescoping sum (2.37). The next
lemma, clearly motivated by Eq. (2.37), can be considered as a generalization, or
new version, of Lemma 2.5. The idea is to involve the Dedekind sum D.pk; qk/,
just like we did in the proof of Lemma 2.5.

Lemma 2.6. If Nj D Pj
iD1 biqi then

NkX

iD1
.Nk C 1 � i/

��
ipk

qk

��
�
Nk�1X

jD1
.Nk�1 C 1 � j /

��
jpk�1
qk�1

��
D

D �bkqkD.pk; qk/C bk�1
4
.1C .�1/k/.2Nk�1 C 1 � .bk�1 C 1/qk�1/C

C .�1/kC1 Nk�1.Nk�1 C 1/.Nk�1 C 2/

6qkqk�1
: (2.38)

Proof of Lemma 2.6. We basically repeat the proof of Lemma 2.5. Write

NkX

iD1
.Nk C 1 � i/

��
ipk

qk

��
D
X

1
C
X

2
; (2.39)

where

X
1

D
bkqkX

iD1
.Nk C 1 � i/

��
ipk

qk

��

and

X
2

D
NkX

iDbkqkC1
.Nk C 1 � i/

��
ipk

qk

��
:

We evaluate
P

1 first. Since ..x// D 0 if x is an integer, we take out the i ’s that are
divisible by qk :

X
1

D
bk�1X

tD0

.tC1/qk�1X

iDtqkC1
.Nk C 1 � i/

��
ipk

qk

��
D

D
bk�1X

tD0

qk�1X

jD1
.Nk C 1 � tqk � j /

��
jpk

qk

��
D

D �bk
qk�1X

jD1
j

��
jpk

qk

��
; (2.40)
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since

K�1X

jD1

��
jH

K

��
D 0:

Thus by (2.40),

X
1

D �bkqk
qk�1X

jD1

�
j

qk
� 1

2

���
jpk

qk

��
D �bkqkD.pk; qk/; (2.41)

justifying the first term on the right-hand side of (2.38).
Next we evaluate

P
2 � P

3, where
P

2 is the second term in (2.39) and
P

3 is
the negative term on the left-hand side of (2.38):

X
3

D
Nk�1X

jD1
.Nk�1 C 1 � j /

��
jpk�1
qk�1

��
: (2.42)

We recall the well-known fact from the theory of continued fraction:

pk

qk
D pk�1
qk�1

C .�1/k�1

qk�1qk
; (2.43)

and so, if j � Nk�1 then

��
jpk

qk

��
D
��
jpk�1
qk�1

C .�1/k�1j
qk�1qk

��
D
��
jpk�1
qk�1

��
C .�1/k�1j

qk�1qk
; (2.44)

when j is not divisible by qk�1, and

��
jpk

qk

��
D
��
jpk�1
qk�1

��
C .�1/k�1j

qk�1qk
C 1C .�1/k�1

2
; (2.45)

when j is divisible by qk�1. Thus we can rewrite
P

2 [see (2.39)] in the form

NkX

iDbkqkC1
.Nk C 1 � i/

��
ipk

qk

��
D

D
Nk�1X

jD1
.Nk � bkqk C 1 � j /

��
jpk�1
qk�1

��
D

D
Nk�1X

jD1
.Nk C 1 � j /

��
jpk�1
qk�1

��
;
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and applying (2.44) and (2.45) we have [note that
P

3 is defined in (2.42)]

X
2

D
X

3
C .�1/k�1j

qk�1qk

Nk�1X

jD1
.Nk C 1 � j /jC

C bk�1
1C .�1/k�1

2

�
Nk�1 C 1 � .bk�1 C 1/qk�1

2

�
: (2.46)

Combining (2.41), (2.42), and (2.46), Lemma 2.6 follows. ut
By using Lemma 2.6, we are ready to complete the proof of Proposition 2.1. Let’s

return to (2.36). First we extend the definition of Nk D Pk
iD1 bkqk for all k > r

in the trivial way: put bi D 0 for i > r . We sum up both sides of Lemma 2.6 as
k D 1; 2; 3; : : :; the left-hand side of (2.38) gives

rX

kD1
.N C 1 � k/..k˛//; (2.47)

and the right hand side of (2.38) gives

X�
1

C
X�

2
C
X�

3
where (2.48)

X�
1

D �
rX

iD1
biqiD.pi ; qi /;

X�
2

D
rX

jD1

bj

4
.1C .�1/jC1/.2Nj C 1 � .bj C 1/qj /;

X�
3

D
1X

jD1
.�1/j Nj .Nj C 1/.Nj C 2/

6qj qjC1
D

D
rX

jD1
.�1/j Nj .Nj C 1/.Nj C 2/

6qj qjC1
C N.N C 1/.N C 2/

6

�
˛ � prC1

qrC1

�
;

where in the last step we used (2.43) and the fact pi=qi ! ˛ as i ! 1.
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First we evaluate
P�

1 . By Lemma 2.4,

rX

iD1
biqiD.pi ; qi / D

rX

iD1
biqi

�
a1 � a2 ˙ � � � C .�1/iai�1

12
C �

4

�
D

D
rX

jD1

.�1/j aj�1
12

.N �Nj�1/C �N

4
D

D N

0

@
rX

jD1

.�1/j aj�1
12

C
rX

jD1

.�1/j�1aj�1
12

� Nj�1
N

C �

4

1

A ; (2.49)

where j�i j < 1 and j� j < 1 are appropriate constants. Since the sequence Nj DPj
iD1 biqi increases at least exponentially fast, an upper bound like

kX

iD1
Ni � 4NkC1 (2.50)

is trivial. Combining (2.49) and (2.50),

rX

iD1
biqiD.pi ; qi / D N

�
a1 � a2 ˙ � � � C .�1/rar�1

12
C � 0. max

1�j�r aj /C � 00
�
;

(2.51)
where j� 0j � 4 and j� 00j � 1=4.

Next we estimate
P�

2 from above:

X�
2

� 1

2

rX

iD1
biNi � 1

2
. max
1�j�r aj /

rX

iD1
Ni � 3N. max

1�j�r aj /; (2.52)

where in the last step we used (2.50).
Finally, we estimate

P�
3 from above. Since

Nj D
jX

iD1
biqi and qjC1 � aj qj � bj qj ;

we have
ˇ̌
ˇ̌
ˇ̌
rX

jD1
.�1/j Nj .Nj C 1/.Nj C 2/

6qj qjC1

ˇ̌
ˇ̌
ˇ̌ �

rX

jD1
.bj C 1/2qj � 2N. max

1�j�r aj /: (2.53)



98 2 Expectation, and Its Connection with Quadratic Fields

We also have

N.N C 1/.N C 2/

6
�
ˇ̌
ˇ̌˛ � prC1

qrC1

ˇ̌
ˇ̌ � N3

3q2rC1
� N

3
: (2.54)

Combining (2.47), (2.48), (2.51)–(2.54), we obtain

M˛.N/ D 1

N

rX

kD1
.N C 1 � k/..k˛// D

D �a1 � a2 ˙ � � � C .�1/rar�1
12

C �. max
1�j�r aj /; (2.55)

where j� j < 10. Equation (2.55) completes the proof of Proposition 2.1. ut
Note that our original proof of Proposition 2.1 was a much longer, brute force

deduction from Ostrowski’s formula (1.55) (see [Be2, Be3]). Later Schoissengeier
[Scho] pointed out the connection with Dedekind sums and some related results of
Knuth [Kn1], which made the proof substantially shorter. The proof above follows
the Schoissengeier–Knuth approach.

2.1.4 Proposition 2.1 and Some Works of Hardy
and Littlewood

It is interesting to note that, a few weeks after we completed our proof of
Proposition 2.1 (November 1995), we accidentally noticed the following technical
lemma in Hardy–Littlewood [Ha-Li2].

“Lemma 14”: If ˛ D Œa0I a1; a2; � � � � then

M˛.N/ D 1

12

lX

iD1
.�1/k

�
˛i C 1

˛i

�
C O

�
.max
1�i�l ai /

2

�
; (2.56)

where l is the least index such that ql � N , and

˛i D ai C 1

aiC1 C 1

aiC2 C � � �
D Œai I aiC1; aiC2; � � � �:
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By using the trivial identity ˛i D ai C 1
˛iC1

; the alternating sum in “Lemma 14”
becomes

�
�
˛1 C 1

˛1

�
C
�
˛2 C 1

˛2

�
�
�
˛3 C 1

˛3

�
˙ � � �

D �a1 C a2 � a3 ˙ � � � C .�1/iai ˙ � � � : (2.57)

The surprising conclusion is that from “Lemma 14” we can obtain a somewhat
weaker version of Proposition 2.1 in one line. Note that (2.56) is weaker, because the
error termO

�
.max1�i�l ai /2

�
is the square of the linear error termO.max1�i�l ai /

in Proposition 2.1.
Note that Hardy and Littlewood proved their “Lemma 14” by using a different

kind of reciprocity formula (namely, the reciprocity formula for the theta functions).
A related development is that, about 10 years later, in 1930, Hardy and

Littlewood [Ha-Li3] studied the following (diophantine) series:

1X

nD1

1

n sin.�n˛/
(2.58)

and made a very interesting discovery. Though the terms of the series (2.58) do
not tend to zero for any ˛, Hardy and Littlewood managed to prove the next best
thing; namely, that for the special value ˛ D p

2 the partial sums of (2.58) remain
uniformly bounded, i.e.,

NX

nD1

1

n sin.�n˛/
D O.1/: (2.59)

In general, if ˛ D p
a2 C 1; a is odd, then the partial sums are similarly O.1/:

On the other hand, Hardy and Littlewood noticed that for ˛ D p
6=2�1 theN th

partial sum is c logN CO.1/ with c ¤ 0.
What is going on here? The proof of the “O.1/-theorem” for ˛ D p

a2 C 1, a
is odd, was so complicated, mysterious, and ad hoc that in his Introduction to the
Collected Papers of G.H. Hardy, Vol. 1, Davenport listed the “real understanding”
of this paper as a major research problem in diophantine approximation.

Now here is our “real understanding”: the “O.1/-theorem” of Hardy and
Littlewood is a simple corollary of Proposition 2.1. Indeed, all that we need is the
simple identity

NX

nD1

1

n sin.�n˛/
D 4�M˛=2.N / � 2�M˛.N / C O.max

1�i�l
ai /; (2.60)

where l is the last index such that ql � N .
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Equation (2.60) is an easy consequence of two facts. The first one is (2.12):

M˛.N/ D � 1

2�

NX

nD1

1

n tan.�n˛/
C O. max

1�i�k ai /

where k is the last index for which qk � N , and the second fact is a simple
trigonometric identity:

1

tan.ˇ/
� 1

tan.2ˇ/
D 2 cos2.ˇ/ � cos.2ˇ/

2 sin.ˇ/ cos.ˇ/
D 1

sin.2ˇ/
:

It seems very likely that Hardy and Littlewood overlooked the simple application
of Proposition 2.1 via (2.60) (the weaker error term (2.56) would be fine here). This
is why they had to develop a complicated ad hoc method in [Ha-Li3].

We will return to the Hardy–Littlewood series
P

n 1=n sin.�n˛/ in Sect. 2.3.

2.2 Computing the Expectation in General (II)

2.2.1 The Expectation in Theorem 1.1

Next we switch from the saw-tooth function ..x// to the characteristic function

��.x/ D
(
1; if 0 � x < �I
0; if� � x < 1;

(2.61)

of the interval Œ0; �/, where 0 < � < 1, and extend it periodically modulo 1. Then
we get the simple equation

��.x/ � � D ..x � �// � ..x//: (2.62)

The sum

nX

kD1
��.k˛/

is the counting function for the irrational rotation: it counts the integers k in
1 � k � n for which k˛ 2 Œ0; �/ modulo 1. Theorem 1.1 is about this counting
function. Therefore, to prove Theorem 1.1, we have to determine the corresponding
expectation: by (2.62) we need to evaluate the generalized Dedekind sum
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D.H;KI c/ D
K�1X

jD1

��
j

K

����
jH C c

K

��
; (2.63)

where c, the “shift constant,” is an arbitrary real number (by (2.62) we use c D ��
or c D 1 � �; it doesn’t matter which one).

The following lemma, a reciprocity law due to Dieter [Di], describes the
connection between the ordinary Dedekind sum and its generalization (2.63). For
later application, we have to include a proof.

Lemma 2.7. Let 1 � H < K be relatively prime integers, and let 0 < c < K be a
real number. Then

D.H;KI c/CD.K;H I c/ D D.H;K/CD.K;H/C
bccdce
2HK

� 1

2
bc=Hc C 1

4
E.H; c/; (2.64)

where

E.H; c/ D
(
0; ifc 6� 0 modH I
1; ifc � 0 modH:

(2.65’)

Proof. First assume that c is a natural number; we prove (2.64) by induction on c.
Clearly

��
jH C c C 1

K

��
D
��
jH C c

K

��
C 1

K
� 1

2
ı

�
jH C c

K

�
C 1

2
ı

�
jH C c C 1

K

�
;

(2.66)

where in this section we use the notation ı.x/ D 1 if x is an integer and 0 otherwise
(“Kronecker delta”). By (2.63) and (2.66),

D.H;KI c C 1/ D
K1X

jD1

��
j

K

����
jH C c

K

��
C 1

K

K�1X

jD1

��
j

K

��

� 1

2

K�1X

jD1

��
j

K

���
ı

�
jH C c

K

�
C ı

�
jH C c C 1

K

��
: (2.67)

Since 1 � H < K are relatively prime, there exist two integers h0 and k0 such that

Hh0 CKk0 D 1: (2.68)
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If

j � �h0c .modK/ then jH C c � 0 .mod K/;

and because the saw-tooth function ..x// is odd, we can rewrite (2.67) as follows:

D.H;KI c C 1/ D D.H;KI c/C 1

2

��
h0c
K

��
C 1

2

��
h0.c C 1/

K

��
:

It follows by induction on c that

D.H;KI c/ D D.H;KI 0/C
c�1X

jD1

��
h0j
K

��
C 1

2

��
h0c
K

��
: (2.69)

For every j with 1 � j � K � 1 [see (2.68)]

��
h0j
K

��
D
��
j � k0Kj
HK

��
D �

��
k0Kj � j
HK

��
D

D �
��
k0j
H

��
C j

HK
� 1

2
ı

�
k0j
H

�
: (2.70)

Adding (2.69) to itself with H and K interchanged, and using (2.70), we have

D.H;KI c/CD.K;H I c/ D D.H;K/CD.K;H/C S;

where

S D
i�1X

jD1

�
j

HK
� 1

2
ı

�
k0j
H

��
C c

2HK
� 1

4
ı

�
k0c
H

�
: (2.71)

The evaluation of the last line in (2.71) is easy: we have

S D c2

2HK
� 1

2

j c
H

k
C 1

4
ı
� c
H

�
: (2.72)

Equations (2.71) and (2.72) complete the proof when c is any integer.
For an arbitrary real number c we use the identity

D.H;KI c C �/ D D.H;KI c/C 1

2

��
h0c
K

��
; (2.73)
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where c � 0 is an integer and 0 < � < 1 [h0 is defined by (2.68)]. The proof
of (2.73) is easy:

K�1X

jD1

��
j

K

����
jH C c C �

K

��
D

D
K�1X

jD1

��
j

K

�����
jH C c

K

��
C �

K
� 1

2
ı

�
jK C c

K

��
D

D D.H;KI c/C 0 � 1

2

���h0c
K

��
;

because �h0Hc C c � 0 (modK), and (2.73) follows.
When 0 < � < 1, Eqs. (2.73) and (2.70) imply that

D.H;KI c C �/CD.K;H I c C �/ D D.H;KI c/CD.K;H I c/C

C c

2HK
� 1

4
ı
� c
H

�
:

This completes the proof of Lemma 2.7. ut
Lemma 2.7 leads to the following analog of Lemma 2.4; see Knuth [Kn1]. Again

we need the proof.

Lemma 2.8. Let 1 � H < K be relatively prime integers and let 0 < c < K be a
real number. Let

H

K
D 1

a1 C 1

a2 C : : :

D Œa1; a2; a3; : : : ; a`�;

then

D.H;KI c/ �D.H;K/ D �b1 C b2 � b3 ˙ � � � C .�1/`b`
2

C

C c20
2KH

� c21
2HH1

C c22
2H1H2

� � � � C .�1/`�1 c2`�1
2H`�2H`�1

CO.1/; (2.74)

where the terms bi , ci , Hi in (2.74) are determined by two Euclidean algorithms as
follows. Let H�1 D K , H0 D H , and defineHi by the first Euclidean algorithm

K D a1H CH1; H D a2H1 CH2; H1 D a3H2 CH4; : : : ; H`�2 D alH`�1;
(2.75)
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where H`�1 D gcd.H;K/ D 1 (gcd denotes the greatest common divisor); then
by using (2.75), we define the integers bi and the real numbers ci via the second
Euclidean algorithm

c D c0 D b1H0 C c1; c1 D b2H1 C c2; c2 D b3H2 C c3; : : : ; c`�1 D b`H`�1 C c`;

(2.76)

where 0 � c1 < H0, 0 � c2 < H1, : : :, and 0 � c` < 1 (note that H` D 0). The
error term O.1/ in (2.74) has absolute value � 1.

Proof. First assume that c is an integer; then c` D 0. Write

�.h; kI c/ D D.h; kI c/ �D.h; k/

and

F.h; k; c/ D c2

2hk
� 1

2
b c
h

c C 1

4
ı
� c
h

�
;

then by Lemma 2.7,

�.h; kI c/ D F.h; k; c/ ��.k; hI c/ D

D F.h; k; c/ ��.k .mod h/; hI c .mod h//: (2.77)

Combining the Euclidean algorithms (2.75) and (2.76) with (2.77), we have

�.Hj ;Hj�1I cj / D F.Hj ;Hj�1; cj /��.HjC1;Hj I cjC1/ (2.78)

for j D 0; 1; 2; : : : ; ` � 1. Write

Fj D F.Hj ;Hj�1; cj /;

then by repeated application of (2.78), we have

�.H;KI c/ D F0 � F1 C F2 � F3 ˙ : : :C .�1/`�1F`�1 D

D
`�1X

jD0
.�1/j

 
c2j

2hk
� 1

2
bjC1 C 1

4
ı

�
cj

Hj

�!
D

D �b1 C b2 � b3 ˙ � � � C .�1/`b`
2

C
`�1X

jD0
.�1/j c2j

2Hj�1Hj

C .�1/`�1
4

: (2.79)

Equation (2.79) proves Lemma 2.8 if c is an integer.
If c is not an integer then we simply apply (2.73). ut
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2.2.2 An Analog of Proposition 2.1

Let 0 < ˛ < 1 be any irrational and let 0 < � < 1 be any rational number. To
prove Theorem 1.1 about the irrational rotation, first we need to know the average
(“expectation”)

M˛.�IN/ D 1

N

NX

nD1
S˛.�In/; (2.80)

where

S˛.�In/ D
nX

kD1

�
��.k˛/ � �� (2.81)

and the characteristic function ��.x/ is defined in (2.61).
By using (2.62) we have

S˛.�In/ D
nX

kD1
...k˛ � �//� ..k˛/// ;

and

M˛.�IN/ D 1

N

NX

nD1
.N C 1 � k/ ...k˛ � �//� ..k˛/// :

Repeating the proof of Proposition 2.1 with some natural modifications, we obtain
the following analogous result.

Proposition 2.9. For any irrational ˛ > 0, any real number 0 < � < 1, and any
integer N � 1,

M˛.�IN/ D b1 � b2 C b3 � � � � C .�1/`�1b`
2

� c20
2KH

C c21
2HH1

� c22
2H1H2

˙ � � � C .�1/` c2`�1
2H`�2H`�1

C � � max
1�j�` bj ; (2.82)

where j� j < 10, ˛ D Œa1; a2; : : :�, the index ` D `.˛;N / is defined as the last
integer j such that qj � N , where pj =qj is the j -th convergent of ˛, and finally
the terms bi , ci ,Hi in (2.82) are determined by the two Euclidean algorithms (2.75)
and (2.76) with c D c0 D .1 � �/K ,K D q`, H D p` (i.e.,H=K D p`=q`). ut

Next we show some illustrations.
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Example 2.10. First let � D 1=2. We begin with ˛ D p
2, and evaluate

Mp
2.1=2IN/, i.e., the corresponding expectation in Theorem 1.1. The continued

fraction
p
2 � 1 D Œ2; 2; 2; : : :� D Œ2� gives that 2 D a1 D a2 D a3 D � � � in (2.75).

Next we compute bi , ci , Hi in (2.76) as follows:

c D c0 D .1 � �/K D 1

2
.2H CH1/ D H C 1

2
H1;

implying b1 D 1, and

c1 D 1

2
H1 D 0 �H C 1

2
H1; implying b2 D 0; and

c2 D 1

2
H1 D 1

2
.2H2H CH3/ D H2 C 1

2
H3; implying b3 D 1;

and so on. Thus we obtain the periodic sequences

b1 D 1; b2 D 0; b3 D 1; b4 D 0; : : : ; bi D 1

2
.1C .�1/i�1/I

c0 D 1

2
K; c1 D c2 D 1

2
H1; c3 D c4 D 1

2
H3; c5 D c6 D 1

2
H5; : : :

Hence we have

b1 � b2 C b3 � b4 ˙ � � �
2

D 1 � 0C 1 � 0C 1 � 0C � � �
2

(2.83)

and

� c20
2KH

C c21
2HH1

� c22
2H1H2

˙ � � � D

D � K

8H
� H1

8

�
1

H2

� 1

H

�
� H3

8

�
1

H4

� 1

H2

�
� H5

8

�
1

H6

� 1

H4

�
� � � �

(2.84)
Since

H2iC1
8

�
1

H2iC2
� 1

H2i

�
D H2iC1

8
� H2i �H2iC2
H2iC2H2i

D H2iC1
8

� 2H2iC1
H2iC2H2i

D

D H2
2iC1

4H2iC2H2i

D 1

4
C exponentially small; (2.85)
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applying (2.83)–(2.85) in Proposition 2.9, by (2.82) we have

Mp
2

�
1

2
IN
�

D
�
1 � 0

2
� 1

4

�
� 1
2

� logN

log.1C p
2/

CO.1/;

where in the last step we used the fact that [see (2.79)]

q` D .1C p
2/` � .1 � p

2/`

2
p
2

D N implies ` D logN

log.1C p
2/

CO.1/:

Thus we obtain

Mp
2

�
1

2
IN
�

D 1

8
� logN

log.1C p
2/

CO.1/; (2.86)

which proves (1.32).

In the special case � D 1=2 we have the ad hoc identity

�1=2.x/ � 1

2
D ..2x//� 2..x//; (2.87)

which gives the equation [see (2.62) and (2.80)]

M˛

�
1

2
IN
�

D M2˛.N / � 2M˛.N /: (2.88)

By using (2.88), we can easily double-check (2.86). What it means is that we apply
Proposition 2.1 for both ˛ D p

2 D Œ2� and

2˛ D 2
p
2 D p

8 D Œ2I 1; 4; 1; 4; 1; 4; : : :� D Œ2I 1; 4�:

The length of the period of ˛ D p
2 is odd, so the corresponding alternating sum in

Proposition 2.1 cancels out. Thus we have

Mp
2

�
1

2
IN
�

D M2
p
2.N / D �1C 4 � 1C 4 � 1C 4� � � �

12
CO.1/ D

D 1

12
� �1C 4

2
� logN

log.1C p
2/

CO.1/ D 1

8
� logN

log.1C p
2/

CO.1/; (2.89)

which gives back (2.86). In Eq. (2.89) we used the fact that the .2i/th convergent
p2i=q2i of

p
8 satisfies the equation

p2i ˙ q2i
p
8 D .3˙ p

8/i
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(due to the fact that the least positive solution of x2 � 8y2 D ˙1 is x D 3; y D 1),
which implies

q2i D 1

2
p
8

�
.3C p

8/i � .3 � p
8/i
�

� .3C p
8/i D .1C p

2/2i :

The ad hoc equation (2.88) gives a shortcut for � D 1=2 with any quadratic
irrational ˛. For example, if ˛ D p

3 D Œ1I 1; 2� then

2˛ D 2
p
3 D p

12 D Œ3I 2; 6�:

Thus by (2.88) and Proposition 2.1,

Mp
3

�
1

2
IN
�

D M2
p
3.N /� 2Mp

3.N / D

D 1

12

��2C 6

2
� logN

log.2C p
3/

� 2 � �1C 2

2
� 2 logN

log.2C p
3/

�
CO.1/ D O.1/;

(2.90)
since the .2i/th convergent p2i=q2i of

p
3 satisfies the equation

p2i ˙ q2i
p
3 D .2˙ p

3/i ;

which implies

q2i D 1

2
p
3

�
.2C p

3/i � .2 � p
3/i
�

� .2C p
3/i I

similarly, the i th convergent denominator for 2
p
3 is about .2C p

3/i (because the
least positive solution of x2 � 12y2 D ˙1 is x D 7; y D 2, and 7 C 2

p
12 D

.2C p
3/2).

Next consider the golden ratio ˛ D .
p
5C1/=2. Then ˛ D Œ1I 1� and 2˛ D Œ3I 4�.

Since the length of the period is odd for both continued fractions, by (2.88) and
Proposition 2.1,

M.
p
5C1/=2

�
1

2
IN
�

D O.1/: (2.91)

The last example in this section is ˛ D p
7 (again � D 1=2). We need the

following facts:
p
7 D Œ2I 1; 1; 1; 4�, p

28 D Œ5I 3; 2; 3; 10�, the least positive
solutions of x2 � 7y2 D ˙1 and x2 � 28y2 D ˙1 are, respectively, x D 8; y D 3

and x D 127; y D 24 with the relation 127C 24
p
28 D .8 C 3

p
7/2. Combining

these facts with (2.88) and Proposition 2.1, we have
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Mp
7

�
1

2
IN
�

D M2
p
7.N /� 2Mp

7.N / D

D logN

12

� �3C 2 � 3C 10

log.127C 24
p
28/

� 2�1C 1 � 1C 4

log.8C 3
p
7/

�

CO.1/ D � logN

4 log.8C 3
p
7/

CO.1/: (2.92)

Next we discuss examples where � ¤ 1=2.

Example 2.11. Next let � D 1=3 and ˛ D p
2. Then

p
2 D Œ1I 2� gives that 2 D

a1 D a2 D a3 D � � � in (2.75). We compute bi , ci , Hi in (2.76) as follows:

c D c0 D .1 � �/K D 2

3
K D 2

3
.2H CH1/ D H C 1

3
H C 2

3
H1;

implying b1 D 1, and similarly

c1 D 1

3
H C 2

3
H1 D 1

3
.2H1 CH2/C 2

3
H1 D H1 C 1

3
H1 C 1

3
H2; implying b2 D 1; and

c2 D 1

3
H1 C 1

3
H2 D 1

3
.2H2 CH3/C 1

3
H3 D H2 C 1

3
H3; implying b3 D 1; and

c3 D 1

3
H3 D 0 �H3 C 1

3
H3; implying b4 D 0; and

c4 D 1

3
H3 D 1

3
.2H4 CH5/ D 0 �H4 C 2

3
H4 C 1

3
H5; implying b5 D 0; and

c5 D 2

3
H4 C 1

3
H5 D 2

3
.2H5 CH6/C 1

3
H5 D H5 C 2

3
H5 C 2

3
H6; implying b6 D 1; and

c6 D 2

3
H5 C 2

3
H5 D 2

3
.2H6 CH7/C 2

3
H6 D 2H6 C 2

3
H7; implying b7 D 2; and

c7 D 3

3
H7 D 0 �H7 C 2

3
H7; implying b8 D 0; and

c8 D 2

3
H7 D 2

3
.2H6 CH9/ D H8 C 1

3
H8 C 2

3
H9; implying b9 D 1; and so on;

back to the beginning. Thus we get the periodic sequence for b1; b2; b3; : : ::

1; 1; 1; 0; 0; 1; 2; 0; 1; 1; 1; 0; 0; 1; 2; 0; 1; 1; 1; 0; 0; 1; 2; 0; : : :
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Therefore, we obtain

b1 � b2 C b3 � b4 ˙ � � �
2

D

D 1

2
� 1 � 1C 1 � 0C 0 � 1C 2 � 0

8
� logN

log.1C p
2/

CO.1/; (2.93)

and

� c20
2KH

C c21
2HH1

� c22
2H1H2

˙ � � � D

D 1

18

�
� .2K/

2

KH
C .H C 2H1/

2

HH1

� .H1 CH2/
2

H1H2

C H2
3

H2H3

�
logN

8 log.1C p
2/

C

C 1

18

 
� H2

3

H3H4
C .2H4 CH5/

2

H4H5
� .2H5 C 2H6/

2

H5H6
C .2H7/

2

H6H7

!
logN

8 log.1C p
2/

CO.1/:

(2.94)

Since by (2.75)

Hi �HiC2
H2iC1

D aiC2 D 2;

we can rewrite (2.94) as follows:

sum(2.94) D 1

18

�
�4.K �H1/

H
C4CH �H2

H1

�2�H1 �H3

H2

�H3 �H5

H4

C

C4.H4 �H6/

H5

� 8 � 4.H5 �H7/

H6

�
D

D 1

18
.�8C 4C 2 � 2 � 2 � 2C 4C 8 � 8 � 8/ D �2

3
;

implying

sum(2.94) D � logN

12 log.1C p
2/

CO.1/: (2.95)
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Applying (2.93)–(2.95) in (2.82), we have

Mp
2

�
1

3
IN
�

D
�
1

8
� 1

12

�
logN

log.1C p
2/

CO.1/ D

D logN

24 log.1C p
2/

CO.1/: (2.96)

Next let � D 2=3 and ˛ D p
2, then a similar calculation gives the same answer:

Mp
2

�
2

3
IN
�

D logN

24 log.1C p
2/

CO.1/: (2.97)

We can easily double-check (2.96) and (2.97) by using the ad hoc equation

�
�1=3.x/ � 1

3

�
C
�
�2=3.x/ � 2

3

�
D ..3x// � 3..x//; (2.98)

which leads to [see (2.62) and (2.80)]

M˛

�
1

3
IN
�

CM˛

�
2

3
IN
�

D M3˛.N /� 3M˛.N /: (2.99)

Notice that (2.98) and (2.99) is an analog of (2.87) and (2.88).

We have 3
p
2 D p

18 D Œ4I 4; 8�, and so by Proposition 2.1,

M3
p
2.N / D 1

12
� �4C 8

2
� logN

2 log.1C p
2/

CO.1/; (2.100)

because the least positive solution of x2 � 18y2 D ˙1 is x D 17; y D 4, and so the
.2i/th convergent p2i=q2i of

p
18 satisfies the equation

p2i ˙ q2i
p
18 D .17˙ 4

p
18/i ;

which implies

q2i � .17C 4
p
18/i D .1C p

2/4i :
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Since the length of the period of
p
2 is odd, by (2.99) and (2.100),

Mp
2

�
1

3
IN
�

CMp
2

�
2

3
IN
�

D M3
p
2.N /� 3Mp

2.N / D

D logN

12 log.1C p
2/

CO.1/;

which is in agreement with (2.96) and (2.97).

Example 2.12. Let � D 1=4 and ˛ D .
p
5C 1/=2 D Œ1I 1�. Then 1 D a1 D a2 D

a3 D � � � in (2.75),

c D c0 D .1 � �/K D 3

4
K D 3

4
.H CH1/ D H C 1

4
.3H1 �H/; (2.101)

implying b1 D 1. Note that 3H1 > H , since H=H1 is very close to the golden ratio
˛ D .

p
5C 1/=2 < 3. We have

3H1 �H D 3H1 � .H1 CH2/ D 2H1 �H2 D 2.H2 CH3/ �H2 D H2 C 2H3;

(2.102)
and so

c1 D 1

4
H2 C 1

2
H3 D 0 �H1 C c2 D 0 �H2 C c3; implying b2 D b3 D 0; and

c3 D 1

4
H2 C 1

2
H3 D 1

4
.H3 CH4/C 1

2
H3 D 3

4
H3 C 1

4
H4 < H3; implying b4 D 0; and

c4 D 3

4
H3 C 1

4
H4 D 3

4
.H4 CH5/C 1

4
H4 D H4 C 3

4
H5; implying b5 D 1; and

c5 D 3

4
H5 D 0 �H5 C 3

4
H5; implying b6 D 0; and

c6 D 3

4
H5 D 3

4
.H6 CH7/ D H6 C 1

4
.3H7 �H6/;

which is the same as the beginning. Thus we get the periodic sequence for
b1; b2; b3; : : ::

1; 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; 0; : : : ;

implying

b1 � b2 C b3 � b4 ˙ � � �
2

D

D 1

2
� 1 � 0C 0 � 0C 1 � 0

6
� logN

log
p
5C1
2

CO.1/; (2.103)
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and

� c20
2KH

C c21
2HH1

� c22
2H1H2

˙ � � � D 1

32
� S0 � logN

6 log
p
5C1
2

CO.1/; (2.104)

where

S0 D �9K
2

KH
C.H2C2H3/

2

�
1

HH1

� 1

H1H2

C 1

H2H3

�
� .3H3 CH4/

2

H3H4

C 9H2
5

H4H5

:

The critical sum S0 in the middle of (2.104) equals (with ˛ D .
p
5C 1/=2)

S0 D �9˛ C .˛ C 2/2
�
˛�5 � ˛�3 C ˛�1� � .3˛ C 1/2

˛
C 9˛�1; (2.105)

and using the simple facts ˛2 D 1 C ˛ and ˛�2 D 1 � ˛�1, it is easy to
evaluate (2.105): S0 D �24. Returning to (2.104), we have

sum(2.104) D 1

32
� .�24/ � logN

6 log
p
5C1
2

CO.1/: (2.106)

Applying (2.103)–(2.106) in (2.82), we have

M.
p
5C1/=2

�
1

4
IN
�

D
�
1 � 24

32

�
logN

6 log
p
5C1
2

CO.1/ D

D logN

24 log
p
5C1
2

CO.1/: (2.107)

2.2.3 Periodicity in Proposition 2.9

Let’s return to Proposition 2.9 and Eq. (2.82). The periodicity of b1, b2, b3, : : : in the
examples above was not an accident: we prove that if the sequence a1, a2, a3, : : : is
periodic and c=K is a rational number, then b1, b2, b3, : : : is also periodic (but the
length of the period is not necessarily the same).

Indeed, write c=K D s=t where 1 � s < t are relatively prime integers. Then
by (2.75) and (2.76),

c D c0 D s

t
K D s

t
.a1H CH1/ D b1H C c1;
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where (bxc and fxg denote the lower integral part and the fractional part of x)

b1 D
jsa1
t

k
and c1 D

n sa1
t

o
H C s

t
H1 D s1

t
H C s

t
H1;

and here we assume that c1 < H .
Similarly,

c1 D s1

t
H C s

t
H1 D s1

t
.a2H1 CH2/C s

t
H1 D b2H1 C c2;

where

b2 D
�
s1a2 C s

t

	
and c2 D



s1a2 C s

t

�
H C s1

t
H2 D s2H1 C s1H2

t
;

and again we assume that c2 < H1.
Repeating this argument, for every i � 0 we have

ci D siHi�1 C si�1Hi

t
; (2.108)

where 0 � si ; si�1 < t are integers, and we always assume that ci < Hi�1.
The periodicity of ai means that

ai D aiCL holds for .say/ M1 � i � M2; (2.109)

and here we assume that .M2 � M1/=L is a very large integer. Consider now the
sequence with gap L [see (2.109)]:

cM1; cM1CL; cM1C2L; cM1C3L; � � � ; cM2 I

by (2.108) we have

cM1CjL D s0
jHM1CjL�1 C s00

j HM1CjL
t

< HM1CjL�1; (2.110)

where 0 � s0
j ; s

00
j < t are integers. If .M2 � M1/=L is larger than t2, then by the

Pigeonhole Principle there is a repetition among the pairs .s0
j ; s

00
j /, j D 0; 1; 2; : : :,

and the first repetition implies the periodicity of the sequence b1, b2, b3, : : : in the
rest of the interval M1 � i � M2 [see (2.109)]. Of course, we cannot predict the
length of the period, but it is certainly less than L.t2 C 1/.

Warning! It may happen that our assumption

ci D siHi�1 C si�1Hi

t
< Hi�1; 0 � si ; si�1 < t;
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in (2.108) is violated; for example, see Eq. (2.101) in Example 2.12 (where ˛ D
.
p
5C 1/=2 and � D 1=4):

c0 D 3

4
.H CH1/ > H;

since H=H1 is very close to ˛ D .
p
5C 1/=2 < 3. This is why we cannot write

c0 D 0 �H C c1 with c1 D 3

4
.H CH1/;

instead we have to use

c0 D H C 3H1 �H

4
D H C c1;

where in c1 we face a negative(!) coefficient:

0 < c1 D
�

�1
4

�
H C 3

4
H1 < H: (2.111)

For ˛ D .
p
5C 1/=2 < 3 we can use the ad hoc fact [see (2.102)]

3H1 �H D H2 C 2H3; (2.112)

which simply eliminates the “negativity problem” in (2.111).
Next we show that this trick always works; we can always eliminate the

“negativity problem.” To prove this, assume that for some i we have—just like
in (2.110)—the reverse of (2.108):

ci D siHi�1 C si�1Hi

t
> Hi�1 0 � si ; si�1 < t: (2.113)

Then we rewrite (2.113) in the form

ci D Hi�1 C c0
i where c0

i D si�1Hi � .t � si /Hi�1
t

and 0 � c0
i < Hi�1. In (2.75) we have the recurrence formula Hi�1 D aiC1Hi C

HiC1, so with ri D t � si ,

si�1Hi � riHi�1 D si�1Hi � ri .aiC1Hi CHiC1/ D s�
i�1Hi � riHiC1;

where s�
i�1 D si�1 � riaiC1 � 1.

Case 1: s�
i�1 � ri .
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By using Hi D aiC2HiC1 CHiC2, we have the following analog of (2.112):

s�
i�1Hi � riHiC1 D s�

i�1.aiC2HiC1 CHiC2/� riHiC1 D

D .s�
i�1aiC2 � ri /HiC1 C s�

i�1HiC2; (2.114)

which eliminates the “negativity problem.”

Case 2: s�
i�1 < ri .

Then again we use (2.114):

s�
i�1Hi � riHiC1 D .s�

i�1aiC2 � ri /HiC1 C s�
i�1HiC2: (2.115)

If .s�
i�1aiC2 � ri / is positive, then we are done; if it is negative, then clearly riC2 D

js�
i�1aiC2 � ri j < s�

i�1, and we can rewrite (2.115) in the form

s�
i�1Hi � riHiC1 D s�

i�1HiC2 � riC2HiC1 where ri > riC2 � 0: (2.116)

The decreasing property in (2.116) guarantees that, repeating this argument less
than t times, the negative coefficient eventually disappears [i.e., turns into a positive
coefficient like in (2.112)]. In other words, in both cases we can eliminate the
“negativity problem.”

By getting rid of the “negativity problem,” we are safe to say that the Pigeonhole
Principle argument above always works. As a consequence, we obtain the periodic-
ity of b1, b2, b3, : : :. Combining this periodicity with Lemma 2.7 and Proposition 2.9
[see Eq. (2.82)], we have

Proposition 2.13. If ˛ is a quadratic irrational and 0 < � < 1 is a rational number,
then there is a constant c D c.˛; �/ such that

M˛.�;N / D c � logN CO.1/ (2.117)

holds for every integer N � 2.

2.3 Fourier Series and a Problem of Hardy
and Littlewood (I)

It is a standard exercise in every Fourier analysis course to compute the Fourier
coefficients of the sawtooth function

..x// D �
1X

jD1

sin.2�jx/

�j
; (2.118)
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where ..x// D fxg � 1=2 if x is not an integer and 0 otherwise. We want to
apply (2.118) in both

S˛.n/ D
nX

kD1
..k˛// and M˛.N/ D 1

N

NX

nD1
S˛.n/ D 1

N

NX

nD1
.N C 1 � k/..k˛//;

but we have to be a little bit careful, since the Fourier series in (2.118) is not
absolutely convergent. Instead of (2.118) we actually use a finite version with a
small error term. First we recall Abel’s transformation (“discrete integration by
parts”):

mX

jD1
aj bj D a1.b1 � b2/C .a1 C a2/.b2 � b3/C

C.a1Ca2Ca3/.b3�b4/C: : :C.a1C: : :Cam�1/.bm�1�bm/C.a1C: : :Cam/bm:
(2.119)

We also need the well-known summation formula

mX

jD1
sin.jˇ/ D cos.ˇ=2/� cos..2mC 1/ˇ=2/

2 sin.ˇ=2/
; (2.120)

which implies the useful upper bound

ˇ̌
ˇ̌
ˇ̌
mX

jD1
sin.jˇ/

ˇ̌
ˇ̌
ˇ̌ � 1

j sin.ˇ=2/j : (2.121)

The pointwise convergence of the Fourier series in (2.118) follows from (2.119)
and (2.121), and the equality of the two sides in (2.118) follows from Fejér’s well-
known theorem in Fourier analysis.

By (2.119) and (2.121), for any T � 1,

ˇ̌
ˇ̌
ˇ̌..x//C

TX

jD1

sin.2�jx/

�j

ˇ̌
ˇ̌
ˇ̌ � 2

�T j sin.�x/j <
1

T kxk ; (2.122)

where kxk denotes, as usual, the distance of x from the nearest integer. It follows
that

ˇ̌
ˇ̌
ˇ̌S˛.n/C

TX

jD1

nX

kD1

sin.2�jk˛/

�j

ˇ̌
ˇ̌
ˇ̌ <

1

T

nX

kD1

1

kk˛k : (2.123)
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2.3.1 Badly Approximable Numbers

We need to estimate the diophantine sum

nX

kD1

1

kk˛k

from above for the class of quadratic irrational ˛. Our argument below—a standard
application of the Pigeonhole Principle—will work even for a larger class of reals,
called badly approximable numbers. A real number ˛ is called badly approximable,
if there is a positive constant c0 D c0.˛/ > 0 such that

kkk˛k � c0 > 0 holds for all integers k � 1:

One can easily characterize this class in terms of the continued fraction: ˛ is badly
approximable if and only if the sequence a1; a2; a3; : : : of partial quotients in ˛ D
Œa0I a1; a2; a3; : : :� is bounded, i.e., there is a thresholdM0 D M0.˛/ < 1 such that
ak � M0 holds for all k � 1. The well-known fact from diophantine approximation

˛ D pi

qi
C .�1/iC1
qi .qiC1 C �qi /

;

where pi=qi D Œa0I a1; : : : ; ai�1� is the i th convergent of ˛, qiC1 D ai qi C qi�1,
and 0 < � D �.i/ < 1, implies that c0 and M0 are basically reciprocals of each
other (apart from an absolute constant factor). Note that every quadratic irrational is
badly approximable, since periodicity implies boundedness.

Lemma 2.14. Assume that ˛ is badly approximable, and kkk˛k � c0 > 0 holds
for all integers k � 1. Then for any integer n,

nX

kD1

1

kk˛k � 4

c0
n

�
log

�
n

c0

�
= log 2

�
:

In general, for any m > 2 we have

X

n<k�2nW
kkk˛k<m

1

kk˛k D O.n logm/:

Proof. What we do is a routine application of the Pigeonhole Principle. To prove
the first part, we define the set

Aj D


1 � k � n W 2

j�1

n
c0 � kk˛k < 2j

n
c0

�
:
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Of course Aj is empty if

2j�1

n
c0 >

1

2
: (2.124)

We claim that the set Aj has at most 2jC1 elements. Indeed, if jAj j > 2jC1 then by
the Pigeonhole Principle there exist 1 � k1 < k2 � n such that ki 2 Aj , i D 1; 2,
and

jfk1˛g � fk2˛gj < c0

n
:

By choosing ` D k2 � k1, we have k`˛k < c0=n, which contradicts the hypothesis
`k`˛k � c0 > 0. Thus we have

nX

kD1

1

kk˛k D
X

j�1

X

k2Aj

1

kk˛k �

�
X

j�1

n

2j�1c0
jAj j � 1

c0

X

j�1

n

2j�1 2
jC1 D

D 4n

c0

X

j�1W2j�n=c0
1 <

4n

c0
log

n

c0
= log 2;

where at the end we used (2.124). This proves the first part in Lemma 2.14.
The same Pigeonhole Principle argument proves the second part. ut
By Eqs. (2.120), (2.123) and by Lemma 2.14, we obtain

Lemma 2.15. Assume that ˛ is badly approximable, and kkk˛k � c0 > 0 for all
integers k � 1. Then for any n and T ,

S˛.n/ D
TX

jD1

cos..2nC 1/�j˛/ � cos.�j˛/

2�j sin.�j˛/
C

C �1
4n log.n=c0/

log 2c0T
(2.125)
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and

M˛.N/ D 1

N

NX

nD1
S˛.n/ D �

TX

jD1

1

2�j tan.�j˛/

�
TX

jD1

sin.2�j˛/ � sin.2�.N C 1/j˛/

4�Nj sin2.�j˛/
C �2

4n log.n=c0/

log 2c0T
; (2.126)

where j�1j < 1 and j�2j < 1. ut
The only novelty in the proof of (2.126) is the use of the summation formula

NX

nD1
cos.nˇ C 	/ D sin..N C 1

2
/ˇ C 	/� sin. 1

2
ˇ C 	/

2 sin.ˇ=2/
; (2.127)

instead of (2.120).

2.3.2 The Hardy–Littlewood Series

Now we return to the numerical series

1X

nD1

1

n sin.�n˛/
; ˛ is irrational; (2.128)

briefly mentioned at the end of Sect. 2.1. First notice that the series (2.128) cannot
be convergent, since the terms do not tend to zero for any ˛. Indeed, the inequality
kn˛k < 1=n holds for infinitely many values of n, for example, let n D qj where
pj =qj is the j th convergent of ˛. The inequality kn˛k < 1=n combined with
the trivial fact j sin.�n˛/j � �kn˛k implies that (2.128) contains infinitely many
terms that have absolute value � 1=� . Thus the convergence is out of the question.
Nevertheless, Hardy and Littlewood made the very interesting discovery that for the
special value ˛ D p

2 the partial sums of (2.128) remain uniformly bounded, that is,

NX

nD1

1

n sin.�n˛/
D O.1/: (2.129)

Equation (2.129) represents a miraculous cancellation; we can consider it the next
best thing to convergence.

Note that Hardy and Littlewood actually proved the slightly more general result
that if ˛ D p

a2 C 1; a is odd, then the partial sums always remain bounded. On the
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other hand, for many other quadratic irrationals the N th partial sum is c logN C
O.1/ with c ¤ 0 (Hardy and Littlewood gave the example ˛ D p

6=2� 1).
What is going on here? We will give a very transparent proof of (2.129) by using

the following improved version of (2.126).

Proposition 2.16. If ˛ is badly approximable, then for any N ,

M˛.N/ D �
NX

jD1

1

2�j tan.�j˛/
CO.1/; (2.130)

where the implicit constantO.1/ D O˛.1/ is independent of N .

We postpone the proof of Proposition 2.16 to the next section.
Besides Proposition 2.16, we also need the following simple trigonometric

identity:

1

tan.ˇ/
� 1

tan.2ˇ/
D 2 cos2.ˇ/ � cos.2ˇ/

2 sin.ˇ/ cos.ˇ/
D 1

sin.2ˇ/
: (2.131)

By using (2.131), we obtain

NX

nD1

1

n sin.�n˛/
D

NX

nD1

1

n tan.�n˛=2/
�

NX

nD1

1

n tan.�n˛/
;

and combining this with Proposition 2.16, we get the equation

NX

nD1

1

n sin.�n˛/
D 2�M˛.N / � 2�M˛=2.N /CO.1/: (2.132)

If ˛ is a quadratic irrational, then ˛=2 is also a quadratic irrational; therefore,
combining Eq. (2.132) with Proposition 2.1, we obtain

Proposition 2.17. If ˛ is a quadratic irrational, then there is a constant c� D
c�.˛/ such that

NX

nD1

1

n sin.�n˛/
D c� � logN CO.1/; (2.133)

where the constant factor c� D c�.˛/ can be determined by using (2.132) and
Proposition 2.16.

Now we are in a position to understand why the constant factor c�.˛/ in (2.133)
equals 0 for ˛ D p

2, and why in general it equals 0 for any ˛ D p
m2 C 1 where
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m � 1 is an odd integer. The advantage of ˛ D p
m2 C 1 is that it has a particularly

simple continued fraction: ˛ D ŒmI 2m; 2m; 2m; � � � � D ŒmI 2m� and

Case 1: if m is odd, then ˛=2 D Œ.m � 1/=2I 1; 1;m� 1�;
Case 2: if m is even, then ˛=2 D Œm=2I 4m;m�.
In Case 1 both ˛ and ˛=2 have periods of odd length, so by Proposition 2.1
and (2.132), the partial sums of the series (2.128) are O.1/.

On the other hand, in Case 2, ˛=2 has a period of even length, so the partial sums
of the series (2.128) have the form c�.˛/ logN C O.1/ where c�.˛/ is never zero.
Now we clearly understand why in the “O.1/-theorem” of Hardy and Littlewood
the condition “m is odd” was necessary. Indeed, if ˛ D p

m2 C 1 and m is even,
then there is no O.1/-theorem: by (2.132) and Case 2 above,

NX

nD1

1

n sin.�n˛/
D O.1/� 2�M˛=2.N / D

D 2�

12
� 4m �m

2
� logN

log.mC p
m2 C 1/

CO.1/ D

D �m

4 log.mC p
m2 C 1/

logN CO.1/;

since x D m and y D 1 is the least solution of Pell’s equation x2 � .m2 C 1/y2

D ˙1.
In view of (2.132) it is natural to ask the following related question: How to

compute the continued fraction for ˛=2 from the continued fraction for ˛? Well, if
˛ D Œa0I a1; a2; a3; � � � � then

˛=2 D Œa0=2I 2a1; a2=2; 2a3; a4=2; � � � ; a2i =2; 2a2iC1; � � � �

if this formula does make sense, i.e., if a2i is even for every i � 0. Under this “parity
condition,” by using (2.132) and Proposition 2.16, it is very easy to characterize
those quadratic irrationals for which the partial sums of the series (2.128) areO.1/.

Indeed, if the length s of the period ajC1; ajC2; � � � ; ajCs of ˛ is odd, then the
necessary and sufficient condition for an “O.1/-theorem” is

PjCs
iDjC1.�1/iai D 0.

On the other hand, if the length of the period is even, then there is no “O.1/-
theorem” whatsoever.

For example, if ˛ D p
41 D Œ6I 2; 2; 12; 2; 2; 12; : : :� D Œ6I 2; 2; 12� then the

“parity condition” holds:

˛

2
D

p
41

2
D Œ3I 4; 1; 24; 1; 4; 6; 4; 1; 24; 1; 4; 6; : : :� D Œ3I 4; 1; 24; 1; 4; 6�;
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and by (2.132) we have

NX

nD1

1

n sin.�n˛/
D O.1/� 2�M˛=2.N / D

D 2�

12
� 4 � 1C 24 � 1C 4 � 6

6
� logN

3 log.32C 5
p
41/

CO.1/ D

D 2� logN

9 log.32C 5
p
41/

CO.1/;

since x D 32 and y D 5 is the least solution of Pell’s equation x2 � 41y2 D ˙1.
The general case, when the “parity condition” is violated, is technically more

complicated and somewhat unpleasant. We guess that this technical difficulty was
the reason why Hardy and Littlewood restricted their study to the very special
quadratic irrationals ˛ D p

m2 C 1 D ŒmI 2m� having the simplest possible (“one
digit period”) continued fraction.

How to obtain the continued fraction for ˛=2 in general, assuming we know
˛ D Œa0I a1; a2; a3; � � � �? There is an interesting general procedure to answer this
question, even when the “parity condition” is violated. We learned it from Richard
Bumby (Rutgers University), an expert in continued fractions, who claims that the
procedure goes back to Hurwitz. What Hurwitz was really interested in was to find
the continued fraction for e=2 and 2e, based on the knowledge of Euler’s classical
solution for e:

e D Œ2I 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; : : : ; 1; 2i; 1; : : :�: (2.134)

2.3.3 Doubling and Halving in Continued Fractions

The procedure consists of three operations. The first two, H =“halving,” D =“dou-
bling,” are perfectly natural; the third, S =“special operation,” is the tricky one. For
example, to get the continued fraction for e=2, first we apply the “halving operation”
H to the first “digit” 2 in (2.134): this gives 1, and next comes the “doubling
operation” D applied to the second “digit” 1 in (2.134), and so on. There are nine
rules.

1. H(2n) = nD (i.e., D comes next)
2. Dn = (2n)H
3. H(2nC 1) = n,1S
4. Dn,1 = (2nC 1)S
5. S(2n) = 1,n� 1,1S
6. S(2nC 1) = 1,nD
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7. S1,n = (2nC 1)H
8. S1,n,1 = (2nC 2)S
9. S2 = 2S

Note that rules 1 and 2 are obvious, but the rest of the rules require a little bit of work
with continued fraction. For example, to prove rule 3, we may proceed as follows
(n � 1, m � 1 are integers and x > 1 is a real):

.2nC 1/C 1

mC 1
x

2
D nC 1

2
C 1

2.mC 1
x
/

D nC mC 1C 1
x

2mC 2
x

D

D nC 1

2mC 2
x

mC1C 1
x

D nC 1

1C m�1C 1
x

mC1C 1
x

D nC 1

1C 1

mC1C 1
x

m�1C 1
x

D nC 1

1C 1

1C 1

m�1C 1
x

2

:

Assume now that m D 2k C 1 where k � 1 is an integer, then

.2nC 1/C 1

mC 1
x

2
D nC 1

1C 1

1C 1

kC

1
2x

;

which proves the combination of rules 3 and 6. Similar argument proves the rest of
the cases—we leave the details to the reader.

We illustrate the application of these rules by determining the continued fractions
of e=2 and 2e (first published by Hurwitz).

To get e=2 we proceed on the “digits” in (2.134); we start with the “halving
operation” applied on 2 (the first “digit” of e):

H2 H) rule 1 H) 1 (D comes next)
D1 H) rule 2 H) 2 (H comes next)
H2 H) rule 1 H) 1 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S4 H) rule 5 H) 1,1,1 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)
H6 H) rule 1 H) 3 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S8 H) rule 5 H) 1,3,1 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)
H(10) H) rule 1 H) 5 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S(12) H) rule 5 H) 1,5,1 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)

and so on. We applied the following rules:

1, 3, 1, 4, 5, 7, 1, 4, 5, 7, 1, 4, 5, 7, 1, 4, 5, 7, � � �
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This sequence shows periodicity; the period is 1,4,5,7, and we obtain

e=2 D Œ1I 2; 1; 3; 1; 1; 1; 3; 3; 3; 1; 3; 1; 3; 5; 3; 1; 5; 1; 3; : : :�: (2.135)

It is easy to recognize the linear pattern in (2.135):

e=2 D Œ1I 2; 1; 3; 1; 1; 1; 3; 3; 3; 1; 3; 1; 3; 5; 3; 1; 5; 1; 3; : : : ; 2i C 1; 3; 1; 2i C
1; 1; 3; : : :�.

Similarly, to get 2e we proceed on the “digits” in (2.134), but of course here we
start with the “doubling operation” applied on 2:

D2,1 H) rule 4 H) 5 (S comes next)
S2 H) rule 9 H) 2 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)
H4 H) rule 1 H) 2 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S6 H) rule 5 H) 1,2,1 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)
H8 H) rule 1 H) 4 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S(10) H) rule 5 H) 1,4,1 (S comes next)
S1,1 H) rule 7 H) 3 (H comes next)
H(12) H) rule 1 H) 6 (D comes next)
D1,1 H) rule 4 H) 3 (S comes next)
S(14) H) rule 5 H) 1,6,1 (S comes next)

and so on. We applied the following rules:

4, 9, 7, 1, 4, 5, 7, 1, 4, 5, 7, 1, 4, 5, 7, 1, 4, 5, � � �
This sequence shows periodicity with the same period as for e=2, and we obtain

2e D Œ5I 2; 3; 2; 3; 1; 2; 1; 3; 4; 3; 1; 4; 1; 3; 6; 3; 1; 6; 1; : : :�:

It is easy to recognize the linear pattern here:

2e D Œ5I 2; 3; 2; 3; 1; 2; 1; 3; 4; 3; 1; 4; 1; 3; 6; 3; 1; 6; 1; : : : ; 2i; 3; 1; 2i; 1; 3; : : :�:
(2.136)

2.3.4 A Geometric Interpretation

We conclude Sect. 2.3 with the interesting observation that the partial sums of the
Hardy–Littlewood series [see (2.128)]

NX

nD1

1

n sin.�n˛/
; ˛ is irrational; (2.137)
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have a nice geometric meaning: the partial sums represent the “average error” in
yet another natural lattice point counting problem. To justify this claim, we go back
to Sect. 1.2, where we counted lattice points inside the axes-parallel right triangle
bounded with the lines y D ˛x, y D 0, x D n (we excluded the lattice points on
the boundary). Here we slightly modify the problem: let 0 < � < 1, we shift the
line y D ˛x to the parallel line y D ˛.x � �/ passing through the point .�; 0/—
this point is the left corner of our new triangle; the lines y D 0, x D n remain
unchanged. In other words, we just shift the left corner of the right triangle from the
origin .0; 0/ to .�; 0/. Counting the lattice points inside the new triangle vertically,
we obtain the following sum [an analog of (1.47)]:

b˛ � �˛c C b2˛ � �˛c C b3˛ � �˛c C � � � C b.n� 1/˛ � �˛c D

D
n�1X

kD1

�
k˛ � �˛ � 1

2
�
�

fk˛g � 1

2

��
D

D E �̨
;�.n� 1/� S �̨

;�.n � 1/; (2.138)

where

E �̨
;�.m/ D ˛

 
mC 1

2

!
�m

�
�˛ C 1

2

�

and

S �̨
;�.m/ D

mX

kD1
..k˛ � �˛//:

Just like in Sect. 1.2, we consider E �̨
;�.n � 1/ the “expectation,” and S �̨

;�.n � 1/ is
the “error term” (i.e., the deviation from the expected value). By using the Fourier
series of the sawtooth function [see (2.118)], we have

..x � �˛// D �
1X

jD1

sin.2�j.x � �˛//

�j
;

and so we have the (formal) equation

S �̨
;�.m/ D �

1X

jD1

1

�j

mX

kD1
sin.2�j.k˛ � �˛// D

D �
1X

jD1

1

�j
� cos.2�j˛. 1

2
� �// � cos.2�j˛.mC1

2
� �//

2 sin.�j˛/
:
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Now we choose � D 1=2, that is, the left corner of our right triangle is the point
.1=2; 0/ (instead of the origin). Then

S �̨
;1=2.m/ D

1X

jD1

cos.2�mj˛/ � 1

2�j sin.�j˛/
; (2.139)

implying that in the average

M �̨
;1=2.N / D 1

N

NX

mD1
S �̨

;1=2.m/

we have the new factor sin.�j˛/ in the denominator instead of tan.�j˛/ that we
have in M˛.N/; see (2.125), (2.126) and (2.139). Now assume that ˛ is badly
approximable; then the proof of Proposition 2.16 can be easily adapted for the
similar M �̨

;1=2.N /, and it gives the following analog of (2.130):

M �̨
;1=2.N / D �

NX

jD1

1

2�j sin.�j˛/
CO.1/; (2.140)

where the implicit constantO.1/ D O˛.1/ is independent of N .
Comparing (2.137) to (2.140), we see the geometric interpretation of the initial

segment of the Hardy–Littlewood series. It represents the “average error” in a
lattice point counting problem. Namely, counting lattice points in axes-parallel right
triangles of slope ˛ (where ˛ is badly approximable), bounded by the horizontal
axis, where the left corner is the fixed half-integer point .1=2; 0/; see the picture
below.
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2.4 Fourier Series and a Problem of Hardy
and Littlewood (II)

The whole section is devoted to the proof of Proposition 2.16. By using
Lemma 2.15 with the choice T � N logN , we have

M˛.N/ D �
NX

jD1

1

2�j tan.�j˛/
� S1 � S2 CO.1/; (2.141)

where

S1 D
NX

jD1

sin.2�j˛/ � sin.2�.N C 1/j˛/

4�Nj sin2.�j˛/
(2.142)

and

S2 D
TX

jDNC1

1

2�j

�
1

tan.�j˛/
C sin.2�j˛/ � sin.2�.N C 1/j˛/

2�N sin2.�j˛/

�
: (2.143)

Since the irrational rotation is uniformly distributed, we have the “plausible”
approximation

1

M2 �M1

X

M1�k<M2

f .k˛/ �
Z 1

0

f .x/ dx; (2.144)

where f .x/ is a “nice” periodic function with period one. We can make the “plau-
sible” approximation (2.144) precise by using the so-called Koksma’s inequality.

Lemma 2.18 (“Koksma’s inequality”). Let X D fx1; : : : ; xng be an arbitrary
n-element point set in the unit interval [0,1), then

ˇ̌
ˇ̌
ˇ
1

n

nX

iD1
f .xi / �

Z 1

0

f .x/ dx

ˇ̌
ˇ̌
ˇ � �.X /

n

Z 1

0

jf 0.x/j dx;

where of course f 0 is the derivative of f (i.e., we assume that f is smooth), and

�.X / D sup
0<y�1

ˇ̌
ˇ̌
ˇ
X

xi�y
1 � ny

ˇ̌
ˇ̌
ˇ (2.145)

is the discrepancy of the set X .
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Notice that the discrepancy defined in (2.145) measures the deviation of X D
fx1; : : : ; xng from the perfect uniform distribution in the unit interval. The integral

Z 1

0

jf 0.x/j dx

is usually called the variation of f .

Proof of Lemma 2.18. Assume that the elements of X are in increasing order: 0 �
x1 � x2 � : : : � xn � 1. Using integration by parts, we have

Z 1

0

f .x/ dx D f .1/ �
Z 1

0

xf 0.x/ dx: (2.146)

The discrete analog of (2.146) is

1

n

nX

iD1
f .xi / D f .1/ �

nX

iD1

i

n
.f .xiC1/� f .xi // ; (2.147)

where xnC1 D 1; Equation (2.147) is a routine application of Abel’s transforma-
tion (2.119). Putting x0 D 0, by (2.146) and (2.147),

ˇ̌
ˇ̌
ˇ
1

n

nX

iD1
f .xi / �

Z 1

0

f .x/ dx

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

Z 1

0

xf 0.x/ dx �
nX

iD0

i

n
.f .xiC1/� f .xi //

ˇ̌
ˇ̌
ˇ �

�
nX

iD0

Z xiC1

xi

ˇ̌
ˇ̌x � i

n

ˇ̌
ˇ̌ jf 0.x/j dx � �.X /

n

Z 1

0

jf 0.x/j dx;

and Lemma 2.18 follows. ut
It is easy to rescale Lemma 2.18 to any interval Œa; b�: if a � x1 � x2 � : : : �

xn � b then

ˇ̌
ˇ̌
ˇ
1

n

nX

iD1
f .xi /� 1

b � a

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ � �

n

Z b

a

jf 0.x/j dx; (2.148)

where

� D sup
a<y�b

ˇ̌
ˇ̌
ˇ
X

xi�y
1 � n

y � a

b � a

ˇ̌
ˇ̌
ˇ ; (2.149)

an analog of the discrepancy in (2.145).
Let’s return to the Discrepancy Lemma in Sect. 1.1 [see (1.22) and (1.23)]: it

implies that the discrepancy of the irrational rotation k˛ (mod 1), 1 � k � n,
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is O.logn/, if ˛ is badly approximable. Next we show that, for a given interval
I 	 Œ0; 1�, we can replace the upper bound O.logn/ for the discrepancy in I with
O.log.njI j C 2//. This is a substantial improvement if jI j is “close” to 1=n.

Lemma 2.19. If ˛ is badly approximable then

Z˛.nI I / D
X

1�k�nW
k˛2I .mod 1/

1 D njI j CO.log.njI j C 2//:

Proof. We repeat the argument in (1.15)–(1.21) with a twist at the end. Assume
q`�1 � n < q`; in view of (1.20) we can write

n D b`�1q`�1 C b`�2q`�2 C : : :C b1q1;

where 1 � b`�1 � a`�1, 0 � bj � aj for 2 � j < ` � 1, 0 � b1 � a1 � 1, and

j�1X

iD1
biqi < qj for 1 � j � `:

Let r be the largest index j such that kqj ˛k > jI j, and write n D M Cm where

M D b`�1q`�1Cb`�2q`�2C: : :Cbrqr and m D br�1qr�1Cbr�2qr�2C: : :Cb1q1 < qr :

By (1.22) and (1.23),

jZ˛.M I I /�M jI jj � 3.b`�1 C b`�2 C : : :C br/: (2.150)

Notice that the end sequence .M C j /˛ (mod 1), 1 � j � m, of the irrational
rotation contains at most one member in the interval I . Indeed, otherwise there
exist n1 < n2 such that 1 � n2 � n1 < m < qr with ni˛ 2 I (mod 1), i D 1; 2,
and so k.n2 � n1/˛k � jI j < kqr˛k. But this contradicts the following well-known
minimum property of the convergent denominators qj of ˛: kp˛k < kqj ˛k implies
that p > qj . Thus we have

Z˛.nI I / D Z˛.M I I /CO.1/;

and so by (2.150),

jZ˛.nI I / � njI jj D jZ˛.M I I /�M jI j CO.1/� njI jj �

� jZ˛.M I I /�M jI jj CO.1/C njI j D

D
�

max
r�j<` bj

�
�O.` � r/ C mjI j D O.` � r/ C O.1/: (2.151)
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In the last step we used that ˛ is badly approximable, and also

mjI j < qr jI j < qrkqr˛k D O.1/;

where in the last step we used (1.9).
Again using the fact that ˛ is badly approximable, we have

n � q` and jI j � kqr˛k � 1

qr
;

implying

q`

qr
� njI j and ` � r D O.log.njI j C 2//: (2.152)

Combining (2.151) and (2.152), Lemma 2.19 follows. ut
Now we are ready to estimate S2 in (2.143). We define the set

Ak D


N < j � T W 2

k

N
� kj˛k < 2kC1

N

�
: (2.153)

Depending on whether fj˛g is small or 1 � fj˛g is small, we split Ak into two
parts: Ak D AC

k [A�
k . More precisely, let kxkC D kxk if the interval .x � 1=2; x�

contains an integer and 0 otherwise, and similarly let kxk� D kxk if the interval
.x; x C 1=2� contains an integer and 0 otherwise. Then kxk D kxkC C kxk�, and
write

AC
k D



N < j � T W 2

k

N
� kj˛kC <

2kC1

N

�
(2.154)

and

A�
k D



N < j � T W 2

k

N
� kj˛k� <

2kC1

N

�
: (2.155)

The proof of Proposition 2.16 proceeds in several steps: Step One, Step Two, and
so on.

Step One: We estimate the sum

X

j2Ak

1

j tan.�j˛/
for every k � 1; (2.156)

where Ak is defined in (2.153). For technical reasons, we decompose Ak into
several parts: for 1 � ` � k2 let
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Ak;` D
(
j 2 Ak W N �

�
1C 1

k2

�`�1
< j � N �

�
1C 1

k2

�`)
; (2.157)

and for ` � k2 C 1 let

Ak;` D fj 2 Ak W N.k; ` � 1/ < j � N.k; `/g ; (2.158)

where

N.k; k2/ D N �
�
1C 1

k2

�k2
and N.k; `/ D N.k; `�1/

�
1C 1

`

�
: (2.159)

Again we split

Ak;` D AC
k;` [ A�

k;` (2.160)

exactly the same way as we did in (2.153)–(2.155).
We estimate the sum

X

j2Ak;`

1

j tan.�j˛/

by using Lemmas 2.18 and 2.19. The reason why we defined the “short” setsAk;`
is that the factor j hardly changes in such a short set. We apply Eq. (2.148) with

a D 2k

N
; b D 2kC1

N
; f .x/ D 1

tan.�x/
; (2.161)

and the finite point set X in the interval Œa; b� is the following [see (2.160)]:

X D fj˛ .mod 1/ W j 2 AC
k;`gI (2.162)

then we have
ˇ̌
ˇ̌
ˇ̌
ˇ

X

j2AC

k;`

1

tan.�j˛/
� jAC

k;`j
b � a

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ̌
ˇ

� �

Z b

a

jf 0.x/j dx: (2.163)

Notice the difference between (2.156) and (2.163): in the latter factor j is missing
from the denominator.
Write

E.k; `/ D .N.k; `/�N.k; ` � 1// 2
k

N
; (2.164)
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where N.k; `/ is defined in (2.159) for ` � k2, and

N.k; `/ D N �
�
1C 1

k2

�`
for 0 � ` < k2: (2.165)

We may call E.k; `/ the “expectation,” because by Lemma 2.19,

� D O.log.E.k; `/C 2//; (2.166)

and

Z b

a

jf 0.x/j dx D jf .b/� f .a/j; (2.167)

because f .x/ D .tan.�x//�1 is monotonic in a � x � b as long as 2k � N=4.
Combining (2.161)–(2.167), we have

X

j2AC

k;`

1

tan.�j˛/
D E.k; `/

b � a

Z b

a

f .x/ dx C O.N2�k log.E.k; `/C 2//:

(2.168)

We repeat the same argument for A�
k;`: the only difference is that a1 D 1 �

2kC1N�1 and b1 D 1 � 2kN�1 are the new endpoints instead of a; b in (2.161).
Thus we have the analog of (2.168):

X

j2A�

k;`

1

tan.�j˛/
D E.k; `/

b1 � a1
Z b1

a1

f .x/ dx C O.N2�k log.E.k; `/C 2//:

(2.169)
Since tan.x/ is an odd function,

Z b1

a1

f .x/ dx C
Z b

a

f .x/ dx D 0;

and by (2.168) and (2.169),

X

j2Ak;`

1

tan.�j˛/
D O.N2�k log.E.k; `/C 2//: (2.170)

By (2.157)–(2.159), if j1; j2 2 Ak;` then with j1 < j2 we have

1 <
j2

j1
� 1C 1

k2
if ` � k2 (2.171)
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and

1 <
j2

j1
� 1C 1

`
if ` > k2: (2.172)

By (2.170)–(2.172), we can control the effect of the extra factor of j in the
denominator as follows:

X

j2Ak;`

1

j tan.�j˛/
D O..N.k; ` � 1//�1N2�k log.E.k; `/C 2//C

C minfk�2; `�2g
X

j2Ak;`

1

j j tan.�j˛/j : (2.173)

By the definition of Ak;` [see (2.153)–(2.159)]

X

j2Ak;`

1

j j tan.�j˛/j � jA.k; `/j
N.k; ` � 1/

�N2�k;

so by (2.173) we have

X

j2Ak;`

1

j tan.�j˛/
D O.Hk;`/ (2.174)

where

Hk;` D .N.k; ` � 1//�1N2�k �log.E.k; `/C 2/C minfk�2; `�2g � jAk;`j
�
:

(2.175)
By (2.164)–(2.166),

X

`�1

Hk;` D X

1�`�k2

Hk;` C X

k2<`

Hk;` D

D
X

1�`�k2

2�k
�
O.k/CO.k�42k/

�C
X

k2<`

2�ke�`=k2
�
O.`k�2 C k/CO.`�2e`=k

2

/
�

D

D O.k�2/: (2.176)

Combining (2.175) and (2.176), for every k � 1 we have

X

j2Ak

1

j tan.�j˛/
D O.k�2/; (2.177)

which completes Step One.
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Adding up (2.177) for all k D 1; 2; 3; : : : we have

X

N<j�T W
kj˛k�2=N

1

j tan.�j˛/
D O.

1X

kD1
k�2/ D O.1/: (2.178)

Of course, if kj˛k is “around” 1=N , then the method of Step One still works, for
example,

X

N<j�T W
2=N>kj˛k�1=16N

1

j tan.�j˛/
D O.1/; (2.179)

but if kj˛k is much smaller than 1=N , then we switch to

Step Two: Let

Bk D


N < j � T W 1

2kN
� kj˛k > 1

2kC1N

�
; (2.180)

then we estimate the sum [see (2.143)]

X

j2Bk

�
1

j tan.�j˛/
C sin.2�j˛/ � sin.2�.N C 1/j˛/

2jN sin2.�j˛/

�

for every k � 4. We repeat the argument of Step One with the new function

g.x/ D 1

tan.�x/
C sin.2�x/ � sin.2�.N C 1/x/

2N sin2.�x/
(2.181)

instead of f .x/ D 1= tan.�x/ [see (2.161)] that we used in Step One. Note that
g.x/ is also odd (which is crucial for the cancellation part); and g.x/ is also
monotonic at least in the interval 0 < x < 1=16N ; and

g.x/ � 2�

3
N 2x if 0 < x <

1

16N
: (2.182)

Applying the method of Step One with Bk and g.x/ instead of Ak and f .x/, and
heavily relying on (2.182) (what we need is monotonicity: smaller x D kj˛k
leads to smaller g.x/), we obtain the following analog of (2.178):

X

k�4

X

j2Bk

g.j˛/

j
D O.1/: (2.183)

This completes Step Two.
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Let’s return to S2 in (2.143). In view of (2.178)–(2.183), the last step is

Step Three: We have to estimate the sum

X

N<j�T W
kj˛k�1=16N

sin.2�.N C 1/j˛/ � sin.2�j˛/

2jN sin2.�j˛/
: (2.184)

Again we repeat the argument of Step One: this time with the function

h.x/ D sin.2�.N C 1/x/� sin.2�x/

2N sin2.�x/
; (2.185)

and as an analog of the set Ak;` [see (2.157)–(2.159)], we introduce the new set
A�
k;` defined as

8
<

:N
 
1C 1

log2
�
T
N

C 2
�
!`�1

< j � N

 
1C 1

log2
�
T
N

C 2
�
!`

W k

16N
< kj˛k � k C 1

16N

9
=

;;

where k D 1; 2; 3; : : : and ` D 1; 2; 3; : : :. Similarly to Step One, we estimate
the sum

X

j2A�

k;`

h.j˛/

j

by combining Koksma’s inequality [in fact, we use the form (2.148) and (2.149)]
with Lemma 2.19 and taking advantage of the fact that the function h.x/ is odd
(which gives the crucial cancellation); also we use the fact that the factor j hardly
changes in the “short” set A�

k;`. A simple calculation gives

sum(2.184) D O.1/I (2.186)

a key reason why (2.186) holds is that the square sin2.�x/ in the denominator
of (2.185) implies the appearance of the convergent series

P
k�1 k�2 D O.1/

(instead of the divergent harmonic series).
Summarizing, by (2.178)–(2.184) and (2.186) we have

S2 in (2.143) D O.1/: (2.187)

It remains to show that

S1 in (2.142) D O.1/: (2.188)
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To prove (2.188) we don’t need the sophisticated method of Step One; instead
we can succeed by simply using the trivial upper bound

jS1j �
NX

kD1

1

Nkkk˛k2 : (2.189)

By repeating the proof of Lemma 2.14 (Pigeonhole Principle), we obtain

NX

kD1

1

Nkkk˛k2 D O.1/; (2.190)

due to the fact that the square kk˛k2 leads to the convergent series
P

k�1 k�2 D
O.1/ (instead of the divergent harmonic series). Combining (2.141)–(2.143)
with (2.187)–(2.190), Proposition 2.16 follows.

ut
The next section is a (very important) detour: it is a short essay about the

paradigm of determinism versus randomness, providing a broader perspective for
our main results, Theorems 1.1 and 1.2.

2.5 A Detour: The Giant Leap in Number Theory

2.5.1 Looking at the “Big Picture”

As we already said in the Preface, we did not choose the (otherwise catchy and quite
fitting) subtitle randomness of

p
2 to avoid misleading the reader. Our objective

is not to prove the apparent “randomness” of the digit distribution of
p
2 (which,

unfortunately, remains open). Nevertheless, this notorious and totally untouchable
problem is a perfect illustration of what we like to call the “Giant Leap” in number
theory.

Historically the first attempt to prove something vaguely similar to the apparent
randomness of the digit distribution of

p
2 was a measure-theoretic result. About

100 years ago, in 1909 E. Borel proved that almost every real number is normal
in all bases b D 2; 3; : : : ; 10; : : :. Of course, almost every means “all but a set of
Lebesgue measure zero,” and a real number is said to be normal in a particular base
if every block of digits of any length occurs with the same density depending only
on the length and the base. In particular, if the base is b � 2 and the length is l � 1

then the density is b�l , that is, normality is an equidistribution property.
Unfortunately, the measure-theoretic approach says nothing about individual

numbers such as
p
2 or � . This is why now, 100 years later, we still don’t know

any explicit example of a number that is normal in all bases (such a number is often
called absolutely normal).
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To be fair, we have to admit that there are some very indirectly defined numbers,
such as the Chaitin’s number—defined as the halting probability of a universal
Turing machine—and the so-called Sierpinski’s number (which gives a little bit
of extra information beyond Borel’s measure-theoretic existential proof), that are
absolutely normal, but most mathematicians are not happy with them—they are not
considered “properly explicit.” For example, the so-called Champernowne number,
see below, is undoubtedly “properly explicit,” and perfectly satisfies everybody. The
core problem is that we don’t have a rigorous definition of “concrete example.”
For example, Sierpinski, mainly a set theorist, has a very broad interpretation and
considers everything “explicit” if it does not use the Axiom of Choice. Sierpinski’s
“explicit example” is the minimum of a bounded countable set of real numbers.
For most number theorists this is some sort of cheating; they want something more
explicit, something “similar” to the Champernowne number. We concede, at this
point the discussion becomes very murky—so we just stop this inserted remark.

When we say we don’t know any explicit example of an absolutely normal
number, we mean that we don’t have a rigorous mathematical proof. We have,
however, a very convincing “experimental proof,” because there is an overwhelming
numerical evidence that the famous special numbers, such as � D 3:14 : : :, e D
2:718 : : :,

p
2,

p
3, 3

p
2, log 2 (meaning the natural logarithm of 2), and log 3= log 2

(meaning the base 2 logarithm of 3), are all absolutely normal.
We cannot help but insert here two historic remarks. One of the early (pure

mathematical) experimentations with the electronic computer—in 1949 von Neu-
mann and his group working on ENIAC, the first fully electronic computer—was
to determine the first two thousand decimal digits of � and to carry out a statistical
treatment of the digit distribution. The second remark is a prediction of the great
Dutch mathematician L.E.J. Brouwer. Almost 100 years ago, well before the
revolution of the electronic computer, Brouwer wanted to show an example of an
“unsolvable” problem—or at least unsolvable in his lifetime—and he came up with
the following question: In the decimal expression for � , do we ever come to a place
where a thousand consecutive digits are all zero? The answer is still unknown (but
of course we all expect a positive answer).

As illustration, here are the first 50 digits of � in bases 10 and 2:

� D 3:141592653589793238462643383279502884197169399375105820 : : :

� D 11:00100100001111110110101010001000100001011010001100001 : : :

And here are the first 50 digits of
p
2 in bases 10 and 2:

p
2 D 1:414213562373095048801688724209698078569671875376948 : : :

p
2 D 1:0110101000001001111001100110011111110011101111001100 : : :

But much more is true—or seems to be true—here: according to Wolfram’s book
A New Kind of Science (especially Chap. 4), every single irrational special number
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ever tried so far seems to be normal in all bases. This observation is supported by an
enormous computational evidence. For example, the frequency of digit 7 among the
first 10n decimal digits of � is 8 %, 9.5 %, 9.7 %, 10.025 %, 9.980 %, 10.002 % as
n D 2; 3; 4; 5; 6; 7—the occurrence ratios for digit 7 seem to be converging to 1

10
.

The vaguely defined notion special number means a real number expressed
in terms of standard mathematical functions. The rational numbers are trivial
exceptions: they are eventually periodic in every base, and periodicity (i.e., the
repetition of the same block) is the complete opposite of the equidistribution of
the blocks.

Note that normality is much less than “randomness”: the number

0:123456789101112131415161718192021 : : :99100101102 : : :

is normal in base 10 in spite of exhibiting a very clear and predictable anti-
randomness pattern. The pattern is that the digits are those of all natural numbers in
succession; this is called the Champernowne number. Is the Champernowne number
normal in base 2 or base 3? No one knows.

Irrational special numbers seem to exhibit digit equidistribution (i.e., normality),
and what is more, far beyond normality they all seem to exhibit “full-blown
randomness,” including the trademark square root size fluctuation of the random
walk (physicists call it the “square root law”). For example, a statistical analysis
of the first 10 million decimal digits of � tells us something interesting. The
frequencies of 0, 1, 2, : : :, 9 differ from the expected number 106 by

�560; �667; 306; �36; 1093; 466; �663; 207; �186; 40:

Since the standard deviation of the corresponding binomial distributionp
np.1 � p/ with n D 107, p D 1=10 is 300, the fluctuations are close to what one

would expect by the central limit theorem.
Among the first 2 � 1011 (200 billion) decimal digits of � , the frequencies of 0, 1,

2, : : :, 9 differ from the expected number 2 � 1010 by

30841; �85289; 136978; 69393; �78309; �82947; �118485; 32406; 291044;

�130820I

the data are from Wolfram’s book, see p. 912. Now the standard deviation of the
corresponding binomial distribution

p
np.1 � p/ with n D 2 � 1011, p D 1=10 is

roughly 135,000, and again the fluctuations are well predicted by the central limit
theorem. We have similar data for

p
2. The decimal expansions of � and

p
2 seem

to exhibit normality, or using an alternative probabilistic name: the law of large
numbers, and what is much more, they also seem to exhibit the square root law, or
perhaps even the delicate central limit theorem. (Note that these results, the law of
large numbers, the square root law, and the central limit theorem, are the benchmarks
of Probability Theory.)
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Summarizing, we can say that for the “interesting” real numbers (or “special”
numbers) the decimal expansion, and in general any base b � 2 expansion, either
features a simple behavior (such as the periodicity for the rationals) or features full-
blown “randomness” (which seems to be the case for all special irrationals ever
tried). We refer to this striking phenomenon as the Giant Leap. What makes the
Giant Leap so uniquely interesting is the sharp contrast between the overwhelming
numerical evidence and the total lack of rigorous mathematical proof. We don’t
even know whether or not each of the ten digits keeps occurring infinitely often in
the decimal form of � (or

p
2, or e, etc.).

How come that these questions are mathematically untouchable? We are sure
the reader’s first reaction is to turn to Probability Theory for help. But here
is the big dilemma: the decimal expansion of � (or

p
2 or e) is an individual

sequence, and traditional probability theory says nothing about the “randomness” of
individual sequences. In fact, the basic idea of Kolmogorov’s axiomatic foundation
for probability theory is to scrupulously avoid the notion of “individual random
sequence,” and right now we simply do not have any workable, agreed-on definition
of “randomness.”

Note that in the 1920s, before Kolmogorov’s axioms, von Mises made an attempt
to come up with a definition, but his work remained incomplete and controversial
(we can actually say that von Mises’s failure was a key motivation for Kolmogorov’s
axiomatic approach). Von Mises’s basic idea was to express the apparent lack
of successful gambling schemes in a formal definition for random sequences.
Many years later Information Theory (Shannon) suggested the new idea to define
randomness via inability to compress data. Combining Mises’s old idea with this
new idea, people like Chaitin, Kolmogorov, Solomonoff, and Martin-Löf introduced
and developed the notion of algorithmic randomness. An individual sequence of
length n features algorithmic randomness if the program-size complexity (i.e., the
length of the shortest program describing the sequence) is close to n (i.e., the length
of the sequence). The intuitive meaning is that the sequence is “patternless”; we
cannot really compress the information: we have to write down the whole sequence.

Notice that algorithmic randomness is an extremely restrictive notion. Any
sequence generated by a simple program (i.e., every “long” sequence we know) can
by definition never be algorithmically random. For example, we know very long
initial segments of the decimal digits of

p
2 and �; they are generated by simple

programs. For
p
2 we have the ancient Babylonian Algorithm: let a0 D 1 and define

a sequence a1, a2, a3; : : : inductively by letting

anC1 D an C 2
an

2
; n � 0: (2.191)

The convergence an ! p
2 is extremely rapid: the number of correct decimal

digits doubles with each iteration. Since (2.191) is a very short program, the
program-size complexity of the digit sequence of

p
2 is very low, so the algorithmic

randomness of the digit sequence of
p
2 is also very low. This means the concept

of algorithmic randomness is quite irrelevant in our quest for understanding the
apparent randomness we clearly see in these digit sequences.
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The message of von Mises’s failure is that there is no “absolute randomness”; in
each case one has to decide on a cutoff. For example, in this book we say “enough”
and stop around the central limit theorem; this is where we draw the line in the
infinite hierarchy of notions of randomness.

Most mathematicians would agree that “randomness up to the central limit
theorem” is already a high, advanced level in the hierarchy.

For more readings about “randomness” and “random numbers,” we recommend
Chap. 3 in Knuth [Kn2].

In our search for finding further evidence supporting the Giant Leap, we switch
now from the decimal expansion to the continued fraction. To represent a real
number x as a continued fraction, first we take the integral part of x, then we take
the reciprocal 1=fxg of the fractional part of x, write it as the sum of the integral
part and the fractional part, then take the reciprocal of the fractional part, and keep
repeating the process:

x D a0 C 1

a1 C 1

a2 C 1

a3 C : : :

; (2.192)

or by using the space-saving notation, x D Œa0I a1; a2; a3; : : :�. Note that continued
fractions play a key role in diophantine approximation, in uniform distribution, and
in the solution of some diophantine equations. Continued fractions provide another
perfect illustration for the Giant Leap phenomenon. Indeed, for every “interesting”
real number ever tried the continued fraction either has a simple behavior or it
exhibits full-blown randomness.

Examples of Simple Behavior:

1. rational numbers have finite continued fraction;
2. quadratic irrationals, such as

p
2,

p
3,

p
5,

p
6,

p
7, all have periodic continued

fractions—here are a few examples:

p
2 D Œ1I 2; 2; 2; 2; 2; : : :�;

p
3 D Œ1I 1; 2; 1; 2; 1; 2; 1; 2; : : :�;
p
5 D Œ2I 4; 4; 4; 4; 4; : : :�;

p
6 D Œ2I 2; 4; 2; 4; 2; 4; : : :�;

p
7 D Œ2I 1; 1; 1; 4; 1; 1; 1; 4; 1; 1; 1; 4; : : :�;

1C p
5

2
D Œ1I 1; 1; 1; 1; 1; : : :�;
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where the last one, representing the golden ratio, has the simplest form. A more
complicated example is

p
67 D Œ8I 5; 2; 1; 1; 7; 1; 1; 2; 5; 16; 5; 2; 1; 1; 7; 1; 1; 2; 5; 16; : : :�;

where the period of
p
67 is the block 5,2,1,1,7,1,1,2,5,16 of length 10. Note that

the length of the period of
p
n in general remains a big mystery. The maximum

length of the period for
p
n can be asymptotically as large as (roughly)

p
n itself,

or it can be very short like
p
65 D Œ8I 16; 16; 16; : : :�, where the period has length

one.
3. special number e and its “family”: we know from Euler that

e D Œ2I 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; : : : ; 1; 2n; 1; : : :�;
p
e D Œ1I 1; 1; 1; 5; 1; 1; 9; 1; 1; 13; 1; : : : ; 1; 4nC 1; 1; : : :�;

e2 D Œ7I 2; 1; 1; 3; 18; 5; 1; 1; 6; 30; : : : ; 3n� 1; 1; 1; 3n; 12nC 6; : : :�;

3
p
e D Œ1I 2; 1; 1; 8; 1; 1; 14; 1; 1; 20; 1; : : : ; 1; 6nC 2; 1; : : :�:

Notice that they all have a simple linear pattern. The list is in fact infinite,
including all numbers of the form e2=k where k � 1 is an integer; for more
about it, see, e.g., Lang [La]. By the way, the “simplest” member of the family is

e2 � 1

e2 C 1
D Œ1; 3; 5; 7; 9; : : : ; 2nC 1; : : :�

(when the integral part is zero, we often delete 0 and the semicolon from the
beginning).

Examples of Random Behavior: The rest of the special numbers, including e3, all
seem to exhibit full-blown randomness with a common limit distribution for the
digits. Unlike the familiar decimal expansion, where we have ten possible digits,
in the continued fraction the j th digit aj (often called the j th partial quotient) can
be any integer � 1, so equidistribution does not make any sense. The particular
limit distribution for the continued fraction comes from the invariant measure of the
relevant mapping

T W x ! f1=xg; (2.193)

which maps the open unit interval (0,1) onto itself. Note that T is not one-to-one:
the inverse image of an interval .a; b/, where 0 < a < b < 1, is the infinite union
of disjoint intervals
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�
1

1C b
;

1

1C a

�
;

�
1

2C b
;

1

2C a

�
;

�
1

3C b
;

1

3C a

�
; � � � I (2.194)

each one of these intervals is mapped to the whole .a; b/ by T .
If we define the measure of an interval .a; b/ to be

m.a; b/ D 1

log 2

Z b

a

dx

1C x
D 1

log 2
log

1C b

1C a
; (2.195)

then one can easily check that thism-measure of the interval .a; b/ equals the sum of
them-measures of the intervals in (2.194). We can extend (2.195) to any measurable
set A 	 .0; 1/ by the integral

m.A/ D 1

log 2

Z

A

dx

1C x
; (2.196)

where log stands for the natural (base e) logarithm. Measure (2.195) and (2.196)
was already known to Gauss (who, for number-theoretic reasons, carried out an
extensive numerical experimentation on continued fractions). The key property of
measure (2.195) and (2.196) is that it is preserved by the transformation T . By
definition the first partial quotient a1 of a real x 2 .0; 1/ equals an integer k � 1 if
and only if x falls into the interval . 1

kC1 ;
1
k
/, which has m-measure

1

log 2

Z 1=k

1=kC1
dx

1C x
D 1

log 2

�
log.1C 1

k
/ � log.1C 1

k C 1
/

�
D

D
log .kC1/2

k.kC2/
log 2

D 1

log 2
log

�
1C 1

k.k C 2/

�
: (2.197)

A well-known theorem of Kusmin states that, for almost every x 2 .0; 1/, the
density with which an arbitrary integer k � 1 appears in the sequence a1; a2; a3; : : :
of partial quotients in (2.192) is exactly (2.197). For example, for almost every
x 2 .0; 1/, the density of the digit 1 is exactly

log.4=3/

log 2
D 0:415 : : : � 41:5%: (2.198)

It was realized later that both Borel’s theorem and Kusmin’s theorem are special
cases of the very general Ergodic Theorem of Birkhoff. Note, however, that
Birkhoff’s general theorem doesn’t give any error term; on the other hand, in Borel’s
theorem and also in Kusmin’s theorem we can prove a basically square root size
error term (the sharpest form of Borel’s theorem is the well-known Law of the
Iterated Logarithm).
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Kusmin’s theorem clearly fails for x D e [where the frequency of the digit 1 is
2/3, which differs from the 41.5 % in (2.198)] and fails for the quadratic irrationals
(which are periodic). By contrast, higher roots (cube roots, fourth roots, etc.) never
appear to show any simple pattern like what e or

p
e or e2 does. Unlike “regularity,”

they all seem to show “randomness” with Kusmin’s rescaling [see (2.197)].
For example, among the first million partial quotients in the continued fraction

for the cube root of 2 the digit 1 appears 414,983 times, which is remarkably close
to the 41:5% in (2.198), i.e., Kusmin’s limit (2.197) with k D 1.

The same remarkable fact holds for the special number�: among the first million
partial quotients the digit 1 appears 414,526 times, again very close to 41:5%.

These are striking numerical facts, but, unfortunately, we cannot prove any
theorem—not even the most plausible conjecture. For example, we don’t know for
sure whether the sequence a1; a2; a3; : : : of partial quotients for the cube root of
2 is bounded or not. What is worse, we don’t know a single algebraic number of
degree � 3 for which the sequence a1; a2; a3; : : : of partial quotients is unbounded.
We don’t know this in spite of the well-known conjecture (raised by Khinchin in
the 1930s) claiming that a1; a2; a3; : : : is unbounded for every single real algebraic
number of degree � 3.

Summarizing, we can safely say that computer experimentation strongly supports
the Giant Leap phenomenon for both the decimal (or any other base) expansion and
the continued fraction expansion of special numbers: they either exhibit very simple
behavior or they exhibit full-blown randomness. The only technical difference is in
the scaling: in continued fractions the ordinary uniform Lebesgue measure in the
unit interval (0,1) has to be replaced by the nonuniform Gauss measure (2.195) and
(2.196).

In spite of the overwhelming numerical evidence, we don’t have the slightest idea
how to prove the Giant Leap phenomenon. A good illustration of what contemporary
mathematics can do versus the conjectured truth is the concrete special number x D
3
p
2 and a brief discussion of the celebrated works of two Fields medal winners, K.F.

Roth and A. Baker. We begin with recalling a classical result of Dirichlet: for every
irrational ˛ there are infinitely many rationals p=q such that

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ < 1

q2
: (2.199)

In the 1950s K.F. Roth completed a long line of research initiated by Thue and
Siegel and proved the following basic theorem in diophantine approximation (he
was awarded a Fields medal in 1958): for any real algebraic number of degree � 3,
including the case ˛ D 3

p
2, and for any " > 0,

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ >

c.˛; "/

q2C"
; (2.200)

where c D c.˛; "/ > 0 is a constant (note that the case of quadratic irrationals is
trivial). In view of (2.199) Roth’s inequality (2.200) is nearly best possible (since
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" > 0 can be arbitrarily small), but a more delicate analysis reveals that there is
plenty of room for improvement in (2.200). Indeed, (2.200) is equivalent to

q � kq˛k > c.˛; "/

q"
(2.201)

for every integer q � 1, where kxk denotes the distance of a real x from the nearest
integer. On the other hand, for every real algebraic number of degree � 3, including
˛ D 3

p
2, computer experimentation seems to support the much stronger inequality

q � kq˛k > c.˛; "/

log q � .log log q/1C"
(2.202)

for every integer q � 3, and also that (2.202) is best possible in the sense that
we cannot delete " > 0. Notice that there is an exponential gap between (2.201)
and (2.202).

By the way, (2.202) is certainly true for almost every real ˛; the proof is easy.
A serious handicap of Roth’s theorem (or Thue–Siegel–Roth theorem) is that

the constant c D c.˛; "/ > 0 is ineffective: we cannot replace it with an explicit
constant. The reason is that the proof technique (“Thue method”) is indirect—it
involves a hypothetical assumption that there is a large “bad” q, which behaves
wickedly, and the constant c D c.˛; "/ > 0 depends on the size of this “bad” q (q is
finite, but in principle it can be arbitrarily large). Nevertheless effective results have
been obtained by A. Baker in the 1960s (for which he was awarded the Fields medal
in 1970). For example, in 1964 Baker proved the explicit result

q � kq 3
p
2k > 10�6

q0:955
(2.203)

that holds for every integer q � 1. The point here is the effective constant 10�6 in
the numerator and the exponent 0:955 < 1 in the denominator (notice that (2.203)
with 1 instead of 0:955 is trivial, since 3

p
2 is a cubic number).

We have to admit, therefore, that there is a humiliating exponential gap between
the apparent truth [i.e., conjecture (2.202)] and what contemporary mathematics can
do: the ineffective (2.201) and the effective (2.203), due to two Fields’ medalists.
(Nevertheless, even a “weak” result like (2.203) has remarkable consequences in the
theory of diophantine equations.)

Conjecture (2.202) for real algebraic numbers (of degree � 3)—a special case
of the vague Giant Leap phenomenon—features “randomness.” Where does this
pseudorandomness come from? This is a fundamental open problem, and we are
nowhere near to understand it (not to mention answering it). For more about this
exciting general issue, see Wolfram [Wo] and Beck [Be6]].
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With some exaggeration we may even include the celebrated Riemann Hypoth-
esis as another example of the Giant Leap. In the history of mathematics the set
of primes served the first example of what one would call a “random set.” The
Riemann Hypothesis (arguably the most famous open problem in mathematics) is
equivalent to a problem about the “randomness” of the primes in the following way.
The starting point is Riemann’s remarkable Explicit Formula for the prime-counting
function �.x/ D P

p�x 1, which involves the nontrivial zeros of the Riemann zeta
function. Instead of the original formula, nowadays it is customary to discuss a
simplified version, due to von Mangoldt, where the plain prime-counting function
�.x/ is replaced with a weighted version (“Mangoldt sum”)

 0.x/ D
X

1�n�x
ƒ.n/; (2.204)

whereƒ.n/ D logp if n is a power ofp (p always stands for a prime) andƒ.n/ D 0

if n is not a prime power. Riemann’s Explicit Formula in prime number theory goes
as follows:

 0.x/ D x �
X

�

x�

�
CO.1/; (2.205)

where � runs through the nontrivial zeta-zeros (meaning the zeros in the vertical
strip with real part between 0 and 1). Riemann described the number of the nontrivial
zeta-zeros (say) in the vertical box where the imaginary part has absolute value � T

(T is “large”): the number is

1

2�
T logT � 1C log.2�/

2�
T CO.logT /: (2.206)

In sharp contrast to the number, we can prove very little about the location of
the nontrivial zeta-zeros. What we can prove is much, much less than the Riemann
Hypothesis, which claims that the nontrivial zeta-zeros are all on the critical line
(vertical line with <z D 1=2; we cannot even prove the existence of any zero-free
strip between 0 < <z < 1). Applying the Riemann Hypothesis to (2.205), we obtain

 0.x/ D x CO.x1=2Co.1//; (2.207)

or equivalently (via integration by parts)

�.x/ D
Z x

2

dt

log t
CO.x1=2Co.1//: (2.208)

The square root size error term O.x1=2Co.1// nicely fits the so-called random set
simulation of the primes. By the Prime Number Theorem, the density of the primes
at x is 1

log x . This motivates the following simulation (due to Cramer): starting from
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n D 3, for every integer n � 3 we toss a “loaded n-coin” that shows Heads with
probability 1

log n and shows Tails with probability 1� 1
log n . Keeping n if the outcome

of the trial is Heads and rejecting it if the outcome is Tails, we obtain a Random
Subset of the natural numbers; we call the elements of this random set “random
primes.” The expected number of “random primes” is exactly

xX

nD3

1

logn
D
Z x

2

dt

log t
CO.1/; (2.209)

and the actual number of “random primes” � x fluctuates around the expected
number (2.209) with the usual square root size standard deviation O.x1=2Co.1//.
In other words, formula (2.208), which is equivalent to the Riemann Hypothesis,
is in perfect harmony with the O.x1=2Co.1// size fluctuation of the Random Subset
(i.e., the Monte Carlo simulation of the primes).

The converse is also true: if the Riemann Hypothesis fails then the fluctuation
in (2.205) is much larger than the standard deviation O.x1=2Co.1//. Indeed, if there
is a nontrivial zeta-zero � D ˇCi	 with ˇ ¤ 1=2, then �� D .1�ˇ/Ci	 is another
zeta-zero (follows from a symmetry of the Functional Equation of the zeta function),
and maxfˇ; 1 � ˇg D ˛ > 1=2. Then in (2.205) the fluctuation around x is at least
as large as x˛�o.1/, and also the fluctuation of �.x/ around the logarithmic integral
is at least as large as x˛�o.1/, which is asymptotically much larger than the standard
deviation O.x1=2Co.1// of the Random Subset (it is not too difficult to make this
argument precise). In other words, the failure of the Riemann Hypothesis implies
that the “random prime” model is grossly incorrect.

Even if no one has a rigorous mathematical proof, everyone would agree that the
Riemann Hypothesis is “true”—just like everyone would agree that � , e,

p
2 are

all normal. Indeed, we have an overwhelming “computer science proof”: it cannot
be an accident that the first billion zeta-zeros are all on the critical line. Since the
Riemann Hypothesis is “true,” the Random Prime model predicts the fluctuations in
the global distribution of primes very accurately.

The common feature of the digit sequences of special numbers and the set of
primes is the “apparent randomness” and the (almost) total lack of rigorous proofs.
Our main goal is to prove results, such as Theorems 1.1 and 1.2, which support the
Giant Leap phenomenon. These results are admittedly modest first steps only. Our
second goal is to challenge the reader to participate in the long-term research project
of exploring this exciting mystery.

What we do here has some vague formal similarities to the Erdős–Kac theorem
(about the number of prime divisors of typical integers) and other probabilistic
results about multiplicative and additive number theoretic functions (see, e.g.,
Elliott’s book [El] or Kac [Ka]). However, in spite of the formal similarity, the two
subjects are rather different.
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2.6 Connection with Quadratic Fields (I)

After the philosophical detour of Sect. 2.5, now we return to the proofs of our
central limit theorems (Theorems 1.1 and 1.2); in particular, to the computation
of the expectation and the variance. In Sect. 2.4 we proved Proposition 2.16, which
evaluates the mean value as follows:

M˛.N/ D � 1

2�

NX

nD1

1

n tan.�n˛/
C O.1/; (2.210)

assuming ˛ is a badly approximable number. The following result is an alternative
formula for M˛.N/ in the special case when ˛ D p

d , d � 3 (mod 4) is a square-
free positive integer. The necessary distinction between the cases d � 1 or 3 (mod 4)
is one of the characteristic peculiarities of algebraic number theory—a subject that
we are going to heavily use below.

Proposition 2.20. Assume that d is a square-free positive integer with d � 3

(mod 4), then

Mp
d .N / D

p
d

�2

0
BB@

X

.x;y/¤.0;0/W
primary representations

1

x2 � dy2

1
CCA

logN

log �d
C O

�
.log logN/3

�
;

(2.211)

where �d D u0 C v0
p
d comes from the least solution x D u0, y D v0 of Pell’s

equation x2 � dy2 D 1 (“least” means that x0 > 0, y0 > 0 and y0 is least).
The meaning of “primary representations” in (2.211) will be explained in the proof
below.

Proof. First we give a precise definition of the infinite series

X

.x;y/¤.0;0/W
primary representations

1

x2 � dy2
(2.212)

in the middle of (2.211), and prove the convergence. Note that x2 � dy2 is the
principal (binary quadratic) form of discriminant 4d , and the theory of quadratic
forms of discriminant 4d is equivalent to the theory of the real quadratic field
QQ.

p
d/. We assume that the reader is somewhat familiar with the simplest concepts

and facts about quadratic forms and quadratic fields (see, for example the book
[Za4]).

We recall the well-known fact that, given any integer A ¤ 0, if the equation
x2�dy2 D A has one integral solution .x; y/, then the equation has infinitely many
integral solutions. Indeed, if x21 � dy21 D A and u2 � dv2 D 1, then the product
formula
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.x1Cy1
p
d/.uCv

p
d/ D .x1uCy1vd/C.x1vCy1u/

p
d D x2Cy2

p
d (2.213)

leads to a new solution x2 D x1uCy1vd , y2 D x1vCy1u of the equation x2�dy2 D
A. Since Pell’s equation u2 � dv2 D 1 has infinitely many solutions, generated by
the least solution, product formula (2.213) gives rise to infinitely many solutions
of x2 � dy2 D A. The two solutions, .x1; y1/ and .x2; y2/, related by the product
formula (2.213), are called associates—this defines an equivalence relation on the
set of all solutions of x2 � dy2 D A. Let Rd .A/ denote the number of equivalence
classes. Note that Rd.A/ is always finite and satisfies the inequality

Rd.A/ � 
.jAj/; (2.214)

where 
.n/ is the divisor function, i.e., 
.n/ is the number of (positive) divisors
of n, including 1 and n itself. Inequality (2.214) is a classical result (it is in fact a
corollary of an exact formula for Rd.A/, due to Dirichlet). Now we are ready to
define the precise meaning of series (2.212):

X

.x;y/¤.0;0/W
primary representations

1

x2 � dy2 D
X

A¤0

Rd .A/

A
D

1X

nD1

Rd .n/ � Rd.�n/
n

: (2.215)

To prove the convergence in (2.215), we describe a definite way of selecting a
representative solution from each equivalence class—we call these representatives
the primary solutions of x2 � dy2 D A. First we take the conjugate of the product
formula (2.213):

.x1 � y1
p
d/.u � v

p
d/ D x2 � y2

p
d; (2.216)

and then take the ratio of (2.213) and (2.216):

x1 C y1
p
d

x1 � y1
p
d

� u C v
p
d

u � v
p
d

D x2 C y2
p
d

x2 � y2
p
d
: (2.217)

We have u C v
p
d D ˙�m for some integer m (where � D �d is the fundamental

unit), and so u � v
p
d D ˙��m. Returning to (2.217), we have

x2 C y2
p
d

x2 � y2
p
d

D x1 C y1
p
d

x1 � y1
p
d

� �2m: (2.218)

In view of (2.218) there is just one choice of m (for a given x1 and y1) which will
ensure that

1 <
x2 C y2

p
d

x2 � y2
p
d

� �2d : (2.219)
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Equation (2.219) does not change if we replace .x2; y2/ with .�x2;�y2/, so we can
further ensure that

x2 � y2
p
d > 0: (2.220)

The particular solution x D x2, y D y2 of x2 � dy2 D A that satisfies (2.219)
and (2.220) will be called primary.

To prove the convergence in (2.215), we estimate the sums

NX

nD1
Rd .n/ and

NX

nD1
Rd .�n/

by employing a simple lattice point counting argument. (It is worthwhile to point
out that the same lattice point counting argument is used in the proof of Dirichlet’s
class number formula for real quadratic fields h.d/ log�d D p

dL.1; �d /.) We will
show that

NX

nD1
Rd .n/ D c0.d/N CO.

p
N/ (2.2210)

and

NX

nD1
Rd .�n/ D c0.d/N CO.

p
N/ (2.22100)

with the same constant factor c0.d/ (which is of course independent of N ).
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To prove (2.221), we use (2.219) and (2.220), which tells us that the sumPN
nD1 Rd .n/ equals the number of lattice points .x; y/ 2 ZZ2 satisfying the three

requirements:

0 < x2 � dy2 � N; x � y
p
d > 0; 1 <

x C y
p
d

x � y
p
d

� �2d : (2.222)

The region defined by Eq. (2.222) is a sector of a hyperbola bounded by two
half lines through the origin—we call it a “hyperbolic triangle,” and denote it with
H.N/ D Hd.N/; see the picture. The left corner of the “hyperbolic triangle”
H.N/ D Hd.N/ is the origin .0; 0/, the lower right corner is the point .

p
N; 0/,

and the upper right corner is the intersection of the hyperbola x2 � dy2 D N and
the positive side of the line

x C y
p
d

x � yp
d

D �2d :

It is not too difficult to determine the area of H.N/: we have

Area.Hd .N // D N

2
p
d

log �d : (2.223)

We outline the proof of (2.223). First we change the coordinates from x; y to u; v
where u D x � y

p
d and v D x C y

p
d and compute the determinant

@.u; v/

@.x; y/
D
ˇ̌
ˇ̌1 �p

d

1
p
d

ˇ̌
ˇ̌ D 2

p
d: (2.224)

In the u; v-plane, the hyperbolic triangleH.N/ [defined by (2.222)] is given by

0 < uv � N; u > 0; u < v � u�2:

These conditions are equivalent to

0 < u <
p
N; u < v � minfu�2;N=ug: (2.225)

Since u�2 < N=u is equivalent to u <
p
N=�, the area of (2.225) is

Z p
N=�

0

.u�2 � u/ du C
Z p

N

p
N=�

�
N

u
� u

�
du D N log �:

This has to be divided by the determinant in (2.224) to obtain the area in the x; y-
plane and this gives (2.223).



152 2 Expectation, and Its Connection with Quadratic Fields

To estimate the number of lattice points inside the hyperbolic triangleH.N/, we
use the general inequality (see Proposition 1.9)

Area.H/ �O.Perimeter.H// � jH \ ZZ2j � Area.H/CO.Perimeter.H//C 1:

(2.226)

The perimeter of the hyperbolic triangleH.N/ isO.
p
N/. Indeed, the three vertices

of H.N/ are .0; 0/, .
p
N; 0/, and .x0; y0/, where the point .x0; y0/ satisfies both

equations

x2 � dy2 D N;
x C y

p
d

x � y
p
d

D �2d : (2.227)

It follows from (2.227) that x0Cy0
p
d D p

N�d . The coordinates of the vertices of
H.N/ are all in the rangeO.

p
N/, implying that the perimeter ofH.N/ isO.

p
N/.

Applying (2.226) we have

NX

nD1
Rd .n/ D Area.H.N //CO.Perimeter.H.N /// D

D N

2
p
d

log �d C O.
p
N/: (2.228)

Repeating the same argument for 0 < dy2 � x2 � N instead of 0 < x2 � dy2 � N ,
we obtain the same right-hand side:

NX

nD1
Rd .�n/ D N

2
p
d

log �d C O.
p
N/; (2.229)

proving (2.2210) and (2.22100).
Taking the difference of (2.228) and (2.229), we have

NX

nD1
.Rd .n/ � Rd.�n// D O.

p
N/: (2.230)

Now it is easy to prove the convergence of the series in (2.215). Indeed, by
using (2.230) and Abel’s transformation (2.119), we have for any 1 < N < M ,

MX

nDN

Rd.n/ � Rd.�n/
n

D
M�1X

mDN

Pm
nDN .Rd .n/ �Rd.�n//

m.mC 1/

C 1

M

MX

nDN
.Rd .n/� Rd.�n// D

M�1X

mDN

O.
p
m/

m2
C O.

p
M/

M
D O.N�1=2/:

(2.231)
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Equation (2.231) immediately implies the convergence of the infinite series
in (2.215):

X

.x;y/¤.0;0/W
primary representations

1

x2 � dy2
D

1X

nD1

Rd .n/ � Rd.�n/
n

is convergent: (2.232)

If x D w � 0, y D z � 0 is a primary solution of x2 � dy2 D A with A > 0, then
by definition

A D w2 � d z2 D .w C z
p
d/.w � z

p
d/; 1 <

w C z
p
d

w � z
p
d

� �2d ;

implying

p
A < w C z

p
d � p

A�d : (2.233)

It follows from the product formula (2.213) that for every integer j , .w C z
p
d/�

j

d

gives another solution of x2 � dy2 D A, and by (2.233) we have

.w C z
p
d/�

j

d � .2C o.1//N
p
d ” j � log.N=

p
A/

log �d
CO.1/: (2.234)

The same holds for x2 � dy2 D A with A < 0, the only minor difference is that
in (2.234) we have to replace

p
A with

pjAj.
Thus by (2.234) we obtain the key formula:

X

1�y�N;1�x�Np
d W

jx2�dy2j�m

1

x2 � dy2 D
X

1�A�m

Rd .A/� Rd.�A/
A

�
 

log.N=
p
A/

log �d
CO.1/

!
;

(2.235)

which holds for any 1 < m < N . Equation (2.235) is the key to prove
Proposition 2.20; in the application below we will use (2.235) with the choice
m � .logN/c , where c > 1 is an absolute constant to be specified later.

We divide the left-hand side of (2.235) into two parts:

X

1�y�N;1�x�Np
d W

jx2�dy2 j�m

1

x2 � dy2 D
X

1
C
X

2
; (2.236)
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where

X
1

D
X

1�y�N;1�x�Np
d W

jx2�dy2j�m;jx�yp
d j<1=2

1

x2 � dy2
(2.237)

and

X
2

D
X

1�y�N;1�x�Np
d W

jx2�dy2 j�m;jx�yp
d j�1=2

1

x2 � dy2 : (2.238)

First we show that

X
2

D O
�
.logm/3

�
: (2.239)

To prove (2.239), notice that the conditions

jx2 � dy2j � m; jx � y
p
d j � 1=2

in (2.238) clearly imply

0 < x C y
p
d � 2m: (2.240)

Since the number of solutions of x2�dy2 D A with x � 0, y � 0, xCy
p
d � 2m

is estimated from above by Rd.A/ � O.logm/, by (2.238) and (2.240) we have the
following trivial upper bound on

P
2:

X
2

D O

 
logm

mX

AD1

Rd .A/ �Rd.�A/
A

!
: (2.241)

We recall (2.214): Rd.A/ C Rd.�A/ � 
.A/ where 
.n/ is the divisor function
(number of divisors of n) and using this in (2.241) we obtain

X
2

D O

 
logm

mX

kD1


.k/

k

!
: (2.242)

We recall the following well-known fact about the divisor function (see, e.g., in
[Ha-Wr]):

nX

kD1

.k/ D O.n logn/: (2.243)
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An application of (2.243) in formula (2.242), combined with the Abel’s transforma-
tion (2.119), gives (2.239).

Next we study
P

1 defined in (2.237). We are motivated by the vague approxi-
mation

tan.�k
p
d/ � �.k

p
d � `/ D �.k

p
d � `/

k
p
d C `

k
p
d C `

� �

2k
p
d
.dk2 � `2/;

(2.244)

where ` D `.k; d/ is the nearest integer to k
p
d . It is easy to make (2.244) precise

by using the beginning of the Taylor series of tan.x/: tan.x/ D x C O.x3/; then a
simple calculation gives the following precise equality:

1

k tan.�k
p
d/

� 2
p
d

�.dk2 � `2/
D O.kk

p
dk=k/CO.1=k2/: (2.245)

Thus we have [see (2.237) and (2.245)]

�
X

1�k�N W
2
p
dkkkp

dk�m

1

k tan.�k
p
d/

D
X

1�k�N;1�`�Np
d W

j`2�dk2j�m;j`�kp
d j<1=2

2
p
d

�.`2 � dk2/C

CO.
X

k�1
k�2/CO

0
BB@

X

1�k�N W
2
p
dkkkp

dk�m

kk
p
dk=k

1
CCA D

D 2
p
d

�

X
1

C O.1/ C O

0

BB@
X

1�k�N W
2
p
dkkkp

dk�m

kk
p
dk=k

1

CCA ; (2.246)

provided

m is a half-integer, i.e., m D integer C 1

2
: (2.247)

To explain the role of “half-integerm” [see condition (2.247)] in (2.246), note that
jdk2 � `2j D .k

p
d C `/jkp

d � `j is clearly an integer, and

2
p
dkkk

p
dk D 2

p
dkjk

p
d � `j D ..

p
dk C `/C .

p
dk � `//jk

p
d � `j D

D jdk2 � `2j ˙ .
p
dk � `/2 D integer ˙ .

p
dk � `/2: (2.248)
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Since ` is the nearest integer to
p
dk, .

p
dk � `/2 � 1=4, and so by (2.247) and

(2.248) with m D m1 C 1=2, wherem1 is an integer, we have

2
p
dkkk

p
dk � m D m1 C 1

2
” jdk2 � `2j � m1: (2.249)

It is easy to estimate the error term in (2.246):

X

1�k�N W
2
p
dkkkp

dk�m

kk
p
dk=k �

X

1�k�m
1=k C

X

m<k�N
m=k2 D O.logm/: (2.250)

Next we apply the following general result, which holds for any badly approximable
˛ (we will choose ˛ D p

d ).

Lemma 2.21. If ˛ is badly approximable, then for any N � 2 and � � .logN/6,

M˛.N/ D � 1

2�

X

1�n�N W
nkn˛k��

1

n tan.�n˛/
C O.1/:

Here the error term O.1/ depends only on the upper bound on the partial quotients
of the badly approximable ˛.

First we show how to use Lemma 2.21 to complete the proof of Proposition 2.20.
We make the choice � D .logN/6 CO.1/; here I choose the constantO.1/ in such
a way that

2
p
d� D m D integer C 1

2
: (2.251)

Combining (2.246)–(2.251) with Lemma 2.21—where ˛ D p
d—we obtain

Mp
d .N / D

p
d

�2

X
1

C O.log logN/: (2.252)

By (2.235)–(2.239) and (2.252),

Mp
d
.N / D

p
d

�2

X

1�A�m

Rd.A/ � Rd .�A/
A

�
 

log.N=
p
A/

log �d
CO.1/

!
CO

�
.log logN/3

�
;

(2.253)

where by condition (2.251),

m D 2
p
d� D 2

p
d
�
.logN/6 CO.1/

� D half-integer: (2.254)
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Note that

X

1�A�m

Rd.A/� Rd.�A/
A

�
 

log.N=
p
A/

log �d
CO.1/

!
D

D logN

log �d

X

1�A�m

Rd.A/ �Rd.�A/
A

C O

 
X

1�A�m

.Rd .A/ �Rd.�A// logA

A

!
:

(2.255)

Again using (2.214), (2.243), and Abel’s transformation (2.119), a routine calcula-
tion gives

X

1�A�m

.Rd .A/ �Rd.�A// logA

A
D O

�
.logm/3

�
: (2.256)

Moreover, by (2.231) and (2.254),

X

A>m

Rd .A/�Rd .�A/
A

D O.m�1=2/ D O
�
.logN/�3

�
: (2.257)

Combining (2.255)–(2.257), we have

X

1�A�m

Rd.A/� Rd.�A/
A

�
 

log.N=
p
A/

log �d
CO.1/

!
D

D logN

log �d

1X

AD1

Rd .A/ �Rd .�A/
A

C O
�
.log logN/3

�
: (2.258)

Finally, (2.253) and (2.258) imply Proposition 2.20.
It remains to give a

Proof of Lemma 2.21. We basically repeat the argument of Step One in the proof
of Proposition 2.16 (see Sect. 2.4). This means, we are going to combine Koksma’s
inequality [in fact, we use the form (2.148) and (2.149)] with Lemma 2.19 and try to
force the usual cancellation of the “positive and negative sides.” Since the notation
“kxk=small” does not tell us whether x is slightly less or slightly more than an
integer, we will use the notation kxkC and kxk� introduced in Sect. 2.4, see the
definition between (2.153) and (2.154). Let

AC.M; p; q; r/ D


M.1 � 1

r
/ < k � M W p

M
� kk˛kC <

p

M
.1C 1

q
/

�
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and

A�.M; p; q; r/ D


M.1� 1

r
/ < k � M W p

M
� kk˛k� <

p

M
.1C 1

q
/

�
;

whereM � 2p, p � 2, q � 1, r � 1 are real numbers (to be specified later).
We apply Lemma 2.18—in fact, we use Eq. (2.148)—with

a D p

M
; b D p

N
.1C 1

q
/; f .x/ D 1

tan.�x/
;

and the finite point set in the interval Œa; b� is

X D fk˛ .mod 1/ W k 2 AC.M; p; q; r/gI

then we have
ˇ̌
ˇ̌
ˇ̌

X

k2AC.M;p;q;r/

1

tan.�k˛/
� jAC.M; p; q; r/j

b � a
Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ̌ � �

Z b

a

jf 0.x/j dx;

where by Lemma 2.19,� D O.logp/. Also, we have

Z b

a

jf 0.x/j dx D jf .b/� f .a/j D O

�
M

p
.1C 1

q
/� M

p

�
D O

�
M

pq

�
;

and again using Lemma 2.19—in fact, we use it twice: first for n D M , then for
n D M.1 � 1=r/, and finally, take the difference—we can estimate the number of
elements jAC.M; p; q; r/j of the set AC.M; p; q; r/ as follows:

jAC.M; p; q; r/j D M

r
.b � a/CO.log.M.b � a/C 2// D

D M

r
.b � a/CO.log..p=q/C 2//:

It follows that

X

k2AC.M;p;q;r/

1

tan.�k˛/
D

D M

r

Z b

a

f .x/ dx CO.M logp=pq/CO.log..p=q/C 2//
1

b � a
Z b

a

f .x/ dx D

D M

r

Z b

a

f .x/ dx CO.M.logp/=pq/CO.M.log..p=q/C 2//=p/:
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If k1; k2 2 AC.M; p; q; r/ then k1=k2 D 1CO.1=r/, and so we have

X

k2AC.M;p;q;r/

1

k tan.�k˛/
D 1

r

Z b

a

f .x/ dxC

CO.
1

pq
logp/CO.

1

p
log..p=q/C 2//CO.r�2/

Z b

a

f .x/ dx: (2.259)

Note that

Z b

a

f .x/ dx D
Z b

a

dx

tan.�x/
�

� log.b=a/ D log.1C 1=q/ D O.1=q/: (2.260)

Since we can repeat the argument for A�.M; p; q; r/, by (2.259) and (2.260) we
have for both A˙.M; p; q; r/

X

k2Aı.M;p;q;r/

1

kj tan.�k˛/j D 1

r

Z b

a

f .x/ dxC

CO.
1

pq
logp/CO.

1

p
log..p=q/C 2//CO.r�2q�1/ (2.261)

holds for both “ı D C” and “ı D �.”
Applying (2.261) with pj D p.1 C 1=q/j , j D 0; 1; 2; : : :, we have for both

kxkC and kxk�, i.e., formally for both “ı D C” and “ı D �” (note that the value
of parameter q � 1 will be specified later):

X

M.1�1=r/<k�M W
kk˛kı�p=M

1

kj tan.�k˛/j D 1

r

Z 1=2

a
f .x/ dxC

CO.
1

pq
logp/O.q logM/CO.q logM/O.

1

p
log..p=q/C2//CO.q logM/O.r�2q�1/;

(2.262)

since we can clearly stop at j D O.q logM/.
What we really want to estimate is a slightly different variant of (2.262), where

the condition kk˛kı � p=M is replaced by kkk˛kı � p:

X

M.1�1=r/<k�M W
kkk˛kı�p

1

kj tan.�k˛/j : (2.263)
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Since M.1 � 1=r/ < k � M , kk˛kı � p=M in (2.262) implies kkk˛kı � .1 �
1=r/p. By changing p to p0 D .1 � 1=r/p, a D p=M changes to a0 D .1 �
1=r/p=M , and this gives the additional error term

1

r

Z a

a0

f .x/ dx D 1

r

Z p=M

.1�1=r/p=M
dx

tan.�x/
� 1

r
� p

Mr
� M
p

D O.r�2/: (2.264)

Thus, by using (2.262) and (2.264) in (2.263), we have (“ı D C” and “ı D �”)

X

M.1�1=r/<k�M W
kkk˛kı�p

1

kj tan.�k˛/j D 1

r

Z 1=2

a

f .x/ dxC

CO.
logM � logp

p
/CO.

q

p
logM � log..p=q/C 2//CO.r�2 � logM/C o.r�2/:

(2.265)
In (2.265) we take the difference for “ı D C” and “ı D �”:

X

M.1�1=r/<k�M W
kkk˛k�p

1

k tan.�k˛/
D

D O.
logM � logp

p
/CO.

q

p
logM � log..p=q/C 2//CO.r�2 � logM/CO.r�2/:

(2.266)

Next we choose r D .logM/3 and apply (2.266) with Mj D M.1 � 1=r/j , j D
0; 1; 2; : : : ; r � 1. Since .1� 1=r/r D e�1 C o.1/, (2.266) implies that for everyM
there is a constant times smaller M � D .1C o.1//M=e such that

X

M�<k�M W
kkk˛k�p

1

k tan.�k˛/
D

D O.
.logM/4 � logp

p
/CO.

q

p
.logM/4 � log..p=q/C 2//CO..logM/�2//:

(2.267)

We use (2.267) repeatedly: with M D N , M D .1 C o.1//Ne�1, M D .1 C
o.1//Ne�2, M D .1C o.1//Ne�3, and so on—at the end we obtain

X

1�k�N W
kkk˛k�p

1

k tan.�k˛/
D

D O.
.logN/5 � logp

p
/CO.

q

p
.logN/5 � log..p=q/C 2//CO..logN/�1//:

(2.268)
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By choosing q D 1 and p � .logN/6 in (2.268), we conclude that

X

1�k�N W
kkk˛k�p

1

k tan.�k˛/
D o.1/:

Combining this with Proposition 2.16, Lemma 2.21 follows. ut
This completes the proof of Proposition 2.20. ut

2.6.1 A Detour: Another Class Number Formula

We recall that Proposition 2.20 is exactly Eq. (2.14) in Sect. 2.1, and it quickly leads
to a proof of the elegant Hirzebruch–Meyer–Zagier class number formula (HMZ-
formula, in short) as follows. Assume that d D p � 3 (mod 4) is a prime > 3, and
the class number of the real quadratic field QQ.

p
d/ is one, or using the traditional

h-notation, h.d/ D h.p/ D 1. Then we have the equality

X

.x;y/¤.0;0/W
primary representations

1

x2 � py2 D L.1; ��/; (2.269)

where �� is the so-called norm-sign character and L.1; ��/ is the corresponding
L-function at s D 1.

More precisely, �� is a unique character with values ˙1 defined for all ideals in
the ring of the algebraic integers of QQ.

p
d/ (in fact, �� depends only on the narrow

ideal class) and satisfies ��..a// D sign Norm.a/ for the principal ideals .a/.
Notice that, in our special case d D p with h.p/ D 1, every ideal is principal.

The special L-function

L.s; ��/ D
X

AW ideals

��.A/
Norm.A/s

has the product decomposition

L.s; ��/ D L.s; ��4/L.s; ��p/ (2.270)

where

L.s; ��4/ D
1X

nD1

��4.n/
ns

and L.s; ��p/ D
1X

nD1

��p.n/
ns
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are the (ordinary) L-functions of the complex quadratic fields QQ.
p�4/DQQ.

p�1/
(“Gauss integers”) and QQ.

p�p/; the characters��4 and ��p are defined as follows:
��4.n/ D ˙1 if n � ˙1 (mod 4) and ��4.n/ D 0 if n is even, and

��p.n/ D
�
n

p

�

is the usual Legendre symbol (i.e., the quadratic residue symbol). Note that (2.270)
is “explained” by the elementary factorization 4p D .�4/.�p/ of the discriminant
of x2 � py2; for a precise proof, see, e.g., Zagier’s book [Za4].

In the special case s D 1 Eq. (2.270) gives

L.1; ��/ D L.1; ��4/L.1; ��p/; (2.271)

and by Dirichlet’s class number formula,

L.1; ��4/ D �

4
and L.1; ��p/ D �h.�p/p

p
; (2.272)

if p > 3.
Let a1; a2; : : : ; a2s be the period of the continued fraction for

p
p (since p � 3

(mod 4) prime, the length of the period has to be even). (We have to exclude p D 3,
because QQ.

p�3/ has too many automorphisms—a technical nuisance in algebraic
number theory.) By Proposition 2.1,

Mp
p.N / D �a1 C a2 � a3 ˙ � � � C .�1/`a`

12
C O.1/ D

D �a1 C a2 � � � � C a2s

12
� logN

log �
C O.1/; (2.273)

where ` is the last index for which q` � N and � is the fundamental unit of QQ.
p
p/

(in the last equation we heavily used the periodicity of the continued fraction
of

p
p).

On the other hand, combining Proposition 2.20 with (2.269)–(2.273), we have

Mp
p.N / D h.�p/

4
� logN

log �
C O

�
.log logN/3

�
: (2.274)

Comparing (2.273) and (2.274), we obtain the beautiful equation

h.�p/ D �a1 C a2 � a3 ˙ � � � C a2s

3
: (2.275)
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As far as we know this equation was discovered (or rediscovered) in the 1970s
by Hirzebruch, and it is called the Hirzebruch or Hirzebruch–Meyer–Zagier class
number formula.

Note that, among the primes p � 3 (mod 4), the majority (in fact, about 80 % )
seems to satisfy the requirement h.p/ D 1 (i.e., the real quadratic field QQ.

p
p/ has

class number one)—at least this is what we can read out from the numerical tables.
Unfortunately, despite the overwhelming computational evidence, nothing is proved
here.

It is more than surprising that the “mean value” Mp
p.N /, associated with the

irrational rotation k
p
p (mod 1), k D 1; 2; : : : ; N , is intimately bound up with

the class number h.�p/ of the complex quadratic field QQ.
p�p/. This leads to the

following question.

2.6.2 How to Compute the Class Number in General:
The Complex Case

One way to do it is to use Dirichlet’s finite class number formula, which expresses
the class number in terms of the Dirichlet character of the corresponding discrim-
inant. The formula is the simplest when �d D �p, where p � 3 (mod 4). We
form the sum, say R, of all quadratic residues (mod p), and the sum, say N , of all
quadratic non-residues. Then h.�p/ D .N � R/=p. For example, if p D 7, the
quadratic residues are 12; 22, and 32 � 2 (mod 7), and the quadratic non-residues
are the remaining 3; 5; 6 (mod 7). The formula gives

h.�7/ D .3C 5C 6/� .1C 4C 2/

7
D 14 � 7

7
D 1:

In the general case, the formula is the following: if K D QQ.
p�d/ is a complex

quadratic field, then

h.�d/ D �w.�d/
2D

DX

kD1
��D.k/k;

where �D(=�d or �4d ) is the discriminant of K , ��D.k/ is the real character
of K periodic modulo D (it is a product of certain Legendre symbols), and finally
w.�1/ D 4, w.�3/ D 6, w.�d/ D 2 for the rest (the number of roots of unity in
the field). An equivalent form is

h.�d/ D 1

2 � ��D.2/
X

0<k<D=2

��D.k/

for all square-free d � 2.
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An alternative—in fact, more efficient—way to compute the class number is to
use “reduction theory.” There is an elegant reduction theory for positive definite
quadratic forms (i.e., when the discriminant is negative; we denote it .�D/), which
leads to a surprisingly simple algorithm to determine the class number h.�D/ of a
complex quadratic field QQ.

p�D/. We summarize it in a nutshell. By using a finite
sequence of simple unimodular substitutions of the form x D y0, y D �x0 and
x D x0 ˙ y0, y D y0, any binary form can be transformed into another binary form
ax2 C bxy C cy2, for which jbj � a � c. In fact, we can even force that either

�a < b � a < c or 0 � b � a D c:

Such a form is called a reduced form. It is an important theorem that there is one
and only one reduced form equivalent to any given form. The number of reduced
forms with discriminant �D is the class number h.�D/.

For example, to calculate the class number when �D D �7, the inequality b2 �
a2 � ac and the fact 4ac�b2 D D give 3b2 � D, i.e., jbj � p

D=3 D p
7=3 < 2.

Since 4ac � b2 D D D 7 implies that b is odd, we have b D ˙1. Now 4ac D
1 C 7 D 8 gives a D 1, c D 2. The requirement �a < b � a < c excludes
the case b D �1, so there is only one reduced form of discriminant �7—namely,
x2 C xy C 2y2—yielding h.�7/ D 1.

A more complicated example is �D D �23. The inequality jbj � p
D=3 Dp

23=3 < 2 and the fact 4ac D b2 C 23 imply that b is odd and b D ˙1. Now
4ac D 1 C 23 D 24 gives a D 1; c D 6 or a D 2; c D 3. The requirement
�a < b � a < c excludes the case a D 1; b D �1; c D 6, so there are three
reduced forms of discriminant �23—namely, x2CxyC6y2 and 2x2˙xyC3y2—
yielding h.�23/ D 3.

Since h.7/ D h.23/ D 1 (i.e., the class numbers in the real cases are both one;
we omit the proof), we can double-check the facts h.�7/ D 1 and h.�23/ by using
the HMZ-formula, see (2.275). Since

p
7 D Œ2I 1; 1; 1; 4� and

p
23 D Œ4I 1; 3; 1; 8�,

we have

h.�7/ D �1C 1 � 1C 4

3
D 1 and h.�23/ D �1C 3 � 1C 8

3
D 3:

We conclude this section with the remark that if ˛ is an arbitrary quadratic
irrational

˛ D �B C p
D

2A
; that is; ˛ is a root of Ax2 C Bx C C D 0; and D D B2 � 4AC > 0;
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then we have the following analog of formula (2.211):

M˛.N/ D
p
D

2�2

0
BB@

X

.x;y/¤.0;0/W
primary representations

1

Ax2 C Bxy C Cy2

1
CCA

logN

log�
C negligible;

(2.276)
where � is the fundamental unit in QQ.

p
D/.

The proof of (2.276) is the same as that of Proposition 2.20. The guiding intuition
is that if y˛ is very close to an integer x, then

ky˛kp
Dy D ˙A.x�y˛/.y˛�y˛0/ � A.x�y˛/.x�y˛0/ D Ax2CBxyCCy2;

where ˛0 D .�B � p
D/=2A is the other root of Ax2 C Bx C C D 0.
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