Chapter 2

Basic Inequalities

In so far as the theorems of mathematics relate to reality, they are not
certain, and in so far as they are certain they do not relate to reality.
Every thing should be made as simple as possible but not simpler.
Albert Einstein (1879-1955).

This chapter deals with the basic inequalities used in the rest of the
book. The chapter is divided into seven sections and is organized as follows.
In Sect. 2.1 we consider Young type inequalities which will be used in the proof
of the Holder and Minkowski inequalities. Section 2.2 discusses Jensen’s ine-
quality on time scales and Sect.2.3 considers Holder type inequalities. In
Sect. 2.4 we consider the Minkowski inequality and Sect.2.5 is devoted to
Steffensen type inequalities on time scales. Section 2.6 considers Hermite—
Hadamard type inequalities and finally Sect.2.7 discusses Cebysev type in-
equalities on time scales.

2.1 Young Inequalities

In 1912, Young [157] presented the following highly intuitive integral
inequality

a b
1
abg/o f(t)dt+/0 (F~1)(s)ds, (2.1.1)

for any real-valued continuous function f : [0, 00) — [0, c0) satisfying f(0) = 0
with f strictly increasing on [0,00) and a, b € [0,00). The equality holds if

(© Springer International Publishing Switzerland 2014 23
R. Agarwal et al., Dynamic Inequalities On Time Scales,
DOI 10.1007/978-3-319-11002-8_2



24 CHAPTER 2. BASIC INEQUALITIES

and only if b = f(a). A useful consequence of this inequality, by taking
ft)=trtand ¢ = ﬁ, is the classical Young inequality
aP b 1

abgi—i_i) -+
p

1
ot =l (2.1.2)
)

Hardy, Littlewood, and Pdélya included (2.1.1) in their classical book [72].
The purpose of this section is to establish this inequality and its extensions
on time scales. These will be used in the next sections to prove Holder
and Minkowski inequalities on time scales. The results are adapted from
[25, 29, 151].

Theorem 2.1.1 Let g € Cq([0, ¢, R) be a strictly increasing function with
c>0. If g(0) =0, a €0, dJr and b € [0, g(c)ly(m), then

a b
ab < /0 o (2)Az + /O (67)" () Ay,

Proof. Since g~1(z) is strictly increasing and o(s) > s, we see that

b b b
/O(gfl)”(x)sz/O (gfl)(o(x))sz/o (g7 (x))Ax. (2.1.3)

Letting v(z) = g(x) and f(z) = « in Lemma 1.1.2, we see that
97 (b) A 9(g™" (b)) ) b
/ 9~ (x)zAz = / 9 WAy = / 9 (y)Ay. (2.1.4)
0 9(0) 0

Integration by parts yields

g7 (b) s g~ (b)
/ PA@edr = g @ - / ¢ () Az
0 0

. g (b)
— by l(h) - / ¢ () Az
0

Thus, (2.1.3) and (2.1.4) imply that
0

a b
/O o (@)Az + / (67)7 () Dy = by~ (b) + / @Az (215)

()

Case (a). a > g 1(b).
It follows from the strictly increasing property of g that

\%

/: S @)Ar > / ol OS> [ gl )

~1(b) “1(b) g-1(b)
= bla—g '(b)) =ab—bg ' (b).
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This and (2.1.5) imply
a b
/ ¢ (@)D + / (671)7 (y)Ay > ab.
0 0

Case (b). a < g~ 1(b).
Let h = g~!. Then a < h(b). Applying case (a) yields

a

we< [ (@A + / Y )y = / (o) @an | orma

Combining Case (a) and Case (b), we get the desired inequality. The proof
is complete. m

As an application of Theorem 2.1.1 by taking g(z) = 2P~! on [0, co)r and
g Hy) = y97 1 on [0,00)T, we get the following result.

Corollary 2.1.1 Letp > 1 and ¢ > 1 with 1/p+1/qg=1. Ifa > 0 and
b >0, then

a b
ab < / (o(2))P~ A + / (o)) Ay,

Example 2.1.1 Let T=R, then Corollary 2.1.1 says, note that in
R o(x) = z, that
P be 1 1
<+, 4=, (2.1.6)
p q p q
which is the classical Young inequality.

Example 2.1.2 Let T =7 and g(t) = t, then Theorem 2.1.1 says that

a b—1
1 1
ab< S (t+1) +Z% y+1) = 5ala+1) + 5b(b+1). (2.1.7)
Y

|
—

ﬁ
i
<

Theorem 2.1.2 Let T be any time scale (unbounded above) with 0 € T.
Further suppose that f : [0,00)r — R is a real-valued function satisfying

(1). f(0) =0;
(2). f is continuous on [0,00)T, right-dense continuous at 0;

(3). f is strictly increasing on [0,00)r such that T = f(T) is also a time
scale.

Then for any a € [0,00)1 and b € [0, oo)~, we have

/Oaf(t)At+/O“f(t)Vt+/O X Ay+/ Y y)Vy > 2ab, (2.1.8)

with equality if and only if b = f(a).
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Proof. From the continuity assumption (2), we see that f is both delta
and nabla integrable. For simplicity, define

F(a,b) :_/Oaf(t)At+/0af(t)Vt+/obf Ay+/ £ (y)Vy — 2ab.

Then it is enough to prove that F'(a,b) > 0.
(I). We will first show that

F(a,b) > F(a, f(a)), a€[0,00)r and b€ [0,00)%,

with equality if and only if b = f(a). For any such a and b, we have
b b

Flah) = Flo.f@) = [ (70 —day+ /f T avy

f(a) f(a)
- / la— F () Ay + / la— f ()] Vy.
b b

There are two cases to consider. The first case is b > f(a). Here, whenever
y € [/(a). bl we have f71(b) > = (y) > f~*(f(a))=a. Consequently,

f(a) f(a)
Fl(a,b) - F(a, f(a)) = / la— F(y)]Ay + / la— f(4)]Vy > 0.

Since f~!(y) —a is continuous and strictly increasing for y € [f(a), blz, equal-
ity will hold if and only if b = f(a). The second case is b < f(a). Here
Y

whenever y € [f(a),b] N f(T), we have f~1(b) < f~(y) < f~1(f(a) =
Consequently,

f(a) f(a)
F(a,b) - Fla, f(a) = / la— f (y)] Ay + / la— f W)Vy > 0.

Since a — f~Y(y) is continuous and strictly decreasing for
y € [b, f(a)ls, equality will hold if and only if b = f(a).
(II). We will next show that F'(a, f(a)) = 0.
Now, for brevity, we put d(a) = F(a, f(a)), that is

a a f(a) f(a)
= -t -t —2af(a).
- /O F()ALT /O F()VEr /0 I W) Ayt /0 7 () Vy—2af (a)

First, assume a is right scattered point. Then

07(a) = 6(a) = [o(a) —alf(a) +[o(a) —alf7(a)
+Hf7 (@) = F)lf 7 (f(a) + [£7(a) = f(@)lf71(£7(a))
—2[o(a)f?(a) - af(a)]
= [o(a) = d][f (@) + [ (@)] + [f7(a) = f(a)][o(a) + a]
—2[o(a)f7(a) — af(a)] =
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Therefore if a is right-scattered point, then 6°(a) = 0. Next, assume a
is a right-dense point. Let {an}nen C [a,00)r be a decreasing sequence
converging to a. Then

—d(a)

- / £t At+/ ft Vt+/ an)fl(y)AyﬂL/ff(an)fl(y)Vy

(a)
—2an f(an) +2af(a
flan)

-/ "0 - Fa)at / "0 - TV /f L W sy

f(an)
+ ~Hy) — a|Vy.
/f ., T —avy

Since the functions f and f~! are strictly increasing, we get that

an) =50 > [ 1@ = Sanait [ @) = fan]v
flan) flan)
“1f(a)) — alA “1(f(a)) — alV
*/M (@) }“/f@ (@) - a] Wy
= an - a)[f(a) — Flan)).
Similarly,
5(an) — 8(a) < / " Flan) — Flan) At + / " Flan) — Flan)VE
(an) flan)
+ /f o, ) sy /f L @) vy
= an —a)[f(an) — f(a)].
Therefore
0 = Jim 2f(a,) - f@)] < im 0=

< lim 2[f(an) ~ f(@)] = 0.
It follows that 6°(a) exists, and 6°(a) = 0 for right-dense a as well. As
5(0) = 0, by a uniqueness theorem for initial value problems, we have that
d(a) =0 for all a € [0,00). This implies that F'(a,b) > F(a, f(a)) = 0, with
equality if and only if b = f(a). The proof is complete. m

As an application of Theorem 2.1.2 when f(t) = tP~! and f~!(y) = y91,
we have the following result.
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Corollary 2.1.2 Let T be any time scale (unbounded above) with 0 € T. Let
p,q > 1 be real numbers with 1/p+ 1/q = 1. Then for any a € [0,00)r and
b € [0,00)p« where T* = {tP~1 : t € T}, we have

a a b b
/ t”_lAt—i-/ tp‘1Vt+/ yq_lAy—i—/ Yy 1Vy > 2ab,
0 0 0 0

with equality if and only if b = aP~ L.

Example 2.1.3 If T =R, we see that o(t) = t and then Theorem 2.1.2
yields the classical Young inequality (2.1.1).

Example 2.1.4 If T = Z, we see that o(t) =t + 1 and then Theorem 2.1.2
yields Young’s discrete inequality

a b—1

200 <> [fO)+fE+D]I+ D p@2f My + 1],

y€(0,0)Nf(Z)
since here f~1(a(y)) = o(f1(y)) = f~1(y) + 1.

Theorem 2.1.3 Let T be any time scale (unbounded above) with 0 € T.
Further suppose that f : [0,00)r — R is a real-valued function satisfying:

(1). f(0) =0;

(2). f is continuous on [0,00)T, right-dense continuous at 0;

|
—

~
I
o

(3). f is strictly increasing on [0,00)r such that T = f(T) is also a time
scale.

Then for any a € [0,00)r and b € [0,00)5, we have
b

/Oa [f(t) + f7()] At —l—/o [f_l(y) + f_l(a(y))] Ay > 2ab, (2.1.9)

with equality if and only if b = f(a).

Proof. For a continuous function g and a € [0, 00)t, define the function

Gla) = / "t / "V - / "lgt) + g7 ()] A,
Then G(0) =0, and

G*(a) = g(a) + ¢%(a) — [9(a) + g% (a)] = 0.

Therefore G = 0, and Theorem 2.1.3 follows from Theorem 2.1.2. The proof
is complete. m

Next we establish Young integral inequalities with upper and lower bounds
for the remainder.



2.1. YOUNG INEQUALITIES 29

Theorem 2.1.4 Let T be any time scale (unbounded above) with oy € T and
sup T = oco. Further suppose that f : [a,00)T = R is a real-valued function
satisfying

(i) fla1) = By;
(#4). f is continuous on [a1,00)r, Tight-dense continuous at aq;

(ii). f is strictly increasing on oy, 00)r such that T = f(T) is also a time
scale.

Then for any a € [o1,00)r and b € [B1,00)5, we have

a b
< [ foaet vy, (2.1.10)

with equality if and only if b € {fP(a), f(a)} for fired a or with equality if
and only if a € {f=*(b), a(f~1(b))} for fized b. The inequality (2.1.10) is
reversed if f is strictly decreasing.

Proof. By the continuity assumption (ii), we see that the function f is
delta integrable and the function f~! is nabla integrable. For simplicity, we
define

1

a b
F(a,b) = / fAt+ [ Y y)Vy+ a1 By — ab. (2.1.11)
o By
To prove (2.1.10), we need to show that F'(a,b) > 0.
(I). We will first show that
F(a,b) > F(a, f(a)), for a € [a1,00)T and b € [3;,00)5,
with equality if and only if b € {f?(a), f(a)}. For any such a and b, we have

b ~

Fl(a,b) - Fla, f(a)) = /f @ vy (2.1.12)

Clearly if b = f(a), then the integral equals to zero and if b=f*(a), then

f(a) 5
F(a, f(a) - Fla, f(a) = /fp()[a—f‘l(y)Wy

[f(a) = f(a)lla — f = (f(a))] = 0.

Otherwise, since f~!(y) is continuous and strictly increasing for y € '1~I‘, the
integrals in (2.1.12) are strictly positive for b < f?(a) and b > f(a).

(IT). We will next show that F(a, f(a)) = F(a, f*(a)) = 0.
Now, for brevity, we put ¢(a) = F(a, f(a)), that is

a f(a) 5
o(a) = / AL+ / £ () ¥y — af(a) + by,

1 1
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First, assume that a is right scattered point. Then

7 (a) — o(a)
o(a) f7(a) 5
_ (AL + / F W)Yy - 0(0)f° (@) + af (@)
o f(a)
lo(a) — alf (@) + 17 (@) — F@)f (7 (@) — o(a) £ (a) + af(a)
= 0.

Therefore if a is right-scattered point, then p”(a) = 0. Next, assume a
is a right-dense point. Let {an}nen C [a,00)T be a decreasing sequence
converging to a. Then

plan) — ¢(a)

an f(an) -

- / F(H)AL + / S W)y — anflan) + af(a)
a f(a)

(an — ) )a) + [F(@) — flan)la — anf(an) + af(a)

(an —a)[f(a) — flan)],

since the functions f and f~! are strictly increasing. Similarly,

plan) = ¢(a) < (an — a)[f(an) — f(a)].

Therefore

0= lim [f(a,) — f(a)] < lim M < lim [f(an) — f(a)] = 0.

n—oo n—00 (an —a n—oo

It follows that ©?(a) exists, and ¢®(a) = 0 for right-dense a as well. In
other words, in either case ¢ (a) = 0 for a € [a1,00)r. As ¢(a;) = 0, by
a uniqueness theorem for initial value problems, we have that ¢(a) = 0 for
all a € [ay,00)r. As F(a, f(a)) = F(a, fP(a)) = 0, we have that F(a,b) >
F(a, f(a)) = 0, with equality if and only if b = f(a) or b = f*(a). The case
with a € {f~1(b),a(f~1(b))} for fixed b is similar and thus omitted. If f is
strictly decreasing, it is straightforward to see that the inequality (2.1.10) is
reversed. The proof is complete. m

Now to establish upper bounds for Young’s integral inequality we need
the following result.

Lemma 2.1.1 Let f satisfy the hypotheses of Theorem 2.1.4, and let F(a, b)
be given as in (2.1.11). Then for any a, « € T and b, € T, we have

F(a,b) + F(a, B) > —(a — a) (8 — b), (2.1.13)

with equality if and only if a € {f~1(b),a(f~1(b))} and B € {f*(a), f(a)}.
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Proof. Fix a € T and b € T. By Young’s integral inequality (2.1.10), we
see that

a B
| rwats [Ty 2 0 (2.1.14)

and

« B B
/ f)At + Y y)Vy + a1, > ab, (2.1.15)
aq 51

with equality if and only if 8 € {f*(a), f(a)} and « € {f~1(b), a(f~1(b))},
respectively. By rearranging it follows that

/f At—|—/f y)Vy + a1, — ab

+/ f0at+ [ )Tyt arh - ab
B1

a B 5
/ N A

o b
+[swate [ 1wy as - - a8
a1 B1
> af+ab—ab—af =—(a—a)(f—0).
Note that equality holds here if and only if it holds in (2.1.14) and (2.1.15),

and this happens if and only if 3 € {f*(a), f(a)} and « € {f~1(b),a(f~1(b))}.
The proof is complete. =

Theorem 2.1.5 Let T be any time scale and f : (a1, azlr — [By, Byl7 be

a continuous strictly increasing function such that T = f(T) is also a time
scale. Then for every a, A € [aq, aslt and b, B € [31, B5]7, we have

(f71(B) = A)(f*(A) - B)ab

IN

/f At+/f y)Vy —ab+ AB
~1(p) — (a) — b), (2.1.16)

with equality if and only if B € {fP(A),f(A)} and b € {fr(a),
f(a)}. The inequalities are reversed if f is strictly decreasing.

IN

Proof. Considering F as in (2.1.11) and (2.1.13) with o = f~1(b) and
B = f(a), we have the equality

F(a,b)+ F(f7(b), f*(a)) = =(f 7' (b) — a)(f*(a) — b).
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As 71 € Ja,ag)r and fP € [B1, 8], via Young’s inequality
(2.1.10), we see that F(f~1(b), f*(a)) > 0. Consequently, we have that

0< Fa,b) < =(f7(b) = a)(f"(a) = b), (2.1.17)

and inequality holds if and only if b € {f”(a), f(a)}. Thus for any A €
[a1, o] and B € [31, B]5, we have from (2.1.17) that

0<—(fY(B)—A)(f*(A) — B) — F(A,B), (2.1.18)

with equality if and only if B € {f?(A4), f(A)}. Combining (2.1.17) and
(2.1.18), we get

0 < F(a,0) = (f71(B) = A)(f*(A) - B) - F(A, B)
< —(f7H0) = a)(f7(a) = b) = (fTH(B) = A)(f*(A) - B) - F(A, B),

which can be rewritten to obtain (2.1.16). If f strictly decreasing the proof
is similar and omitted. The proof is complete. m

In the following, we establish a theorem which can be considered as a
modification of Theorem 2.1.5 above. This theorem allows us to get a Young
type integral inequality without having to find f—!.

Theorem 2.1.6 Let the hypotheses of Theorem 2.1.5 hold. Then for any

a,a, A, A € [, o, we have
INC Af-/ 1)

+(a—a)f(a) + (A= A)f(A)
< —(a—a)(f”( )—f(a)), (2.1.19)

where equalities hold if and only if A € {p(A), A} and o € {p(a),a}.

(A = A)(f(A) = F(A))

IA

Proof. By Theorem 2.1.5 with A = A, B = f(A), a = a and b = f(a),

we have

(@) ~ @
[ s wVy=as@ - asw - [ soat (2.1.20)
f( A

A)

for any o, A € [y, ar. Since a, A € [a1,as]r are arbitrary, we substi-
tute (2.1.20) into (2.1.16) to obtain (2.1.19). The proof is complete. m

In the following, we apply the results when T = 7Z and derive some dis-
crete inequalities. Recall that [cq, aslz = {1, a1 +1,..., a2 — 1,as}. The
first two theorems are direct translations to T = Z of Theorem 2.1.5 and
Theorem 2.1.6, respectively.
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Theorem 2.1.7 Let f : [aq, 0]z — [,81,62]% be strictly increasing, where
Z = f(Z). Then for every a, A € [a1, 2]z, and b, B € (81, B2]5, we have

[f7H(B) = A)] (f(A=1) - B)
a—1 a—1

< > fm+ D fHm)v(m) —ab+ AB
n=A

me(B,b)NZ
< —(f7H) —a)(f(a—1) —b),

where equalities hold if and only if B € {f(A—1), f(A)} and b e {f(a—1),
fa)}.

Theorem 2.1.8 Let f : Z — R be strictly increasing. Then for every a, A,
a, A, we have

[A—A](f(A-1) = f(A))
< az_:l fn) - Of fm) +(a—a)f(a) +(A—A)
< Zla—afa1)- )
where equalities holds if and only if A € {(A—1), (A)} and o € {(a—1), a}.
Example 2.1.5 Consider the factorial function
fe@®) =t® =t(t —1)...(t —k+1), for t, ke Z.

1t is clear that fy is increasing on the interval [k—1,00)z. By Theorem 2.1.8,
we have

1

(@ = a)fi(@) < == [fr+1(a) = frrr(a)] < (a = a) frla - 1),

+1
for a, « € {k — 1,k,k + 1,...}, where equalities hold if and only if
ac{a—1,a}.

Example 2.1.6 Let f(t) = sin[rt/2k] for k € N. Then f is increasing on
[k, k], so that for any a > « € [—k, k]z, we have by Theorem 2.1.8 that

sin &7 < 1 cos 2a—-1)m cos (2a—1)7 ese T
in — — | - — 5C—
2k~ 2(a-—a) 4k 4k 4k

< sin

with equalities if and only if & € {a — 1,a}.



34 CHAPTER 2. BASIC INEQUALITIES

2.2 Jensen Inequalities

The original Jensen inequality proved by Jensen states that if g € C([a, b,
(¢,d)) and F € C([a, b], R) is convex, then

b s)as b
F <fabg£ id ) . bia/a F(g(s))ds. (2.2.1)

In this section we give extensions of this inequality on time scales. The

inequalities will be proved for delta derivative, nabla derivative as well as for

diamond-« derivative. The results are adapted from [11, 23, 30, 39, 115, 150].
We begin with a lemma adapted from [67].

Lemma 2.2.1 Let f € C((c, d),R) be convex. Then for eacht € (c,d), there
exits B, € R such that

flx) = f(t) = B (x—1t), forallze (cd). (2.2.2)

If f is strictly convex, then the inequality sign > in (2.2.2) should be replaced
by >.

Theorem 2.2.1 Let a,b € T and ¢, d € R. Let g € Cr4([a,b], (c,d)) and
F e C((¢,d), R) is convex. Then

b S S b
F (fal;"(_)f ) <, ! / Fg(s))As. (2.2.3)

—a

If F is strictly convez, then the inequality < can be replaced by <.

Proof. Since F' is convex, it follows from Lemma 2.2.1 that for each
t € (c,d), there exists 8, € R such that (2.2.2) holds. Let

1 b
= As.
t b_a/ag(s) s

Now
b N
/F(g(s))As_(b—a)F<faé]()aA>
- /F(g<s>>A5—(b—a)F(t)

b
> ﬁt/ l9(s) — ] As = B

b
/ g(s)As —t(b— a)] =0.

The proof is complete. =
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Example 2.2.1 As a special case let T=R and FF = —log. Note F is
convex and continuous on (0,00). Apply Theorem 2.2.1 with a = 0 and

b = 1 to obtain logf0 tydt > fo log(g(t))dt, and hence fo t)ydt >
exp (fo log(g ))dt), whenever g € C([0,1),(0,00)) is continuous.

Example 2.2.2 Let T =N and N € N. Apply Jensen’s inequality (Theorem
2.2.1) witha=1andb=N+1 and g:[1,N + 1]y — (0,00) to find

N N+1
log Hzg(n)] > log H/l g(t)At

n=1
1 N+1
¥ sttt

1 N
= 3 2_log(g(n)) =log (

L N 1/N
LD OE (Hgm)) .

This is the well-known arithmetic-mean geometric-mean inequality.

v

1/N
g(ﬂ)) ,

=

and hence

Example 2.2.3 Let T = 2% and N € N. Apply Jensen’s inequality
(Theorem 2.2.1) with a =1 and b= 2" and g : [1,2V]n, — (0,00) to find

log[ Zz” 2”]

1 2N
> log 7/ g(t)At
[QN -1/ ( )
1 2%
> v [ losta)at= o ZZ”log o)
;N2 N 1/(2N-1)
= ov 7 2 los((9(2")* =log <H((9(2"))2 > :
n= n=1
and hence
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Theorem 2.2.2 Leta,b € T andc, d € R. Suppose that g € Crq([a,b], (¢,d))
and h € Crq([a, b, R) with
b
/ |h(s)| As > 0.

If F € C((¢,d), R) is convex, then

[, (s |h(s)| F(g(s))As
<f|h As> / flh \As 224

If F is strictly convex, then the inequality < can be replaced by <.

Proof. Since F is convex it follows from Lemma 2.2.1 that for each
€ (e, d), there exists 8, € R such that (2.2.2) holds. Let

_ L 1) g(s)As
J2 In(s) A

’ B ) g (J )l a()As
| merFatnas </ e 'A> ( TP h(s)] s )
b b
/ |h<s>|F<g<s>>As< / |h<s>|As>F<t>
b
/ Ih(s)| [F(g(5)) — F (1) As > B, / Ih(s)] [g(s) — 1] As
b
_ V Ih(s)| g(s)As — 1 / Ih(s)] As

f |h(s)| g(s)As
V [h(s)| g(s) 7 lhis IA /|h )| As

The proof is complete. m

Thus

Remark 2.2.1 If the condition of convezity of the function F' is changed to
concavity, then the inequality sign of the inequality (2.2.4) is reversed.

As a special case of Theorem 2.2.2, when g(t) > 0 on [a,b] and F(t) = ¢
n [0,00), we see that F is convex on [0,00) for « < 0 or @ > 1 and F is
concave on [0, 00) for a € (0,1).

Corollary 2.2.1 Let g € Crq(la,b], (c,d)) such that g(t) > 0 on [a,b] and

h € Cyrq([a,b], R) with
b
/ Ih(s)| As > 0,
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where a,b € T and (¢,d) CR. Then

fb\h(s f () fora<0ora>1
[21n(s |As ¢ \h |As ’ ’
and
Jz 10(s) MO .
( Pt ) S a0

We now present nabla Jensen inequalities.

Theorem 2.2.3 Let a,b € T and ¢, d € R, and h € Ciq([a,b]T,R) and
g € Ci(a,b],(c,d)) with f; |h(T)|VT > 0, and ¢ € C((c,d),R) is convez,

then
J2 ()] 9(7) ) Jo Ih(m)| élg(r) VT
ol = < 2.2.5
( fj|h<7>|v7 N |h |vT 229

If ¢ is strictly convex, then the inequality < can be replaced by <.

Proof. Since ¢ is convex, it follows from Lemma 2.2.1 that for each
€ (e, d), there exists 5, € R such that (2.2.2) holds. Let

M
fa |h(s)| Vs

b 2 1n(s)] g<s>Vs>
h(s)| #(g(s))Vs— )| Vs e -
/\<>| ( g ) ( ()| Vs
- /\h )] 69 (/ s |v5> (1)
- / Ih(s)| [B(g(s)) — 6 (D) As > B, / Ih(s)] [g(s) — 1] Vs
b b
8, [ / Ih(s)] 9(s)V's —t / Ih(s)] Vs

b S
ﬁtl/ Ih(S)Ig(S)VS—f e |As /|h Vs]:.

The proof is complete. =
As a consequence of Theorem 2.2.3, we have the following result.

t=

Thus
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Theorem 2.2.4 Let a,b € T and ¢, d € R. If h € Ciq([a,b]1,R) and g €
Cia([a,b], (¢, d)) are nonnegative, with fab h(t)Vt > 0, and ¢ : (¢,d) — R is
continuous and convex, then

¢<fbh > 12 h(6)e(g(t)) Vi
[ n(t) - fh '

If ¢ is strictly convex, then the inequality < can be replaced by <.

Now, we give some generalized versions of Jensen’s inequality on time
scales via the diamond-« integral.

Theorem 2.2.5 Let T be a time scale, a,b € T and ¢, d € R. Suppose that
g € C(la, b1, (¢,d)) and F € C((c,d), R) is convex. Then

b s s b
F (fa g(_)fa ) = bia/u F(g(5))0as. (2.2.6)

If F is strictly convex, then the inequality < can be replaced by <.

Proof. Since F' is convex, we have
)0aA b 1- b
<f gb—a S) :F<bfa/ g(s)As—k(b_:)/ g(s)Vs>
1P 1P
< aF (b— / g(s)As) +(1-a)F <b—a/ g(s)Vs) .

Now, using delta and nabla Jensen inequalities, we get that

als a b N b
(j gb—t ) S b (/a F<9(3)>A5> +% (/a F(Q(S)Ws)
b b
= bia {(/ F(Q(S))A3> + </ F(g(s))Vs)
b
- bia (/ F(g(s))(}aAs> .

The proof is complete. m
In the following, we give a generalization of (2.2.6) on time scales.

Theorem 2.2.6 Let T be a time scale, a,b € T and ¢,d € R. Suppose that
g € C([a,b],(c,d)) and h € C([a,blr, R) with [’ |h(s)|Oas > 0. If F €
C((c,d), R) is convex, then

(f (s) ) < Ja Ih) Flg(5)0as (227
I InGs |<>a I; |h |<>a

If F is strictly convex, then the inequality < can be replaced by <.
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Proof. Since F is convex, it follows from Lemma 2.2.1 that for each t € (¢, d),
there exists 3, € R such that (2.2.2) holds. Setting

b

?1h(s)] 9(5)0a
J2 1h(s) \<>a

t=

)

we get that
b 2 11(s)] 9(8)0as >
h(s)| F(g )| Cus =
/' ) </ g ) (fa|h<>|<>a
b
/|h<s>|F oas—(/ s |As> (1)

[ 1 ate) ~ F 0105 > 8, [ 160 ) ~ 190

- ﬁtV Ih(s)] g(s oas—t/ (s |<>a]
BV Ih(s)| g(s) oas—fafz . /a'h |<>a]_

(l

The proof is complete. =

Remark 2.2.2 If the convexity condition of the function F is changed to
concavity, then the inequality sign of the inequality (2.2.7) is reversed.

As a special case of Theorem 2.2.6, when F'(t) = t” on [0, 00), we see that
F is convex on [0,00) for v < 0 or v > 1 and F' is concave on [0,00) for

€ (0,1). This gives us the following result.

Corollary 2.2.2 Let g € C([a,b], (c,d)) such that g(t) > 0 on [a,blr and

h € C(la, b1, R) with
b
/ [h(s)] Oas > 0,

where a,b € T and (¢,d) C R. Then

Lo ()l g ) S (005
<f|h Nous ) = [l |<>a S fory <0 o> 1
and
2 1h(s)| g(s)A ) RLOIFAC
—“ > , for~v€(0,1).
( T h(s)] Oas T2 (s |<>a !
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Example 2.2.4 Let g(t) > 0 on [a,b]r and F(t) = In(t) on (0,00). Now,
since F is concave on (0,00), it follows from Theorem 2.2.6 that

. (ff h<s>|g<s>As> o S Ih(s)[ I (g(s)) Oas
JRs) Oas ) [V I(8)] Oas
Example 2.2.5 Let T=7Z and n € N. Fixa =1 and b = N+ 1 and

consider g : [1, N + 1]y — (0,00) and let F(t) = —Int. Now F is convex and
continuous on (0,00). Apply the Jensen inequality (2.2.7) to obtain

N
n=1 n=2
N+1 1
= 1 —g(t)Qat
o [ Fono
1 N+1 a N N+1
= v/ In(g(t))0at = N;IHQ(") TN nz::Q In g(n)
N by N+1 N
- In (Hgm)) +In (H g(n)) ,
n=1 n=2
and hence
1 N N+1 N N /N+1 =
N lazg(nH (1-a) g(n)l > <H g(n)) (H g(ﬂ)) :
n=1 n=2 n=1 n=2
When o = 1, we obtain the well-known arithmetic-mean geometric-mean
inequality

1 N N %
¥ 2 9(n) > (H g(ﬂ)) :
n=1 n=1

and when o = 0, we obtain

| N1 N+1 ¥
W OE (H g(n)) .
n=2 n=2

Example 2.2.6 Let T =2V and F(t) = —Int. Apply the Jensen inequality
(Theorem 2.2.6) with a = 1 and b = 2V and g : [1,2V] — (0,00), we
find that
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2N

!
In | oy /1 9(B)0ut

1
a N-1
= In 2N_122"10g " log (2"))]
L n=0
I
> Ing(t)0a
BT
N—-1

N
= v o7 2 2 loa((e(2) + ;N%al 3" 2 log((g(2")

n=0

o N—-1 - 1—a N )
= o Z log((9(2")”" + gx—7 Z::llog((g(2 )
N

n a” 1 n —a)2"
- _11nH R S | (CCR s

n=1

- ln<H<<g<2">>2"> 7 +1n<H<<g<2">><1-a>2"> o

n=1

From this we conclude that

N—-1
In [2N_122”10g 2™) log(g(2™)) ]
_1 _1
N 2N 7 N 2N 1
> In <H((9(2"))2 ) (H (2m)) =) ) ,
n=1 n=1
and hence
a N—-1
n=0
N 21\71,1 N oN 1
n=1 n=1
Since
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we get that
1 N—-1
S 2 2" log(9(2") + ag(1) + (1 - a)2Vg(2")
n=1
z <H<<g<2”>>2> (H«g(z”))“—aﬂ) .

As an application of Theorem 2.2.6, we have the following result.

Theorem 2.2.7 Let T be a time scale, a, b € T with a < b and f, g,
h € C([a,b]r, (0,00)).

(i) If p> 1, then

bh(S)f(S)Oas + bh(S)g(S)Oas p
(L)« [romon-)|

b
= / h(s) [£7(5) + ()] /7 Oas. (2.2.8)

P 1/p

(#9) If0 <p <1, then

bh(S)f(S)OaS + bh(S)g(S)Oas p
(L)« [romon-)|

’ P P 1/p
> [ h)1£7(6) + 7)Y Ous (2.29)

P 1/p

Proof. We prove only (i), since the proof of (i¢) is similar. Inequal-
ity (2.2.8) is trivially true when f is zero. Otherwise, applying Theorem 2.2.6
with F(z) = (1 + 2P)"/?, which is clearly convex on (0,c0), we obtain

b 1/p b . /p
<1 + W) _ LR+ P 00
Ja h($)0as [P h(5)0as

In other words

b b 1/p b
( / h(s)0as + / h(S)f(8)0a8> < / B(s)(1+ £7(5) Y7005,

Changing h and f with hf/ f; h(s)f(s)0as and g/ f in the last inequality we
obtain (2.2.8). The proof is complete. m

Using the fact that the time scale integral is an isotonic linear functional,
we prove some Jensen type inequalities on time scales.
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Definition 2.2.1 Let E be a nonempty set and L be a linear class of real-
valued functions f : E — R, having the following properties:

(L1). If f, g€ L and a, b € R, then (af +bg) € L.

(La). If f(t) =1 for allt € E, then f € L.

An isotonic linear functional is a functional A : L — R having the fol-
lowing properties:

(A1). If f, 9 € L and a, b € R, then A(af + bg) = aA(f) + bA(g).

(A2). If f € L and f(t) > 0 for allt € E, then A(f) > 0.
Furthermore, if the functional A has a property

(A3). A1) = 1, where 1(t) = 1 for all t € E, then we will say that A is
normalized.

Our next theorem proves that the Cauchy integral on time scales is an
isotonic functional. The proof is straightforward from its definition and prop-
erties presented in [51, Defintion 1.58 and Theorem 1.77].

Theorem 2.2.8 Let T be a time scale, a, b € T with a < b and let
E=1a,0)NT, L =C,q(la,b),R). (2.2.10)

Then (L1) and (L2) are satisfied. Moreover, let

b
A(f):/ ft)At, (2.2.11)
where the integral is the Cauchy delta time-scale integral. Then (A1) and

(A2) are satisfied.

Example 2.2.7 IfT = R in Theorem 2.2.8, then L = C([a,b],R) and A(f) =
f; f@ydt. If T =27 in Theorem 2.2.8, then L consists of real-valued func-

b—1
tions on [a,b — 1) NZ and A(f) = > f(n). If T = ¢"°, where ¢ > 1, in

Theorem 2.2.8, then L consists of real-valued functions on [a,b/q] N ¢ and
log, (b)—1

Af)=@-1) > q"f(d").

n=log,(a)

Theorem 2.2.8 also has corresponding versions for the nabla and the
a-diamond integral.

Theorem 2.2.9 Let T be a time scale, a, b € T with a < b and let

E=(a,b]NT, L=Cq((a,b],R).
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Then (Ly) and (L) are satisfied. Moreover, let

b
Mﬁ=/f@W,

where the integral is the Cauchy nabla time-scale integral. Then (Ay) and
(A2) are satisfied.

Theorem 2.2.10 Let T a time scale, a, b € T with a < b and let
E=[a,0]NT, L=0C(a,b],R).

Then (Ly) and (L) are satisfied. Moreover, let

Mﬂ=/f@%u

where the integral is the Cauchy a-diamond time-scale integral. Then (A;)
and (As) are satisfied.

The Riemann multiple integral is also an isotonic linear functional.

Theorem 2.2.11 Let Tq,..., T, a time scales. For a;, b; € T; with a; < b;,
1<i<n,let

E C ([al,bl) NTy x...x [ambn) NnT,,
be Jordan A-measurable and let L be the set of all bounded

A-integrable functions from E to R. Then (L1) and (Lz2) are satisfied. More-
over, let

Mﬁ=éﬂm%

where the integral is the multiple Riemann delta-time scale integral. Then
(A1) and (As) are satisfied.

Theorem 2.2.12 LetTy,..., T, be time scales. For a;, b; € T; with a; < b;,
1<i<n, let
E C ([al,bl) NTy x...X [ambn) NT,,

be Lebesgue A-measurable and let L be the set of all bounded
A-integrable functions from E to R. Then (L1) and (Ls) are satisfied. More-
over, let

Mﬁ=éj@m,

where the integral is the multiple Lebesgue delta-time scale integral. Then
(A1) and (As) are satisfied.
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Theorem 2.2.13 Let the assumptions of Theorem 2.2.12 be satisfied. Let
A(f) be replaced by

_ Je @I F(B)AL
S ATUII

where h : E — R is A-integrable such that [, |h(t)| At > 0. Then A is an
isotonic linear functional satisfying A(1) = 1.

We next note the following theorem that has been proved by Jessen [87]
(see also [117)).

Theorem 2.2.14 Let L satisfy properties (L1) and (Ly). Assume & €
C(ILR) is convexr where I C R is an interval. If A satisfies (A1) and (Az)
such that A(1) =1, then for all f € L such that ®(f) € L, one has A(f) €I
and

D(A(f)) < A(2()).

Now, the application of Theorems 2.2.13 and 2.2.14 gives the following
result.

Theorem 2.2.15 Assume that ® € C(ILR) is conver where TC R is an
interval. Let E C R™ be as in Theorem 2.2.12 and suppose that f is
A-integrable on E such that f(E) = 1. Moreover, let h : E — R be
A-integrable such that [, |h(t)] At > 0. Then

o (fE |h(t)|f(t)At) _ Jelh®]e(f ()AL
Jeh@®At )= [ lh(t)] At
The concept of superquadratic functions in one variable, as a general-

ization of the class of convex functions was introduced by S. Abramovich,
G. Jameson, and G. Sinnamon in [1, 2].

Definition 2.2.2 A function ¢ : [0,00) — R is called superquadratic if there
exists a function C : [0,00) — R such that

oY) —px) = o(ly —z|) = C(z)(y —x), forall z,y > 0.
We say that p is subquadratic if —¢ s superquadratic.

For example, the function ¢(x) = zP is superquadratic for p > 2 and
subquadratic for p € (0,2].

Lemma 2.2.2 Let ¢ be a superquadratic function with C' as in Definition
2.2.2. Then
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(i) ¢(0) <0,

(ii) if ©(0) = ¢ (0), then C(x) = ¢ (x) whenever ¢ is differentiable at
x>0,

’

(iii) if ¢ > 0, then ¢ is convex and p(0) = ¢ (0) = 0.

In the following, we prove a Jensen type inequality on time scales for
superquadratic functions.

Theorem 2.2.16 Let a, b € T. Suppose f € Crq([a,b]r,[0,00)) and ¢ :
[0,00) — R is continuous and superquadratic. Then
> As.

[ r)at 1
<,0< b—a > = b—a/a
(2.2.12)

Proof. Since ¢ : [0,00) — R is a superquadratic function, then there
exists a function C : [0,00) — R such that

PF(s)) <‘f(s) _ LS5

¢(y) = ¢(z0) + @(ly — xol) + C(x0)(y — x0), for all g,y >0. (2.2.13)
Let

b

Applying (2.2.13) with y = f(s), we see that

b b
cUE) 2 (W) o (‘ R

+C (o) (f(s) — @0) -

()

b
f(s)As— (b — a)xol =0.

)] A,

which is the desired inequality (2.2.12). The proof is complete. m

Integrating from a to b, we see that

b b
/ l<p(f(5)) ~ <|f(5) - LSO As

a

b
> Clao) / (f(s) — w0) As = C(a0)

a

This implies that

b b b
0 (f“ ﬂtw) < lw(f(s)) o <|f(s) Lo JO%

b—a —a
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2.3 Holder Inequalities

In 1889 Hoélder [84] proved that

n n 1/p n 1/q
Zxkyk < (Z 1@) <Z Z/Z) 5 (2.3.1)
k=1 k=1 k=1

where x,, and y,, are positive sequences and p and ¢ are two positive numbers
such that 1/p 4+ 1/¢ = 1. The inequality reverses if either p or ¢ is negative.
The integral form of this inequality is

b b % b %
/ F(D)g(b) dt < [ / If(t)l”dt] [ / |g<t>|th] , (23.2)

where a, b € R and f, g € C([a,b], R). In this section, we discuss various
versions of the Holder inequality on time scales which not only give a uni-
fication of (2.3.1) and (2.3.2) but can be applied on different types of time
scales. The results in this section are adapted from [11, 24, 30, 39, 145, 155].
We begin with the proof of the classical Holder inequality on time scales.

Theorem 2.3.1 Let a, b€ T. For f, g € Crq(I, R), we have

b
/ l9(t)[ At

1
q

, (2.3.3)

1
P

b b
[ irwaorac< | [sorar

wherep>1and%+%:1.

Proof. For nonnegative real numbers « and 3, the classical Young
inequality

al/rgtfe < 2y é, (2.3.4)
p

Q

holds. Now suppose without loss of generality that

b b
(/ If(t)lpAt> (/ |g(t)th> £0.

Apply (2.3.4) with

If @ dg— _ la®r
BT R G O
(Elreras) ™ g as
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and integrate the obtained inequality between a and b (this is possible since
all functions are rd-continuous), we find that

— 0] " iim(pyi
/ (fblf(S)l”As) (f g qus)l/th:/a o P ()M () At

Plat)  BON A, [ [F@r" lg(®)I*
/a (p i q> & 7/(1 [ (f; |f(5)|PAs) ’ q [ |9(s)|* As

b p q
" At At 1 1
_ fa|f()‘ +‘f|g | :74»7:1,

(1P as)  alllg@las P d

IA

which is the desired inequality (2.3.3). The proof is complete. m
As a special case when p = ¢ = 2, we have the following Schwarz’s
inequality.

Theorem 2.3.2 Let a, b€ T. For f, g € Cra(I, R), we have

b b % b %
[ swgwiac< | [irorad | [ |g<t>|2At] S (235)
Setting
e MOMOL RO
p 1/p’ q 1/q’
(2 () 1) P As) (17 () g1 As)

in the proof of Theorem 2.3.1 and applying the Young inequality, we have
the following inequality.

Theorem 2.3.3 Let h, f, g € Cy([a,b]1,[0,00)). If 1/p+1/q = 1, with
p > 1, then

b b 1/p b 1/a
/ h(t) F(B)g ()AL < ( / h(t)fp(t)At> ( / h(t)gq(t)At> . (2.3.6)

Now we give the nabla Holder type inequality on time scales.

Theorem 2.3.4 Let a, b€ T. For f, g, h € Ci4([a,b]r, R), we have
1

/|h )1t |Pw] V ] lg() qw] ,

(2.3.7)

b
/ (O] £ (H)g(1)] V¢ <

wherep>1and%+%:1.
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Proof. Setting

1/p 1/q
AmBOPTIOL O
(2 I 1£ ()" vs) (f 1)) lg(s)[" V)

and applying the Young inequality AB < A + B2 where A, B are nonneg-
ative, p > 1 and * > + E =1, we see that

b P q
/(’i+fi)w
a p q

/b ROUSOP @ | g,
p ([ ) 176)PVs)  afy b g As

IN

/ bA(t)B(t)Vt

_ 2 IO @) vt f|h (t)]1g(t)?] vt
o (P Ts)) T 0l o) oo 95
1 1

= —4+2=1
P q

which is the desired inequality (2.3.7). The proof is complete. m
As a special case of Theorem 2.3.4 when p = ¢ = 2, we have the following
result.

Theorem 2.3.5 Let a, b € T. For f, g, h € C4([a, b, R), we have

b b % b %
/ () £ (B)a(t)] Vit < V (O] ()2 Ve V ()] 9(6) 2 V't

(2.3.8)
Theorem 2.3.6 Let a, b€ T. For f, g, h € Cq([a, b, R), we have

b :
[ mol1srve

where p < 0 or g <0 and}%—&—%:l

b q
[ ol |g<t>qw] ,

(2.3.9)

[ o150l ve =

Proof. Without loss of generality, we assume that p < 0. Set P = —p/q
and @ =1/g. Then 1/P+1/Q =1 with P > 1 and @ > 1. From (2.3.7) we
have

/ablh(t>|F |Vt<V n(0)| |F (1) ] l/ 16 Qw]

Q=
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Letting F(t) = f79(t) and G(t) = f(t)g?(t) in the last inequality, we get
the desired inequality (2.3.9). The proof is complete. ®

As an application of Holder inequality (2.3.3), we have the following
theorem.

Theorem 2.3.7 Let a, b € T with a < b and f and g be two positive func-
tions defined on the interval [a, bl such that 0 < m < f/g < M < oco. Then
forp>1and q>1 with1l/p+1/qg=1, we have

M1/p?
ml/q2

b b
/fl/”(t)g”q(t)AtS /fl/q(t)gl/p(t)At, (2.3.10)

a

and then

b 1/p? b 1/q b 1/p
s 22 () )

Proof. From inequality (2.3.3), we obtain

b b 1/17 b 1/‘1
/ FUP(0)g (1) At < ( / f(t)At> ( / g(t)At> ,

that is

b b b
/fl/p(t>g”q(t)At<</ fl/”(t)fl/q(t)At>1/p</ gl/q(t)gl/p(t)At>1/q.

Since f1/P(t) < M'/Pgl/P(t) and g'/9(t) < m~1/9f1/9(t), then from the above
inequality it follows that

b b 1/p
[ Progtamae < anmte (/ fl/qwl%)“)

1/q
x ( / ’ fl/q(t)gl/p(t)At> ,

that is

b b
/fl/p(t)gl/q(t)AtgMl/pzm’l/(f/ Yt g P (1) At (2.3.11)

a

Hence, the inequality (2.3.10) is proved. The proof is complete. m
The following theorems give the reverse Holder type inequality on time
scales.
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Theorem 2.3.8 Let a, b € T with a < b and f and g be two positive
functions defined on the interval [a, bl such that 0 < m < fP/g? < M < oo.
Then for p>1 and ¢ > 1 with 1/p+1/q =1, we have

([f”(t)At) (/abgq(t)At> " < <]\W4L)I}q/abf(t)g(t)At. (2.3.12)

Proof. Since fP/g? < M, then we have g —1/a p/a_ Therefore

1/p

gz M7 [t = M’Tlf”«ﬂ =M [,

b 3 b ;
</ f”(t)At) < M (/ f(t)g(t)At) . (2.3.13)

Also since m < f? /g9, then we have f > m!/Pg9/?. Then

and so

b b b
| sgoaezmie [Fgsamar—mie [ goa,

a

and so
1

b /4 b a
(/ f(t)g(t)At) > mba (/ gq(t)At> . (2.3.14)

Combining (2.3.13) and (2.3.14), we have the desired inequality (2.3.12). The
proof is complete. m

In Theorem 2.3.8, if we replace fP and g9 by f and g, we obtain the
reverse Holder type inequality

(/ab f(t)At> " (/abg(t)At> " < <An/;[> g /ab FYP()gM () At.

(2.3.15)

Theorem 2.3.9 Leta, b€ T with a < b and f and g be two positive func-
tions defined on the interval [a, bl such that 0 < m < fP < M < co. Then
forp>1and q¢>1 with1l/p+1/qg=1, we have

b p ’ p+1 /p
(/ fl/p(t)At> > (b-a)"+ ( ( / () At) . (23.16)

Proof. Putting g =1 in Theorem 2.3.8, we obtain

b 1/17 1
( f”(t)At> b—a)r< (T ”/f
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Therefore, we get

(/b fp(t)At> " < (%)* (b—a)~VV4 /bf(t)At. (2.3.17)

Substituting ¢ in (2.3.15) leads to

b 1/p -1 b
</a f(t)At) < (%) e (b—a)*l/q/a FYP (A,

and so

/abf(t)At < (%)i (b—a)"P/4 (/bfl/P(t)At>p. (2.3.18)

a

Combining (2.3.17) with (2.3.18), we obtain

(/bfl/P(t)At>p > (%)i (b—a)®*+D/e (/b fp(t)At> 1/p7

which is the desired inequality (2.3.16). The proof is complete. m
Next we prove a Holder type inequality in two dimensionals on time scales.

Theorem 2.3.10 Let a, b € T with a < b and f and g be two
rd-continuous functions defined on the interval [a, bl X [a,b]r. Then

b b
/ / |f(z,y)g(z, y)| AzAy (2.3.19)

< ( [ bf(w,y)|prAy> " ( A |g<x,y>|qAxAy> "

where p > 1 and g =p/((p —1).

Proof. Suppose without loss of generality that

(/ab/abf(x,yﬂprAy) /ab/ab lg(z,y)|* AzAy # 0.

Apply the Young inequality al/Ppl/a < % + %(2.3.4) with

|f(z, )"
0¢(33a2/) f;f;|f(71,72)|pA71A72’
/B(x,y) — |g(x7y)|q

fab f; |9(71772)‘q AﬁATz7
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and integrate the obtained inequality between a and b to get
b b
[ [ et ns ) aeny

/j/j(Oé(ﬂ;,y) +ﬂ(9;,y)>MAy

Jo o f@ )l Axdy [ [} oty Axdy

Pf; f; |f(T1,72)]" AT1 ATy (Jf; f; lg(T1,72)|T AT AT,
1 1

Sho=1
p q

IN

The proof is complete. =

Now, we give the diamond a-Hdélder inequalities on time scales by apply-
ing the diamond a-Jensen inequalities on time scales. As an application of the
diamond «-Jensen inequality proved in Theorem 2.2.6 by taking F'(t) = t*
for p > 1 and g and |h| be replaced by ug~P/9 and hg9, we have the following
Holder inequality.

Theorem 2.3.11 Let h, u, g € C([a,b]r,R) with f h(t)gl(t)Oat > 0.
If1/p+1/q=1, withp > 1, then

/|h ) u(t) |<>at<</ Ih(0) (e |P<>a> (/ K lg(t) qoa>

(2.3.20)

/a

In the particular case h = 1, Theorem 2.3.11 gives the diamond-« version
of the classical Holder inequality:

1/q

/Iu |<>at<</ u(t) |p<>a>1/p (/ab|g(t)q<>at> . (2.3.21)

where p > 1 and ¢ = p/(p — 1). In the special case p = ¢ = 2, the inequal-
ity (2.3.21) reduces to the following diamond-« Cauchy-Schwarz integral in-
equality on time scales

b b
/Iu t)] Oat < </ Iu(t)|2<>at> (/ Ig(t)|2<>at>. (2.3.22)
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Theorem 2.3.12 Let h, u, g € C([a,b]T,R) with f R(t)gi(t)Oat > 0.
If1/p+1/q=1, withp <0 or ¢ <0, then

/\h ) u(®)g(®)] Oat > (/ Ih(t)] Ju(t m)
b
( / |h<t>||g<t>|‘Z<>at>

Theorem 2.3.13 Let a, b € T with a < b and f and g be two positive
functions defined on the interval [a, bl such that 0 < m < fP/g? < M < oo.
Then for p > 1 with 1/p+1/q =1, we have

(/abf”(t)oat)l/p</abgq(t)<>at> s( > /f Oat. (2.3.23)

Proof. As in the proof of Theorem 2.3.8, we get that

. S .
( / f”(t)%t) < M# ( / f(t)g(t)%t)
b /4 ) b
( / f(t)g(t)%t> > ()7 ( / gq<t><>at>

Combining these two inequalities, we have the desired inequality (2.3.23).
The proof is complete. m
Now, we give the diamond a-Hélder type inequality in two dimensions on
time scales. In this case, we assume that the double integral is defined as an
iterated integral. Let T be a time scale with a,b € T, a < b, and f be a real-
valued function on T x T. Because we need notation for partial derivatives
with respect to time scale variables x and y we denote the timg scale partial
derivative of f(x,y) with respect to x by f®a(z,y) and let f%«(z,y) denote
the time scale partial derivative with respect to y. Fix an arbitrary y € T.
Then the diamond-« derivative of the function
T—R, z— f(z,y)
is denoted by f a. Let now z € T. The diamond-« derivative of the function
T-R,  y— f(z,y)

is denoted by foil. If the function f has a O}, antiderivative 4, i.e., A%a = 7,
and A has a 02 antiderivative B, i.c., B% = A, then

b b b
/ / f($7 y)oaany = / (A(b7 y) - A(a7 y))oay
= B(b,b) — B(b,a) — B(a,b) + B(a,a).

/P

/q

and

Q=

1

Note that (Boi><>a = (A)O‘l* = f.
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Now we are ready to state and prove the diamond a-Hé6lder inequality in
two dimensions on time scales.

Theorem 2.3.14 Let T be a time scale, a,b € T, with a < b, f, g, h

[a,b]T X [a,b]r — R, be On integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

b b
/ / (1) £ (2 99 1)]| GazOay (2.3.24)

(/ab /ab \h(z, ) f(x,y)]" an@a@/) 1/p
(/ab /ab |h(x,y)g(x,y)|q<>ax<>ay> 1/q.

Proof. Inequality (2.3.24) is trivially true in the case when f, or g, or h
is identically zero. Suppose that

b b b b
( / / |h<x,y>f<x,y>1“’<>ax<>ay) ( / / |h<x,y>g<x,y>|”q<>ax<>ay)#o,

and let
A, )| | f ()]
1/p
(J2 12 InG. )l 1@ 9)P OaOay)
Blay) = —— |h(z, )7 |g(z, y)| _
(J2 17 I} 196 9)] Oaz0ay)

2

&

s
I

)

Applying the Young inequality AB < AT;) + BTQ, we have that

b b h , ) )
[ [ 4B po.souy < L Al >|p<> 20y
o P (J2 2 )l 1)l OusOuy)
1 fffflh 2,9)|% 0az0ay
K (Ji 2 1h(. ) g, )| OaaOay)
SR
p q

and the desired inequality follows. The proof is complete. m
As a special case of Theorem 2.3.14, when p = ¢ = 2, we get the two
dimensional diamond-a Cauchy Schwartz’s inequality.
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Corollary 2.3.1 Let T be a time scale, a,b € T, with a < b, f, g, h :
[a,b]T X [a,blr — R, be O integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

b b
/ / (2, ) f (@, 9)g(2,3)| OazOay

(/ b / ' hCe,u) )P <>ax<>ay)1/2 (f b / ' (e, g ) <>ax<>ay)m.

Now, we apply the theory of isotonic linear functional which was presented
in Sect.2.2 to derive a Holder type inequality on time scales. The results
are adapted from [30]. We need the following theorem to prove the main
results [117].

Theorem 2.3.15 Let E, L, and A be such that (L1), (L2), (A1) and (As)
in Definition 2.2.1 are satisfied. For p # 1, define ¢ = p/(p — 1). Assume
lw||fI7 lwllg|?, lwfgl € L. If p>1, then

Alwfgl) < AYP(lw] |F1P)AY (|l 1g]).

This inequality is reversed if 0 < p < 1 and A(lw||g|?) > 0 and also it is
reversed if p < 0 and A(|w||f[") > 0.

Now, the application of Theorems 2.2.12 and 2.3.15 gives us the following
Holder’s inequality.

Theorem 2.3.16 For p > 1, define ¢ = p/(p —1). Let E C R™ be as in
Theorem 2.2.12. Assume that |w||f|", |w||g|?, |wfg| are A-integrable on E.
If p > 1, then

[ wtoswaton s s ([ i |”At) ([ wnstorar) "

This inequality is reversed if 0 < p < 1 and [ |w(t)||g(t)| At > 0 and also
it is reversed if p < 0 and [, |w(t)||f(t)|" At > 0.

2.4 Minkowski Inequalities
The well-known Minkowski integral inequality is given in [3, 72, 110]. Let

f and g be real-valued functions defined on [a,b] such that the functions
|f(x)” and |g(z)|” for p > 1 are integrable on [a,b]. Then

( / N g<m>|pdx> " ( / b If(:v)lpdw> v ( / b g<x>pdx>

1/p
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Equality holds if and only if f(x) = 0 almost everywhere or g(z) = Af(x)
almost everywhere with a constant A > 0. The discrete version of Minkowski
inequality is given by

n 1/p n 1/p n 1/p
(Zlf(i) +9(i)p> < (Zlf(i)l”) + (Z Ig(i)|p> ;
i=1 i=1 i=1
where f(n) and g(n) are two positive-tuples and p > 1. Equality holds if and
only f and g are proportional.
In this section we establish the Minkowski integral inequality and its

extensions on time scales. The results in this section are adapted from
[23, 30, 39, 45, 115, 150, 155].

Theorem 2.4.1 Let f, g, h € Crq([a,b]1,R) and p > 1. Then

b 1/p b 1/p
(/ Ih(w)lf(ﬂf)Jrg(x)lpAﬂC) < (/ Ih(x)llf(w‘)lpﬁx>

b 1/p
+ (/ |h(z)] |g(x)|” A:c) . (2.4.1)

Proof. Note

b b
/ @) |f(@) + g@)f A = / @)1 (@) + 9@ (@) + g(a)] Ax

IN

b
/ [h(@)| |f (@) + g(@)I""" |f ()] Az

b
+ [ @) 17w+ gla) ! gto)] A

Applying the Holder inequality (2.3.6), we get that

b
[ m@lis) + gl as

1/q
< ( / o) (1@ + @)’ Ax> ( / o) f(w)l”AfB>
1/q
+ (/b b)) (1) +g(x)|p_1)qAx> (/b |h(x)] |g<x)pr>
b 1/q
= ( | m@lisa +g<x>1’m>

b 1/p b 1/P
x [( / Ih(:c)llf(x)”Ax> +< / |h<z>||g<x>mx>

1/p

1/p
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Therefore

b 1/p
( [ @17 + gt Ax>

b 1-1/q
- ( / ()] |f () +g<x>|”m~>

b 1/p b 1/p
(/ |h<m>|f<x>|w> +</ |h<x>|g<x>|”m> ,

which is the desired inequality (2.4.1). The proof is complete. m
As a special case when h(z) = 1, we obtain the time scale classical
Minkowski inequality

b 1/p b 1/p b 1/p
(/ If(fv)+g(fv)”Ax> < / f(x)l”dw> +</ |g<x>|pdx) .

As in the proof of Theorem 2.4.1 (using (2.3.7)) we obtain the following nabla
Minkowski inequality.

Theorem 2.4.2 Let f, g, h € Cj4([a,b]T,R) and p > 1. Then
b 1/17
( / (@)1 f(z) + g(z) P v$>

b 1/p b 1/p
< (/ |h<x>|f<x>|pw> +</ |h<x>|g<x>|pw> .

Applying the diamond-a Hélder inequality (2.3.20) we have the following
diamond-a Minkowski’s inequality.

Theorem 2.4.3 Let f, g, h € C([a,b]T, R) and p > 1. Then
b 1/p
( [ @15 + gt <>ax>

b 1/p b 1/p
< (/ Ih(w)IIf(:v)lpOa:v> +</ |h<x>|g<x>|”<>ax> |

Theorem 2.4.4 Let f, g: [a,blr — R, are positive rd-continuous functions
and satisfying 0 < m < f/g < M < oo on [a,blr and for p > 1 define
g=p/(p—1). Then

b p b p b »
( / f”(x)Ax> +< / gP(x)Ax> 9( / (f(x)+g(x))”Aw> ,

(2.4.2)

where ¢ = (%)ﬁ
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Proof. To prove the inequality (2.4.2), we apply Theorem 2.3.8. The
inner term in the right-hand side can be rewritten as

b
/ (f(2) + 9(x))? Ax
b
- / (f(2) + g(@))" ™" fz) Az

b
+ / (F(2) + ()" g(x) Az

(Z) " ( / b fp(x)Afv> % ( / (7(@) + 9l Ax> q
() § ( A g%x)Ax); ( [ @+ gy M);
V(L gty ar)
()" () )

X (/abfp(a:)Ax>; + (/abgp(x)Ax>;

Therefore, we obtain

(/ab fp(x)Aac) : + (/ab gp(m)Am> '

1—1
q

IN

(7 ( [ )+ sty Am>
= (7 ( [ )+ oty Ax> "

which is the desired inequality (2.4.2). The proof is complete. m

Now, we apply the theory of isotonic linear functional that was presented
in Sect. 2.2 to derive a Minkowski inequality on time scales. To do this we
need the following theorem as given in [117].

Theorem 2.4.5 Let E, L, and A be such that (L), (Lz2), (A1) and (As),
as in Definition 2.2.1, are satisfied. For p € R, assume |w||f", |w]||g|”,
lw||f +9g” € L. If p> 1, then

AVP(|w| | f + gI") < AVP(w] I£17) + AP (o] lgI").

This inequality is reversed if 0 < p < 1 or p < 0 provided that A(|w||g|”) > 0
and A(|w| |f") > 0 hold.

Now, the application of Theorems 2.2.12 and 2.4.5 gives us the following
Minkowski inequality.
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Theorem 2.4.6 Let E C R" be as in Theorem 2.2.12. For p € R, assume
lw| £, [wllg|”, |w||f + g|* are A-integrable on E. If p > 1, then

([ wtonlatorr ar) " as)

This inequality is reversed if 0 < p < 1 orp < 0 provided that [}, |w(t)||g(t)|*
At >0 and [, |w()||f()]" At > 0.

In the following we obtain generalizations of Minkowski inequalities on
time scales. The inequalities will be proved for several variables and based
on the definitions of the multiple Riemann and Lebesgue A-integration on
time scales given in [53].

Let n € N be fixed. For i € {1,2,...,n}, let T; denote a time scale and

An:Tl XTQX...XTnZ{t:(tl,tQ,...,tn)ZtiETi, 1§z§n},

as the n-dimensional time scale. Let p, be the o-additive Lebesuge
A-measure on A" and F be the family of A-measurable subsets of A™.
Let E C F and (E,F, pa) be a time scale measure space. Then for a
A-measurable function f : E — R, the corresponding A-integral of f over E
will be denoted by

/f(tlat23-~~atn)A1tlA2t2---Antnv Or/f(t)Af,
E

E

or [ fns. or [ re)dns(o).

Here, we state the Fubini theorem for integrals. It is used in the proofs of
our main results.

Theorem 2.4.7 Let (X, M, pa) and (Y, L, va) be two finite-dimensional
time scale measure space. If f : X XY — R is a A-integrable function.
Setting

o(y) = /X @y (), fory €Y,
and
(x) = /Y f(@,y)dva(y), for z € X,

then @ is A-integrable on'Y and 1 is A-integrable on X and

[ dust@) [ o) = [ doat) [ faadns). a4
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We mention here that all theorems in Lebesgue integration theory,
including the Lebesgue dominated convergence theorem, hold also for
Lebesgue A-integral on A™. This means that all the classical inequalities
including Jensen’s inequalities, Holder inequalities, Minkowski inequalities,
and their converses for multiple integration on time scales hold for both
Riemann and Lebesuge integrals on time scales.

Theorem 2.4.8 Let (E,F, pa) be a time scale measure space. For p € R,

assume w, f, g are nonnegative functions such that wfP, wg?, w (f + g)* are
A-integrable on E. If p > 1, then

(é “utenr d’“t) . (/E w(t)fp(t)d/mt) N

(f w(t)g%)dw)w.

Note that Theorem 2.4.8 also holds if we have a finite number of functions.
The next theorem gives an inequality of Minkowski type for infinitely many
functions. We assume that all integrals are finite.

Theorem 2.4.9 Let (X, L, up) and (Y, \,va) be two finite-dimensional time

scale measure space and let u, v f be A-integrable functions on X, Y and
X XY, respectively. If p > 1, then

1/p
[/ </ f(z,y)v dl/Ay> u(x)dqu}
1/p
/ (/ fP(x,y)u d,uAm> v(y)dvay, (2.4.5)
holds provided all integrals in (2.4.5) exists. If 0 < p < 1 and
P
/ </ fUdVA> udp >0 and / fvdva >0, (2.4.6)
x \Jy Y

holds, then (2.4.5) is reversed. If p <0 and (2.4.6) and

/ fP(x,y)u(z)dupz > 0, (2.4.7)
hold, then (2.4.5) is reversed as well.

Proof. Let p > 1. Put
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Now, by using Fubini’s Theorem 2.4.7 and Holder inequality in Theorem 2.3.16
on time scales, we have

/X HP (2)udpy  — / P () H (2)u(z)dpgz

[ ([ seanian) -
/(/ f(%?/)HP‘l(q;)u(x)duM) v(y)dvay
/ (/ [Pz, y)u d,qu>1/p

p—1

(/ HP(x duM) " u(y)dvay
/ </ [P y)u dmz>1/pv(y)dmy

p—1

(/ Hp d:qu) ’ 9
and hence
1/p
(/ HP(x dmx) _/ (/ TPz, y)u duM) v(y)dvay,

which is the desired inequality (2.4.5). For p < 0 and 0 < p < 1, the
corresponding result can be obtained similarly. The proof is complete. m

IA

2.5 Steffensen Inequalities

In 1918 Steffensen [142] proved the following inequality. Let a and b be real
numbers such that a < b, f, and g are integrable functions from [a, b] into R
such that f is decreasing and for every ¢ € [a,b], 0 < g(t) < 1. Then

/ dt</ £t dt</ Hf(t)clt, (2.5.1)

where A = f:g(t)dt. The discrete analogue of Steffensen’s inequality is
given by

n n k1
g r; < E Y < E Zq,
i=n—ko+1 i=1 i=1

where (zz) _, is a nonincreasing finite sequence of nonnegative real numbers
and (y;);_, is a finite sequence of real numbers such that for every i, 0 <
yi <land ko <Y I y; < ki for ki, ko € {1,2,...,n}.
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In this section, we prove some Steffensen inequalities on time scales The
results in this section are adapted from [26, 114].

Theorem 2.5.1 Let a, b € T} with a < b and f, g : [a,b]r — R be
A-integrable functions such that f of one sign and decreasing and 0 < g(t) < 1
for every t € [a,blr. Suppose that also I, v € [a, by such that

b
b—1 < /g(t)AtS'y—a, if f >0 forallt € [a,blr,

IN

b
y—a /g(t)Atgb—l, if f <0 for allt € [a,b]r,

then

b b o
/l (DAL < / f(HgB)At < / F(B)AL. (25.2)

Proof. We consider the case when f > 0 and prove the left inequality.
Now

b b
/a (gt AL — / F(H)AL

l b b
/a F(HghAL + / F(Hg(t)AL - / F(HAL

l b
/ F(Hg(t)AL / SO — gt At
a l
b

v

l
/ FDg()AL — F(1) / 11— g(t) At

l

l b
/ FHgOAL— FDb 1)+ F() /l g(t)At

Y

l b b
/ F(HgAL - £() / oA+ 1) /l a(t)At

a

/ (DAL — £ / o)At — / o)A

l l l
/ F(HgHAL - F(1) / a(t) At = / () — FO) / g(H)AL >0,

since f is decreasing and g is nonnegative. The proof of the right inequality
is similar. The proof is complete. m

Note that in Theorem 2.5.1 above we could easily replace the delta integral
with the nabla integral under the same hypotheses.
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Theorem 2.5.2 Let a, b € T} with a < b and f, g : [a,b]r — R be
V-integrable functions such that f is of one sign and decreasing and
0<g(t) <1 on[a,blr. Suppose that alsol, v € [a,b]T such that

b
b—1 < /g(t)VtS’y—a, if f >0 forallt € [a,b]r,

IN

b
y—a /g(t)Vtgbfl, if f <0 forallt € [a,b]r.

Then
b b 0%
/l FOVE < / F()g(t)Vt < / £V, (2.5.3)

The following theorems more closely resemble the theorem in the contin-
uous case (the proofs are identical to that above and omitted).

Theorem 2.5.3 Let a, b € TN with a < b and f, g : [a,blr — R be A-
integrable functions such that f is of one sign and decreasing and 0 < g <'1

for every t € [a,blr. Assume that A = f: g(t)At such that b— X, a+ X e T.
Then
b

b a+A
" swar< [roswars [ soan

Theorem 2.5.4 Let a, b € TY with a < b and f, g : [a,b]r — R be V-
integrable functions such that f is of one sign and decreasing and 0 < g <1

for every t € [a,blr. Assume that A = f; g(t)Vt such thatb— X, a+ A € T.
Then

b a+A

b
foves [ fogoves [ s

b—X

In the following, we prove the diamond-« Steffensen inequality using the
diamond-a derivative on time scales. We begin with the following lemma
that will be needed later.

Lemma 2.5.1 Let a, b € T¥ witha < b and f, g, b : [a,bly — R be Oq-
integrable functions. Suppose that also l, v € [a,b]r such that

/: h(t)Oat = /abg(t)oat = /lbh(t)oat. (2.5.4)

Then
b b
/ f(Hgt)0at = / F(8) = F)]a()0at (2.5.5)
+ [T UOMO - 150 - FIHO - 501} 0at,
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/ F(Dg(t)0at = / F(5) = FDg(H)0ut (2.5.6)
+ / {FOR®) — [F(E) — FDIAE) — g(1)]} Oat.

Proof. We prove (2.5.5). By direct computation, we have

/v{fthtf (t) - F) }oat—/f

/ 0 ot) — [F(t) — TR — g(0)]} Oat

+ / FDg(B)0at — / F(B)g(t)0ut
ol b
/ FOIR() — (1) Oat — / F(Hg(H)0at
ol ¥ b
e / B(t)0ut — 1() / 9(t)0ut — / F(H)g(H)0ut

Applying the assumption [ h(t)0at = f g(t)Oat, we see that

/{f — SO —g t}oat—/ftgu)w
7 / 9()0at — 1 / ()0at - / £0

£() ( [ s0ut - [ 500 ) [ 50

- / £)0at = / F(9()0at = / [7(2) — FOa(t)0u

which is the desired inequality (2.5.5). The proof of (2.5.6) is similar and
thus is omitted. The proof is complete. m

Theorem 2.5.5 Let a, b € T with a < b and f, g, h : [a,blr — R be Oq-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that

[T ()0t < [7g()0at < [T h()0at, if f >0, t € [a,b]r,
J h()0at < [, 9()0at < [ h <>at if <0, t€ [a,blr.

Then

(2.5.7)

/ f(t) <>at</ f(t) Oat</;f(t)h(t)<>at. (2.5.8)
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Proof. We prove the left inequality in (2.5.8), in the case f > 0. The
proofs of the other cases are similar. Since f is decreasing and g is nonnega-
tive, we see that

b b
/ F()g(t)0ut — /l SO0t
l b b
/ F(Hg(t)0at + / FOg(E)0at — / FOREOat
al
/f(t) Oat_/ f )]Qa

> /f Oat—f()/l[h() 9(6)] Oat
- / Fg(e)0at - 1) [ " h()0ut + £ /lbg<t><>at
> / F(Hg(H)0at — £(1) /abg(t)%Hf(l) /lbg<t><>at

/ F(g(t)0at — (1) [ / " g(1)0ut - / bg(t><>at]
/ F()g(t)0ut — £(1) /alg<t><>at

- / F(8) = D] g(B)0at > 0.

]
As a special case of Theorem 2.5.5 when a@ = 1 and o = 0, we have the
following results.

Corollary 2.5.1 Let a, b € TF with a < b and f, g, h : [a,blr — R be
A-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,bly. Assumel, v € [a,b]r such that

{ [T )AL < [P gt)At < [T )AL, if f >0, t € [a,b]r,
a / (2.5.9)
[T h(t)At < [T gt)At < [T h(t)At, if f<0,t€ [a,b]r.
Then
/ FORDAL < / F()g(b)AL < /Vf(t)h(t)At. (2.5.10)

Corollary 2.5.2 Let a, b € T* with a < b and f, g, h : [a,b]r — R be V-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that
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{ T RVE< [P g)VE< [Th(E)VE, if f >0, t € [a,b]r,
¢ a / (2.5.11)
[Th)Vt < [P gt)Vt < [T h(t)Vt, if f<0,t€ [a,b]y.
Then
b b o
/ FORE)VE g/ Ft)g(t)Vt g/ F)R(t)VL. (2.5.12)
l a a

Theorem 2.5.6 Let a, b € TF with a < b and f, g, h : [a,bly — R be Oq-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that

¥ b b
/ B(t)0ut = / 9(t)0at = /l h(t)Out. (2.5.13)
Then
b b
/l FOROut < /l FORE) — [t — FOIRE) — gO])Oat
b
< /f(t)g(t)@at (2.5.14)
< / (PR — £ — FONRE) — gO)Oat
< [ Fh)0ar.

a

Proof. In view of the assumption that the function f is decreasing and
that 0 < g(t) < h(t) on [a,b]r, we see that

l b
/[f(t)*f(l)}g(t)%fz(), /l[f(l)*f(t)][h(t)*g(t)]%tzo- (2.5.15)

Using the integral identity (2.5.6) together with the integrals in (2.5.15), we
have

IN

b b
/l FO(B)0at /l (FOR(E) — [£(8) = FONAE) - g(O)Oat  (25.16)

b
< / F(Hg(H)0at.

In the same way as above, we obtain that

b v
/ f)g(#)0at < / (@) = [f (&) = FR(E) = g()]) Oat
(2.5.17)

< | T R0t
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The proof of (2.5.14) is completed by combining (2.5.16) and (2.5.17). The
proof is complete. m

As a special case of Theorem 2.5.6, when o = 1 and « = 0, we have the
following results.

Corollary 2.5.3 Let a, b € TF with a < b and f, g, h : [a,b]r — R be
A-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,bly. Assumel, v € [a,b]r such that

vy b b
/a h(t)At:/a g(t)At:/l h(t)At. (2.5.18)
Then
b
/l ()AL

b b
< [ G@n) - - 10l - gwhae< [ g
< | T (FOR() — [7() — FOIRE) — gt < / " HOh()At

Corollary 2.5.4 Let a, b € T, with a < b and f, g, h : [a,b]r — R be
V-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,blr. Assumel, v € [a,b]r such that

¥ b b
/a h(t)VE = / 96Vt = /l h(t)Vt. (2.5.19)
Then
b
/Z FORVE

b b
< /l (f@ORE) = [f@) = FDIAE) — g@)])VE < / ft)gt)Vi
< /W(f(t)h(t) = [f@) = fF(IA(E) = g@®)])VE < /v fOR@)VE

Theorem 2.5.7 Let a, b € TF with a < b and f, g, h and ¢ : [a,blyr — R
be O -integrable functions such that f is of one sign and decreasing and
0 < (t) <g(t) <h(t)— @(t) for every t € [a,blr. Assumel, v € [a,b]t such

that
¥ b b
/ h(t)Oat = / 9(B)0ut = /l B8Ot (2.5.20)

/lbf(’” W*/' Jo(t)] Oat
/abf(t)g(t)oat</a F(H)h /| Jo(t)| Oat.  (2.5.21)

Then
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Proof. From the assumption that the function f is decreasing and that

0 < o(t) < g(t) < h(t) — @(t) on [a,b]r,

it follows that

b

[ 10 = sl - swiout + [ 1500 = sla®0ut

- /7|f<t>ff<v ) [h() <>at+/ () = FO)] 900t
> / ) = £ (D)0t + / () = (O] () 0at
- / 7(8) = 1) 9(D)0at. (2:5.22)

Similarly, we find that

! b
/ () — FDlg()0ut + / £ = FOR(E) — g(t)]Oat

l
b
[ 150 - 1@ e()0at. (2.5.23)

By combining the integrals in (2.5.5) and (2.5.6) and the inequalities (2.5.22)
and (2.5.23), we have the inequality (2.5.21). The proof is complete. m
2.6 Hermite—Hadamard Inequalities

The Hermite-Hadamard inequality was published in [70]. For the convex
function f : [a,b] — R, the integral of f can be estimated by the inequality

r(e2h) < @+ 10)

2
We note that the left-hand side of the Hermite-Hadamard inequality is a
special case of the Jensen inequality.

The results in this section are adapted from [26, 63, 64]. First, we begin
with an inequality containing the delta derivative on time scales.

Theorem 2.6.1 Let f : [a,b]r — R be delta differentiable function such that
m < fA(t) < M for every t € [a,blr for some numbers m < M. If there
exist I, v € [a, bl such that
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then

mha(a,b) + (M —m)ha(a,)

IN

/fAt

Mhsa(a,b) + (m — M)ha(a,l), (2.6.1)

IN

where h(t, s) is defined as in (1.4.5).

Proof. Let
k() = W F(t) := ha(a, o (t)),
and

G(t) == kA (1) = Wﬁ”ﬂ € [0,1].

Clearly F' is decreasing and nonpositive, and

/ “aar= IO =1 Jf;)__mm(b — ey —ap-0,

Note

b b
/l F()At = /l B (as 0 () At = — ha(a, )" = —ha(a,b) + ha(a ),

and

/A/ F(t)At = — ha(a,t)|} = —ha(a,).

Moreover, using the formula for integration by parts for delta integrals, we
see that

b b b
/F(t)G(t)At = /F(t)kA(t)At:hl(a,t)k(t)\g—/ R (a, t)k(t) At

—— [—(b— fe)+ [ bf(t)AHmhz(a,b)] -

Using Steffensen’s inequality for delta integrals, we obtain that

M—-m
S *hQ(avfy%

—ha(a,b) + ha(a,l) < : [—(b—a)f(b)+/bf(t)At+mhz(a,b)]

which yields the desired inequality (2.6.1). The proof is complete. m
Suppose that f is (n 4+ 1) times nabla differentiable on T, r+1. Using
Taylor’s Theorem 1.4.4, we define the remainder function by
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and for n > —1,
R p(t,s) th ts)fY (s / n(s,p(E) ST (O VE.

The proof of the next result is by induction (and we omit the proof).

Lemma 2.6.1 Suppose f is (n+1) times nabla differentiable on T n+1. Then

b t b
/ hoea (b p(s)) £ () Vs = / R s (a,5)Vs + / R 1 (b, ) Vs
a a t

Corollary 2.6.1 Suppose f is (n + 1) times nabla differentiable on T, n+1.
Then

b - b
[ hitapons T 6Vs = [ sV
ab . - ab §
/hn+1(b,p(8))fv (s)Vs = /Rn,f(a,s)Vs.

Our next result follows by induction (we leave the details to the reader).

Lemma 2.6.2 Suppose f is (n+1) times delta differentiable on """, Then

b t b
/ hot1(t,0(s) f2" (s)As = / Ry s(a,s)As + / Ry, (b, s)As,
a a t

where

n

Rog(tis) = f(s) = > hy(s,)f> (b).
§=0
Theorem 2.6.2 Let f be an (n+ 1) times nabla differentiable function such

that fV"H(S) is increasing and V" is monotonic (either increasing or de-
creasing) on [a,bly. Assume l, v € [a, bl such that

b—1 m <~ —a,if f¥V" is decreasing,
y—a m <b-1,if fV" is increasing.
Then
170 - ) < e Bt @OV om0

h7z+1(b pla))
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Proof. Assume that fV" is decreasing (the case where fV" is increasing
is similar and is omitted). Let F = —fV""" . Now, since fV" is decreasing,
we have F' > 0 and decreasing on [a, b]r. Define

g(t) = Pin (b p(1)) €[0,1], fort € [a,b]r and n > —1.

ht1 (b, p(a))

We will apply Steffensen’s inequality (see Theorem 2.5.2). Using the fact
that

;Lkarl(tv s) = _hk(tv p(s)), (2-6-3)

we see that

b )
| hua, = Sm200:8)
| s hnmb o / b pE)VE= b (@)

That is

then

b b vy
/ F(t)Vt < / g F(t)Vt < / F(t)Vt.
l a a
By Corollary 2.6.1 this simplifies to

~

;
t=l

N R O N
/ (t)‘t:a = hn+1(b7p(a)) /a Rn,f(amS)VS <f (t)

which gives the desired inequality (2.6.2). The proof is complete. ®

It is evident that an analogous result can be found for the delta integral
case using the delta results in Corollary 2.5.1 by putting h(t) = 1. As usual
a twice nabla differentiable function f : [a, bl — R is convex on [a, b]r if and

only if f¥* >0 on [a, b].

Corollary 2.6.2 Let f : [a,b]r — R be convex and monotonic. Assume I,
v € [a,b]r such that

I > b— hQ(b @) , > > Q(b’a) + a, if f is decreasing,
— p(a) - pla)
I < b- h2(b’ @) , v < < 2(b’a) +a, if f is increasing.
pla) —pla)
Then
pla) —a 1 b b—a
FO)+ S @) < s [ FOVES 10+ 57— @) = 1)
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Another slightly different form of the Hermite-Hadamard inequality is
the following inequality which is given by applying the Steffensen inequality
proved in Theorem 2.5.2.

Theorem 2.6.3 Let f : [a,b]r — R be convex and monotonic. Assume I,
v € [a,b]r such that

I > a+ ha(b, a)) N>b— M, if f is decreasing,
b—a b—a
ha(b ha(b

I < a+ M, y<b— M, if f is increasing.
b—a b—

Then
1 b
<5 [ POV IO+ @ - 10, (264

Proof. Assume that f is decreasing and convex. Then fv2 > 0 and
fY <0. Then F = —fV is decreasing and satisfies F > 0. For G(t) = &=t

b—a’

we see for every t € [a,b] that 0 < G(¢t) < 1 and F and G satisfy the
hypotheses in Theorem 2.5.2. Now, the inequality

b
b—lg/ G(t)Vt < v —a,
can be rewritten in the form
1 b
b—I1< — b—t) Vi<~ —a.
<y [ -ovea—a

We consider the left hand inequality which takes the form

1

—a

1 b
>b— _ —ph—
I2b—~ /a (b-t)Vt=b—

—a

b
/ (b—a+t—a)Vt,

which simplifies to

lZ a+ M
b—a
Similarly
72 h— hQ(baa).
b—a

Furthermore, note that [’ F(t)Vt = f(r) — f(s), and integrating by parts
yields that

b by b
/ F(t)G(t)Vt:/ %fv(t)Vt:f(a)— bia/ fP(t)Vt.
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It follows that Steffensen’s inequality takes the form

1

b
) =10 < f@) - [ P09 @) - 1),

which can be arranged to match the desired inequality (2.6.4). The case
where f is increasing is similar and is omitted. The proof is complete. m

Theorem 2.6.4 Let f : [a,blr — R be an n + 1 times nabla differentiable

function such that m < fV"" (t) < M for everyt € [a,b]r for some numbers
m < M. If there exist l, v € [a,b]T such that

[FY"(0) = f¥" (@) — m(b — a)]

b—1<
- M—-—m

< Y= a,
then
~ ~ b ~
Mhpia(b,a) + (M —m)hy,42(b,1) < / R, (a,t)Vt
< Mhuio(b,a) + (m — M)hyya(b, 7). (2.6.5)
where hy(t,s) is defined as in (1.4.7).

Proof. Let

F8) = mhnia (0] F(8) = hosa (b, p(2),

and

1

Git)y=kV" (t) = Y

[fv"“(t) - m} e [0, 1].
Observe that F' is nonnegative and decreasing, and

/ab G(t)Vt = % 1_ - [fV”(b) — ¥ (a) = m(b - a)} )

Now by (2.6.3), we get that

b b .
/ F(t)Vt :/ hnt1(b, p(8))VE = hypia(b, 1),
l l
and

/ ! F(t)Vt = hpio(b,a) — hnia(,7).
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Moreover, using Corollary 2.6.1, we have

/ RN r— / (b0 (£7(0) - m) v

1 b m
= n at t
M—m/a Bl )VE+ o=

_ /bR (@, )Vt — —"f5(b,a)
T M-m/), ™ M —m 204

R b
P2 (D, t)’

Using Steffensen’s inequality (2.5.3), we have

1
M—-—m

iln+2 (b7 l)

IN

b
/ R p(a, )V — min (b, a)]

hpy2(b,a) — hpyo(b, ),

which yields the desired inequality (2.6.5). The proof is complete. ®
The following inequality is an inequality of Hermite-Hadamard type for
nabla derivative and is derived from Theorem 2.6.4 with n = 0.

IN

Theorem 2.6.5 Let f : [a,blr — R be nabla differentiable function such that
m < fV < M for every t € [a,b]y for some numbers m < M. If there exist
l,v € [a,b]T such that

[f(b) = fla) = m(b—a)]

b—1<
- M—m

S’Y—av

then

b
mha(b.a) + O = m)has.) < [ FOTE- (b= a0
< Mhy(b,a) + (m — M)ha(b,7),
where hy(t,s) is defined as in (1.4.7).

Next we present some inequalities of Hermite-Hadamard type for
diamond-«a derivative on time scales. We start with a few technical lemmas.
The first lemma gives the relation between the integrals of delta, nabla, and
classical integrals on R and we present it without proof.

Lemma 2.6.3 Let f: T — R be a continuous function and a, b € T.

(i) If f is nondecreasing on T, then

b b b
(b—a)f(a) < / FBAL < / Fitydt < / £V < (b—a)f(b),

where f : R—= R is a continuous nondecreasing function such that

f(@) = f(t) forallt €T.
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(i1) If f is nonincreasing on T, then

b b b
(b—a)f(a) > / FBAL> / Fitydt > / F(£)VE > (b—a)f(b),

where f : R— R is a continuous monincreasing function such that

f@t)=f@t) forallt € T.

In both cases, there exists an

IO IO
P rwmae— [ v

/a bf(t)owt = / b f(t)dt.

Remark 2.6.1 (i). If f is nondecreasing on T, then for a < ar, we have

/a )0t > / 'y,

while if o > ar, we have

/ab F()Oat < /ab f(t)dt.

1). If f is nonincreasing on T, then for a < ar, we have
g

/a b Ft)0at < / b f(t)dt,

while if a > ar, we have

/ab F()Oat > /ab f(t)dt.

(iii) If T = [a,b] or f is a constant, then ar can be any real number from
[0,1]. Otherwise ar € (0,1).

ar

€ [0,1],

such that

Next we present a lemma which gives a relation between the existence of
the delta integral of a linear function and its corresponding nabla integral.

Lemma 2.6.4 Let f : T — R be linear function and let f : [a,b] — R be
the corresponding linear function. If f; fO)At = f: f(t)dt — C, with C € R,
then [ f(t)Vt = [7 F(t)dt + C.
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Let

1 b
xa:b_a/a t<>at7

and call it the a-center of the time scale interval [a,b]r. Now, we are in a
position to state and prove diamond-a Hermite-Hadamard type inequalities
on time scales.

Theorem 2.6.6 Let T be a time scale and a, b € T. Let f : [a,b]r — R be a
continuous convex function. Then

b b B

flaa) < 5 i a/a F)0at < = _xa“f(a) + xb”‘_ aaf(b). (2.6.6)
Proof. For every convex function, we have

ft) < fla)+ f(b[)) — i(a) (t—a). (2.6.7)

By taking the diamond-a integral we get

b b b ~ fla
[ rwoat < [ r@oat+ [ HOZID6ao.
(

b
= (- a)f(a) + LU T ( / toat—aa)—a)),

that is
b Ty — @

b J—

which is the right-hand side of (2.6.6). For the left-hand side, we use Theorem
2.2.5, by taking g(s) = s and F' = f to get that

; (ff <>> e 19005

fla) +

b—a - b—a

Hence, we have

b
fea) < 57 [ (5100

which is the right-hand side of (2.6.6). The proof is complete. ®

Remark 2.6.2 The right-hand side of the Hermite-Hadamard inequality
(2.6.6) remains true for all 0 < o < A, including the nabla integral, if
f(b) < f(a) and for all A < a < 1, including the delta derivative, if
f(b) > f(a), where xy is the A-center of the time scale interval [a, b]T.
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Let us suppose that f(b) > f(a). Then by taking the diamond-« integral
of the inequality (2.6.7), we get that

b _ fla b
/ FH0at < <b—a>f<a>+w</ t<>at—a<b—a>>

< (b—a)f(a) + (f(b) = f(a)) (xx —a)
< (b—xa)f(a) + f(b) (xx —a).

A

According to Lemma 2.6.3, the last inequality is true for fab tOat < f: tOt,
that is for @« > A. The same arguments work for A > a.

Remark 2.6.3 The left-hand side of the Hermite—Hadamard inequality
(2.6.6) remains true for all 0 < a < A, including the nabla integral, if
f is nonincreasing for all A < o < 1, including the delta derivative, if f
is nondecreasing

Let us suppose that f is nonincreasing. Then using Theorem 2.2.5, by
taking g(s) = s and F = f, we have

; (f;’ <>> < Ju F(5)0as
< do B0l

b—a —a

For ac > X, we have f; tOat < f: tOt and so

; (f;’ 0> _ (ff <>> . fff(8)<>a87

b—a b—a b—a
that is

b
fon) < 7 [ F5)0as.

The same arguments are used to prove the case when f is nondecreasing.

Theorem 2.6.7 Let T be a time scale, a, A € [0,1] and a, b € T. Let
f i [a, bt = R be a continuous convex function. Then

(2). if f is nondecreasing on [a, bl, then for all a € [0, \] one has

b
fl@a) < ﬁ/ f()0at, (2.6.8)

and for all a € [A, 1], one has

1

’ b
= | 100at <

— Tx I\ —a
b—a b—a

fla) +

£(b). (2.6.9)
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(i2). if f is mnonincreasing on [a,blr, then for all o € [0,\] one has the
inequality (2.6.9), and for all « € [\, 1], one has the inequality (2.6.8).

Now we prove an inequality of Hermite-Hadamard type with a weight
function.

Theorem 2.6.8 Let T be a time scale and a, b € T. Let f : [a,blr — R be a
continuous convex function and let w : [a,blr — R be a continuous function

such that w(t) >t for allt € T and f (t)0at > 0. Then

fowa) < T / £(t)

-Twoz xwa —a
B ﬁf (@) + ==~ 1), (2:6.10)

where Ty o = f; tw(t)Out/ fabw(t)o t

Proof. For the convex function f(t), we have

1) < (o) + TO=ID g

Multiplying this inequality by w(¢) which is nonnegative, we get after inte-
gration that

b b
[ wswoat < s [ wiour

LSO l / " (t)0at — 0 / bw<t><>at] :

1 b b_xw,a s
f:w(t)<>at/a f#)0at < ﬁf(a) + ﬁf(b%

that is

which is the right-hand side of (2.6.10). For the left-hand side, we use Theo-
rem 2.2.6, by taking g(s) = s and h(t) = w(t) and F = f to get that

f(f w(s)sQas ) f f(s
f w(s)Oas f ( )S<>a

Hence, we have

b
f(@w,a) < fbw(lt)Ot/ w(t) f(t)0at,

which is the left-hand side of (2.6.10). The proof is complete. ®

Remark 2.6.4 If we consider concave functions instead of the convex func-
tions, the inequalities (2.6.6), (2.6.8)—(2.6.10) are reversed.
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2.7 Cebysev Inequalities

The Cebysev inequality (see [110]) is given by

b b b b
/ p(z)de / p(2) f(2)g(x)de > / p(2)f(z)dz / p(@)g(@)dz,  (27.1)

where f, g : [a,b] — R are integrable functions both increasing or both
decreasing and p : [a,b] — R is an integrable function. If one of the func-
tions f or g is nonincreasing and the other nondecreasing then the inequality
in (2.7.1) is reversed. The special case of (2.7.1), when p =1 is given by

/abf(x)g(x)dx > b_la/abf(x)dx /abg(x)dx. (2.7.2)

For each of the above inequalities there exists a corresponding discrete ana-
logue. The discrete version of (2.7.1) is given by

> b)Y pDaldb(i) = Y p@)al) Y opldg@),  (273)

i=1

where a = (a(1), a(2),...,a(n)), b = (b(1), b(2),...,b(n)) are two nonde-
creasing (or nonincreasing) sequences and p = (p(1), p(2),...,p(n)) is a non-
negative sequence with equality if and only if at least one of the sequences a
or b is constant. The discrete version of (2.7.2) is given by

S p(ialib(i) = = 3" ali) Y o) (27.4)
i=1

i=1 i=1

and is also called the discrete Cebysev’s inequality.

In this section we obtain Cebysev’s type inequalities on time scales which
as special cases contain the above continuous and discrete inequalities. The
results are adapted from [26, 156].

Theorem 2.7.1 Suppose that p € Crq([a,b]T,[0,00)). Let fi, fa, ki1, ko €
Cra(la, b]T,R) satisfy the following two conditions:

(C1). fa(x)ka(z) > 0 on [a,b]T,

(C9). ﬁgg and ]Z;Eg are similarly ordered (or oppositely ordered), that is,

for all z, y € [a,b]T

<f1(x) fl(y)> (:283 _ ’;iz;) >0 (or <0).

fa(x)  fa(y)
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Then
Lot A AW || k) k()
*/a/ap(m)p(y) (@) fz(y)‘ ka(a)  ka(y) 'Am
_ ’f;pmfl(x)kl(xmm Jyp@h@ka@Az | oo
[, @) fo(x)ki(z) Az [ p(z) fo(x)ko(z)Az |~ 7
(2.7.5)

Proof. Let z, y € [a,b]r. Then it follows from (C}), (C3) and the identity

fi@) A@) || @) k)
PEPW) | ) foly) H ka(z) Faly)

= ) Rl a(at) (140 - L) () ),

that (2.7.5) holds. The proof is complete. m
Putting fi(z) = f(z), k1(2) = g(x) and fo(z) = k2(z) =1 in Theorem
2.7.1, we have the following delta CebySev’s type inequality on time scales.

Corollary 2.7.1 Suppose that p, f, g € Crq([a,b]T,R) with p(x) > 0 on
[a,b]T. Let f(z) and g(x) be similarly ordered (or oppositely ordered). Then

b b b b
/ p(z) Az / p(@)f(@)g(@) Az > (<) / pl(a)f (2)Ax / p(x)g(z) Az
(2.7.6)

Remark 2.7.1 Let p, v € Crq([a, T, [0,00)). If f(x) and g(x) are similarly
ordered (or oppositely ordered), then it follows from (2.7.6) that

b b
/ p(z) Az / p(@) f(1())g () A
b b
> (<) / p()f (1(2)) Az / p(2)9(1(x)) Az

Remark 2.7.2 Let p, fi € Cra([a,b]r,R) for i =1,2,...,n with p(x) > 0
on [a,blr. Suppose that fi(x), fo(x),..., fu(x) are similarly ordered. Then
we have from (2.7.6) that
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b n=l 4
( / p(x)Ax> / (@) (11 (@) fo(a) ... ful2)) A
b n—2 b b
- ( / p(xmx) ( / p(x)Ax> ( / (@) (F1(2) fola) .. <x>>A:c>
b n—2 b b
> ( / p(x)Ax> ( / p(xm(x)m) ( / p()(fa(2) fo))Ax)
b n—3 b b
> ( / p(w)Ax> ( / p<x>f1<x>Ax> ( / p(w)fz(w)A:v>

> > (/abp(m)fl(m)Ax> (/abp(x)fg(x)Ax> </abp(x)fn(x)Ax> .

This gives us that

b n b b
( / p<sc>Az> / (@) (1(@) fa(@) ... fo(x)) Az > ( / p(x)ﬁ(w)Aw)
( > ( :r) . (2.7.7)

In particular, if f1 = fo = ... = fn, then

-1

—1 n

( / bpumx)n /abp(m)(fn(m))"Ax2< /abp(x)f(m)Ax> |

Putting f(z) = %, g(z) = il—(i; and p(x) = fa(x)g2(z) in (2.7.6), we
have the following delta Cebysev’s type inequality on time scales.

Corollary 2.7.2 Suppose that fi, fa, g1, g2 € Cra([a,b]T,R) with fo(x)ge
(z) > 0 on [a,b]r. If fl(x) nd glgg are both increasing or both decreasing,
then

/f1 x)g1(z Aa:/fg x)g2(z Ax>/f1 x)go(x A.Z‘/fg x)g1(z)Awx.

(2.7.8)

If one of fl(i) or Ei; s nonincreasing and the other nondecreasing then the

inequality in (2 7. 8) is reversed.

We notice that if fi(z) = f(z)f2(x), g1(x) = g(x)g2(x) and p(z) =
f2(x)ga2(z), then the inequality (2.7.8) reduces to the inequality (2.7.6).
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Theorem 2.7.2 Let f € Cr4([a,b]r,[0,00)) be decreasing (or increasing)
with f; zp(z)f(x)Az > 0 and f:p(x)f(x)Ax > 0. Then

Lo, Lot ae
[P apa)f@)ae T [Up(a

(2.7.9)

Proof. Clearly, for any z, y € [a, b]T,

b b
/ / F@) F@)p@p)(y — o) (@) — Fu)AzAy > (<),

which implies inequality (2.7.9). The proof is complete. m

Remark 2.7.3 Let f € Cra([a,b]r,[0,00)) and n be a positive integer. If
p and g are replaced by p/f and f™ respectively, then the CebySev inequal-
ity (2.7.6) is reduced to the inequality

/ / ffc Ax >/ )Ax/ab () (f(2))" ™" A,
which implies that
/ ' @) (f(@)" A ( / b 7;("”%)
/ab()Ax/2 nlA/f:z;
(/abp(x)m:> /abp(x) (f(x)" 2 Az,

provided f and f™ are similarly ordered. Proceeding we get

[ v s s ( [ Ax)" . ( /abp(mx> o

Theorem 2.7.3 Ifp, f € Crq([a,b]T,[0,0)) with f(z) > 0 on [a,bly and n

a positive integer, then

bp(x) ! b n b n
< ’ MAz) </a p(x)f (:B)A:E> > (/a p(x)Ax) . (2.7.10)

Y

v
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Proof. It follows from f(xz) > 0 on [a,b]r that f™(z) and 1/f(z) are
oppositely ordered on [a, b]r. Hence by (2.7.6) we have

/ @) (F(&))" As ( / b ij@m) ’
[ v </b ?g“) [ v e s

>
> ( / bp(x)Ax>2 ( / b pE”;;A) / @) (Fa))" A
> ..></abp(a:)A:E n,

which is the desired inequality (2.7.10). The proof is complete. m

Theorem 2.7.4 Let g1, g2,-..,9n € Cra([a,b]T,R) andp, h1,ha, ..., hp_1 €
Crq([a, b]T, [0,00)) with g,(x) >0 on [a,b]r. If

91(2)92(2) ... gn-a1(x) . hn-1(2)
hi(x)ha(x) ... hp_1(x) gn(x)

are similarly ordered (or oppositely ordered), then

b " p(x)g1(2)ga() .. gn_1(2)
/a p(x)gn(a:)Ax/a hi(x)ha(z) ... hyp_1(x) Ar

(2)
b " p(x)g1(2)g2() . . . gn(2)
> (S)/a p(I)hn_l(I)ACC/a hl(l‘)hz(l‘)...hnfﬂx) Az.
(2.7.11)

Proof. Taking

_ 91@)e(@) - gn () _ _ _
h@) = D) hom (@) F@ = ham1(@), £2(@) =1, and k(@) = gn(@),

in Theorem 2.7.1, we get the desired inequality (2.7.11). The proof is
complete. m

Theorem 2.7.5 Let b, fla f27 ) fn € C’l‘d([a) b]T7 [05 OO)) and g1, 92,---,
gn € Cra([a,b]r, [0, oo)) If the functions f1, f;z ye o, 12— are similarly ordered

and for each pair

? gn
, gk—1 s oppositely ordered for k =2,3,...,n, then

b
/p(w)ﬁ(w) b gf”§(>)Aw
> [P p(x) fi(2)Az [ p(@) fo fbp

) JAT (5 719)
12 p(@)g () Az [ p(a )92 LY p(a Ax
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Proof. Let fi, fo,..., fn be replaced by fi, %, .. f’ll in (2.7.7), and

’ gn

we obtain

b n=loy
Fale) o) . o)
</ Ww) [ vtors 1“)91( )02 .- g ()

> </ z)fi(z AJ;) H/ @ Az. (2.7.13)
s Ja

Also, since g;{:’ grk—1 is oppositely ordered for k = 2,3,...,n, it follows

from (2.7.6), that

. b b b x
[ pwaa ( / p(x)fk<m>m>< ( / W)gkl(@“)/ P g

Thus

/bp(x) LIORVES Ji @) () p(e) () )

gr—1() N f p(2)gp—1(z)Ax.

This and (2.7.13) imply (2.7.12). The proof is complete. m

Theorem 2.7.6 Let p, f1, f2,..., fn € Cra([a,b]T,[0,00)) and ki, ko,...,
kn_1 € C’Td([a,b]T,R). If

fi(@) fa(z) ..
kl (ﬂf)k

Sfima(z) and ki—1(x)
2(1‘) e k‘i_l(l“) fl(l‘) ’

are similarly ordered (or oppositely ordered) for i = 2,3,..,n, then

( [ vrn (@Ax) ( / bp(x)fz(ﬂc)Ax> ( [ v m)
> (<) ( / bp(x)ka(xmz) ( / bp(:c)@(x)m) ( [ oottt m)

b T
x/ p(z) (()IZJ(C)) f"((l)m. (2.7.14)
Proof. If fi(x), ki(z), fo(x) and keo(z) are replaced by fi(x), 1, k1(z),

]{2(“:) in Theorem 2.7.1, then we obtain
1(z)

b b b
/ p(2)f1(2)Ax / p(a) fa(x)Az > (<) / p(2)k1 (@) Aa / ()M{i” z.

a a a a
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Thus the theorem holds for n = 2. Suppose that the theorem holds for n —1,
that is

( [ vrn (@m) ( / bp(x)fz(x)Ax> ( [ v Ax)
> () (/abp(:c)kl(x)Ax> </abp(x)k2(x)Ax> </abp(iﬂ)kn_2(x)Am>

x /bp(x) h(z)fa(2) ::f"*l(x) Az, (2.7.15)

if
and k‘ifl(.’l?)
kl(I)kQ(I)kl_l(I) fl(l‘) ’

are similarly ordered (or oppositely ordered) for i = 2,3,..,n—1. Multiplying
both sides of (2.7.15) by f;p(x)fn(x)Ax, we get that

b b b b
/p(m)fl(:r)Am/ p(m)fg(a:)Am/ p(as)fn_l(m)Ax/ p(x) fn(z)Ax
b b b
> (<) ( / p(x)kmxma:) ( / p<x>k2<x>m>...< / p(x)kn_2<x>m)

L L@@ faale) [
X /a p(x) F1(2)ka () o () A:E/a p(z) fn(z)Ax. (2.7.16)

It follows from Theorem 2.7.5 that

b b
/a p(x) Ezg 2% £Z ;8 Az /a p() fr(z) Az
fi(z

LGN
> (<) / e s R

This and (2.7.16) imply

b b b b
/ p(m)fl(x)Ax/ p(:r)fg(m)Am/ p(m)fn_1(:r)Aa:/ p(x) fn(z)Ax
b b b
> (X) (/ p(a:)kl(x)Ax> (/ p(ﬂc)k‘g(x)Ax) </ p(x)knl(x)Aa:>

b
fi(@)fa(x). .. fu(z)
X/a p(x)kl(x)kg(x)...kn,l(x) Az.

Then, by induction we have the desired inequality (2.7.14). The proof is
complete. m
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Remark 2.7.4 Let k, € Crq(a,b]T,R). If fi(x), fa(z),..., fn(z) and

ki(x), ko ()., ..., kn_1(z) are replaced by f1(x)fo(2)... fn(x), k1(z)ka(z). ..

kn(z), fi(@)ke(z)...kn(z), ki(z)fo(z)ks(z).. . kn(x),..., ki(z)ke(x)...
—2(@) fr—1(2)kn(x) in Theorem 2.7.6, respectively, then

b b
/ p(@)f1( fa(@)> ( / p(l’)kl(w)kz(x)~--kn(w)AfL’>
b
( . kn (a:)Aa:) (/ p(z)k1(x) fa(x)ks(z) ... kn(w)Aa:>

. / Pk (2)ka(2) .- 1 (2) o () A (2.7.17)

if ]]: (z) >0 fori=1,2,...,n and k1 (z)ka(x) ... kn—1(x) > 0 on [a,b]r.

Remark 2.7.5 Letting fi1(z) = fo(x) = ... = fo(x) = f(z) and ki1 (z) =
ko(z) = ... = ko(z) = kv1(2) in (2.7.17) with k(z) > 0 on [a,b]r, we
obtain a Holder type inequality on time scales

n

b b b n—l
</ p(ff)f(x)k(x)ﬁff> S/ p(x) (f(2)" Az (/ P(w)k"nl(x)ﬁx> ~

Remark 2.7.6 Let p, f, g € Crq([a,b]T,[0,00)). Putting f1(x) = (f(z))"

g(x), folx) = fi3(x) = ... = faolx) = g(x), and ki(z) = ka(x) = ... =
kn—1(z) = f(x)g(x) in (2.7.14), we see that

b n b b
( / p(m)f(x)g(x)Ax> < / p(z) (f(2))" g(x)Ax ( / p(x)g(xmx>

Remark 2.7.7 Taking ki(x) = ko(z) = ... = kp_1(z) = (fi(x)fa(z) ...
fn(ﬂj))% in (2.7.14), we obtain

b b b
(/ p(if)fl(ﬁ)A$> </ p(:r)fg(m)Ax> (/ p(x)fn(x)Ax>
b ) n
> < / p(ﬂﬂ)(fl(ﬁc)f2(x)--.fn(x))nA:c> ,

i .
if fi > 0 on [a,b]T and %(fl(z)fg(z)fn(x))" (i = 1,2,...,n) are
stmilarly ordered.

n—1
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Remark 2.7.8 Taking ki(x) = ka2(z) = ... = kn—1(z) = 1 in (2.7.14), we
get the Cebysev type inequality

b b b
< / p<x>f1<x>m> ( / p<x>f2<x>m>...( / p(w)fn(x)A:v>
b n=1 4
< ( / p(m)Am> / P(@) f1(2) fol) ... ful(2) A

if fi >0 on[a,br and fi(x) (i=1,2,...,n) are similarly ordered.

We end this section by considering the Cebysev inequality in the case of
nabla integrals; see [26].

Theorem 2.7.7 Let f and g be both increasing or both decreasing in [a,b]t.

Then
/f Vt>—/ it w/b )V, (2.7.18)

If one of the functions is increasing and the other is decreasing, then the
inequality is reversed.

Now, we give some applications of Theorem 2.7.7.
Theorem 2.7.8 Assume that f¥"" is monotonic on [a,b]r and let
8 ~ n+1
B g(t8) = £(5) =3l )7 (s V) = [ sl @V
k=0 ¢

(1). If fvn+1 is increasing, then

/ab R p(a, )V {fvn(b) e <a)] sl

b—a
> 17 @ = 7 O)] s (b,0), (2.7.19)

(#). If V" s decreasing, then

/ab R (0, )V — an e (a)] Pzl )

b—a

< 7@ T O] huia,0).

Proof. The proof of (ii) is analogous to that of (i) so we will just consider
(7). Let F(t) = fvn+1(t) and G(t) = hy (b, p(t)). Then F is increasing and G
is decreasing by assumption. From inequality (2.7.18), we see that

/ " F)GE < ﬁ / "R / G (2.7.20)
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By Corollary 2.6.1, we see that

b

b
/F Vt_/ hn+1(b,p(t))fvn+l(t)vt=/ Ry s(a, t)Vt.

a

We also have
b . n b bA .
/ POVt = 17" ()= (a), and / GVt = / B (b, p(1))VE = Frnya(b, ).

Thus the inequality (2.7.20) implies that

/a sl 9 < e (70 = 1 @) bt

: ntl .
Since fV" is increasing on [a, b]T,

17 @has,0) < o= (£ ) = 7 (@) husa(bia)
< 7T (0)hnsa(b,a),
and, we have
[ Fustaner= i (570 - 17 @) ol

/ Ry (a, )Vt = V" (0) iy ya(b, a).

Now Corollary 2.6.1 and fvn+1 is increasing imply that

vn+1

41 b N b 5 bA
7 ) / s (b, () VE > / R,V > 17" (a) / g1 (b, p(8)) V2,

which simplifies to

b
FV (D) b2 (b, a) / Ry s(a, )Vt > V" (a) / P2 (b, @) VE.

a

We now have inequality (2.7.19). The proof is complete. m

Theorem 2.7.9 Assume that f¥"" is monotonic on [a,b]r.

(@) If A s increasing, then

b A™(p) — FA™ (g
0< (-0 [ Ry sean- (O 0) 0.0)

< [P -2 @] garav,a). (2.7.21)
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(id). If A" s decreasing, then

b A" _ A",
02(—1)”“/ Rn,f(b,t)w{f (bg_i (@) Gnia(b,a)

> [fm“(b) - fﬁ"ﬂ(a)} gns2(b, a).

Proof. The proof of (i7) is analogous to that of (i) so we only consider
(i). Let F(t) = f2"(t) and G(t) = (=1)"*'h,41(a,o(t)). Then F and G
are increasing. Inequality (2.7.6) with p =1, f = F and g = G, gives

/bF(t)G(t)At > bia /bF(t)At/bG(t)At. (2.7.22)

By Lemma 2.6.2 with t = a,

b

/ FEWAL = (-1 / Bosa(a,o(6) F2" ()AL

b
= (—1)"“/ Ry, ¢ (b, t)At

We also have f; F(t)At = fA2"(b) — A" (b) and

b b
[ a0t = 0 [ ao®)a = g0

Thus by (2.7.22), we have

0< (-1 n+1/ R0 1)~ - [£2"(0) = 17 ()] gsalbra).

: ntl L :
Since fA"" is increasing on [a, b]T,

727 ®) = 127 0)| gusabia) < f

An+1 An+1

(@)gn+2(b,a) < (b)gn+2(b, a),

—a

and we have

(—1)nH / R s (0, )M — " (@)gusa(br )

/ PV Ll U i U)

nt2(b, a).
b—a gn+2(b,a)

Now, from Definition 1.4.1, since

gn(t7 s) = (_1)nhn(8ﬂ t),
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we have by Lemma 2.6.2 with ¢ = a that
b b n+1
(0" [ Rug0.080= [ gria(o(0. 02 ()
Since fAn+1 is increasing, we get that

b b
P20 [ gn®.0at = (17 [R5
b

Y

2 (a) / dnia (0(8), @) At

which simplifies to

b
A O)gnia (b.a) = (=1 / Ro g (b,)A > f2"7 (a)gnta (b, ).
We now have (2.7.21). The proof is complete. m
Remark 2.7.9 In Theorem 2.7.8 (i), if n =0, we obtain

ha(b, a)
b—a

b
/ F(OVE< (b a)f(a) + (F(b) — f(a)). (2.7.23)

Theorem 2.7.10 Assume that f is nabla convex on [a,blr, that is, fvz >0
on [a,b]r. Then

ha(b, a)

b
[ roe-ave<o-arm - 22000 - fa@). (@272

Proof. If F = f¥V and G = t —a = hy(t,a), then both F and G are

increasing functions. By Cebysev’s inequality we see that

b b b
/a fp(t)(t—a)VtZﬁ/a fv(t)Vt/a hi(t,a)Vt.

Using nabla integration by parts on the left-hand side we get the desired
inequality (2.7.24). The proof is complete. ®

The following result is a Hermite-Hadamard type inequality for time
scales and is obtained by a combination of (2.7.23) and (2.7.24).

Corollary 2.7.3 Let f be nabla convexr on [a,bly. Then

A ORSI0 f(a) + f(b)
b—a/a 2 vis 2
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