
Chapter 2

Basic Inequalities

——————————————————————————————

In so far as the theorems of mathematics relate to reality, they are not
certain, and in so far as they are certain they do not relate to reality.

Every thing should be made as simple as possible but not simpler.

Albert Einstein (1879–1955).

——————————————————————————————

This chapter deals with the basic inequalities used in the rest of the
book. The chapter is divided into seven sections and is organized as follows.
In Sect. 2.1 we consider Young type inequalities which will be used in the proof
of the Hölder and Minkowski inequalities. Section 2.2 discusses Jensen’s ine-
quality on time scales and Sect. 2.3 considers Hölder type inequalities. In
Sect. 2.4 we consider the Minkowski inequality and Sect. 2.5 is devoted to
Steffensen type inequalities on time scales. Section 2.6 considers Hermite–
Hadamard type inequalities and finally Sect. 2.7 discusses Čebyšev type in-
equalities on time scales.

2.1 Young Inequalities

In 1912, Young [157] presented the following highly intuitive integral
inequality

ab ≤
∫ a

0

f(t)dt+

∫ b

0

(f−1)(s)ds, (2.1.1)

for any real-valued continuous function f : [0,∞) → [0,∞) satisfying f(0) = 0
with f strictly increasing on [0,∞) and a, b ∈ [0,∞). The equality holds if
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24 CHAPTER 2. BASIC INEQUALITIES

and only if b = f(a). A useful consequence of this inequality, by taking
f(t) = tp−1 and q = p

p−1 , is the classical Young inequality

ab ≤ ap

p
+

bq

q
,

1

p
+

1

q
= 1. (2.1.2)

Hardy, Littlewood, and Pólya included (2.1.1) in their classical book [72].
The purpose of this section is to establish this inequality and its extensions
on time scales. These will be used in the next sections to prove Hölder
and Minkowski inequalities on time scales. The results are adapted from
[25, 29, 151].

Theorem 2.1.1 Let g ∈ Crd([0, c]T,R) be a strictly increasing function with
c > 0. If g(0) = 0, a ∈ [0, c]T and b ∈ [0, g(c)]g(T), then

ab ≤
∫ a

0

gσ(x)Δx+

∫ b

0

(g−1)σ(y)Δy.

Proof. Since g−1(x) is strictly increasing and σ(s) ≥ s, we see that

∫ b

0

(g−1)σ(x)Δx =

∫ b

0

(g−1)(σ(x))Δx ≥
∫ b

0

(g−1(x))Δx. (2.1.3)

Letting v(x) = g(x) and f(x) = x in Lemma 1.1.2, we see that

∫ g−1(b)

0

gΔ(x)xΔx =

∫ g(g−1(b))

g(0)

g−1(y)Δy =

∫ b

0

g−1(y)Δy. (2.1.4)

Integration by parts yields

∫ g−1(b)

0

gΔ(x)xΔx = g(x)x|g−1(b)
0 −

∫ g−1(b)

0

gσ(x)Δx

= bg−1(b)−
∫ g−1(b)

0

gσ(x)Δx.

Thus, (2.1.3) and (2.1.4) imply that

∫ a

0

gσ(x)Δx+

∫ b

0

(g−1)σ(y)Δy ≥ bg−1(b) +

∫ 0

g−1(b)

gσ(x)Δx. (2.1.5)

Case (a). a > g−1(b).

It follows from the strictly increasing property of g that

∫ a

g−1(b)

gσ(x)Δx ≥
∫ a

g−1(b)

g(σ(g−1(b)))Δx ≥
∫ a

g−1(b)

g(g−1(b))Δx

= b(a− g−1(b)) = ab− bg−1(b).
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This and (2.1.5) imply

∫ a

0

gσ(x)Δx+

∫ b

0

(g−1)σ(y)Δy ≥ ab.

Case (b). a < g−1(b).

Let h = g−1. Then a < h(b). Applying case (a) yields

ab ≤
∫ b

0

hσ(x)Δx+

∫ a

0

(h−1)σ(y)Δy =

∫ b

0

(
g−1

)σ
(x)Δx+

∫ a

0

(g)σ(y)Δy.

Combining Case (a) and Case (b), we get the desired inequality. The proof
is complete.

As an application of Theorem 2.1.1 by taking g(x) = xp−1 on [0,∞)T and
g−1(y) = yq−1 on [0,∞)T, we get the following result.

Corollary 2.1.1 Let p > 1 and q > 1 with 1/p + 1/q = 1. If a ≥ 0 and
b ≥ 0, then

ab ≤
∫ a

0

(σ(x))p−1Δx+

∫ b

0

(σ(y))q−1Δy.

Example 2.1.1 Let T = R, then Corollary 2.1.1 says, note that in
R σ(x) = x, that

ab ≤ ap

p
+

bq

q
,

1

p
+

1

q
= 1, (2.1.6)

which is the classical Young inequality.

Example 2.1.2 Let T = Z and g(t) = t, then Theorem 2.1.1 says that

ab ≤
a−1∑
t=0

(t+ 1) +

b−1∑
y=0

(y + 1) =
1

2
a(a+ 1) +

1

2
b(b+ 1). (2.1.7)

Theorem 2.1.2 Let T be any time scale (unbounded above) with 0 ∈ T.
Further suppose that f : [0,∞)T → R is a real-valued function satisfying

(1). f(0) = 0;

(2). f is continuous on [0,∞)T, right-dense continuous at 0;

(3). f is strictly increasing on [0,∞)T such that T̃ = f(T) is also a time
scale.

Then for any a ∈ [0,∞)T and b ∈ [0,∞)∼
T
, we have

∫ a

0

f(t)Δt+

∫ a

0

f(t)∇t+

∫ b

0

f−1(y)Δy +

∫ b

0

f−1(y)∇y ≥ 2ab, (2.1.8)

with equality if and only if b = f(a).
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Proof. From the continuity assumption (2), we see that f is both delta
and nabla integrable. For simplicity, define

F (a, b) :=

∫ a

0

f(t)Δt+

∫ a

0

f(t)∇t+

∫ b

0

f−1(y)Δy +

∫ b

0

f−1(y)∇y − 2ab.

Then it is enough to prove that F (a, b) ≥ 0.

(I). We will first show that

F (a, b) ≥ F (a, f(a)), a ∈ [0,∞)T and b ∈ [0,∞)∼
T
,

with equality if and only if b = f(a). For any such a and b, we have

F (a, b)− F (a, f(a)) =

∫ b

f(a)

[f−1(y)− a]Δy +

∫ b

f(a)

[f−1(y)− a]∇y

=

∫ f(a)

b

[a− f−1(y)]Δy +

∫ f(a)

b

[a− f−1(y)]∇y.

There are two cases to consider. The first case is b > f(a). Here, whenever
y ∈ [f(a), b]∼

T
, we have f−1(b) ≥ f−1(y) ≥ f−1(f(a))=a. Consequently,

F (a, b)− F (a, f(a)) =

∫ f(a)

b

[a− f−1(y)]Δy +

∫ f(a)

b

[a− f−1(y)]∇y ≥ 0.

Since f−1(y)−a is continuous and strictly increasing for y ∈ [f(a), b]
T̃
, equal-

ity will hold if and only if b = f(a). The second case is b ≤ f(a). Here
whenever y ∈ [f(a), b] ∩ f(T), we have f−1(b) ≤ f−1(y) ≤ f−1(f(a)) = a.
Consequently,

F (a, b)− F (a, f(a)) =

∫ f(a)

b

[a− f−1(y)]Δy +

∫ f(a)

b

[a− f−1(y)]∇y ≥ 0.

Since a − f−1(y) is continuous and strictly decreasing for
y ∈ [b, f(a)]

T̃
, equality will hold if and only if b = f(a).

(II). We will next show that F (a, f(a)) = 0.

Now, for brevity, we put δ(a) = F (a, f(a)), that is

δ(a) =

∫ a

0

f(t)Δt+

∫ a

0

f(t)∇t+

∫ f(a)

0

f−1(y)Δy+

∫ f(a)

0

f−1(y)∇y−2af(a).

First, assume a is right scattered point. Then

δσ(a)− δ(a) = [σ(a)− a]f(a) + [σ(a)− a]fσ(a)

+[fσ(a)− f(a)]f−1(f(a)) + [fσ(a)− f(a)]f−1(fσ(a))

−2[σ(a)fσ(a)− af(a)]

= [σ(a)− a][f(a) + fσ(a)] + [fσ(a)− f(a)][σ(a) + a]

−2[σ(a)fσ(a)− af(a)] = 0.
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Therefore if a is right-scattered point, then δΔ(a) = 0. Next, assume a
is a right-dense point. Let {an}n∈N ⊂ [a,∞)T be a decreasing sequence
converging to a. Then

δ(an)− δ(a)

=

∫ an

a

f(t)Δt+

∫ an

a

f(t)∇t+

∫ f(an)

f(a)

f−1(y)Δy +

∫ f(an)

f(a)

f−1(y)∇y

−2anf(an) + 2af(a).

=

∫ an

a

[f(t)− f(an)]Δt+

∫ an

a

[f(t)− f(an)]∇t+

∫ f(an)

f(a)

[f−1(y)− a]Δy

+

∫ f(an)

f(a)

[f−1(y)− a]∇y.

Since the functions f and f−1 are strictly increasing, we get that

δ(an)− δ(a) ≥
∫ an

a

[f(a)− f(an)]Δt+

∫ an

a

[f(a)− f(an)]∇t

+

∫ f(an)

f(a)

[f−1(f(a))− a]Δy +

∫ f(an)

f(a)

[f−1(f(a))− a]∇y

= 2(an − a)[f(a)− f(an)].

Similarly,

δ(an)− δ(a) ≤
∫ an

a

[f(an)− f(an)]Δt+

∫ an

a

[f(an)− f(an)]∇t

+

∫ f(an)

f(a)

[f−1(f(an))− an]Δy+

∫ f(an)

f(a)

[f−1(f(a))− a]∇y

= 2(an − a)[f(an)− f(a)].

Therefore

0 = lim
n→∞ 2[f(an)− f(a)] ≤ lim

n→∞
δ(an)− δ(a)

(an − a)

≤ lim
n→∞ 2[f(an)− f(a)] = 0.

It follows that δΔ(a) exists, and δΔ(a) = 0 for right-dense a as well. As
δ(0) = 0, by a uniqueness theorem for initial value problems, we have that
δ(a) = 0 for all a ∈ [0,∞)T. This implies that F (a, b) ≥ F (a, f(a)) = 0, with
equality if and only if b = f(a). The proof is complete.

As an application of Theorem 2.1.2 when f(t) = tp−1 and f−1(y) = yq−1,
we have the following result.
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Corollary 2.1.2 Let T be any time scale (unbounded above) with 0 ∈ T. Let
p, q > 1 be real numbers with 1/p + 1/q = 1. Then for any a ∈ [0,∞)T and
b ∈ [0,∞)T∗ where T

∗ = {tp−1 : t ∈ T}, we have

∫ a

0

tp−1Δt+

∫ a

0

tp−1∇t+

∫ b

0

yq−1Δy +

∫ b

0

yq−1∇y ≥ 2ab,

with equality if and only if b = ap−1.

Example 2.1.3 If T = R, we see that σ(t) = t and then Theorem 2.1.2
yields the classical Young inequality (2.1.1).

Example 2.1.4 If T = Z, we see that σ(t) = t+ 1 and then Theorem 2.1.2
yields Young’s discrete inequality

2ab ≤
a−1∑
t=0

[f(t) + f(t+ 1)] +
b−1∑

y∈[0,b)∩f(Z)

μ(y)[2f−1(y) + 1],

since here f−1(σ(y)) = σ(f−1(y)) = f−1(y) + 1.

Theorem 2.1.3 Let T be any time scale (unbounded above) with 0 ∈ T.
Further suppose that f : [0,∞)T → R is a real-valued function satisfying:

(1). f(0) = 0;

(2). f is continuous on [0,∞)T, right-dense continuous at 0;

(3). f is strictly increasing on [0,∞)T such that T̃ = f(T) is also a time
scale.

Then for any a ∈ [0,∞)T and b ∈ [0,∞)
T̃
, we have∫ a

0

[f(t) + fσ(t)]Δt+

∫ b

0

[
f−1(y) + f−1(σ(y))

]
Δy ≥ 2ab, (2.1.9)

with equality if and only if b = f(a).

Proof. For a continuous function g and a ∈ [0,∞)T, define the function

G(a) =

∫ a

0

g(t)Δt+

∫ a

0

g(t)∇t−
∫ a

0

[g(t) + gσ(t)]Δt.

Then G(0) = 0, and

GΔ(a) = g(a) + gσ(a)− [g(a) + gσ(a)] = 0.

Therefore G ≡ 0, and Theorem 2.1.3 follows from Theorem 2.1.2. The proof
is complete.

Next we establish Young integral inequalities with upper and lower bounds
for the remainder.
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Theorem 2.1.4 Let T be any time scale (unbounded above) with α1 ∈ T and
supT = ∞. Further suppose that f : [α1,∞)T → R is a real-valued function
satisfying

(i). f(α1) = β1;

(ii). f is continuous on [α1,∞)T, right-dense continuous at α1;

(iii). f is strictly increasing on [α1,∞)T such that T̃ = f(T) is also a time
scale.

Then for any a ∈ [α1,∞)T and b ∈ [β1,∞)
T̃
, we have

ab ≤
∫ a

α1

f(t)Δt+

∫ b

β1

f−1(y)∇̃y + α1β1, (2.1.10)

with equality if and only if b ∈ {fρ(a), f(a)} for fixed a or with equality if
and only if a ∈ {f−1(b), σ(f−1(b))} for fixed b. The inequality (2.1.10) is
reversed if f is strictly decreasing.

Proof. By the continuity assumption (ii), we see that the function f is
delta integrable and the function f−1 is nabla integrable. For simplicity, we
define

F (a, b) =

∫ a

α1

f(t)Δt+

∫ b

β1

f−1(y)∇̃y + α1β1 − ab. (2.1.11)

To prove (2.1.10), we need to show that F (a, b) ≥ 0.

(I). We will first show that

F (a, b) ≥ F (a, f(a)), for a ∈ [α1,∞)T and b ∈ [β1,∞)
T̃
,

with equality if and only if b ∈ {fρ(a), f(a)}. For any such a and b, we have

F (a, b)− F (a, f(a)) =

∫ b

f(a)

[f−1(y)− a]∇̃y. (2.1.12)

Clearly if b = f(a), then the integral equals to zero and if b=fρ(a), then

F (a, fρ(a))− F (a, f(a)) =

∫ f(a)

fρ(a)

[a− f−1(y)]∇̃y

= [f(a)− fρ(a)][a− f−1(f(a))] = 0.

Otherwise, since f−1(y) is continuous and strictly increasing for y ∈ T̃, the
integrals in (2.1.12) are strictly positive for b < fρ(a) and b > f(a).

(II). We will next show that F (a, f(a)) = F (a, fρ(a)) = 0.

Now, for brevity, we put ϕ(a) = F (a, f(a)), that is

ϕ(a) =

∫ a

α1

f(t)Δt+

∫ f(a)

β1

f−1(y)∇̃y − af(a) + α1β1.
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First, assume that a is right scattered point. Then

ϕσ(a)− ϕ(a)

=

∫ σ(a)

α1

f(t)Δt+

∫ fσ(a)

f(a)

f−1(y)∇̃y − σ(a)fσ(a) + af(a)

= [σ(a)− a]f(a) + [fσ(a)− f(a)]f−1(fσ(a))− σ(a)fσ(a) + af(a)

= 0.

Therefore if a is right-scattered point, then ϕΔ(a) = 0. Next, assume a
is a right-dense point. Let {an}n∈N ⊂ [a,∞)T be a decreasing sequence
converging to a. Then

ϕ(an)− ϕ(a)

=

∫ an

a

f(t)Δt+

∫ f(an)

f(a)

f−1(y)∇̃y − anf(an) + af(a)

≥ (an − a)f)a) + [f(a)− f(an)]a− anf(an) + af(a)

= (an − a)[f(a)− f(an)],

since the functions f and f−1 are strictly increasing. Similarly,

ϕ(an)− ϕ(a) ≤ (an − a)[f(an)− f(a)].

Therefore

0 = lim
n→∞[f(an)− f(a)] ≤ lim

n→∞
ϕ(an)− ϕ(a)

(an − a)
≤ lim

n→∞[f(an)− f(a)] = 0.

It follows that ϕΔ(a) exists, and ϕΔ(a) = 0 for right-dense a as well. In
other words, in either case ϕΔ(a) = 0 for a ∈ [α1,∞)T. As ϕ(α1) = 0, by
a uniqueness theorem for initial value problems, we have that ϕ(a) = 0 for
all a ∈ [α1,∞)T. As F (a, f(a)) = F (a, fρ(a)) = 0, we have that F (a, b) ≥
F (a, f(a)) = 0, with equality if and only if b = f(a) or b = fρ(a). The case
with a ∈ {f−1(b), σ(f−1(b))} for fixed b is similar and thus omitted. If f is
strictly decreasing, it is straightforward to see that the inequality (2.1.10) is
reversed. The proof is complete.

Now to establish upper bounds for Young’s integral inequality we need
the following result.

Lemma 2.1.1 Let f satisfy the hypotheses of Theorem 2.1.4, and let F (a, b)
be given as in (2.1.11). Then for any a, α ∈ T and b, β ∈ T̃, we have

F (a, b) + F (α, β) ≥ −(α− a)(β − b), (2.1.13)

with equality if and only if α ∈ {f−1(b), σ(f−1(b))} and β ∈ {fρ(a), f(a)}.
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Proof. Fix a ∈ T and b ∈ T̃. By Young’s integral inequality (2.1.10), we
see that ∫ a

α1

f(t)Δt+

∫ β

β1

f−1(y)∇̃y + α1β1 ≥ aβ, (2.1.14)

and ∫ α

α1

f(t)Δt+

∫ β

β1

f−1(y)∇̃y + α1β1 ≥ αb, (2.1.15)

with equality if and only if β ∈ {fρ(a), f(a)} and α ∈ {f−1(b), σ(f−1(b))},
respectively. By rearranging it follows that

∫ a

α1

f(t)Δt+

∫ b

β1

f−1(y)∇̃y + α1β1 − ab

+

∫ α

α1

f(t)Δt+

∫ β

β1

f−1(y)∇̃y + α1β1 − αb

=

∫ a

α1

f(t)Δt+

∫ β

β1

f−1(y)∇̃y + α1β1

+

∫ α

α1

f(t)Δt+

∫ b

β1

f−1(y)∇̃y + α1β1 − ab− αβ

≥ aβ + αb− ab− αβ = −(α− a)(β − b).

Note that equality holds here if and only if it holds in (2.1.14) and (2.1.15),
and this happens if and only if β ∈ {fρ(a), f(a)} and α ∈ {f−1(b), σ(f−1(b))}.
The proof is complete.

Theorem 2.1.5 Let T be any time scale and f : [α1, α2]T → [β1, β2]T̃ be

a continuous strictly increasing function such that T̃ = f(T) is also a time
scale. Then for every a, A ∈ [α1, α2]T and b, B ∈ [β1, β2]T̃, we have

(f−1(B)−A)(fρ(A)−B)ab ≤
∫ a

A

f(t)Δt+

∫ b

B

f−1(y)∇̃y − ab+AB

≤ −(f−1(b)− a)(fρ(a)− b), (2.1.16)

with equality if and only if B ∈ {fρ(A), f(A)} and b ∈ {fρ(a),
f(a)}. The inequalities are reversed if f is strictly decreasing.

Proof. Considering F as in (2.1.11) and (2.1.13) with α = f−1(b) and
β = f(a), we have the equality

F (a, b) + F (f−1(b), fρ(a)) = −(f−1(b)− a)(fρ(a)− b).
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As f−1 ∈ [α1, α2]T and fρ ∈ [β1, β2]∼
T
, via Young’s inequality

(2.1.10), we see that F (f−1(b), fρ(a)) ≥ 0. Consequently, we have that

0 ≤ F (a, b) ≤ −(f−1(b)− a)(fρ(a)− b), (2.1.17)

and inequality holds if and only if b ∈ {fρ(a), f(a)}. Thus for any A ∈
[α1, α2]T and B ∈ [β1, β2]T̃, we have from (2.1.17) that

0 ≤ −(f−1(B)−A)(fρ(A)−B)− F (A,B), (2.1.18)

with equality if and only if B ∈ {fρ(A), f(A)}. Combining (2.1.17) and
(2.1.18), we get

0 ≤ F (a, b)− (f−1(B)−A)(fρ(A)−B)− F (A,B)

≤ −(f−1(b)− a)(fρ(a)− b)− (f−1(B)−A)(fρ(A)−B)− F (A,B),

which can be rewritten to obtain (2.1.16). If f strictly decreasing the proof
is similar and omitted. The proof is complete.

In the following, we establish a theorem which can be considered as a
modification of Theorem 2.1.5 above. This theorem allows us to get a Young
type integral inequality without having to find f−1.

Theorem 2.1.6 Let the hypotheses of Theorem 2.1.5 hold. Then for any
a, α, A, Λ ∈ [α1, α2]T, we have

(Λ−A)(fρ(A)− f(Λ)) ≤
∫ a

A

f(t)Δt−
∫ α

Λ

f(t)Δt

+(α− a)f(α) + (A− Λ)f(Λ)

≤ −(α− a)(fρ(a)− f(α)), (2.1.19)

where equalities hold if and only if Λ ∈ {ρ(A), A} and α ∈ {ρ(a), a}.

Proof. By Theorem 2.1.5 with A = Λ, B = f(Λ), a = α and b = f(α),
we have

∫ f(α)

f(Λ)

f−1(y)
∼
∇y = αf(α)− Λf(Λ)−

∫ α

Λ

f(t)Δt, (2.1.20)

for any α, Λ ∈ [α1, α2]T. Since α, Λ ∈ [α1, α2]T are arbitrary, we substi-
tute (2.1.20) into (2.1.16) to obtain (2.1.19). The proof is complete.

In the following, we apply the results when T = Z and derive some dis-
crete inequalities. Recall that [α1, α2]Z = {α1, α1 + 1, . . . , α2 − 1, α2}. The
first two theorems are direct translations to T = Z of Theorem 2.1.5 and
Theorem 2.1.6, respectively.
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Theorem 2.1.7 Let f : [α1, α2]Z → [β1, β2]∼
Z
be strictly increasing, where

Z̃ = f(Z). Then for every a, A ∈ [α1, α2]Z and b, B ∈ [β1, β2]Z̃, we have

[
f−1(B)−A)

]
(f(A− 1)−B)

≤
a−1∑
n=A

f(n) +

a−1∑
m∈(B,b)∩Z̃

f−1(m)
∼
ν(m)− ab+AB

≤ −(f−1(b)− a)(f(a− 1)− b),

where equalities hold if and only if B ∈ {f(A− 1), f(A)} and b ∈ {f(a− 1),
f(a)}.

Theorem 2.1.8 Let f : Z → R be strictly increasing. Then for every a, A,
α, Λ, we have

[Λ−A)] (f(A− 1)− f(Λ))

≤
a−1∑
n=A

f(n)−
α−1∑
m=Λ

f(m) + (α− a)f(α) + (A− Λ)

≤ −(α− a)(f(a− 1)− f(α)),

where equalities holds if and only if Λ ∈ {(A− 1), (A)} and α ∈ {(a− 1), a}.

Example 2.1.5 Consider the factorial function

fk(t) = t(k) = t(t− 1) . . . (t− k + 1), for t, k ∈ Z.

It is clear that fk is increasing on the interval [k−1,∞)Z. By Theorem 2.1.8,
we have

(a− α)fk(α) ≤ 1

k + 1
[fk+1(a)− fk+1(α)] ≤ (a− α)fk(a− 1),

for a, α ∈ {k − 1, k, k + 1, . . .}, where equalities hold if and only if
α ∈ {a− 1, a}.

Example 2.1.6 Let f(t) = sin[πt/2k] for k ∈ N. Then f is increasing on
[−k, k], so that for any a ≥ α ∈ [−k, k]Z, we have by Theorem 2.1.8 that

sin
απ

2k
≤ 1

2(a− α)

(
cos

[
(2α− 1)π

4k

]
− cos

[
(2a− 1)π

4k

])
csc

π

4k

≤ sin
(a− 1)π

2k
,

with equalities if and only if α ∈ {a− 1, a}.
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2.2 Jensen Inequalities

The original Jensen inequality proved by Jensen states that if g ∈ C([a, b],
(c, d)) and F ∈ C([a, b], R) is convex, then

F

(∫ b

a
g(s)ds

b− a

)
≤ 1

b− a

∫ b

a

F (g(s))ds. (2.2.1)

In this section we give extensions of this inequality on time scales. The
inequalities will be proved for delta derivative, nabla derivative as well as for
diamond-α derivative. The results are adapted from [11, 23, 30, 39, 115, 150].

We begin with a lemma adapted from [67].

Lemma 2.2.1 Let f ∈ C((c, d),R) be convex. Then for each t ∈ (c, d), there
exits βt ∈ R such that

f(x)− f(t) ≥ βt(x− t), for all x ∈ (c, d). (2.2.2)

If f is strictly convex, then the inequality sign ≥ in (2.2.2) should be replaced
by >.

Theorem 2.2.1 Let a, b ∈ T and c, d ∈ R. Let g ∈ Crd([a, b], (c, d)) and
F ∈ C((c, d), R) is convex. Then

F

(∫ b

a
g(s)Δs

b− a

)
≤ 1

b− a

∫ b

a

F (g(s))Δs. (2.2.3)

If F is strictly convex, then the inequality ≤ can be replaced by <.

Proof. Since F is convex, it follows from Lemma 2.2.1 that for each
t ∈ (c, d), there exists βt ∈ R such that (2.2.2) holds. Let

t =
1

b− a

∫ b

a

g(s)Δs.

Now

∫ b

a

F (g(s))Δs− (b− a)F

(∫ b

a
g(s)Δs

b− a

)

=

∫ b

a

F (g(s))Δs− (b− a)F (t)

≥ βt

∫ b

a

[g(s)− t] Δs = β

[∫ b

a

g(s)Δs− t(b− a)

]
= 0.

The proof is complete.
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Example 2.2.1 As a special case let T = R and F = − log. Note F is
convex and continuous on (0,∞). Apply Theorem 2.2.1 with a = 0 and

b = 1 to obtain log
∫ 1

0
g(t)dt ≥ ∫ 1

0
log(g(t))dt, and hence

∫ 1

0
g(t)dt ≥

exp
(∫ 1

0
log(g(t))dt

)
, whenever g ∈ C([0, 1), (0,∞)) is continuous.

Example 2.2.2 Let T = N and N ∈ N. Apply Jensen’s inequality (Theorem
2.2.1) with a = 1 and b = N + 1 and g : [1, N + 1]N → (0,∞) to find

log

[
1

N

N∑
n=1

g(n)

]
≥ log

[
1

N

∫ N+1

1

g(t)Δt

]

≥ 1

N

∫ N+1

1

log(g(t))Δt

=
1

N

N∑
n=1

log(g(n)) = log

(
N∏

n=1

g(n)

)1/N

,

and hence

1

N

N∑
n=1

g(n) ≥
(

N∏
n=1

g(n)

)1/N

.

This is the well-known arithmetic-mean geometric-mean inequality.

Example 2.2.3 Let T = 2N0 and N ∈ N. Apply Jensen’s inequality
(Theorem 2.2.1) with a = 1 and b = 2N and g : [1, 2N ]2N0 → (0,∞) to find

log

[
1

2N − 1

N−1∑
n=0

2ng(2n)

]

≥ log

[
1

2N − 1

∫ 2N

1

g(t)Δt

]

≥ 1

2N − 1

∫ 2N

1

log(g(t))Δt =
1

2N − 1

N−1∑
n=0

2n log(g(2n))

=
1

2N − 1

N−1∑
n=0

log((g(2n))2
n

= log

(
N∏

n=1

((g(2n))2
n

)1/(2N−1)

,

and hence

1

2N − 1

N−1∑
n=0

2ng(2n) ≥
(

N∏
n=1

((g(2n))2
n

)1/(2N−1)

.
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Theorem 2.2.2 Let a, b ∈ T and c, d ∈ R. Suppose that g ∈ Crd([a, b], (c, d))
and h ∈ Crd([a, b]T, R) with

∫ b

a

|h(s)|Δs > 0.

If F ∈ C((c, d), R) is convex, then

F

(∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

)
≤

∫ b

a

|h(s)|F (g(s))Δs∫ b

a
|h(s)|Δs

. (2.2.4)

If F is strictly convex, then the inequality ≤ can be replaced by <.

Proof. Since F is convex it follows from Lemma 2.2.1 that for each
t ∈ (c, d), there exists βt ∈ R such that (2.2.2) holds. Let

t =

∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

.

Thus

∫ b

a

|h(s)|F (g(s))Δs−
(∫ b

a

|h(s)|Δs

)
F

(∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

)

=

∫ b

a

|h(s)|F (g(s))Δs−
(∫ b

a

|h(s)|Δs

)
F (t)

=

∫ b

a

|h(s)| [F (g(s))− F (t)]Δs ≥ βt

∫ b

a

|h(s)| [g(s)− t] Δs

= βt

[∫ b

a

|h(s)| g(s)Δs− t

∫ b

a

|h(s)|Δs

]

= βt

[∫ b

a

|h(s)| g(s)Δs−
∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

∫ b

a

|h(s)|Δs

]
= 0.

The proof is complete.

Remark 2.2.1 If the condition of convexity of the function F is changed to
concavity, then the inequality sign of the inequality (2.2.4) is reversed.

As a special case of Theorem 2.2.2, when g(t) ≥ 0 on [a, b] and F (t) = tγ

on [0,∞), we see that F is convex on [0,∞) for α < 0 or α > 1 and F is
concave on [0,∞) for α ∈ (0, 1).

Corollary 2.2.1 Let g ∈ Crd([a, b], (c, d)) such that g(t) ≥ 0 on [a, b] and
h ∈ Crd([a, b], R) with ∫ b

a

|h(s)|Δs > 0,
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where a, b ∈ T and (c, d) ⊂ R. Then

(∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

)α

≤
∫ b

a
|h(s)| gα(s)Δs∫ b

a
|h(s)|Δs

, for α < 0 or α > 1,

and (∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|Δs

)α

≥
∫ b

a
|h(s)| gα(s)Δs∫ b

a
|h(s)|Δs

, for α ∈ (0, 1).

We now present nabla Jensen inequalities.

Theorem 2.2.3 Let a, b ∈ T and c, d ∈ R, and h ∈ Cld ([a, b]T,R) and

g ∈ Cld([a, b], (c, d)) with
∫ b

a
|h(τ)| ∇τ > 0, and φ ∈ C((c, d),R) is convex,

then

φ

(∫ b

a
|h(τ)| g(τ)∇τ∫ b

a
|h(τ)| ∇τ

)
≤

∫ b

a
|h(τ)|φ(g(τ))∇τ∫ b

a
|h(τ)| ∇τ

. (2.2.5)

If φ is strictly convex, then the inequality ≤ can be replaced by <.

Proof. Since φ is convex, it follows from Lemma 2.2.1 that for each
t ∈ (c, d), there exists βt ∈ R such that (2.2.2) holds. Let

t =

∫ b

a
|h(s)| g(s)∇s∫ b

a
|h(s)| ∇s

.

Thus

∫ b

a

|h(s)|φ(g(s))∇s−
(∫ b

a

|h(s)| ∇s

)
φ

(∫ b

a
|h(s)| g(s)∇s∫ b

a
|h(s)| ∇s

)

=

∫ b

a

|h(s)|φ(g(s))Δs−
(∫ b

a

|h(s)| ∇s

)
φ (t)

=

∫ b

a

|h(s)| [φ(g(s))− φ (t)]Δs ≥ βt

∫ b

a

|h(s)| [g(s)− t]∇s

= βt

[∫ b

a

|h(s)| g(s)∇s− t

∫ b

a

|h(s)| ∇s

]

= βt

[∫ b

a

|h(s)| g(s)∇s−
∫ b

a
|h(s)| g(s)∇s∫ b

a
|h(s)|Δs

∫ b

a

|h(s)| ∇s

]
= 0.

The proof is complete.

As a consequence of Theorem 2.2.3, we have the following result.
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Theorem 2.2.4 Let a, b ∈ T and c, d ∈ R. If h ∈ Cld ([a, b]T,R) and g ∈
Cld([a, b], (c, d)) are nonnegative, with

∫ b

a
h(t)∇t > 0, and φ : (c, d) → R is

continuous and convex, then

φ

(∫ b

a
h(t)g(t)∇t∫ b

a
h(t)∇t

)
≤

∫ b

a
h(t)φ(g(t))∇t∫ b

a
h(t)∇t

.

If φ is strictly convex, then the inequality ≤ can be replaced by <.

Now, we give some generalized versions of Jensen’s inequality on time
scales via the diamond-α integral.

Theorem 2.2.5 Let T be a time scale, a, b ∈ T and c, d ∈ R. Suppose that
g ∈ C([a, b]T, (c, d)) and F ∈ C((c, d), R) is convex. Then

F

(∫ b

a
g(s)♦αs

b− a

)
≤ 1

b− a

∫ b

a

F (g(s))♦αs. (2.2.6)

If F is strictly convex, then the inequality ≤ can be replaced by <.

Proof. Since F is convex, we have

F

(∫ b

a
g(s)♦αΔs

b− a

)
= F

(
α

b− a

∫ b

a

g(s)Δs+
(1− α)

b− a

∫ b

a

g(s)∇s

)

≤ αF

(
1

b− a

∫ b

a

g(s)Δs

)
+ (1− α)F

(
1

b− a

∫ b

a

g(s)∇s

)
.

Now, using delta and nabla Jensen inequalities, we get that

F

(∫ b
a
g(s)♦αΔs

b− a

)
≤ α

b− a

(∫ b

a

F (g(s))Δs

)
+

(1− α)

b− a

(∫ b

a

F (g(s))∇s

)

=
1

b− a

[(∫ b

a

F (g(s))Δs

)
+

(∫ b

a

F (g(s))∇s

)]

=
1

b− a

(∫ b

a

F (g(s))♦αΔs

)
.

The proof is complete.
In the following, we give a generalization of (2.2.6) on time scales.

Theorem 2.2.6 Let T be a time scale, a, b ∈ T and c, d ∈ R. Suppose that

g ∈ C([a, b], (c, d)) and h ∈ C([a, b]T, R) with
∫ b

a
|h(s)|♦αs > 0. If F ∈

C((c, d), R) is convex, then

F

(∫ b

a
|h(s)| g(s)♦αs∫ b

a
|h(s)|♦αs

)
≤

∫ b

a
|h(s)|F (g(s))♦αs∫ b

a
|h(s)|♦αs

. (2.2.7)

If F is strictly convex, then the inequality ≤ can be replaced by <.
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Proof. Since F is convex, it follows from Lemma 2.2.1 that for each t ∈ (c, d),
there exists βt ∈ R such that (2.2.2) holds. Setting

t =

∫ b

a
|h(s)| g(s)♦αs∫ b

a
|h(s)|♦αs

,

we get that

∫ b

a

|h(s)|F (g(s))♦αs−
(∫ b

a

|h(s)|♦αs

)
F

(∫ b

a
|h(s)| g(s)♦αs∫ b

a
|h(s)|♦αs

)

=

∫ b

a

|h(s)|F (g(s))♦αs−
(∫ b

a

|h(s)|Δs

)
F (t)

=

∫ b

a

|h(s)| [F (g(s))− F (t)]♦αs ≥ βt

∫ b

a

|h(s)| [g(s)− t]♦αs

= βt

[∫ b

a

|h(s)| g(s)♦αs− t

∫ b

a

|h(s)|♦αs

]

= βt

[∫ b

a

|h(s)| g(s)♦αs−
∫ b

a
|h(s)| g(s)♦αs∫ b

a
|h(s)|♦αs

∫ b

a

|h(s)|♦αs

]
= 0.

The proof is complete.

Remark 2.2.2 If the convexity condition of the function F is changed to
concavity, then the inequality sign of the inequality (2.2.7) is reversed.

As a special case of Theorem 2.2.6, when F (t) = tγ on [0,∞), we see that
F is convex on [0,∞) for γ < 0 or γ > 1 and F is concave on [0,∞) for
γ ∈ (0, 1). This gives us the following result.

Corollary 2.2.2 Let g ∈ C([a, b], (c, d)) such that g(t) > 0 on [a, b]T and
h ∈ C([a, b]T, R) with ∫ b

a

|h(s)|♦αs > 0,

where a, b ∈ T and (c, d) ⊂ R. Then

(∫ b

a
|h(s)| g(s)♦αs∫ b

a
|h(s)|♦αs

)γ

≤
∫ b

a
|h(s)| gγ(s)♦αs∫ b

a
|h(s)|♦αs

, for γ < 0 or γ > 1,

and (∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|♦αs

)γ

≥
∫ b

a
|h(s)| gγ(s)♦αs∫ b

a
|h(s)|♦αs

, for γ ∈ (0, 1).
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Example 2.2.4 Let g(t) > 0 on [a, b]T and F (t) = ln(t) on (0,∞). Now,
since F is concave on (0,∞), it follows from Theorem 2.2.6 that

ln

(∫ b

a
|h(s)| g(s)Δs∫ b

a
|h(s)|♦αs

)
≥

∫ b

a
|h(s)| ln (g(s))♦αs∫ b

a
|h(s)|♦αs

.

Example 2.2.5 Let T = Z and n ∈ N. Fix a = 1 and b = N + 1 and
consider g : [1, N +1]N → (0,∞) and let F (t) = − ln t. Now F is convex and
continuous on (0,∞). Apply the Jensen inequality (2.2.7) to obtain

ln

[
α

N

N∑
n=1

g(n) +
1− α

N

N+1∑
n=2

g(n)

]

= ln

(∫ N+1

1

1

N
g(t)♦αt

)

≥ 1

N

∫ N+1

1

ln(g(t))♦αt =
α

N

N∑
n=1

ln g(n) +
1− α

N

N+1∑
n=2

ln g(n)

= ln

(
N∏

n=1

g(n)

) α
N

+ ln

(
N+1∏
n=2

g(n)

) 1−α
N

,

and hence

1

N

[
α

N∑
n=1

g(n) + (1− α)

N+1∑
n=2

g(n)

]
≥

(
N∏

n=1

g(n)

) α
N
(

N+1∏
n=2

g(n)

) 1−α
N

.

When α = 1, we obtain the well-known arithmetic-mean geometric-mean
inequality

1

N

N∑
n=1

g(n) ≥
(

N∏
n=1

g(n)

) 1
N

,

and when α = 0, we obtain

1

N

N+1∑
n=2

g(n) ≥
(

N+1∏
n=2

g(n)

) 1
N

.

Example 2.2.6 Let T = 2N0 and F (t) = − ln t. Apply the Jensen inequality
(Theorem 2.2.6) with a = 1 and b = 2N and g : [1, 2N ]2N0 → (0,∞), we
find that
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ln

[
1

2N − 1

∫ 2N

1

g(t)♦αt

]

= ln

[
α

2N − 1

∫ 2N

1

g(t)Δt+
1− α

2N − 1

∫ 2N

1

g(t)∇t

]

= ln

[
α

2N − 1

N−1∑
n=0

2n log(g(2n)) +
1− α

2N − 1

N∑
n=1

2n log(g(2n))

]

≥
[

1

2N − 1

∫ 2N

1

ln g(t)♦αt

]

=
α

2N − 1

N−1∑
n=0

2n log((g(2n)) +
1− α

2N − 1

N∑
n=1

2n log((g(2n))

=
α

2N − 1

N−1∑
n=0

log((g(2n))2
n

+
1− α

2N − 1

N∑
n=1

log((g(2n))2
n

=
1

2N − 1
ln

N−1∏
n=0

((g(2n))α2
n

+
1

2N − 1
ln

N∏
n=1

((g(2n))(1−α)2n

= ln

(
N∏

n=1

((g(2n))2
n

) 1

2N−1

+ ln

(
N∏

n=1

((g(2n))(1−α)2n

) 1

2N−1

.

From this we conclude that

ln

[
α

2N − 1

N−1∑
n=0

2n log(g(2n)) +
1− α

2N − 1

N∑
n=1

2n log(g(2n))

]

≥ ln

⎡
⎣
(

N∏
n=1

((g(2n))2
n

) 1

2N−1
(

N∏
n=1

((g(2n))(1−α)2n

) 1

2N−1

⎤
⎦ ,

and hence

α

2N − 1

N−1∑
n=0

2n log(g(2n)) +
1− α

2N − 1

N∑
n=1

2n log(g(2n))

≥
(

N∏
n=1

((g(2n))2
n

) 1

2N−1
(

N∏
n=1

((g(2n))(1−α)2n

) 1

2N−1

.

Since

1

2N − 1

[
α

N−1∑
n=0

2n log(g(2n)) + (1− α)

N∑
n=1

2n log(g(2n))

]

=
1

2N − 1

N−1∑
n=1

2n log(g(2n)) + αg(1) + (1− α)2Ng(2N ),
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we get that

1

2N − 1

N−1∑
n=1

2n log(g(2n)) + αg(1) + (1− α)2Ng(2N )

≥
(

N∏
n=1

((g(2n))2
n

) 1

2N−1
(

N∏
n=1

((g(2n))(1−α)2n

) 1

2N−1

.

As an application of Theorem 2.2.6, we have the following result.

Theorem 2.2.7 Let T be a time scale, a, b ∈ T with a < b and f , g,
h ∈ C([a, b]T, (0,∞)).

(i) If p > 1, then

[(∫ b

a

h(s)f(s)♦αs

)p

+

(∫ b

a

h(s)g(s)♦αs

)p]1/p

≤
∫ b

a

h(s) [fp(s) + gp(s)]
1/p ♦αs. (2.2.8)

(ii) If 0 < p < 1, then

[(∫ b

a

h(s)f(s)♦αs

)p

+

(∫ b

a

h(s)g(s)♦αs

)p]1/p

≥
∫ b

a

h(s) [fp(s) + gp(s)]
1/p ♦αs. (2.2.9)

Proof. We prove only (i), since the proof of (ii) is similar. Inequal-
ity (2.2.8) is trivially true when f is zero. Otherwise, applying Theorem 2.2.6
with F (x) = (1 + xp)1/p, which is clearly convex on (0,∞), we obtain

(
1 +

∫ b

a
h(s)f(s)♦αs∫ b

a
h(s)♦αs

)1/p

≤
∫ b

a
h(s)(1 + fp(s))1/p♦αs∫ b

a
h(s)♦αs

.

In other words

(∫ b

a

h(s)♦αs+

∫ b

a

h(s)f(s)♦αs

)1/p

≤
∫ b

a

h(s)(1 + fp(s))1/p♦αs.

Changing h and f with hf/
∫ b

a
h(s)f(s)♦αs and g/f in the last inequality we

obtain (2.2.8). The proof is complete.
Using the fact that the time scale integral is an isotonic linear functional,

we prove some Jensen type inequalities on time scales.
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Definition 2.2.1 Let E be a nonempty set and L be a linear class of real-
valued functions f : E → R, having the following properties:

(L1). If f , g ∈ L and a, b ∈ R, then (af + bg) ∈ L.

(L2). If f(t) = 1 for all t ∈ E, then f ∈ L.

An isotonic linear functional is a functional A : L → R having the fol-
lowing properties:

(A1). If f , g ∈ L and a, b ∈ R, then A(af + bg) = aA(f) + bA(g).

(A2). If f ∈ L and f(t) ≥ 0 for all t ∈ E, then A(f) ≥ 0.

Furthermore, if the functional A has a property

(A3). A(1) = 1, where 1(t) = 1 for all t ∈ E, then we will say that A is
normalized.

Our next theorem proves that the Cauchy integral on time scales is an
isotonic functional. The proof is straightforward from its definition and prop-
erties presented in [51, Defintion 1.58 and Theorem 1.77].

Theorem 2.2.8 Let T be a time scale, a, b ∈ T with a < b and let

E = [a, b) ∩ T, L = Crd([a, b),R). (2.2.10)

Then (L1) and (L2) are satisfied. Moreover, let

A(f) =

∫ b

a

f(t)Δt, (2.2.11)

where the integral is the Cauchy delta time-scale integral. Then (A1) and
(A2) are satisfied.

Example 2.2.7 If T = R in Theorem 2.2.8, then L = C([a, b],R) and A(f) =∫ b

a
f(t)dt. If T = Z in Theorem 2.2.8, then L consists of real-valued func-

tions on [a, b − 1] ∩ Z and A(f) =
b−1∑
n=a

f(n). If T = qN0 , where q > 1, in

Theorem 2.2.8, then L consists of real-valued functions on [a, b/q] ∩ qN0 and

A(f) = (q − 1)
logq(b)−1∑
n=logq(a)

qnf(qn).

Theorem 2.2.8 also has corresponding versions for the nabla and the
α-diamond integral.

Theorem 2.2.9 Let T be a time scale, a, b ∈ T with a < b and let

E = (a, b] ∩ T, L = Cld((a, b],R).



44 CHAPTER 2. BASIC INEQUALITIES

Then (L1) and (L2) are satisfied. Moreover, let

A(f) =

∫ b

a

f(t)∇t,

where the integral is the Cauchy nabla time-scale integral. Then (A1) and
(A2) are satisfied.

Theorem 2.2.10 Let T a time scale, a, b ∈ T with a < b and let

E = [a, b] ∩ T, L = C([a, b],R).

Then (L1) and (L2) are satisfied. Moreover, let

A(f) =

∫ b

a

f(t)♦αt,

where the integral is the Cauchy α-diamond time-scale integral. Then (A1)
and (A2) are satisfied.

The Riemann multiple integral is also an isotonic linear functional.

Theorem 2.2.11 Let T1, . . . ,Tn a time scales. For ai, bi ∈ Ti with ai < bi,
1 ≤ i ≤ n, let

E ⊂ ([a1, b1) ∩ T1 × . . .× [an, bn) ∩ Tn,

be Jordan Δ-measurable and let L be the set of all bounded
Δ-integrable functions from E to R. Then (L1) and (L2) are satisfied. More-
over, let

A(f) =

∫
E

f(t)Δt,

where the integral is the multiple Riemann delta-time scale integral. Then
(A1) and (A2) are satisfied.

Theorem 2.2.12 Let T1, . . . ,Tn be time scales. For ai, bi ∈ Ti with ai < bi,
1 ≤ i ≤ n, let

E ⊂ ([a1, b1) ∩ T1 × . . .× [an, bn) ∩ Tn,

be Lebesgue Δ-measurable and let L be the set of all bounded
Δ-integrable functions from E to R. Then (L1) and (L2) are satisfied. More-
over, let

A(f) =

∫
E

f(t)Δt,

where the integral is the multiple Lebesgue delta-time scale integral. Then
(A1) and (A2) are satisfied.
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Theorem 2.2.13 Let the assumptions of Theorem 2.2.12 be satisfied. Let
A(f) be replaced by

A(f) =

∫
E
|h(t)| f(t)Δt∫
E
|h(t)|Δt

,

where h : E → R is Δ-integrable such that
∫
E
|h(t)|Δt > 0. Then A is an

isotonic linear functional satisfying A(1) = 1.

We next note the following theorem that has been proved by Jessen [87]
(see also [117]).

Theorem 2.2.14 Let L satisfy properties (L1) and (L2). Assume Φ ∈
C(I,R) is convex where I ⊂ R is an interval. If A satisfies (A1) and (A2)
such that A(1) = 1, then for all f ∈ L such that Φ(f) ∈ L, one has A(f) ∈ I

and

Φ(A(f)) ≤ A(Φ(f)).

Now, the application of Theorems 2.2.13 and 2.2.14 gives the following
result.

Theorem 2.2.15 Assume that Φ ∈ C(I,R) is convex where I ⊂ R is an
interval. Let E ⊂ R

n be as in Theorem 2.2.12 and suppose that f is
Δ-integrable on E such that f(E) = I. Moreover, let h : E → R be
Δ-integrable such that

∫
E
|h(t)|Δt > 0. Then

Φ

(∫
E
|h(t)| f(t)Δt∫
E
|h(t)|Δt

)
≤

∫
E
|h(t)|Φ(f(t))Δt∫

E
|h(t)|Δt

.

The concept of superquadratic functions in one variable, as a general-
ization of the class of convex functions was introduced by S. Abramovich,
G. Jameson, and G. Sinnamon in [1, 2].

Definition 2.2.2 A function ϕ : [0,∞) → R is called superquadratic if there
exists a function C : [0,∞) → R such that

ϕ(y)− ϕ(x)− ϕ(|y − x|) ≥ C(x)(y − x), for all x, y > 0.

We say that ϕ is subquadratic if −ϕ is superquadratic.

For example, the function ϕ(x) = xp is superquadratic for p ≥ 2 and
subquadratic for p ∈ (0, 2].

Lemma 2.2.2 Let ϕ be a superquadratic function with C as in Definition
2.2.2. Then
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(i) ϕ(0) ≤ 0,

(ii) if ϕ(0) = ϕ
′
(0), then C(x) = ϕ

′
(x) whenever ϕ is differentiable at

x > 0,

(iii) if ϕ ≥ 0, then ϕ is convex and ϕ(0) = ϕ
′
(0) = 0.

In the following, we prove a Jensen type inequality on time scales for
superquadratic functions.

Theorem 2.2.16 Let a, b ∈ T. Suppose f ∈ Crd([a, b]T, [0,∞)) and ϕ :
[0,∞) → R is continuous and superquadratic. Then

ϕ

(∫ b

a
f(t)Δt

b− a

)
≤ 1

b− a

∫ b

a

[
ϕ(f(s))− ϕ

(∣∣∣∣∣f(s)−
∫ b

a
f(t)Δt

b− a

∣∣∣∣∣
)]

Δs.

(2.2.12)

Proof. Since ϕ : [0,∞) → R is a superquadratic function, then there
exists a function C : [0,∞) → R such that

ϕ(y) ≥ ϕ(x0) + ϕ(|y − x0|) + C(x0)(y − x0), for all x0, y > 0. (2.2.13)

Let

x0 =
1

(b− a)

∫ b

a

f(t)Δt.

Applying (2.2.13) with y = f(s), we see that

ϕ (f(s)) ≥ ϕ

(∫ b

a
f(t)Δt

b− a

)
+ ϕ

(∣∣∣∣∣f(s)−
∫ b

a
f(t)Δt

b− a

∣∣∣∣∣
)

+C(x0) (f(s)− x0) .

Integrating from a to b, we see that

∫ b

a

[
ϕ (f(s))− ϕ

(∣∣∣∣∣f(s)−
∫ b

a
f(t)Δt

b− a

∣∣∣∣∣
)

− ϕ

(∫ b

a
f(t)Δt

b− a

)]
Δs

≥ C(x0)

∫ b

a

(f(s)− x0)Δs = C(x0)

[∫ b

a

f(s)Δs− (b− a)x0

]
= 0.

This implies that

ϕ

(∫ b

a
f(t)Δt

b− a

)
≤ 1

b− a

∫ b

a

[
ϕ (f(s))− ϕ

(∣∣∣∣∣f(s)−
∫ b

a
f(t)Δt

b− a

∣∣∣∣∣
)]

Δs,

which is the desired inequality (2.2.12). The proof is complete.
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2.3 Hölder Inequalities

In 1889 Hölder [84] proved that

n∑
k=1

xkyk ≤
(

n∑
k=1

xp
k

)1/p ( n∑
k=1

yqk

)1/q

, (2.3.1)

where xn and yn are positive sequences and p and q are two positive numbers
such that 1/p + 1/q = 1. The inequality reverses if either p or q is negative.
The integral form of this inequality is

∫ b

a

|f(t)g(t)| dt ≤
[∫ b

a

|f(t)|p dt
] 1

p
[∫ b

a

|g(t)|q dt
] 1

q

, (2.3.2)

where a, b ∈ R and f, g ∈ C([a, b], R). In this section, we discuss various
versions of the Hölder inequality on time scales which not only give a uni-
fication of (2.3.1) and (2.3.2) but can be applied on different types of time
scales. The results in this section are adapted from [11, 24, 30, 39, 145, 155].
We begin with the proof of the classical Hölder inequality on time scales.

Theorem 2.3.1 Let a, b ∈ T. For f, g ∈ Crd(I, R), we have

∫ b

a

|f(t)g(t)|Δt ≤
[∫ b

a

|f(t)|p Δt

] 1
p
[∫ b

a

|g(t)|q Δt

] 1
q

, (2.3.3)

where p > 1 and 1
p + 1

q = 1.

Proof. For nonnegative real numbers α and β, the classical Young
inequality

α1/pβ1/q ≤ α

p
+

β

q
, (2.3.4)

holds. Now suppose without loss of generality that

(∫ b

a

|f(t)|p Δt

)(∫ b

a

|g(t)|q Δt

)
�= 0.

Apply (2.3.4) with

α =
|f(t)|p(∫ b

a
|f(s)|p Δs

) , and β =
|g(t)|q∫ b

a
|g(s)|q Δs

,
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and integrate the obtained inequality between a and b (this is possible since
all functions are rd-continuous), we find that

∫ b

a

|f(t)|(∫ b

a
|f(s)|p Δs

)1/p

|g(t)|(∫ b

a
|g(s)|q Δs

)1/q
Δt =

∫ b

a

α1/p(t)β1/q(t)Δt

≤
∫ b

a

(
α(t)

p
+

β(t)

q

)
Δt =

∫ b

a

⎡
⎣ |f(t)|p

p
(∫ b

a
|f(s)|p Δs

) +
|g(t)|q

q
∫ b

a
|g(s)|q Δs

⎤
⎦Δt

=

∫ b

a
|f(t)|p Δt

p
(∫ b

a
|f(s)|p Δs

) +

∫ b

a
|g(t)|q Δt

q
∫ b

a
|g(s)|q Δs

=
1

p
+

1

q
= 1,

which is the desired inequality (2.3.3). The proof is complete.
As a special case when p = q = 2, we have the following Schwarz’s

inequality.

Theorem 2.3.2 Let a, b ∈ T. For f, g ∈ Crd(I, R), we have

∫ b

a

|f(t)g(t)|Δt ≤
[∫ b

a

|f(t)|2 Δt

] 1
2
[∫ b

a

|g(t)|2 Δt

] 1
2

. (2.3.5)

Setting

α =
|h(t)|1/p |f(t)|(∫ b

a
|h(s)| |f(s)|p Δs

)1/p
, and β =

|h(t)|1/q |f(t)|(∫ b

a
|h(s)| |g(s)|q Δs

)1/q
,

in the proof of Theorem 2.3.1 and applying the Young inequality, we have
the following inequality.

Theorem 2.3.3 Let h, f , g ∈ Cr([a, b]T,[0,∞)). If 1/p + 1/q = 1, with
p > 1, then

∫ b

a

h(t)f(t)g(t)Δt ≤
(∫ b

a

h(t)fp(t)Δt

)1/p (∫ b

a

h(t)gq(t)Δt

)1/q

. (2.3.6)

Now we give the nabla Hölder type inequality on time scales.

Theorem 2.3.4 Let a, b ∈ T. For f, g, h ∈ Cld([a, b]T, R), we have

∫ b

a

|h(t)| |f(t)g(t)| ∇t ≤
[∫ b

a

|h(t)| |f(t)|p ∇t

] 1
p
[∫ b

a

|h(t)| |g(t)|q ∇t

] 1
q

,

(2.3.7)

where p > 1 and 1
p + 1

q = 1.
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Proof. Setting

A =
|h(t)|1/p |f(t)|(∫ b

a
|h(s)| |f(s)|p ∇s

)1/p
, and B =

|h(t)|1/q |f(t)|(∫ b

a
|h(s)| |g(s)|q ∇s

)1/q
,

and applying the Young inequality AB ≤ Ap

p + Bq

q , where A, B are nonneg-

ative, p > 1 and 1
p + 1

q = 1, we see that

∫ b

a

A(t)B(t)∇t ≤
∫ b

a

(
Ap

p
+

Bq

q

)
∇t

=

∫ b

a

⎡
⎣ |h(t)| |f(t)|p

p
(∫ b

a
|h(s)| |f(s)|p ∇s

) +
|h(t)| |g(t)q|

q
∫ b
a
|h(s)| |g(s)|q Δs

⎤
⎦∇t

=

∫ b
a
|h(t)| |f(t)|p ∇t

p
((∫ b

a
|h(s)| |f(s)|p ∇s

)) +

∫ b
a
|h(t)| |g(t)q| ∇t

q
∫ b
a
|h(s)| |g(s)|q ∇s

=
1

p
+

1

q
= 1,

which is the desired inequality (2.3.7). The proof is complete.
As a special case of Theorem 2.3.4 when p = q = 2, we have the following

result.

Theorem 2.3.5 Let a, b ∈ T. For f, g, h ∈ Cld([a, b]T, R), we have

∫ b

a

|h(t)| |f(t)g(t)| ∇t ≤
[∫ b

a

|h(t)| |f(t)|2 ∇t

] 1
2
[∫ b

a

|h(t)| |g(t)|2 ∇t

] 1
2

.

(2.3.8)

Theorem 2.3.6 Let a, b ∈ T. For f, g, h ∈ Cld([a, b]T, R), we have

∫ b

a

|h(t)| |f(t)g(t)| ∇t ≥
[∫ b

a

|h(t)| |f(t)|p ∇t

] 1
p
[∫ b

a

|h(t)| |g(t)|q ∇t

] 1
q

,

(2.3.9)

where p < 0 or q < 0 and 1
p + 1

q = 1.

Proof. Without loss of generality, we assume that p < 0. Set P = −p/q
and Q = 1/q. Then 1/P + 1/Q = 1 with P > 1 and Q > 1. From (2.3.7) we
have

∫ b

a

|h(t)| |F (t)G(t)| ∇t ≤
[∫ b

a

|h(t)| |F (t)|P ∇t

] 1
P
[∫ b

a

|h(t)| |G(t)|Q ∇t

] 1
Q

.
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Letting F (t) = f−q(t) and G(t) = fq(t)gq(t) in the last inequality, we get
the desired inequality (2.3.9). The proof is complete.

As an application of Hölder inequality (2.3.3), we have the following
theorem.

Theorem 2.3.7 Let a, b ∈ T with a < b and f and g be two positive func-
tions defined on the interval [a, b]T such that 0 < m ≤ f/g ≤ M < ∞. Then
for p > 1 and q > 1 with 1/p+ 1/q = 1, we have

∫ b

a

f1/p(t)g1/q(t)Δt ≤ M1/p2

m1/q2

∫ b

a

f1/q(t)g1/p(t)Δt, (2.3.10)

and then

∫ b

a

f1/p(t)g1/q(t)Δt ≤ M1/p2

m1/q2

(∫ b

a

f(t)Δt

)1/q (∫ b

a

g(t)Δt

)1/p

.

Proof. From inequality (2.3.3), we obtain

∫ b

a

f1/p(t)g1/q(t)Δt ≤
(∫ b

a

f(t)Δt

)1/p (∫ b

a

g(t)Δt

)1/q

,

that is

∫ b

a

f1/p(t)g1/q(t)Δt ≤
(∫ b

a

f1/p(t)f1/q(t)Δt

)
1/p

(∫ b

a

g1/q(t)g1/p(t)Δt

)
1/q.

Since f1/p(t) ≤ M1/pg1/p(t) and g1/q(t) ≤ m−1/qf1/q(t), then from the above
inequality it follows that

∫ b

a

f1/p(t)g1/q(t)Δt ≤ M1/p2

m−1/q2

(∫ b

a

f1/q(t)g1/p(t)Δt

)1/p

×
(∫ b

a

f1/q(t)g1/p(t)Δt

)1/q

,

that is

∫ b

a

f1/p(t)g1/q(t)Δt ≤ M1/p2

m−1/q2
∫ b

a

f1/q(t)g1/p(t)Δt. (2.3.11)

Hence, the inequality (2.3.10) is proved. The proof is complete.
The following theorems give the reverse Hölder type inequality on time

scales.
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Theorem 2.3.8 Let a, b ∈ T with a < b and f and g be two positive
functions defined on the interval [a, b]T such that 0 < m ≤ fp/gq ≤ M < ∞.
Then for p > 1 and q > 1 with 1/p+ 1/q = 1, we have

(∫ b

a

fp(t)Δt

)1/p (∫ b

a

gq(t)Δt

)1/q

≤
(
M

m

) 1
pq

∫ b

a

f(t)g(t)Δt. (2.3.12)

Proof. Since fp/gq ≤ M , then we have g ≥ M−1/qfp/q. Therefore

fg ≥ M
−1
q f

p
q +1 = M

−1
q f

p+q
q = M

−1
q fp,

and so (∫ b

a

fp(t)Δt

) 1
p

≤ M
1
pq

(∫ b

a

f(t)g(t)Δt

) 1
p

. (2.3.13)

Also since m ≤ fp/gq, then we have f ≥ m1/pgq/p. Then

∫ b

a

f(t)g(t)Δt ≥ m1/p

∫ b

a

g1+q/p(t)Δt = m1/p

∫ b

a

gq(t)Δt,

and so (∫ b

a

f(t)g(t)Δt

)1/q

≥ m
1
pq

(∫ b

a

gq(t)Δt

) 1
q

. (2.3.14)

Combining (2.3.13) and (2.3.14), we have the desired inequality (2.3.12). The
proof is complete.

In Theorem 2.3.8, if we replace fp and gq by f and g, we obtain the
reverse Hölder type inequality

(∫ b

a

f(t)Δt

)1/p (∫ b

a

g(t)Δt

)1/q

≤
(
M

m

) 1
pq

∫ b

a

f1/p(t)g1/q(t)Δt.

(2.3.15)

Theorem 2.3.9 Let a, b ∈ T with a < b and f and g be two positive func-
tions defined on the interval [a, b]T such that 0 < m ≤ fp ≤ M < ∞. Then
for p > 1 and q > 1 with 1/p+ 1/q = 1, we have

(∫ b

a

f1/p(t)Δt

)p

≥ (b− a)
p+1
q

(m

M

) p+1
pq

(∫ b

a

fp(t)Δt

)1/p

. (2.3.16)

Proof. Putting g = 1 in Theorem 2.3.8, we obtain

(∫ b

a

fp(t)Δt

)1/p

(b− a)1/q ≤
(m

M

)−1
pq

∫ b

a

f(t)Δt.
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Therefore, we get

(∫ b

a

fp(t)Δt

)1/p

≤
(m

M

)−1
pq

(b− a)−1/q

∫ b

a

f(t)Δt. (2.3.17)

Substituting g in (2.3.15) leads to

(∫ b

a

f(t)Δt

)1/p

≤
(m

M

)−1
pq

(b− a)−1/q

∫ b

a

f1/p(t)Δt,

and so

∫ b

a

f(t)Δt ≤
(m

M

)−1
q

(b− a)−p/q

(∫ b

a

f1/p(t)Δt

)p

. (2.3.18)

Combining (2.3.17) with (2.3.18), we obtain

(∫ b

a

f1/p(t)Δt

)p

≥
(m

M

) p+1
pq

(b− a)(p+1)/q

(∫ b

a

fp(t)Δt

)1/p

,

which is the desired inequality (2.3.16). The proof is complete.
Next we prove a Hölder type inequality in two dimensionals on time scales.

Theorem 2.3.10 Let a, b ∈ T with a < b and f and g be two
rd-continuous functions defined on the interval [a, b]T × [a, b]T. Then

∫ b

a

∫ b

a

|f(x, y)g(x, y)|ΔxΔy (2.3.19)

≤
(∫ b

a

∫ b

a

|f(x, y)|p ΔxΔy

)1/p (∫ b

a

∫ b

a

|g(x, y)|q ΔxΔy

)1/q

,

where p > 1 and q = p/((p− 1).

Proof. Suppose without loss of generality that
(∫ b

a

∫ b

a

|f(x, y)|p ΔxΔy

)∫ b

a

∫ b

a

|g(x, y)|q ΔxΔy �= 0.

Apply the Young inequality α1/pβ1/q ≤ α
p + β

q (2.3.4) with

α(x, y) =
|f(x, y)|p∫ b

a

∫ b

a
|f(τ1, τ2)|p Δτ1Δτ2

,

β(x, y) =
|g(x, y)|q∫ b

a

∫ b

a
|g(τ1, τ2)|q Δτ1Δτ2

,
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and integrate the obtained inequality between a and b to get

∫ b

a

∫ b

a

α1/p(x, y)β1/q(x, y)ΔxΔy

≤
∫ b

a

∫ b

a

(
α(x, y)

p
+

β(x, y)

q

)
ΔxΔy

=

∫ b

a

∫ b

a
|f(x, y)|p ΔxΔy

p
∫ b

a

∫ b

a
|f(τ1, τ2)|p Δτ1Δτ2

+

∫ b

a

∫ b

a
|g(x, y)|q ΔxΔy

q
∫ b

a

∫ b

a
|g(τ1, τ2)|q Δτ1Δτ2

=
1

p
+

1

q
= 1.

The proof is complete.

Now, we give the diamond α-Hölder inequalities on time scales by apply-
ing the diamond α-Jensen inequalities on time scales. As an application of the
diamond α-Jensen inequality proved in Theorem 2.2.6 by taking F (t) = tp

for p > 1 and g and |h| be replaced by ug−p/q and hgq, we have the following
Hölder inequality.

Theorem 2.3.11 Let h, u, g ∈ C([a, b]T,R) with
∫ b

a
h(t)gq(t)♦αt > 0.

If 1/p+ 1/q = 1, with p > 1, then

∫ b

a

|h(t)| |u(t)g(t)|♦αt ≤
(∫ b

a

|h(t)| |u(t)|p ♦αt

)1/p(∫ b

a

|h(t)| |g(t)|q ♦αt

)1/q

.

(2.3.20)

In the particular case h = 1, Theorem 2.3.11 gives the diamond-α version
of the classical Hölder inequality:

∫ b

a

|u(t)g(t)|♦αt ≤
(∫ b

a

|u(t)|p ♦αt

)1/p (∫ b

a

|g(t)|q ♦αt

)1/q

, (2.3.21)

where p > 1 and q = p/(p − 1). In the special case p = q = 2, the inequal-
ity (2.3.21) reduces to the following diamond-α Cauchy–Schwarz integral in-
equality on time scales

∫ b

a

|u(t)g(t)|♦αt ≤
√√√√

(∫ b

a

|u(t)|2 ♦αt

)(∫ b

a

|g(t)|2 ♦αt

)
. (2.3.22)
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Theorem 2.3.12 Let h, u, g ∈ C([a, b]T,R) with
∫ b

a
h(t)gq(t)♦αt > 0.

If 1/p+ 1/q = 1, with p < 0 or q < 0, then

∫ b

a

|h(t)| |u(t)g(t)|♦αt ≥
(∫ b

a

|h(t)| |u(t)|p ♦αt

)1/p

×
(∫ b

a

|h(t)| |g(t)|q ♦αt

)1/q

.

Theorem 2.3.13 Let a, b ∈ T with a < b and f and g be two positive
functions defined on the interval [a, b]T such that 0 < m ≤ fp/gq ≤ M < ∞.
Then for p > 1 with 1/p+ 1/q = 1, we have(∫ b

a

fp(t)♦αt

)1/p (∫ b

a

gq(t)♦αt

)1/q

≤
(
M

m

) 1
pq

∫ b

a

f(t)g(t)♦αt. (2.3.23)

Proof. As in the proof of Theorem 2.3.8, we get that(∫ b

a

fp(t)♦αt

) 1
p

≤ M
1
pq

(∫ b

a

f(t)g(t)♦αt

) 1
p

,

and (∫ b

a

f(t)g(t)♦αt

)1/q

≥ (m)
1
pq

(∫ b

a

gq(t)♦αt

) 1
q

.

Combining these two inequalities, we have the desired inequality (2.3.23).
The proof is complete.

Now, we give the diamond α-Hölder type inequality in two dimensions on
time scales. In this case, we assume that the double integral is defined as an
iterated integral. Let T be a time scale with a, b ∈ T, a < b, and f be a real-
valued function on T× T. Because we need notation for partial derivatives
with respect to time scale variables x and y we denote the time scale partial
derivative of f(x, y) with respect to x by f♦1

α(x, y) and let f♦2
α(x, y) denote

the time scale partial derivative with respect to y. Fix an arbitrary y ∈ T.
Then the diamond-α derivative of the function

T→ R, x → f(x, y)

is denoted by f♦1
α . Let now x ∈ T. The diamond-α derivative of the function

T→R, y → f(x, y)

is denoted by f♦21
α . If the function f has a ♦1

α antiderivative A, i.e., A♦1
α = f ,

and A has a ♦2
α antiderivative B, i.e., B♦2

α = A, then∫ b

a

∫ b

a

f(x, y)♦αx♦αy =

∫ b

a

(A(b, y)−A(a, y))♦αy

= B(b, b)−B(b, a)−B(a, b) +B(a, a).

Note that
(
B♦2

α

)♦1
α

= (A)
♦1

α = f .
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Now we are ready to state and prove the diamond α-Hölder inequality in
two dimensions on time scales.

Theorem 2.3.14 Let T be a time scale, a, b ∈ T, with a < b, f, g, h :
[a, b]T × [a, b]T → R, be ♦α integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

∫ b

a

∫ b

a

|h(x, y)f(x, y)g(x, y)|♦αx♦αy (2.3.24)

≤
(∫ b

a

∫ b

a

|h(x, y)f(x, y)|p ♦αx♦αy

)1/p

(∫ b

a

∫ b

a

|h(x, y)g(x, y)|q ♦αx♦αy

)1/q

.

Proof. Inequality (2.3.24) is trivially true in the case when f , or g, or h
is identically zero. Suppose that

(∫ b

a

∫ b

a

|h(x, y)f(x, y)|1/p ♦αx♦αy

)(∫ b

a

∫ b

a

|h(x, y)g(x, y)|1/q ♦αx♦αy

)
�= 0,

and let

A(x, y) =
|h(x, y)|1/p |f(x, y)|(∫ b

a

∫ b

a
|h(x, y)| |f(x, y)|p ♦αx♦αy

)1/p
,

B(x, y) =
|h(x, y)| 1q |g(x, y)|(∫ b

a

∫ b

a
|h(x, y)| |g(x, y)|♦αx♦αy

)1/q
.

Applying the Young inequality AB ≤ Ap

p + Bq

q , we have that

∫ b

a

∫ b

a

A(x, y)B(x, y)♦αx♦αy ≤ 1

p

∫ b

a

∫ b

a
|h(x, y)| |f(x, y)|p ♦αx♦αy(∫ b

a

∫ b

a
|h(x, y)| |f(x, y)|p ♦αx♦αy

)

+
1

q

∫ b

a

∫ b

a
|h(x, y)| |g(x, y)|q ♦αx♦αy(∫ b

a

∫ b

a
|h(x, y)| |g(x, y)|q ♦αx♦αy

)

=
1

p
+

1

q
= 1,

and the desired inequality follows. The proof is complete.
As a special case of Theorem 2.3.14, when p = q = 2, we get the two

dimensional diamond-α Cauchy Schwartz’s inequality.
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Corollary 2.3.1 Let T be a time scale, a, b ∈ T, with a < b, f, g, h :
[a, b]T × [a, b]T → R, be ♦α integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

∫ b

a

∫ b

a

|h(x, y)f(x, y)g(x, y)|♦αx♦αy

≤
(∫ b

a

∫ b

a

|h(x, y)f(x, y)|2 ♦αx♦αy

)1/2 (∫ b

a

∫ b

a

|h(x, y)g(x, y)|2 ♦αx♦αy

)1/2

.

Now, we apply the theory of isotonic linear functional which was presented
in Sect. 2.2 to derive a Hölder type inequality on time scales. The results
are adapted from [30]. We need the following theorem to prove the main
results [117].

Theorem 2.3.15 Let E, L, and A be such that (L1), (L2), (A1) and (A2)
in Definition 2.2.1 are satisfied. For p �= 1, define q = p/(p − 1). Assume
|ω| |f |p , |ω| |g|q, |ωfg| ∈ L. If p > 1, then

A(|ωfg|) ≤ A1/p(|ω| |f |p)A1/q(|ω| |g|q).

This inequality is reversed if 0 < p < 1 and A(|ω| |g|q) > 0 and also it is
reversed if p < 0 and A(|ω| |f |p) > 0.

Now, the application of Theorems 2.2.12 and 2.3.15 gives us the following
Hölder’s inequality.

Theorem 2.3.16 For p > 1, define q = p/(p − 1). Let E ⊂ R
n be as in

Theorem 2.2.12. Assume that |ω| |f |p , |ω| |g|q, |ωfg| are Δ-integrable on E.
If p > 1, then

∫
E

|ω(t)f(t)g(t)|Δt ≤
(∫

E

|ω(t)| |f(t)|p Δt

)1/p (∫
E

|ω(t)| |g(t)|q Δt

)1/q

.

This inequality is reversed if 0 < p < 1 and
∫
E
|ω(t)| |g(t)|q Δt > 0 and also

it is reversed if p < 0 and
∫
E
|ω(t)| |f(t)|p Δt > 0.

2.4 Minkowski Inequalities

The well-known Minkowski integral inequality is given in [3, 72, 110]. Let
f and g be real-valued functions defined on [a, b] such that the functions
|f(x)|p and |g(x)|p for p > 1 are integrable on [a, b]. Then

(∫ b

a

|f(x) + g(x)|p dx
)1/p

≤
(∫ b

a

|f(x)|p dx
)1/p

+

(∫ b

a

|g(x)|p dx
)1/p

.
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Equality holds if and only if f(x) = 0 almost everywhere or g(x) = λf(x)
almost everywhere with a constant λ ≥ 0. The discrete version of Minkowski
inequality is given by

(
n∑

i=1

|f(i) + g(i)|p
)1/p

≤
(

n∑
i=1

|f(i)|p
)1/p

+

(
n∑

i=1

|g(i)|p
)1/p

,

where f(n) and g(n) are two positive-tuples and p > 1. Equality holds if and
only f and g are proportional.

In this section we establish the Minkowski integral inequality and its
extensions on time scales. The results in this section are adapted from
[23, 30, 39, 45, 115, 150, 155].

Theorem 2.4.1 Let f , g, h ∈ Crd([a, b]T,R) and p > 1. Then

(∫ b

a

|h(x)| |f(x) + g(x)|p Δx

)1/p

≤
(∫ b

a

|h(x)| |f(x)|p Δx

)1/p

+

(∫ b

a

|h(x)| |g(x)|p Δx

)1/p

. (2.4.1)

Proof. Note∫ b

a

|h(x)| |f(x) + g(x)|p Δx =

∫ b

a

|h(x)| |f(x) + g(x)|p−1 |f(x) + g(x)|Δx

≤
∫ b

a

|h(x)| |f(x) + g(x)|p−1 |f(x)|Δx

+

∫ b

a

|h(x)| |f(x) + g(x)|p−1 |g(x)|Δx.

Applying the Hölder inequality (2.3.6), we get that
∫ b

a

|h(x)| |f(x) + g(x)|p Δx

≤
(∫ b

a

|h(x)|
(
|f(x) + g(x)|p−1

)q

Δx

)1/q (∫ b

a

|h(x)| |f(x)|p Δx

)1/p

+

(∫ b

a

|h(x)|
(
|f(x) + g(x)|p−1

)q

Δx

)1/q (∫ b

a

|h(x)| |g(x)|p Δx

)1/p

=

(∫ b

a

|h(x)| |f(x) + g(x)|p Δx

)1/q

×
⎡
⎣
(∫ b

a

|h(x)| |f(x)|p Δx

)1/p

+

(∫ b

a

|h(x)| |g(x)|p Δx

)1/p
⎤
⎦ .
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Therefore (∫ b

a

|h(x)| |f(x) + g(x)|p Δx

)1/p

=

(∫ b

a

|h(x)| |f(x) + g(x)|p Δx

)1−1/q

=

⎡
⎣
(∫ b

a

|h(x)| |f(x)|p Δx

)1/p

+

(∫ b

a

|h(x)| |g(x)|p Δx

)1/p
⎤
⎦ ,

which is the desired inequality (2.4.1). The proof is complete.
As a special case when h(x) = 1, we obtain the time scale classical

Minkowski inequality
(∫ b

a

|f(x) + g(x)|p Δx

)1/p

≤
(∫ b

a

|f(x)|p dx
)1/p

+

(∫ b

a

|g(x)|p dx
)1/p

.

As in the proof of Theorem 2.4.1 (using (2.3.7)) we obtain the following nabla
Minkowski inequality.

Theorem 2.4.2 Let f , g, h ∈ Cld([a, b]T,R) and p > 1. Then(∫ b

a

|h(x)| |f(x) + g(x)|p ∇x

)1/p

≤
(∫ b

a

|h(x)| |f(x)|p ∇x

)1/p

+

(∫ b

a

|h(x)| |g(x)|p ∇x

)1/p

.

Applying the diamond-α Hölder inequality (2.3.20) we have the following
diamond-α Minkowski’s inequality.

Theorem 2.4.3 Let f , g, h ∈ C([a, b]T, R) and p > 1. Then(∫ b

a

|h(x)| |f(x) + g(x)|p ♦αx

)1/p

≤
(∫ b

a

|h(x)| |f(x)|p ♦αx

)1/p

+

(∫ b

a

|h(x)| |g(x)|p ♦αx

)1/p

.

Theorem 2.4.4 Let f , g : [a, b]T → R, are positive rd-continuous functions
and satisfying 0 < m ≤ f/g ≤ M < ∞ on [a, b]T and for p > 1 define
q = p/(p− 1). Then(∫ b

a

fp(x)Δx

)1/p

+

(∫ b

a

gp(x)Δx

)1/p

≤ c

(∫ b

a

(f(x) + g(x))
p
Δx

) 1
p

,

(2.4.2)
where c =

(
m
M

) 1
pq .
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Proof. To prove the inequality (2.4.2), we apply Theorem 2.3.8. The
inner term in the right-hand side can be rewritten as

∫ b

a

(f(x) + g(x))
p
Δx

=

∫ b

a

(f(x) + g(x))
p−1

f(x)Δx

+

∫ b

a

(f(x) + g(x))
p−1

g(x)Δx

≥
(
M

m

) 1
pq

(∫ b

a

fp(x)Δx

) 1
p
(∫ b

a

(f(x) + g(x))
q(p−1)

Δx

) 1
q

+

(
M

m

) 1
pq

(∫ b

a

gp(x)Δx

) 1
p
(∫ b

a

(f(x) + g(x))
q(p−1)

Δx

) 1
q

=

(
M

m

) 1
pq

(∫ b

a

(f(x) + g(x))
p
Δx

) 1
q

×
⎡
⎣
(∫ b

a

fp(x)Δx

) 1
p

+

(∫ b

a

gp(x)Δx

) 1
p

⎤
⎦ .

Therefore, we obtain

(∫ b

a

fp(x)Δx

) 1
p

+

(∫ b

a

gp(x)Δx

) 1
p

≤
(
m

M

) 1
pq

(∫ b

a

(f(x) + g(x))p Δx

)1− 1
q

=
(
m

M

) 1
pq

(∫ b

a

(f(x) + g(x))p Δx

) 1
p

,

which is the desired inequality (2.4.2). The proof is complete.
Now, we apply the theory of isotonic linear functional that was presented

in Sect. 2.2 to derive a Minkowski inequality on time scales. To do this we
need the following theorem as given in [117].

Theorem 2.4.5 Let E, L, and A be such that (L1), (L2), (A1) and (A2),
as in Definition 2.2.1, are satisfied. For p ∈ R, assume |ω| |f |p , |ω| |g|p,
|ω| |f + g|p ∈ L. If p > 1, then

A1/p(|ω| |f + g|p) ≤ A1/p(|ω| |f |p) +A1/p(|ω| |g|p).
This inequality is reversed if 0 < p < 1 or p < 0 provided that A(|ω| |g|p) > 0
and A(|ω| |f |p) > 0 hold.

Now, the application of Theorems 2.2.12 and 2.4.5 gives us the following
Minkowski inequality.
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Theorem 2.4.6 Let E ⊂ R
n be as in Theorem 2.2.12. For p ∈ R, assume

|ω| |f |p , |ω| |g|p, |ω| |f + g|p are Δ-integrable on E. If p > 1, then

(∫
E

|ω(t)| |f(t) + g(t)|p Δt

)1/p

≤
(∫

E

|ω(t)| |f(t)|p Δt

)1/p

+

(∫
E

|ω(t)| |g(t)|p Δt

)1/p

. (2.4.3)

This inequality is reversed if 0 < p < 1 or p < 0 provided that
∫
E
|ω(t)| |g(t)|q

Δt > 0 and
∫
E
|ω(t)| |f(t)|p Δt > 0.

In the following we obtain generalizations of Minkowski inequalities on
time scales. The inequalities will be proved for several variables and based
on the definitions of the multiple Riemann and Lebesgue Δ-integration on
time scales given in [53].

Let n ∈ N be fixed. For i ∈ {1, 2, . . . , n}, let Ti denote a time scale and

Λn = T1 × T2 × . . .× Tn = {t = (t1, t2, . . . , tn) : ti ∈ Ti, 1 ≤ i ≤ n},
as the n-dimensional time scale. Let μΔ be the σ-additive Lebesuge
Δ-measure on Λn and F be the family of Δ-measurable subsets of Λn.
Let E ⊂ F and (E,F , μΔ) be a time scale measure space. Then for a
Δ-measurable function f : E → R, the corresponding Δ-integral of f over E
will be denoted by

∫
E

f(t1, t2, . . . , tn)Δ1t1Δ2t2 . . .Δntn, or

∫
E

f(t)Δt,

or

∫
E

fdμΔ, or

∫
E

f(t)dμΔ(t).

Here, we state the Fubini theorem for integrals. It is used in the proofs of
our main results.

Theorem 2.4.7 Let (X,M, μΔ) and (Y,L, νΔ) be two finite-dimensional
time scale measure space. If f : X × Y → R is a Δ-integrable function.
Setting

ϕ(y) =

∫
X

f(x, y)dμΔ(x), for y ∈ Y,

and

ψ(x) =

∫
Y

f(x, y)dvΔ(y), for x ∈ X,

then ϕ is Δ-integrable on Y and ψ is Δ-integrable on X and

∫
X

dμΔ(x)

∫
Y

f(x, y)dvΔ(y) =

∫
Y

dvΔ(y)

∫
X

f(x, y)dμΔ(x). (2.4.4)
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We mention here that all theorems in Lebesgue integration theory,
including the Lebesgue dominated convergence theorem, hold also for
Lebesgue Δ-integral on Λn. This means that all the classical inequalities
including Jensen’s inequalities, Hölder inequalities, Minkowski inequalities,
and their converses for multiple integration on time scales hold for both
Riemann and Lebesuge integrals on time scales.

Theorem 2.4.8 Let (E,F , μΔ) be a time scale measure space. For p ∈ R,
assume w, f , g are nonnegative functions such that ωfp, ωgp, ω (f + g)

p
are

Δ-integrable on E. If p > 1, then

(∫
E

ω(t) (f(t) + g(t))
p
dμΔt

)1/p

≤
(∫

E

ω(t)fp(t)dμΔt

)1/p

+

(∫
E

ω(t)gp(t)dμΔt

)1/p

.

Note that Theorem 2.4.8 also holds if we have a finite number of functions.
The next theorem gives an inequality of Minkowski type for infinitely many
functions. We assume that all integrals are finite.

Theorem 2.4.9 Let (X, �L, μΔ) and (Y, λ,νΔ) be two finite-dimensional time
scale measure space and let u, v f be Δ-integrable functions on X, Y and
X × Y , respectively. If p > 1, then

[∫
X

(∫
Y

f(x, y)v(y)dνΔy

)p

u(x)dμΔx

]1/p

≤
∫
Y

(∫
X

fp(x, y)u(x)dμΔx

)1/p

v(y)dνΔy, (2.4.5)

holds provided all integrals in (2.4.5) exists. If 0 < p < 1 and

∫
X

(∫
Y

fvdνΔ

)p

udμΔ > 0 and

∫
Y

fvdνΔ > 0, (2.4.6)

holds, then (2.4.5) is reversed. If p < 0 and (2.4.6) and

∫
X

fp(x, y)u(x)dμΔx > 0, (2.4.7)

hold, then (2.4.5) is reversed as well.

Proof. Let p > 1. Put

H(x) =

∫
Y

f(x, y)v(y)dνΔy.
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Now, by using Fubini’s Theorem 2.4.7 and Hölder inequality in Theorem 2.3.16
on time scales, we have

∫
X

Hp(x)udμΔ =

∫
X

Hp−1(x)H(x)u(x)dμΔx

=

∫
X

(∫
Y

f(x, y)v(y)dνΔy

)
Hp−1(x)u(x)dμΔx

=

∫
Y

(∫
X

f(x, y)Hp−1(x)u(x)dμΔx

)
v(y)dνΔy

≤
∫
Y

(∫
X

fp(x, y)u(x)dμΔx

)1/p

×
(∫

X

Hp(x)u(x)dμΔx

) p−1
p

v(y)dνΔy

=

∫
Y

(∫
X

fp(x, y)u(x)dμΔx

)1/p

v(y)dνΔy

×
(∫

X

Hp(x)u(x)dμΔx

) p−1
p

,

and hence

(∫
X

Hp(x)u(x)dμΔx

)1/p

≤
∫
Y

(∫
X

fp(x, y)u(x)dμΔx

)1/p

v(y)dνΔy,

which is the desired inequality (2.4.5). For p < 0 and 0 < p < 1, the
corresponding result can be obtained similarly. The proof is complete.

2.5 Steffensen Inequalities

In 1918 Steffensen [142] proved the following inequality. Let a and b be real
numbers such that a < b, f , and g are integrable functions from [a, b] into R

such that f is decreasing and for every t ∈ [a, b], 0 ≤ g(t) ≤ 1. Then

∫ a−λ

a

f(t)dt ≤
∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt, (2.5.1)

where λ =
∫ b

a
g(t)dt. The discrete analogue of Steffensen’s inequality is

given by
n∑

i=n−k2+1

xi ≤
n∑

i=1

xiyi ≤
k1∑
i=1

xi,

where (xi)
n
i=1 is a nonincreasing finite sequence of nonnegative real numbers

and (yi)
n
i=1 is a finite sequence of real numbers such that for every i, 0 ≤

yi ≤ 1 and k2 ≤ ∑n
i=1 yi ≤ k1 for k1, k2 ∈ {1, 2, . . . , n}.



2.5. STEFFENSEN INEQUALITIES 63

In this section, we prove some Steffensen inequalities on time scales The
results in this section are adapted from [26, 114].

Theorem 2.5.1 Let a, b ∈ T
k
k with a < b and f, g : [a, b]T → R be

Δ-integrable functions such that f of one sign and decreasing and 0 ≤ g(t) ≤ 1
for every t ∈ [a, b]T. Suppose that also l, γ ∈ [a, b]T such that

b− l ≤
∫ b

a

g(t)Δt ≤ γ − a, if f > 0 for all t ∈ [a, b]T,

γ − a ≤
∫ b

a

g(t)Δt ≤ b− l, if f < 0 for all t ∈ [a, b]T,

then ∫ b

l

f(t)Δt ≤
∫ b

a

f(t)g(t)Δt ≤
∫ γ

a

f(t)Δt. (2.5.2)

Proof. We consider the case when f > 0 and prove the left inequality.
Now

∫ b

a

f(t)g(t)Δt−
∫ b

l

f(t)Δt

=

∫ l

a

f(t)g(t)Δt+

∫ b

l

f(t)g(t)Δt−
∫ b

l

f(t)Δt

=

∫ l

a

f(t)g(t)Δt−
∫ b

l

f(t)[1− g(t)]Δt

≥
∫ l

a

f(t)g(t)Δt− f(l)

∫ b

l

[1− g(t)]Δt

=

∫ l

a

f(t)g(t)Δt− f(l)(b− l) + f(l)

∫ b

l

g(t)Δt

≥
∫ l

a

f(t)g(t)Δt− f(l)

∫ b

a

g(t)Δt+ f(l)

∫ b

l

g(t)Δt

=

∫ l

a

f(t)g(t)Δt− f(l)[

∫ b

a

g(t)Δt−
∫ b

l

g(t)Δt]

=

∫ l

a

f(t)g(t)Δt− f(l)

∫ l

a

g(t)Δt =

∫ l

a

[f(t)− f(l)]

∫ l

a

g(t)Δt ≥ 0,

since f is decreasing and g is nonnegative. The proof of the right inequality
is similar. The proof is complete.

Note that in Theorem 2.5.1 above we could easily replace the delta integral
with the nabla integral under the same hypotheses.
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Theorem 2.5.2 Let a, b ∈ T
k
k with a < b and f, g : [a, b]T → R be

∇-integrable functions such that f is of one sign and decreasing and
0 ≤ g(t) ≤ 1 on [a, b]T. Suppose that also l, γ ∈ [a, b]T such that

b− l ≤
∫ b

a

g(t)∇t ≤ γ − a, if f > 0 for all t ∈ [a, b]T,

γ − a ≤
∫ b

a

g(t)∇t ≤ b− l, if f < 0 for all t ∈ [a, b]T.

Then ∫ b

l

f(t)∇t ≤
∫ b

a

f(t)g(t)∇t ≤
∫ γ

a

f(t)∇t. (2.5.3)

The following theorems more closely resemble the theorem in the contin-
uous case (the proofs are identical to that above and omitted).

Theorem 2.5.3 Let a, b ∈ T
k
k with a < b and f, g : [a, b]T → R be Δ-

integrable functions such that f is of one sign and decreasing and 0 ≤ g ≤ 1

for every t ∈ [a, b]T. Assume that λ =
∫ b

a
g(t)Δt such that b− λ, a+ λ ∈ T.

Then ∫ b

b−λ

f(t)Δt ≤
∫ b

a

f(t)g(t)Δt ≤
∫ a+λ

a

f(t)Δt.

Theorem 2.5.4 Let a, b ∈ T
k
k with a < b and f, g : [a, b]T → R be ∇-

integrable functions such that f is of one sign and decreasing and 0 ≤ g ≤ 1

for every t ∈ [a, b]T. Assume that λ =
∫ b

a
g(t)∇t such that b− λ, a+ λ ∈ T.

Then ∫ b

b−λ

f(t)∇t ≤
∫ b

a

f(t)g(t)∇t ≤
∫ a+λ

a

f(t)∇t.

In the following, we prove the diamond-α Steffensen inequality using the
diamond-α derivative on time scales. We begin with the following lemma
that will be needed later.

Lemma 2.5.1 Let a, b ∈ T
k
k with a < b and f, g, h : [a, b]T → R be ♦α-

integrable functions. Suppose that also l, γ ∈ [a, b]T such that

∫ γ

a

h(t)♦αt =

∫ b

a

g(t)♦αt =

∫ b

l

h(t)♦αt. (2.5.4)

Then
∫ b

a

f(t)g(t)♦αt =

∫ b

γ

[f(t)− f(γ)]g(t)♦αt (2.5.5)

+

∫ γ

a

{f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)]}♦αt,
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∫ b

a

f(t)g(t)♦αt =

∫ l

a

[f(t)− f(l)]g(t)♦αt (2.5.6)

+

∫ b

l

{f(t)h(t)− [f(t)− f(l)][h(t)− g(t)]}♦αt.

Proof. We prove (2.5.5). By direct computation, we have

∫ γ

a

{f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)]}♦αt−
∫ b

a

f(t)g(t)♦αt

=

∫ γ

a

{f(t)h(t)− f(t)g(t)− [f(t)− f(γ)][h(t)− g(t)]}♦αt

+

∫ γ

a

f(t)g(t)♦αt−
∫ b

a

f(t)g(t)♦αt

=

∫ γ

a

f(γ)[h(t)− g(t)]♦αt−
∫ b

γ

f(t)g(t)♦αt

= f(γ)

∫ γ

a

h(t)♦αt− f(γ)

∫ γ

a

g(t)♦αt−
∫ b

γ

f(t)g(t)♦αt.

Applying the assumption
∫ γ

a
h(t)♦αt =

∫ b

a
g(t)♦αt, we see that

∫ γ

a

{f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)]}♦αt−
∫ b

a

f(t)g(t)♦αt

= f(γ)

∫ b

a

g(t)♦αt− f(γ)

∫ γ

a

g(t)♦αt−
∫ b

γ

f(t)g(t)♦αt

= f(γ)

(∫ b

a

g(t)♦αt−
∫ γ

a

g(t)♦αt

)
−
∫ b

γ

f(t)g(t)♦αt

= f(γ)

∫ b

γ

g(t)♦αt−
∫ b

γ

f(t)g(t)♦αt =

∫ b

γ

[f(γ)− f(t)]g(t)♦αt,

which is the desired inequality (2.5.5). The proof of (2.5.6) is similar and
thus is omitted. The proof is complete.

Theorem 2.5.5 Let a, b ∈ T
k
k with a < b and f, g, h : [a, b]T → R be ♦α-

integrable functions such that f is of one sign and decreasing and 0 ≤ g(t) ≤
h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that

{ ∫ γ

l
h(t)♦αt ≤

∫ b

a
g(t)♦αt ≤

∫ γ

a
h(t)♦αt, if f ≥ 0, t ∈ [a, b]T,∫ γ

a
h(t)♦αt ≤

∫ b

a
g(t)♦αt ≤

∫ γ

l
h(t)♦αt, if f ≤ 0, t ∈ [a, b]T.

(2.5.7)

Then
∫ b

l

f(t)h(t)♦αt ≤
∫ b

a

f(t)g(t)♦αt ≤
∫ γ

a

f(t)h(t)♦αt. (2.5.8)
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Proof. We prove the left inequality in (2.5.8), in the case f ≥ 0. The
proofs of the other cases are similar. Since f is decreasing and g is nonnega-
tive, we see that

∫ b

a

f(t)g(t)♦αt−
∫ b

l

f(t)h(t)♦αt

=

∫ l

a

f(t)g(t)♦αt+

∫ b

l

f(t)g(t)♦αt−
∫ b

l

f(t)h(t)♦αt

=

∫ l

a

f(t)g(t)♦αt−
∫ b

l

f(t) [h(t)− g(t)]♦αt

≥
∫ l

a

f(t)g(t)♦αt− f(l)

∫ b

l

[h(t)− g(t)]♦αt

=

∫ l

a

f(t)g(t)♦αt− f(l)

∫ b

l

h(t)♦αt+ f(l)

∫ b

l

g(t)♦αt

≥
∫ l

a

f(t)g(t)♦αt− f(l)

∫ b

a

g(t)♦αt+ f(l)

∫ b

l

g(t)♦αt

=

∫ l

a

f(t)g(t)♦αt− f(l)

[∫ b

a

g(t)♦αt−
∫ b

l

g(t)♦αt

]

=

∫ l

a

f(t)g(t)♦αt− f(l)

∫ l

a

g(t)♦αt

=

∫ l

a

[f(t)− f(l)] g(t)♦αt ≥ 0.

As a special case of Theorem 2.5.5 when α = 1 and α = 0, we have the
following results.

Corollary 2.5.1 Let a, b ∈ T
k with a < b and f, g, h : [a, b]T → R be

Δ-integrable functions such that f is of one sign and decreasing and
0 ≤ g(t) ≤ h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that

{ ∫ γ

l
h(t)Δt ≤ ∫ b

a
g(t)Δt ≤ ∫ γ

a
h(t)Δt, if f ≥ 0, t ∈ [a, b]T,∫ γ

a
h(t)Δt ≤ ∫ b

a
g(t)Δt ≤ ∫ γ

l
h(t)Δt, if f ≤ 0, t ∈ [a, b]T.

(2.5.9)

Then

∫ b

l

f(t)h(t)Δt ≤
∫ b

a

f(t)g(t)Δt ≤
∫ γ

a

f(t)h(t)Δt. (2.5.10)

Corollary 2.5.2 Let a, b ∈ T
k with a < b and f, g, h : [a, b]T → R be ∇-

integrable functions such that f is of one sign and decreasing and 0 ≤ g(t) ≤
h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that
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{ ∫ γ

l
h(t)∇t ≤ ∫ b

a
g(t)∇t ≤ ∫ γ

a
h(t)∇t, if f ≥ 0, t ∈ [a, b]T,∫ γ

a
h(t)∇t ≤ ∫ b

a
g(t)∇t ≤ ∫ γ

l
h(t)∇t, if f ≤ 0, t ∈ [a, b]T.

(2.5.11)

Then
∫ b

l

f(t)h(t)∇t ≤
∫ b

a

f(t)g(t)∇t ≤
∫ γ

a

f(t)h(t)∇t. (2.5.12)

Theorem 2.5.6 Let a, b ∈ T
k
k with a < b and f, g, h : [a, b]T → R be ♦α-

integrable functions such that f is of one sign and decreasing and 0 ≤ g(t) ≤
h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that

∫ γ

a

h(t)♦αt =

∫ b

a

g(t)♦αt =

∫ b

l

h(t)♦αt. (2.5.13)

Then
∫ b

l

f(t)h(t)♦αt ≤
∫ b

l

(f(t)h(t)− [f(t)− f(l)][h(t)− g(t)])♦αt

≤
∫ b

a

f(t)g(t)♦αt (2.5.14)

≤
∫ γ

a

(f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)])♦αt

≤
∫ γ

a

f(t)h(t)♦αt.

Proof. In view of the assumption that the function f is decreasing and
that 0 ≤ g(t) ≤ h(t) on [a, b]T, we see that

∫ l

a

[f(t)− f(l)]g(t)♦αt ≥ 0,

∫ b

l

[f(l)− f(t)][h(t)− g(t)]♦αt ≥ 0. (2.5.15)

Using the integral identity (2.5.6) together with the integrals in (2.5.15), we
have
∫ b

l

f(t)h(t)♦αt ≤
∫ b

l

(f(t)h(t)− [f(t)− f(l)][h(t)− g(t)])♦αt (2.5.16)

≤
∫ b

a

f(t)g(t)♦αt.

In the same way as above, we obtain that

∫ b

a

f(t)g(t)♦αt ≤
∫ γ

a

(f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)])♦αt

(2.5.17)

≤
∫ γ

a

f(t)h(t)♦αt.
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The proof of (2.5.14) is completed by combining (2.5.16) and (2.5.17). The
proof is complete.

As a special case of Theorem 2.5.6, when α = 1 and α = 0, we have the
following results.

Corollary 2.5.3 Let a, b ∈ T
k with a < b and f, g, h : [a, b]T → R be

Δ-integrable functions such that f is of one sign and decreasing and
0 ≤ g(t) ≤ h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that

∫ γ

a

h(t)Δt =

∫ b

a

g(t)Δt =

∫ b

l

h(t)Δt. (2.5.18)

Then ∫ b

l

f(t)h(t)Δt

≤
∫ b

l

(f(t)h(t)− [f(t)− f(l)][h(t)− g(t)])Δt ≤
∫ b

a

f(t)g(t)Δt

≤
∫ γ

a

(f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)])Δt ≤
∫ γ

a

f(t)h(t)Δt.

Corollary 2.5.4 Let a, b ∈ Tk with a < b and f, g, h : [a, b]T → R be
∇-integrable functions such that f is of one sign and decreasing and
0 ≤ g(t) ≤ h(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such that

∫ γ

a

h(t)∇t =

∫ b

a

g(t)∇t =

∫ b

l

h(t)∇t. (2.5.19)

Then ∫ b

l

f(t)h(t)∇t

≤
∫ b

l

(f(t)h(t)− [f(t)− f(l)][h(t)− g(t)])∇t ≤
∫ b

a

f(t)g(t)∇t

≤
∫ γ

a

(f(t)h(t)− [f(t)− f(γ)][h(t)− g(t)])∇t ≤
∫ γ

a

f(t)h(t)∇t.

Theorem 2.5.7 Let a, b ∈ T
k
k with a < b and f, g, h and ϕ : [a, b]T → R

be ♦α-integrable functions such that f is of one sign and decreasing and
0 ≤ ϕ(t) ≤ g(t) ≤ h(t)− ϕ(t) for every t ∈ [a, b]T. Assume l, γ ∈ [a, b]T such
that ∫ γ

a

h(t)♦αt =

∫ b

a

g(t)♦αt =

∫ b

l

h(t)♦αt. (2.5.20)

Then ∫ b

l

f(t)h(t)♦αt+

∫ b

a

|[f(t)− f(l)]ϕ(t)|♦αt

≤
∫ b

a

f(t)g(t)♦αt ≤
∫ γ

a

f(t)h(t)−
∫ γ

a

|[f(t)− f(γ)]ϕ(t)|♦αt. (2.5.21)
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Proof. From the assumption that the function f is decreasing and that

0 ≤ ϕ(t) ≤ g(t) ≤ h(t)− ϕ(t) on [a, b]T,

it follows that

∫ γ

a

[f(t)− f(γ)][h(t)− g(t)]♦αt+

∫ b

γ

[f(γ)− f(t)]g(t)♦αt

=

∫ γ

a

|f(t)− f(γ)| [h(t)− g(t)]♦αt+

∫ b

γ

|f(γ)− f(t)| g(t)♦αt

≥
∫ γ

a

|f(t)− f(γ)|ϕ(t)♦αt+

∫ b

γ

|f(γ)− f(t)|ϕ(t)♦αt

=

∫ b

a

|f(t)− f(γ)|ϕ(t)♦αt. (2.5.22)

Similarly, we find that

∫ l

a

[f(t)− f(l)]g(t)♦αt+

∫ b

l

[f(l)− f(t)][h(t)− g(t)]♦αt

≥
∫ b

a

|f(t)− f(l)|ϕ(t)♦αt. (2.5.23)

By combining the integrals in (2.5.5) and (2.5.6) and the inequalities (2.5.22)
and (2.5.23), we have the inequality (2.5.21). The proof is complete.

2.6 Hermite–Hadamard Inequalities

The Hermite–Hadamard inequality was published in [70]. For the convex
function f : [a, b] → R, the integral of f can be estimated by the inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

We note that the left-hand side of the Hermite–Hadamard inequality is a
special case of the Jensen inequality.

The results in this section are adapted from [26, 63, 64]. First, we begin
with an inequality containing the delta derivative on time scales.

Theorem 2.6.1 Let f : [a, b]T → R be delta differentiable function such that
m ≤ fΔ(t) ≤ M for every t ∈ [a, b]T for some numbers m < M . If there
exist l, γ ∈ [a, b]T such that

γ − a ≤ [f(b)− f(a)−m(b− a)]

M −m
≤ b− l,
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then

mh2(a, b) + (M −m)h2(a, γ) ≤ (b− a)f(b)−
∫ b

a

f(t)Δt

≤ Mh2(a, b) + (m−M)h2(a, l), (2.6.1)

where h(t, s) is defined as in (1.4.5).

Proof. Let

k(t) :=
[f(t)−m(t− b)]

M −m
, F (t) := h1(a, σ(t)),

and

G(t) := kΔ(t) =
[fΔ(t)−m]

M −m
∈ [0, 1].

Clearly F is decreasing and nonpositive, and

∫ b

a

G(t)Δt =
[f(b)− f(a)−m(b− a)]

M −m
∈ [γ − a, b− l].

Note
∫ b

l

F (t)Δt =

∫ b

l

h1(a, σ(t))Δt = − h2(a, t)|bl = −h2(a, b) + h2(a, l),

and ∫ γ

a

F (t)Δt = − h2(a, t)|γa = −h2(a, γ).

Moreover, using the formula for integration by parts for delta integrals, we
see that
∫ b

a

F (t)G(t)Δt =

∫ b

a

F (t)kΔ(t)Δt = h1(a, t)k(t)|ba −
∫ b

a

hΔ
1 (a, t)k(t)Δt

=
1

M −m

[
−(b− a)f(b) +

∫ b

a

f(t)Δt+mh2(a, b)

]
.

Using Steffensen’s inequality for delta integrals, we obtain that

−h2(a, b) + h2(a, l) ≤ 1

M −m

[
−(b− a)f(b) +

∫ b

a

f(t)Δt+mh2(a, b)

]

≤ −h2(a, γ),

which yields the desired inequality (2.6.1). The proof is complete.
Suppose that f is (n + 1) times nabla differentiable on Tκn+1 . Using

Taylor’s Theorem 1.4.4, we define the remainder function by

Ř−1,f (., s) = f(s),
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and for n > −1,

Řn,f (t, s) = f(s)−
n∑

k=0

ĥk(t, s)f
∇k

(s) =

∫ s

t

ĥn(s, ρ(ξ))f
∇n+1

(ξ)∇ξ.

The proof of the next result is by induction (and we omit the proof).

Lemma 2.6.1 Suppose f is (n+1) times nabla differentiable on Tκn+1 . Then

∫ b

a

ĥn+1(t, ρ(s))f
∇n+1

(s)∇s =

∫ t

a

Řn,f (a, s)∇s+

∫ b

t

Řn,f (b, s)∇s.

Corollary 2.6.1 Suppose f is (n + 1) times nabla differentiable on Tκn+1 .
Then

∫ b

a

ĥn+1(a, ρ(s))f
∇n+1

(s)∇s =

∫ b

a

Řn,f (b, s)∇s,

∫ b

a

ĥn+1(b, ρ(s))f
∇n+1

(s)∇s =

∫ b

a

Řn,f (a, s)∇s.

Our next result follows by induction (we leave the details to the reader).

Lemma 2.6.2 Suppose f is (n+1) times delta differentiable on T
κn+1

. Then

∫ b

a

hn+1(t, σ(s))f
Δn+1

(s)Δs =

∫ t

a

Rn,f (a, s)Δs+

∫ b

t

Rn,f (b, s)Δs,

where

Rn,f (t, s) = f(s)−
n∑

j=0

hj(s, t)f
Δj

(t).

Theorem 2.6.2 Let f be an (n+1) times nabla differentiable function such

that f∇n+1

(s) is increasing and f∇n

is monotonic (either increasing or de-
creasing) on [a, b]T. Assume l, γ ∈ [a, b]T such that

b− l ≤ ĥn+2(b, a))

ĥn+1(b, ρ(a))
≤ γ − a, if f∇n

is decreasing,

γ − a ≤ ĥn+2(b, a))

ĥn+1(b, ρ(a))
≤ b− l, if f∇n

is increasing.

Then

f∇n

(γ)− f∇n

(a) ≤
∫ b

a
Řn,f (a, s)∇s

ĥn+1(b, ρ(a))
≤ f∇n

(b)− f∇n

(l). (2.6.2)
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Proof. Assume that f∇n

is decreasing (the case where f∇n

is increasing

is similar and is omitted). Let F = −f∇n+1

. Now, since f∇n

is decreasing,
we have F ≥ 0 and decreasing on [a, b]T. Define

g(t) =
ĥn+1(b, ρ(t))

ĥn+1(b, ρ(a))
∈ [0, 1], for t ∈ [a, b]T and n ≥ −1.

We will apply Steffensen’s inequality (see Theorem 2.5.2). Using the fact
that

ĥ∇
k+1(t, s) = −ĥk(t, ρ(s)), (2.6.3)

we see that

∫ b

a

g(t)∇t =
1

ĥn+1(b, ρ(a))

∫ b

a

ĥn+1(b, ρ(t))∇t =
ĥn+2(b, a))

ĥn+1(b, ρ(a))
.

That is

b− l ≤ ĥn+2(b, a))

ĥn+1(b, ρ(a))
≤ γ − a,

then ∫ b

l

F (t)∇t ≤
∫ b

a

g(t)F (t)∇t ≤
∫ γ

a

F (t)∇t.

By Corollary 2.6.1 this simplifies to

f∇n

(t)
∣∣∣γ
t=a

≤ 1

ĥn+1(b, ρ(a))

∫ b

a

Řn,f (a, s)∇s ≤ f∇n

(t)
∣∣∣γ
t=l

,

which gives the desired inequality (2.6.2). The proof is complete.
It is evident that an analogous result can be found for the delta integral

case using the delta results in Corollary 2.5.1 by putting h(t) = 1. As usual
a twice nabla differentiable function f : [a, b]T → R is convex on [a, b]T if and

only if f∇2 ≥ 0 on [a, b]T.

Corollary 2.6.2 Let f : [a, b]T → R be convex and monotonic. Assume l,
γ ∈ [a, b]T such that

l ≥ b− ĥ2(b, a)

b− ρ(a)
, γ ≥ ĥ2(b, a)

b− ρ(a)
+ a, if f is decreasing,

l ≤ b− ĥ2(b, a)

b− ρ(a)
, γ ≤ ĥ2(b, a)

b− ρ(a)
+ a, if f is increasing.

Then

f(γ) +
ρ(a)− a

b− ρ(a)
f(a) ≤ 1

b− ρ(a)

∫ b

a

f(t)∇t ≤ f(b) +
b− a

b− ρ(a)
f(a)− f(l).
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Another slightly different form of the Hermite–Hadamard inequality is
the following inequality which is given by applying the Steffensen inequality
proved in Theorem 2.5.2.

Theorem 2.6.3 Let f : [a, b]T → R be convex and monotonic. Assume l,
γ ∈ [a, b]T such that

l ≥ a+
ĥ2(b, a)

b− a
, γ ≥ b− ĥ2(b, a)

b− a
, if f is decreasing,

l ≤ a+
ĥ2(b, a)

b− a
, γ ≤ b− ĥ2(b, a)

b− a
, if f is increasing.

Then

f(γ) ≤ 1

b− a

∫ b

a

fρ(t)∇t ≤ f(b) + f(a)− f(l). (2.6.4)

Proof. Assume that f is decreasing and convex. Then f∇2 ≥ 0 and
f∇ ≤ 0. Then F = −f∇ is decreasing and satisfies F ≥ 0. For G(t) = b−t

b−a ,
we see for every t ∈ [a, b] that 0 ≤ G(t) ≤ 1 and F and G satisfy the
hypotheses in Theorem 2.5.2. Now, the inequality

b− l ≤
∫ b

a

G(t)∇t ≤ γ − a,

can be rewritten in the form

b− l ≤ 1

b− a

∫ b

a

(b− t)∇t ≤ γ − a.

We consider the left hand inequality which takes the form

l ≥ b− 1

b− a

∫ b

a

(b− t)∇t = b− 1

b− a

∫ b

a

(b− a+ t− a)∇t,

which simplifies to

l ≥ a+
ĥ2(b, a)

b− a
.

Similarly

γ ≥ b− ĥ2(b, a)

b− a
.

Furthermore, note that
∫ s

r
F (t)∇t = f(r) − f(s), and integrating by parts

yields that

∫ b

a

F (t)G(t)∇t =

∫ b

a

(t− b)

b− a
f∇(t)∇t = f(a)− 1

b− a

∫ b

a

fρ(t)∇t.
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It follows that Steffensen’s inequality takes the form

f(l)− f(b) ≤ f(a)− 1

b− a

∫ b

a

fρ(t)∇t ≤ f(a)− f(γ),

which can be arranged to match the desired inequality (2.6.4). The case
where f is increasing is similar and is omitted. The proof is complete.

Theorem 2.6.4 Let f : [a, b]T → R be an n + 1 times nabla differentiable

function such that m ≤ f∇n+1

(t) ≤ M for every t ∈ [a, b]T for some numbers
m < M . If there exist l, γ ∈ [a, b]T such that

b− l ≤
[
f∇n

(b)− f∇n

(a)−m(b− a)
]

M −m
≤ γ − a,

then

mĥn+2(b, a) + (M −m)ĥn+2(b, l) ≤
∫ b

a

Řn,f (a, t)∇t

≤ Mĥn+2(b, a) + (m−M)ĥn+2(b, γ). (2.6.5)

where ĥn(t, s) is defined as in (1.4.7).

Proof. Let

k(t) =
1

M −m

[
f(t)−mĥn+1(t, a)

]
, F (t) = ĥn+1(b, ρ(t)),

and

G(t) = k∇
n+1

(t) =
1

M −m

[
f∇n+1

(t)−m
]
∈ [0, 1].

Observe that F is nonnegative and decreasing, and

∫ b

a

G(t)∇t =
1

M −m

[
f∇n

(b)− f∇n

(a)−m(b− a)
]
.

Now by (2.6.3), we get that

∫ b

l

F (t)∇t =

∫ b

l

ĥn+1(b, ρ(t))∇t = ĥn+2(b, l),

and ∫ γ

a

F (t)∇t = ĥn+2(b, a)− ĥn+2(b, γ).
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Moreover, using Corollary 2.6.1, we have

∫ b

a

G(t)F (t)∇t ≤ 1

M −m

∫ b

a

ĥn+1(b, ρ(t))
(
f∇n

(t)−m
)
∇t

=
1

M −m

∫ b

a

Řn,f (a, t)∇t+
m

M −m
ĥn+2(b, t)

∣∣∣b
a

=
1

M −m

∫ b

a

Řn,f (a, t)∇t− m

M −m
ĥn+2(b, a).

Using Steffensen’s inequality (2.5.3), we have

ĥn+2(b, l) ≤ 1

M −m

[∫ b

a

Řn,f (a, t)∇t−mĥn+2(b, a)

]

≤ ĥn+2(b, a)− ĥn+2(b, γ),

which yields the desired inequality (2.6.5). The proof is complete.
The following inequality is an inequality of Hermite–Hadamard type for

nabla derivative and is derived from Theorem 2.6.4 with n = 0.

Theorem 2.6.5 Let f : [a, b]T → R be nabla differentiable function such that
m ≤ f∇ ≤ M for every t ∈ [a, b]T for some numbers m < M . If there exist
l, γ ∈ [a, b]T such that

b− l ≤ [f(b)− f(a)−m(b− a)]

M −m
≤ γ − a,

then

mĥ2(b, a) + (M −m)ĥ2(b, l) ≤
∫ b

a

f(t)∇t− (b− a)f(a)

≤ Mĥ2(b, a) + (m−M)ĥ2(b, γ),

where ĥn(t, s) is defined as in (1.4.7).

Next we present some inequalities of Hermite–Hadamard type for
diamond-α derivative on time scales. We start with a few technical lemmas.
The first lemma gives the relation between the integrals of delta, nabla, and
classical integrals on R and we present it without proof.

Lemma 2.6.3 Let f : T → R be a continuous function and a, b ∈ T.

(i) If f is nondecreasing on T, then

(b− a)f(a) ≤
∫ b

a

f(t)Δt ≤
∫ b

a

f̃(t)dt ≤
∫ b

a

f(t)∇t ≤ (b− a)f(b),

where f̃ : R → R is a continuous nondecreasing function such that
f(t) = f̃(t) for all t ∈ T.
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(ii) If f is nonincreasing on T, then

(b− a)f(a) ≥
∫ b

a

f(t)Δt ≥
∫ b

a

f̃(t)dt ≥
∫ b

a

f(t)∇t ≥ (b− a)f(b),

where f̃ : R → R is a continuous nonincreasing function such that
f(t) = f̃(t) for all t ∈ T.

In both cases, there exists an

αT =

∫ b

a
f̃(t)dt− ∫ b

a
f(t)∇t∫ b

a
f(t)Δt− ∫ b

a
f(t)∇t

∈ [0, 1],

such that ∫ b

a

f(t)♦αT
t =

∫ b

a

f̃(t)dt.

Remark 2.6.1 (i). If f is nondecreasing on T, then for α ≤ αT , we have

∫ b

a

f(t)♦αt ≥
∫ b

a

f̃(t)dt,

while if α ≥ αT , we have

∫ b

a

f(t)♦αt ≤
∫ b

a

f̃(t)dt.

(ii). If f is nonincreasing on T, then for α ≤ αT , we have

∫ b

a

f(t)♦αt ≤
∫ b

a

f̃(t)dt,

while if α ≥ αT , we have

∫ b

a

f(t)♦αt ≥
∫ b

a

f̃(t)dt.

(iii) If T = [a, b] or f is a constant, then αT can be any real number from
[0, 1]. Otherwise αT ∈ (0, 1).

Next we present a lemma which gives a relation between the existence of
the delta integral of a linear function and its corresponding nabla integral.

Lemma 2.6.4 Let f : T → R be linear function and let f̃ : [a, b] → R be

the corresponding linear function. If
∫ b

a
f(t)Δt =

∫ b

a
f̃(t)dt−C, with C ∈ R,

then
∫ b

a
f(t)∇t =

∫ b

a
f̃(t)dt+ C.
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Let

xα =
1

b− a

∫ b

a

t♦αt,

and call it the α-center of the time scale interval [a, b]T. Now, we are in a
position to state and prove diamond-α Hermite–Hadamard type inequalities
on time scales.

Theorem 2.6.6 Let T be a time scale and a, b ∈ T. Let f : [a, b]T → R be a
continuous convex function. Then

f(xα) ≤ 1

b− a

∫ b

a

f(t)♦αt ≤ b− xα

b− a
f(a) +

xα − a

b− a
f(b). (2.6.6)

Proof. For every convex function, we have

f(t) ≤ f(a) +
f(b)− f(a)

b− a
(t− a). (2.6.7)

By taking the diamond-α integral we get

∫ b

a

f(t)♦αt ≤
∫ b

a

f(a)♦αt+

∫ b

a

f(b)− f(a)

b− a
(t− a)♦αt

= (b− a)f(a) +
f(b)− f(a)

b− a

(∫ b

a

t♦αt− a(b− a)

)
,

that is
1

b− a

∫ b

a

f(t)♦αt ≤ b− xα

b− a
f(a) +

xα − a

b− a
f(b),

which is the right-hand side of (2.6.6). For the left-hand side, we use Theorem
2.2.5, by taking g(s) = s and F = f to get that

f

(∫ b

a
s♦αs

b− a

)
≤

∫ b

a
f(s)♦αs

b− a
.

Hence, we have

f(xα) ≤ 1

b− a

∫ b

a

f(s)♦αs,

which is the right-hand side of (2.6.6). The proof is complete.

Remark 2.6.2 The right-hand side of the Hermite–Hadamard inequality
(2.6.6) remains true for all 0 ≤ α ≤ λ, including the nabla integral, if
f(b) ≤ f(a) and for all λ ≤ α ≤ 1, including the delta derivative, if
f(b) ≥ f(a), where xλ is the λ-center of the time scale interval [a, b]T.
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Let us suppose that f(b) ≥ f(a). Then by taking the diamond-α integral
of the inequality (2.6.7), we get that

∫ b

a

f(t)♦αt ≤ (b− a)f(a) +
f(b)− f(a)

b− a

(∫ b

a

t♦αt− a(b− a)

)

≤ (b− a)f(a) + (f(b)− f(a)) (xλ − a)

≤ (b− xλ)f(a) + f(b) (xλ − a) .

According to Lemma 2.6.3, the last inequality is true for
∫ b

a
t♦αt ≤

∫ b

a
t♦λt,

that is for α ≥ λ. The same arguments work for λ ≥ α.

Remark 2.6.3 The left-hand side of the Hermite–Hadamard inequality
(2.6.6) remains true for all 0 ≤ α ≤ λ, including the nabla integral, if
f is nonincreasing for all λ ≤ α ≤ 1, including the delta derivative, if f
is nondecreasing

Let us suppose that f is nonincreasing. Then using Theorem 2.2.5, by
taking g(s) = s and F = f, we have

f

(∫ b

a
s♦αs

b− a

)
≤

∫ b

a
f(s)♦αs

b− a
.

For α ≥ λ, we have
∫ b

a
t♦αt ≤

∫ b

a
t♦λt and so

f

(∫ b

a
s♦λs

b− a

)
≤ f

(∫ b

a
s♦αs

b− a

)
≤

∫ b

a
f(s)♦αs

b− a
,

that is

f(xλ) ≤ 1

b− a

∫ b

a

f(s)♦αs.

The same arguments are used to prove the case when f is nondecreasing.

Theorem 2.6.7 Let T be a time scale, α, λ ∈ [0, 1] and a, b ∈ T. Let
f : [a, b]T → R be a continuous convex function. Then

(i). if f is nondecreasing on [a, b]T, then for all α ∈ [0, λ] one has

f(xλ) ≤ 1

b− a

∫ b

a

f(t)♦αt, (2.6.8)

and for all α ∈ [λ, 1], one has

1

b− a

∫ b

a

f(t)♦αt ≤ b− xλ

b− a
f(a) +

xλ − a

b− a
f(b). (2.6.9)
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(ii). if f is nonincreasing on [a, b]T, then for all α ∈ [0, λ] one has the
inequality (2.6.9), and for all α ∈ [λ, 1], one has the inequality (2.6.8).

Now we prove an inequality of Hermite–Hadamard type with a weight
function.

Theorem 2.6.8 Let T be a time scale and a, b ∈ T. Let f : [a, b]T → R be a
continuous convex function and let w : [a, b]T → R be a continuous function

such that w(t) ≥ t for all t ∈ T and
∫ b

a
w(t)♦αt > 0. Then

f(xw,α) ≤ 1∫ b

a
w(t)♦αt

∫ b

a

f(t)w(t)♦αt

≤ b− xw,α

b− a
f(a) +

xw,α − a

b− a
f(b), (2.6.10)

where xw,α =
∫ b

a
tw(t)♦αt/

∫ b

a
w(t)♦αt.

Proof. For the convex function f(t), we have

f(t) ≤ f(a) +
f(b)− f(a)

b− a
(t− a).

Multiplying this inequality by w(t) which is nonnegative, we get after inte-
gration that

∫ b

a

w(t)f(t)♦αt ≤ f(a)

∫ b

a

w(t)♦αt

+
f(b)− f(a)

b− a

[∫ b

a

tw(t)♦αt− a

∫ b

a

w(t)♦αt

]
,

that is

1∫ b

a
w(t)♦αt

∫ b

a

f(t)♦αt ≤ b− xw,α

b− a
f(a) +

xw,α − a

b− a
f(b),

which is the right-hand side of (2.6.10). For the left-hand side, we use Theo-
rem 2.2.6, by taking g(s) = s and h(t) = w(t) and F = f to get that

f

(∫ b

a
w(s)s♦αs∫ b

a
w(s)♦αs

)
≤

∫ b

a
f(s)w(s)♦αs∫ b

a
w(s)s♦αs

.

Hence, we have

f(xw,α) ≤ 1∫ b

a
w(t)♦αt

∫ b

a

w(t)f(t)♦αt,

which is the left-hand side of (2.6.10). The proof is complete.

Remark 2.6.4 If we consider concave functions instead of the convex func-
tions, the inequalities (2.6.6), (2.6.8)–(2.6.10) are reversed.
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2.7 Čebyšev Inequalities

The Čebyšev inequality (see [110]) is given by

∫ b

a

p(x)dx

∫ b

a

p(x)f(x)g(x)dx ≥
∫ b

a

p(x)f(x)dx

∫ b

a

p(x)g(x)dx, (2.7.1)

where f , g : [a, b] → R are integrable functions both increasing or both
decreasing and p : [a, b] → R

+ is an integrable function. If one of the func-
tions f or g is nonincreasing and the other nondecreasing then the inequality
in (2.7.1) is reversed. The special case of (2.7.1), when p = 1 is given by

∫ b

a

f(x)g(x)dx ≥ 1

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx. (2.7.2)

For each of the above inequalities there exists a corresponding discrete ana-
logue. The discrete version of (2.7.1) is given by

n∑
i=1

p(i)

n∑
i=1

p(i)a(i)b(i) ≥
n∑

i=1

p(i)a(i)

n∑
i=1

p(i)g(i), (2.7.3)

where a = (a(1), a(2), . . . , a(n)), b = (b(1), b(2), . . . , b(n)) are two nonde-
creasing (or nonincreasing) sequences and p = (p(1), p(2), . . . , p(n)) is a non-
negative sequence with equality if and only if at least one of the sequences a
or b is constant. The discrete version of (2.7.2) is given by

n∑
i=1

p(i)a(i)b(i) ≥ 1

n

n∑
i=1

a(i)
n∑

i=1

g(i), (2.7.4)

and is also called the discrete Čebyšev’s inequality.

In this section we obtain Čebyšev’s type inequalities on time scales which
as special cases contain the above continuous and discrete inequalities. The
results are adapted from [26, 156].

Theorem 2.7.1 Suppose that p ∈ Crd([a, b]T, [0,∞)). Let f1, f2, k1, k2 ∈
Crd([a, b]T,R) satisfy the following two conditions:

(C1). f2(x)k2(x) > 0 on [a, b]T,

(C2).
f1(x)
f2(x)

and k1(x)
k2(x)

are similarly ordered (or oppositely ordered), that is,

for all x, y ∈ [a, b]T

(
f1(x)

f2(x)
− f1(y)

f2(y)

)(
k1(x)

k2(x)
− k1(y)

k2(y)

)
≥ 0 (or ≤ 0).
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Then

1

2

∫ b

a

∫ b

a

p(x)p(y)

∣∣∣∣ f1(x) f1(y)
f2(x) f2(y)

∣∣∣∣
∣∣∣∣ k1(x) k1(y)
k2(x) k2(y)

∣∣∣∣ΔxΔy

=

∣∣∣∣∣
∫ b

a
p(x)f1(x)k1(x)Δx

∫ b

a
p(x)f1(x)k2(x)Δx∫ b

a
p(x)f2(x)k1(x)Δx

∫ b

a
p(x)f2(x)k2(x)Δx

∣∣∣∣∣ ≥ 0 (≤ 0).

(2.7.5)

Proof. Let x, y ∈ [a, b]T. Then it follows from (C1), (C2) and the identity

p(x)p(y)

∣∣∣∣ f1(x) f1(y)
f2(x) f2(y)

∣∣∣∣
∣∣∣∣ k1(x) k1(y)
k2(x) k2(y)

∣∣∣∣
= p(x)p(y)f2(x)f2(y)k2(x)k2(y)

(
f1(x)

f2(x)
− f1(y)

f2(y)

)(
k1(x)

k2(x)
− k1(y)

k2(y)

)
,

that (2.7.5) holds. The proof is complete.
Putting f1(x) = f(x), k1(x) = g(x) and f2(x) = k2(x) = 1 in Theorem

2.7.1, we have the following delta Čebyšev’s type inequality on time scales.

Corollary 2.7.1 Suppose that p, f , g ∈ Crd([a, b]T,R) with p(x) > 0 on
[a, b]T. Let f(x) and g(x) be similarly ordered (or oppositely ordered). Then

∫ b

a

p(x)Δx

∫ b

a

p(x)f(x)g(x)Δx ≥ (≤)

∫ b

a

p(x)f(x)Δx

∫ b

a

p(x)g(x)Δx.

(2.7.6)

Remark 2.7.1 Let p, γ ∈ Crd([a, b]T, [0,∞)). If f(x) and g(x) are similarly
ordered (or oppositely ordered), then it follows from (2.7.6) that

∫ b

a

p(x)Δx

∫ b

a

p(x)f(γ(x))g(γ(x))Δx

≥ (≤)

∫ b

a

p(x)f(γ(x))Δx

∫ b

a

p(x)g(γ(x))Δx.

Remark 2.7.2 Let p, fi ∈ Crd([a, b]T,R) for i = 1, 2, . . . , n with p(x) > 0
on [a, b]T. Suppose that f1(x), f2(x), . . . , fn(x) are similarly ordered. Then
we have from (2.7.6) that
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(∫ b

a

p(x)Δx

)n−1 ∫ b

a

p(x)(f1(x)f2(x) . . . .fn(x))Δx

=

(∫ b

a

p(x)Δx

)n−2 (∫ b

a

p(x)Δx

)(∫ b

a

p(x)(f1(x)f2(x) . . . .fn(x))Δx

)

≥
(∫ b

a

p(x)Δx

)n−2 (∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)(f2(x) . . . .fn(x))Δx

)

≥
(∫ b

a

p(x)Δx

)n−3 (∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)

×
(∫ b

a

p(x)(f3(x) . . . .fn(x))Δx

)

≥ . . . ≥
(∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn(x)Δx

)
.

This gives us that

(∫ b

a

p(x)Δx

)n−1 ∫ b

a

p(x)(f1(x)f2(x) . . . .fn(x))Δx ≥
(∫ b

a

p(x)f1(x)Δx

)

×
(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn(x)Δx

)
. (2.7.7)

In particular, if f1 = f2 = . . . = fn, then

(∫ b

a

p(x)Δx

)n−1 ∫ b

a

p(x)(fn(x))
nΔx ≥

(∫ b

a

p(x)f(x)Δx

)n

.

Putting f(x) = f1(x)
f2(x)

, g(x) = g1(x)
g2(x)

and p(x) = f2(x)g2(x) in (2.7.6), we

have the following delta Čebyšev’s type inequality on time scales.

Corollary 2.7.2 Suppose that f1, f2, g1, g2 ∈ Crd([a, b]T,R) with f2(x)g2
(x) > 0 on [a, b]T. If f1(x)

f2(x)
and g1(x)

g2(x)
are both increasing or both decreasing,

then∫ b

a

f1(x)g1(x)Δx

∫ b

a

f2(x)g2(x)Δx ≥
∫ b

a

f1(x)g2(x)Δx

∫ b

a

f2(x)g1(x)Δx.

(2.7.8)

If one of f1(x)
f2(x)

or g1(x)
g2(x)

is nonincreasing and the other nondecreasing then the

inequality in (2.7.8) is reversed.

We notice that if f1(x) = f(x)f2(x), g1(x) = g(x)g2(x) and p(x) =
f2(x)g2(x), then the inequality (2.7.8) reduces to the inequality (2.7.6).
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Theorem 2.7.2 Let f ∈ Crd([a, b]T, [0,∞)) be decreasing (or increasing)

with
∫ b

a
xp(x)f(x)Δx > 0 and

∫ b

a
p(x)f(x)Δx > 0. Then

∫ b

a
xp(x)f2(x)Δx∫ b

a
xp(x)f(x)Δx

≥ (≤)

∫ b

a
p(x)f2(x)Δx∫ b

a
p(x)f(x)Δx

. (2.7.9)

Proof. Clearly, for any x, y ∈ [a, b]T,

∫ b

a

∫ b

a

f(x)f(y)p(x)p(y)(y − x)(f(x)− f(y))ΔxΔy ≥ (≤) 0,

which implies inequality (2.7.9). The proof is complete.

Remark 2.7.3 Let f ∈ Crd([a, b]T, [0,∞)) and n be a positive integer. If
p and g are replaced by p/f and fn respectively, then the Čebyšev inequal-
ity (2.7.6) is reduced to the inequality

∫ b

a

p(x) (f(x))
n
Δx

∫ b

a

p(x)

f(x)
Δx ≥

∫ b

a

p(x)Δx

∫ b

a

p(x) (f(x))
n−1

Δx,

which implies that

∫ b

a

p(x) (f(x))
n
Δx

(∫ b

a

p(x)

f(x)
Δx

)2

≥
∫ b

a

p(x)Δx

∫ b

a

p(x) (f(x))
n−1

Δx

∫ b

a

p(x)

f(x)
Δx

≥
(∫ b

a

p(x)Δx

)2 ∫ b

a

p(x) (f(x))
n−2

Δx,

provided f and fn are similarly ordered. Proceeding we get

∫ b

a

p(x) (f(x))
n
Δx

(∫ b

a

p(x)

f(x)
Δx

)n

≥
(∫ b

a

p(x)Δx

)n+1

.

Theorem 2.7.3 If p, f ∈ Crd([a, b]T, [0,∞)) with f(x) > 0 on [a, b]T and n
a positive integer, then

(∫ b

a

p(x)

f(x)
Δx

)n (∫ b

a

p(x)fn(x)Δx

)
≥

(∫ b

a

p(x)Δx

)n

. (2.7.10)



84 CHAPTER 2. BASIC INEQUALITIES

Proof. It follows from f(x) > 0 on [a, b]T that fn(x) and 1/f(x) are
oppositely ordered on [a, b]T. Hence by (2.7.6) we have

∫ b

a

p(x) (f(x))
n
Δx

(∫ b

a

p(x)

f(x)
Δx

)n

≥
∫ b

a

p(x)Δx

(∫ b

a

p(x)

f(x)
Δx

)n−1 ∫ b

a

p(x) (f(x))
n−1

Δx

≥
(∫ b

a

p(x)Δx

)2 (∫ b

a

p(x)

f(x)
Δx

)n−2 ∫ b

a

p(x) (f(x))
n−2

Δx

≥ . . . ≥
(∫ b

a

p(x)Δx

)n

,

which is the desired inequality (2.7.10). The proof is complete.

Theorem 2.7.4 Let g1, g2, . . . , gn ∈ Crd([a, b]T,R) and p, h1, h2, . . . , hn−1 ∈
Crd([a, b]T, [0,∞)) with gn(x) > 0 on [a, b]T. If

g1(x)g2(x) . . . gn−1(x)

h1(x)h2(x) . . . hn−1(x)
and

hn−1(x)

gn(x)
,

are similarly ordered (or oppositely ordered), then∫ b

a

p(x)gn(x)Δx

∫ b

a

p(x)g1(x)g2(x) . . . gn−1(x)

h1(x)h2(x) . . . hn−1(x)
Δx

≥ (≤)

∫ b

a

p(x)hn−1(x)Δx

∫ b

a

p(x)g1(x)g2(x) . . . gn(x)

h1(x)h2(x) . . . hn−1(x)
Δx.

(2.7.11)

Proof. Taking

f1(x) =
g1(x)g2(x) . . . gn−1(x)

h1(x)h2(x) . . . hn−1(x)
, k1(x) = hn−1(x), f2(x) = 1, and k2(x) = gn(x),

in Theorem 2.7.1, we get the desired inequality (2.7.11). The proof is
complete.

Theorem 2.7.5 Let p, f1, f2, . . . , fn ∈ Crd([a, b]T, [0,∞)) and g1, g2, . . . ,
gn ∈ Crd([a, b]T, [0,∞)). If the functions f1,

f2
g1
, . . . , fn

gn−1
are similarly ordered

and for each pair fk
gk−1

, gk−1 is oppositely ordered for k = 2, 3, . . . , n, then

∫ b

a

p(x)f1(x)
f2(x)f3(x) . . . fn(x)

g1(x)g2(x) . . . gn−1(x)
Δx

≥ ∫ b

a
p(x)f1(x)Δx

∫ b

a
p(x)f2(x)Δx . . .

∫ b

a
p(x)fn(x)Δx∫ b

a
p(x)g1(x)Δx

∫ b

a
p(x)g2(x)Δx . . .

∫ b

a
p(x)gn(x)Δx

. (2.7.12)
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Proof. Let f1, f2, . . . , fn be replaced by f1,
f2
g1
, . . . , fn

gn−1
in (2.7.7), and

we obtain

(∫ b

a

p(x)Δx

)n−1 ∫ b

a

p(x)f1(x)
f2(x)f3(x) . . . fn(x)

g1(x)g2(x) . . . gn−1(x)
Δx

≥
(∫ b

a

p(x)f1(x)Δx

)
n∏

k=2

∫ b

a

p(x)
fk(x)

gk−1(x)
Δx. (2.7.13)

Also, since fk
gk−1

, gk−1 is oppositely ordered for k = 2, 3, . . . , n, it follows

from (2.7.6), that

∫ b

a

p(x)Δx

(∫ b

a

p(x)fk(x)Δx

)
≤

(∫ b

a

p(x)gk−1(x)Δx

)∫ b

a

p(x)
fk(x)

gk−1(x)
Δx.

Thus
∫ b

a

p(x)
fk(x)

gk−1(x)
Δx ≥

∫ b

a
p(x)Δx

(∫ b

a
p(x)fk(x)Δx

)
∫ b

a
p(x)gk−1(x)Δx.

This and (2.7.13) imply (2.7.12). The proof is complete.

Theorem 2.7.6 Let p, f1, f2, . . . , fn ∈ Crd([a, b]T, [0,∞)) and k1, k2, . . . ,
kn−1 ∈ Crd([a, b]T,R). If

f1(x)f2(x) . . . fi−1(x)

k1(x)k2(x) . . . ki−1(x)
and

ki−1(x)

fi(x)
,

are similarly ordered (or oppositely ordered) for i = 2, 3, .., n, then

(∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn(x)Δx

)

≥ (≤)

(∫ b

a

p(x)k1(x)Δx

)(∫ b

a

p(x)k2(x)Δx

)
. . .

(∫ b

a

p(x)kn−1(x)Δx

)

×
∫ b

a

p(x)
f1(x)f2(x) . . . fn(x)

k1(x)k2(x) . . . kn−1(x)
Δx. (2.7.14)

Proof. If f1(x), k1(x), f2(x) and k2(x) are replaced by f1(x), 1, k1(x),
f2(x)
k1(x)

in Theorem 2.7.1, then we obtain

∫ b

a

p(x)f1(x)Δx

∫ b

a

p(x)f2(x)Δx ≥ (≤)

∫ b

a

p(x)k1(x)Δx

∫ b

a

p(x)
f1(x)f2(x)

k1(x)
Δx.
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Thus the theorem holds for n = 2. Suppose that the theorem holds for n−1,
that is

(∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn−1(x)Δx

)

≥ (≤)

(∫ b

a

p(x)k1(x)Δx

)(∫ b

a

p(x)k2(x)Δx

)
. . .

(∫ b

a

p(x)kn−2(x)Δx

)

×
∫ b

a

p(x)
f1(x)f2(x) . . . fn−1(x)

k1(x)k2(x) . . . kn−2(x)
Δx, (2.7.15)

if

f1(x)f2(x) . . . fi−1(x)

k1(x)k2(x) . . . ki−1(x)
and

ki−1(x)

fi(x)
,

are similarly ordered (or oppositely ordered) for i = 2, 3, .., n−1. Multiplying

both sides of (2.7.15) by
∫ b

a
p(x)fn(x)Δx, we get that

∫ b

a

p(x)f1(x)Δx

∫ b

a

p(x)f2(x)Δx . . .

∫ b

a

p(x)fn−1(x)Δx

∫ b

a

p(x)fn(x)Δx

≥ (≤)

(∫ b

a

p(x)k1(x)Δx

)(∫ b

a

p(x)k2(x)Δx

)
. . .

(∫ b

a

p(x)kn−2(x)Δx

)

×
∫ b

a

p(x)
f1(x)f2(x) . . . fn−1(x)

k1(x)k2(x) . . . kn−2(x)
Δx

∫ b

a

p(x)fn(x)Δx. (2.7.16)

It follows from Theorem 2.7.5 that

∫ b

a

p(x)
f1(x)f2(x) . . . fn−1(x)

k1(x)k2(x) . . . kn−2(x)
Δx

∫ b

a

p(x)fn(x)Δx

≥ (≤)

∫ b

a

p(x)
f1(x)f2(x) . . . fn(x)

k1(x)k2(x) . . . kn−1(x)
Δx

∫ b

a

p(x)kn−1(x)Δx.

This and (2.7.16) imply

∫ b

a

p(x)f1(x)Δx

∫ b

a

p(x)f2(x)Δx . . .

∫ b

a

p(x)fn−1(x)Δx

∫ b

a

p(x)fn(x)Δx

≥ (≤)

(∫ b

a

p(x)k1(x)Δx

)(∫ b

a

p(x)k2(x)Δx

)
. . .

(∫ b

a

p(x)kn−1(x)Δx

)

×
∫ b

a

p(x)
f1(x)f2(x) . . . fn(x)

k1(x)k2(x) . . . kn−1(x)
Δx.

Then, by induction we have the desired inequality (2.7.14). The proof is
complete.
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Remark 2.7.4 Let kn ∈ Crd([a, b]T,R). If f1(x), f2(x), . . . , fn(x) and
k1(x), k2(x)., . . . , kn−1(x) are replaced by f1(x)f2(x) . . . fn(x), k1(x)k2(x) . . .
kn(x), f1(x)k2(x) . . . kn(x), k1(x)f2(x)k3(x) . . . kn(x), . . ., k1(x)k2(x) . . .
kn−2(x)fn−1(x)kn(x) in Theorem 2.7.6, respectively, then

∫ b

a

p(x)f1(x)f2(x) . . . fn(x)Δx

(∫ b

a

p(x)k1(x)k2(x) . . . kn(x)Δx

)−1

≥
(∫ b

a

p(x)f1(x)k2(x) . . . kn(x)Δx

)(∫ b

a

p(x)k1(x)f2(x)k3(x) . . . kn(x)Δx

)

. . .

∫ b

a

p(x)k1(x)k2(x) . . . kn−1(x)fn(x)Δx, (2.7.17)

if fi(x)
ki(x)

> 0 for i = 1, 2, . . . , n and k1(x)k2(x) . . . kn−1(x) > 0 on [a, b]T.

Remark 2.7.5 Letting f1(x) = f2(x) = . . . = fn(x) = f(x) and k1(x) =

k2(x) = . . . = kn(x) = k
1

n−1 (x) in (2.7.17) with k(x) > 0 on [a, b]T, we
obtain a Hölder type inequality on time scales

(∫ b

a

p(x)f(x)k(x)Δx

)n

≤
∫ b

a

p(x) (f(x))
n
Δx

(∫ b

a

p(x)k
n

n−1 (x)Δx

)n−1

.

Remark 2.7.6 Let p, f, g ∈ Crd([a, b]T, [0,∞)). Putting f1(x) = (f(x))n

g(x), f2(x) = f3(x) = . . . = fn(x) = g(x), and k1(x) = k2(x) = . . . =
kn−1(x) = f(x)g(x) in (2.7.14), we see that

(∫ b

a

p(x)f(x)g(x)Δx

)n

≤
∫ b

a

p(x) (f(x))
n
g(x)Δx

(∫ b

a

p(x)g(x)Δx

)n−1

.

Remark 2.7.7 Taking k1(x) = k2(x) = . . . = kn−1(x) = (f1(x)f2(x) . . .

fn(x))
1
n in (2.7.14), we obtain

(∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn(x)Δx

)

≥
(∫ b

a

p(x) (f1(x)f2(x) . . . fn(x))
1
n Δx

)n

,

if fi > 0 on [a, b]T and 1
fi(x)

(f1(x)f2(x) . . . fn(x))
1
n (i = 1, 2, . . . , n) are

similarly ordered.
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Remark 2.7.8 Taking k1(x) = k2(x) = . . . = kn−1(x) = 1 in (2.7.14), we
get the Čebyšev type inequality(∫ b

a

p(x)f1(x)Δx

)(∫ b

a

p(x)f2(x)Δx

)
. . .

(∫ b

a

p(x)fn(x)Δx

)

≤
(∫ b

a

p(x)Δx

)n−1 ∫ b

a

p(x)f1(x)f2(x) . . . fn(x)Δx,

if fi > 0 on [a, b]T and fi(x) (i = 1, 2, . . . , n) are similarly ordered.

We end this section by considering the Čebyšev inequality in the case of
nabla integrals; see [26].

Theorem 2.7.7 Let f and g be both increasing or both decreasing in [a, b]T.
Then ∫ b

a

f(t)g(t)∇t ≥ 1

b− a

∫ b

a

f(t)∇t

∫ b

a

g(t)∇t. (2.7.18)

If one of the functions is increasing and the other is decreasing, then the
inequality is reversed.

Now, we give some applications of Theorem 2.7.7.

Theorem 2.7.8 Assume that f∇n+1

is monotonic on [a, b]T and let

Řn,f (t, s) = f(s)−
n∑

k=0

ĥk(t, s)f
∇k

(s) =

∫ s

t

ĥn(s, ρ(ξ))f
∇n+1

(ξ)∇ξ.

(i). If f∇n+1

is increasing, then

∫ b

a

Řn,f (a, t)∇t−
[
f∇n

(b)− f∇n

(a)

b− a

]
ĥn+2(b, a)

≥
[
f∇n+1

(a)− f∇n+1

(b)
]
ĥn+2(b, a). (2.7.19)

(ii). If f∇n+1

is decreasing, then

∫ b

a

Řn,f (a, t)∇t−
[
f∇n

(b)− f∇n

(a)

b− a

]
ĥn+2(b, a)

≤
[
f∇n+1

(a)− f∇n+1

(b)
]
ĥn+2(b, a).

Proof. The proof of (ii) is analogous to that of (i) so we will just consider

(i). Let F (t) = f∇n+1

(t) and G(t) = ĥn(b, ρ(t)). Then F is increasing and G
is decreasing by assumption. From inequality (2.7.18), we see that

∫ b

a

F (t)G(t)∇t ≤ 1

b− a

∫ b

a

F (t)∇t

∫ b

a

G(t)∇t. (2.7.20)
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By Corollary 2.6.1, we see that

∫ b

a

F (t)G(t)∇t =

∫ b

a

ĥn+1(b, ρ(t))f
∇n+1

(t)∇t =

∫ b

a

Řn,f (a, t)∇t.

We also have∫ b

a

F (t)∇t = f∇n

(b)−f∇n

(a), and

∫ b

a

G(t)∇t =

∫ b

a

ĥn+1(b, ρ(t))∇t = ĥn+2(b, a).

Thus the inequality (2.7.20) implies that
∫ b

a

Řn,f (a, t)∇t ≤ 1

b− a

(
f∇n

(b)− f∇n

(a)
)
ĥn+2(b, a).

Since f∇n+1

is increasing on [a, b]T,

f∇n+1

(a)ĥn+2(b, a) ≤ 1

b− a

(
f∇n

(b)− f∇n

(a)
)
ĥn+2(b, a)

≤ f∇n+1

(b)ĥn+2(b, a),

and, we have

∫ b

a

Řn,f (a, t)∇t− 1

b− a

(
f∇n

(b)− f∇n

(a)
)
ĥn+2(b, a)

≥
∫ b

a

Řn,f (a, t)∇t− f∇n+1

(b)ĥn+2(b, a).

Now Corollary 2.6.1 and f∇n+1

is increasing imply that

f∇
n+1

(b)

∫ b

a

ĥn+1(b, ρ(t))∇t ≥
∫ b

a

Řn,f (a, t)∇t ≥ f∇
n+1

(a)

∫ b

a

ĥn+1(b, ρ(t))∇t,

which simplifies to

f∇n+1

(b)ĥn+2(b, a) ≥
∫ b

a

Řn,f (a, t)∇t ≥ f∇n+1

(a)

∫ b

a

ĥn+2(b, a)∇t.

We now have inequality (2.7.19). The proof is complete.

Theorem 2.7.9 Assume that f∇n+1

is monotonic on [a, b]T.

(i) If fΔn+1

is increasing, then

0 ≤ (−1)n+1

∫ b

a

Rn,f (b, t)Δt−
[
fΔn

(b)− fΔn

(a)

b− a

]
gn+2(b, a)

≤
[
fΔn+1

(b)− fΔn+1

(a)
]
gn+2(b, a). (2.7.21)
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(ii). If fΔn+1

is decreasing, then

0 ≥ (−1)n+1

∫ b

a

Rn,f (b, t)∇t−
[
fΔn

(b)− fΔn

(a)

b− a

]
gn+2(b, a)

≥
[
fΔn+1

(b)− fΔn+1

(a)
]
gn+2(b, a).

Proof. The proof of (ii) is analogous to that of (i) so we only consider

(i). Let F (t) = fΔn+1

(t) and G(t) = (−1)n+1hn+1(a, σ(t)). Then F and G
are increasing. Inequality (2.7.6) with p = 1, f = F and g = G, gives

∫ b

a

F (t)G(t)Δt ≥ 1

b− a

∫ b

a

F (t)Δt

∫ b

a

G(t)Δt. (2.7.22)

By Lemma 2.6.2 with t = a,

∫ b

a

F (t)G(t)Δt = (−1)n+1

∫ b

a

hn+1(a, σ(t))f
Δn+1

(t)Δt

= (−1)n+1

∫ b

a

Rn,f (b, t)Δt.

We also have
∫ b

a
F (t)Δt = fΔn

(b)− fΔn

(b) and

∫ b

a

G(t)Δt = (−1)n+1

∫ b

a

hn+1(a, σ(t))Δt = gn+2(b, a).

Thus by (2.7.22), we have

0 ≤ (−1)n+1

∫ b

a

Rn,f (b, t)Δt− 1

b− a

[
fΔn

(b)− fΔn

(b)
]
gn+2(b, a).

Since fΔn+1

is increasing on [a, b]T,

fΔ
n+1

(a)gn+2(b, a) ≤ 1

b− a

[
fΔ

n

(b)− fΔ
n

(b)
]
gn+2(b, a) ≤ fΔ

n+1

(b)gn+2(b, a),

and we have

(−1)n+1

∫ b

a

Rn,f (b, t)Δt− fΔn+1

(a)gn+2(b, a)

≥ (−1)n+1

∫ b

a

Rn,f (b, t)Δt−
[
fΔn

(b)− fΔn

(b)
]

b− a
gn+2(b, a).

Now, from Definition 1.4.1, since

gn(t, s) = (−1)nhn(s, t),
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we have by Lemma 2.6.2 with t = a that

(−1)n+1

∫ b

a

Rn,f (b, t)Δt =

∫ b

a

gn+1(σ(t), a)f
Δn+1

(t)Δt.

Since fΔn+1

is increasing, we get that

fΔn+1

(b)

∫ b

a

gn+1(σ(t), a)Δt ≥ (−1)n+1

∫ b

a

Rn,f (b, t)Δt

≥ fΔn+1

(a)

∫ b

a

gn+1(σ(t), a)Δt

which simplifies to

fΔn+1

(b)gn+1(b, a) ≥ (−1)n+1

∫ b

a

Rn,f (b, t)Δt ≥ fΔn+1

(a)gn+2(b, a).

We now have (2.7.21). The proof is complete.

Remark 2.7.9 In Theorem 2.7.8 (i), if n = 0, we obtain

∫ b

a

f(t)∇t ≤ (b− a)f(a) +
ĥ2(b, a)

b− a
(f(b)− f(a)). (2.7.23)

Theorem 2.7.10 Assume that f is nabla convex on [a, b]T, that is, f
∇2 ≥ 0

on [a, b]T. Then

∫ b

a

fρ(t)(t− a)∇t ≤ (b− a)f(b)− ĥ2(b, a)

b− a
(f(b)− f(a)). (2.7.24)

Proof. If F = f∇ and G = t − a = ĥ1(t, a), then both F and G are
increasing functions. By Čebyšev’s inequality we see that

∫ b

a

fρ(t)(t− a)∇t ≥ 1

b− a

∫ b

a

f∇(t)∇t

∫ b

a

ĥ1(t, a)∇t.

Using nabla integration by parts on the left-hand side we get the desired
inequality (2.7.24). The proof is complete.

The following result is a Hermite–Hadamard type inequality for time
scales and is obtained by a combination of (2.7.23) and (2.7.24).

Corollary 2.7.3 Let f be nabla convex on [a, b]T. Then

1

b− a

∫ b

a

fρ(t) + f(t)

2
∇t ≤ f(a) + f(b)

2
.
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