
Chapter 2

Integer Programming Models

The importance of integer programming stems from the fact that it can
be used to model a vast array of problems arising from the most disparate
areas, ranging from practical ones (scheduling, allocation of resources, etc.)
to questions in set theory, graph theory, or number theory. We present here
a selection of integer programming models, several of which will be further
investigated later in this book.

2.1 The Knapsack Problem

We are given a knapsack that can carry a maximum weight b and there are
n types of items that we could take, where an item of type i has weight
ai > 0. We want to load the knapsack with items (possibly several items of
the same type) without exceeding the knapsack capacity b. To model this,
let a variable xi represent the number of items of type i to be loaded. Then
the knapsack set

S :=

{
x ∈ Z

n :
n∑

i=1

aixi ≤ b, x ≥ 0

}

contains precisely all the feasible loads.
If an item of type i has value ci, the problem of loading the knapsack so

as to maximize the total value of the load is called the knapsack problem.
It can be modeled as follows:

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 2

45

46 CHAPTER 2. INTEGER PROGRAMMING MODELS

max

{
n∑

i=1

cixi : x ∈ S

}
.

If only one unit of each item type can be selected, we use binary variables
instead of general integers. The 0, 1 knapsack set

K :=

{
x ∈ {0, 1}n :

n∑
i=1

aixi ≤ b

}

can be used to model the 0, 1 knapsack problem max{cx : x ∈ K}.

2.2 Comparing Formulations

Given scalars b > 0 and aj > 0 for j = 1, . . . , n, consider the 0, 1 knapsack
set K := {x ∈ {0, 1}n :

∑n
i=1 aixi ≤ b}. A subset C of indices is a cover

for K if
∑

i∈C ai > b and it is a minimal cover if
∑

i∈C\{j} ai ≤ b for every
j ∈ C. That is, C is a cover if the knapsack cannot contain all items in C,
and it is minimal if every proper subset of C can be loaded. Consider the set

KC :=

{
x ∈ {0, 1}n :

∑
i∈C

xi ≤ |C| − 1 for every minimal cover C for K

}
.

Proposition 2.1. The sets K and KC coincide.

Proof. It suffices to show that (i) if C is a minimal cover of K, the inequality∑
i∈C xi ≤ |C| − 1 is valid for K and (ii) the inequality

∑n
i=1 aixi ≤ b is

valid for KC . The first statement follows from the fact that the knapsack
cannot contain all the items in a minimal cover.

Let x̄ be a vector inKC and let J := {j : x̄j = 1}. Suppose
∑n

i=1 aix̄i > b
or equivalently

∑
i∈J ai > b. Let C be a minimal subset of J such that∑

i∈C ai > b. Then obviously C is a minimal cover and
∑

i∈C x̄i = |C|. This
contradicts the assumption x̄ ∈ KC and the second statement is proved.

So the 0, 1 knapsack problem max{cx : x ∈ K} can also be formulated
as max{cx : x ∈ KC}. The constraints that defineK andKC look quite dif-
ferent. The set K is defined by a single inequality with nonnegative integer
coefficients whereas KC is defined by many inequalities (their number may
be exponential in n) whose coefficients are 0, 1. Which of the two formu-
lations is “better”? This question has great computational relevance and

2.2. COMPARING FORMULATIONS 47

the answer depends on the method used to solve the problem. In this book
we focus on algorithms based on linear programming relaxations (remember
Sect. 1.2) and for these algorithms, the answer can be stated as follows:

Assume that {(x, y) : A1x + G1y ≤ b1, x integral} and {(x, y) : A2x +
G2y ≤ b2, x integral} represent the same mixed integer set S and consider
their linear relaxations P1 = {(x, y) : A1x + G1y ≤ b1}, P2 = {(x, y) :
A2x + G2y ≤ b2}. If P1 ⊂ P2 the first representation is better. If P1 = P2

the two representations are equivalent and if P1 \ P2 and P2 \ P1 are both
nonempty, the two representations are incomparable.

Next we discuss how to compare the two linear relaxations P1 and P2.
If, for every inequality a2x+ g2y ≤ β2 in A2x+G2y ≤ b2, the system

uA1 = a2, uG1 = g2, ub1 ≤ β2, u ≥ 0

admits a solution u ∈ R
m, where m is the number of components of b1, then

every inequality defining P2 is implied by the set of inequalities that define
P1 and therefore P1 ⊆ P2. Indeed, every point in P1 satisfies the inequality
(uA1)x+(uG1)y ≤ ub1 for every nonnegative u ∈ R

m; so in particular every
point in P1 satisfies a2x+ g2y ≤ β2 whenever u satisfies the above system.

Farkas’s lemma, an important result that will be proved in Chap. 3,
implies that the converse is also true if P1 is nonempty. That is

Assume P1 �= ∅. P1 ⊆ P2 if and only if for every inequality
a2x+ g2y ≤ β2 in A2x+G2y ≤ b2 the system uA1 = a2, uG1 =
g2, ub1 ≤ β2, u ≥ 0 is feasible.

This fact is of fundamental importance in comparing the tightness of differ-
ent linear relaxations of a mixed integer set. These conditions can be checked
by solving linear programs, one for each inequality in A2x+G2y ≤ b2.

We conclude this section with two examples of 0, 1 knapsack sets, one
where the minimal cover formulation is better than the knapsack formulation
and another where the reverse holds. Consider the following 0, 1 knapsack
set

K := {x ∈ {0, 1}3 : 3x1 + 3x2 + 3x3 ≤ 5}.

Its minimal cover formulation is

KC :=

⎧⎨
⎩x ∈ {0, 1}3 :

x1 +x2 ≤ 1
x1 +x3 ≤ 1

x2 +x3 ≤ 1

⎫⎬
⎭ .

48 CHAPTER 2. INTEGER PROGRAMMING MODELS

The corresponding linear relaxations are the sets

P := {x ∈ [0, 1]3 : 3x1 + 3x2 + 3x3 ≤ 5}, and

PC :=

⎧⎨
⎩x ∈ [0, 1]3 :

x1 +x2 ≤ 1
x1 +x3 ≤ 1

x2 +x3 ≤ 1

⎫⎬
⎭ .

respectively. By summing up the three inequalities in PC we get

2x1 + 2x2 + 2x3 ≤ 3

which implies 3x1 + 3x2 + 3x3 ≤ 5. Thus PC ⊆ P . The inclusion is strict
since, for instance (1, 23 , 0) ∈ P \ PC . In other words, the minimal cover
formulation is strictly better than the knapsack formulation in this case.

Now consider a slightly modified example. The knapsack set K := {x ∈
{0, 1}3 : x1 + x2 + x3 ≤ 1} has the same minimal cover formulation KC as
above, but this time the inclusion is reversed: We have P := {x ∈ [0, 1]3 :
x1+x2+x3 ≤ 1} ⊆ PC . Furthermore (12 ,

1
2 ,

1
2) ∈ PC \P . In other words, the

knapsack formulation is strictly better than the minimal cover formulation
in this case.

One can also construct examples where neither formulation is better
(Exercise 2.2). In Sect. 7.2.1 we will show how to improve minimal cover
inequalities through a procedure called lifting.

2.3 Cutting Stock: Formulations with Many

Variables

A paper mill produces large rolls of paper of width W , which are then cut
into rolls of various smaller widths in order to meet demand. Let m be
the number of different widths that the mill produces. The mill receives an
order for bi rolls of width wi for i = 1, . . . ,m, where wi ≤ W . How many of
the large rolls are needed to meet the order?

To formulate this problem, we may assume that an upper bound p is
known on the number of large rolls to be used. We introduce variables
j = 1, . . . , n, which take value 1 if large roll j is used and 0 otherwise.
Variables zij , i = 1, . . . ,m, j = 1, . . . , p, indicate the number of small rolls
of width wi to be cut out of roll j. Using these variables, one can formulate
the cutting stock problem as follows:

2.3. CUTTING STOCK: FORMULATIONS WITH MANY. . . 49

min

p∑
j=1

yj

m∑
i=1

wizij ≤ Wyj j = 1, . . . , p

p∑
j=1

zij ≥ bi i = 1, . . . ,m

yj ∈ {0, 1} j = 1, . . . , p
zij ∈ Z+ i = 1, . . . ,m, j = 1, . . . , p.

(2.1)

The first set of constraints ensures that the sum of the widths of the
small rolls cut out of a large roll does not exceed W , and that a large roll
is used whenever a small roll is cut out of it. The second set ensures that
the numbers of small rolls that are cut meets the demands. Computational
experience shows that this is not a strong formulation: The bound provided
by the linear programming relaxation is rather distant from the optimal
integer value.

A better formulation is needed. Let us consider all the possible different
cutting patterns. Each pattern is represented by a vector s ∈ Z

m where
component i represents the number of rolls of width wi cut out of the big
roll. The set of cutting patterns is therefore S := {s ∈ Z

n :
∑m

i=1 wisi ≤
W, s ≥ 0}. Note that S is a knapsack set. For example, if W = 5, and the
order has rolls of 3 different widths w1 = 2.1, w2 = 1.8 and w3 = 1.5, a

possible cutting pattern consists of 3 rolls of width 1.5, i.e.,

⎛
⎝
0
0
3

⎞
⎠, another

consists of one roll of width 2.1 and one of width 1.8, i.e.,

⎛
⎝
1
1
0

⎞
⎠, etc.

If we introduce integer variables xs representing the number of rolls cut
according to pattern s ∈ S, the cutting stock problem can be formulated as

min
∑
s∈S

xs

∑
s∈S

sixs ≥ bi i = 1, . . . ,m

x ≥ 0 integral.

(2.2)

50 CHAPTER 2. INTEGER PROGRAMMING MODELS

This is an integer programming formulation in which the columns of the
constraint matrix are all the feasible solutions of a knapsack set. The number
of these columns (i.e., the number of possible patterns) is typically enormous,
but this is a strong formulation in the sense that the bound provided by
the linear programming relaxation is usually close to the optimal value of
the integer program. A good solution to the integer program can typically
be obtained by simply rounding the linear programming solution. How-
ever, solving the linear programming relaxation of (2.2) is challenging. This
is best done using column generation, as first proposed by Gilmore and
Gomory [168]. We briefly outline this technique here. We will return to it in
Sect. 8.2.2. We suggest that readers not familiar with linear programming
duality (which will be discussed later in Sect. 3.3) skip directly to Sect. 2.4.

The dual of the linear programming relaxation of (2.2) is:

max

m∑
i=1

biui

m∑
i=1

siui ≤ 1 s ∈ S

u ≥ 0.

(2.3)

Let S ′ be a subset of S, and consider the cutting stock problem (2.2)
restricted to the variables indexed by S ′. The dual is the problem defined
by the inequalities from (2.3) indexed by S ′. Let x̄, ū be optimal solutions
to the linear programming relaxations of (2.2) and (2.3) restricted to S ′. By
setting x̄s = 0, s ∈ S \ S ′, x̄ can be extended to a feasible solution of the
linear relaxation of (2.2). By strong duality x̄ is an optimal solution of the
linear relaxation of (2.2) if ū provides a feasible solution to (2.3) (defined
over S). The solution ū is feasible for (2.3) if and only if

∑m
i=1 siūi ≤ 1 for

every s ∈ S or equivalently if and only if the value of the following knapsack
problem is at most equal to 1.

max{
m∑
i=1

ūisi : s ∈ S}

If the value of this knapsack problem exceeds 1, let s∗ be an optimal solution.
Then s∗ corresponds to a constraint of (2.3) that is most violated by ū, and
s∗ is added to S ′, thus enlarging the set of candidate patterns.

This is the column generation scheme, where variables of a linear program
with exponentially many variables are generated on the fly when strong
duality is violated, by solving an optimization problem (knapsack, in our
case).

2.4. PACKING, COVERING, PARTITIONING 51

2.4 Packing, Covering, Partitioning

Let E := {1, . . . , n} be a finite set and F := {F1, . . . , Fm} a family of subsets
of E. A set S ⊆ E is said to be a packing, partitioning or covering of the
family F if S intersects each member of F at most once, exactly once, or
at least once, respectively. Representing a set S ⊆ E by its characteristic
vector xS ∈ {0, 1}n, i.e., xSj = 1 if j ∈ S, and xSj = 0 otherwise, the families
of packing, partitioning and covering sets have the following formulations.

SP := {x ∈ {0, 1}n :
∑

j∈Fi
xj ≤ 1,∀Fi ∈ F},

ST := {x ∈ {0, 1}n :
∑

j∈Fi
xj = 1,∀Fi ∈ F},

SC := {x ∈ {0, 1}n :
∑

j∈Fi
xj ≥ 1,∀Fi ∈ F}.

Given weights wj on the elements j = 1, . . . , n, the set packing problem is
max{

∑n
j=1wjxj : x ∈ SP }, the set partitioning problem is min{

∑n
j=1wjxj :

x ∈ ST }, and the set covering problem is min{
∑n

j=1wjxj : x ∈ SC}.
Given E := {1, . . . , n} and a family F := {F1, . . . , Fm} of subsets of E,

the incidence matrix of F is them×n 0, 1 matrix in which aij = 1 if and only
if j ∈ Fi. Then SP = {x ∈ {0, 1}n : Ax ≤ 1}, where 1 denotes the column
vector in R

m all of whose components are equal to 1. Similarly the sets ST ,
SC can be expressed in terms of A. Conversely, given any 0,1 matrix A,
one can define a set packing family SP (A) := {x ∈ {0, 1}n : Ax ≤ 1}. The
families ST (A), SC(A) are defined similarly.

Numerous practical problems and several problems in combinatorics and
graph theory can be formulated as set packing or covering. We illustrate
some of them.

2.4.1 Set Packing and Stable Sets

Let G = (V,E) be an undirected graph and let n := |V |. A stable set in G is
a set of nodes no two of which are adjacent. Therefore S ⊆ V is a stable set if
and only if its characteristic vector x ∈ {0, 1}n satisfies xi+xj ≤ 1 for every
edge ij ∈ E. If we consider E as a family of subsets of V , the characteristic
vectors of the stable sets in G form a set packing family, namely

stab(G) := {x ∈ {0, 1}n : xi + xj ≤ 1 for all ij ∈ E}.

We now show the converse: Every set packing family is the family of
characteristic vectors of the stable sets of some graph. Given an m × n
0, 1 matrix A, the intersection graph of A is an undirected simple graph

52 CHAPTER 2. INTEGER PROGRAMMING MODELS

GA = (V,E) on n nodes, corresponding to the columns of A. Two nodes
u, v are adjacent in GA if and only if aiu = aiv = 1 for some row index i,
1 ≤ i ≤ m. In Fig. 2.1 we show a matrix A and its intersection graph.

A :=

1 1 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 1 0 1 0

1
2

3

4

5

Figure 2.1: A 0, 1 matrix A and its intersection graph GA

We have SP (A) = stab(GA) since a vector x ∈ {0, 1}n is in SP (A) if and
only if xj + xk ≤ 1 whenever aij = aik = 1 for some row i.

All modern integer programming solvers use intersection graphs to model
logical conditions among the binary variables of integer programming formu-
lations. Nodes are often introduced for the complement of binary variables
as well: This is useful to model conditions such as xi ≤ xj, which can be
reformulated in set packing form as xi + (1 − xj) ≤ 1. In this context,
the intersection graph is called a conflict graph. We refer to the paper of
Atamtürk, Nemhauser, and Savelsbergh [16] for the use of conflict graphs
in integer programming. This paper stresses the practical importance of
strengthening set packing formulations.

2.4.2 Strengthening Set Packing Formulations

Given a 0, 1 matrix A, the correspondence between SP (A) and stab(GA)
can be used to strengthen the formulation {x ∈ {0, 1}n : Ax ≤ 1}.

A clique in a graph is a set of pairwise adjacent nodes. Since a clique K
in GA intersects any stable set in at most one node, the inequality

∑
j∈K

xj ≤ 1

is valid for SP (A) = stab(GA). This inequality is called a clique inequality.
Conversely, given Q ⊆ V , if

∑
j∈Q xj ≤ 1 is a valid inequality for stab(GA),

then every pair of nodes in Q must be adjacent, that is, Q is a clique of GA.
A clique is maximal if it is not properly contained in any other clique.

Note that, given two cliques K, K ′ in GA such that K ⊂ K ′, inequality∑
j∈K xj ≤ 1 is implied by the inequalities

∑
j∈K ′ xj ≤ 1 and xj ≥ 0,

j ∈ K ′ \K.

2.4. PACKING, COVERING, PARTITIONING 53

On the other hand, the following argument shows that no maximal clique
inequality is implied by the other clique inequalities and the constraints
0 ≤ xj ≤ 1. Let K be a maximal clique of GA. We will exhibit a point
x̄ ∈ [0, 1]V that satisfies all clique inequalities except for the one relative
to K. Let x̄j := 1

|K|−1 for all j ∈ K and x̄j := 0 otherwise. Since K is a

maximal clique, every other clique K ′ intersects it in at most |K|− 1 nodes,
therefore

∑
j∈K ′ x̄j ≤ 1. On the other hand,

∑
j∈K x̄j = 1 + 1

|K|−1 > 1. We
have shown the following.

Theorem 2.2. Given an m× n 0, 1 matrix A, let K be the collection of all
maximal cliques of its intersection graph GA. The strongest formulation for
SP (A) = stab(GA) that only involves set packing constraints is

{x ∈ {0, 1}n :
∑
j∈K

xj ≤ 1,∀K ∈ K}.

Example 2.3. In the example of Fig. 2.1, the inequalities x2+x3+x4 ≤ 1
and x2 + x4 + x5 ≤ 1 are clique inequalities relative to the cliques {2, 3, 4}
and {2, 4, 5} in GA. Note that the point (0, 1/2, 1/2, 1/2, 0) satisfies Ax ≤ 1,
0 ≤ x ≤ 1 but violates x2 + x3 + x4 ≤ 1. A better formulation of Ax ≤ 1,
x ∈ {0, 1}n is obtained by replacing the constraint matrix A by the maximal
clique versus node incidence matrix Ac of the intersection graph of A. For

the example of Fig. 2.1, Ac :=

⎛
⎝

1 1 0 0 1
0 1 1 1 0
0 1 0 1 1

⎞
⎠. The reader can verify

that this formulation is perfect, as defined in Sect. 1.4. �
Note that the strongest set packing formulation described in Theorem 2.2

may contain exponentially many inequalities. If K denotes the collection
of all maximal cliques of a graph G, the |K| × n incidence matrix of K is
called the clique matrix of G. Exercise 2.10 gives a characterization of clique
matrices due to Gilmore [167]. Theorem 2.2 prompts the following question:

For which graphs G is the formulation defined in Theorem 2.2 a
perfect formulation of stab(G)?

This leads to the theory of perfect graphs, see Sect. 4.11 for references on
this topic. In Chap. 10 we will discuss a semidefinite relaxation of stab(G).

2.4.3 Set Covering and Transversals

We have seen the equivalence between general packing sets and stable sets
in graphs. Covering sets do not seem to have an equivalent graphical rep-
resentation. However some important questions in graph theory regarding

54 CHAPTER 2. INTEGER PROGRAMMING MODELS

connectivity, coloring, parity, and others can be formulated using covering
sets. We first introduce a general setting for these formulations.

Given a finite set E := {1, . . . , n}, a family S := {S1, . . . , Sm} of subsets
E is a clutter if it has the following property:

For every pair Si, Sj ∈ S, both Si \Sj and Sj \Si are nonempty.

A subset T of E is a transversal of S if T ∩ Si �= ∅ for every Si ∈ S.
Let T := {T1, . . . , Tq} be the family of all inclusionwise minimal transversals
of S. The family T is a clutter as well, called the blocker of S. The following
set-theoretic property, due to Lawler [251] and Edmonds and Fulkerson [127],
is fundamental for set covering formulations.

Proposition 2.4. Let S be a clutter and T its blocker. Then S is the blocker
of T .

Proof. Let Q be the blocker of T . We need to show that Q = S. By
definition of clutter, it suffices to show that every member of S contains
some member of Q and every member of Q contains some member of S.

Let Si ∈ S. By definition of T , Si ∩ T �= ∅ for every T ∈ T . Therefore
Si is a transversal of T . Because Q is the blocker of T , this implies that Si

contains a member of Q.
We now show the converse, namely every member of Q contains a mem-

ber of S. Suppose not. Then there exists a member Q of Q such that
(E \Q)∩S �= ∅ for every S ∈ S. Therefore E \Q is a transversal of S. This
implies that E \ Q contains some member T ∈ T . But then Q ∩ T = ∅, a
contradiction to the assumption that Q is a transversal of T .

In light of the previous proposition, we call the pair of clutters S and its
blocker T a blocking pair.

Given a vector x ∈ R
n, the support of x is the set {i ∈ {1, . . . , n} :

xi �= 0}. Proposition 2.4 yields the following:

Observation 2.5. Let S, T be a blocking pair of clutters and let A be the
incidence matrix of T . The vectors with minimal support in the set covering
family SC(A) are the characteristic vectors of the family S.

Consider the following problem, which arises often in combinatorial
optimization (we give three examples in Sect. 2.4.4).

Let E := {1, . . . , n} be a set of elements where each element j = 1, . . . , n
is assigned a nonnegative weight wj , and let R be a family of subsets of E.
Find a member S ∈ R having minimum weight

∑
j∈S wj.

2.4. PACKING, COVERING, PARTITIONING 55

Let S be the clutter consisting of the minimal members of R. Note
that, since the weights are nonnegative, the above problem always admit an
optimal solution that is a member of S.

Let T be the blocker of S and A the incidence matrix of T . In light of
Observation 2.5 an integer programming formulation for the above problem
is given by

min{wx : x ∈ SC(A)}.

2.4.4 Set Covering on Graphs: Many Constraints

We now apply the technique introduced above to formulate some optimiza-
tion problems on an undirected graph G = (V,E) with nonnegative edge
weights we, e ∈ E.

Given S ⊆ V , let δ(S) := {uv ∈ E : u ∈ S, v /∈ S}. A cut in G is a set F
of edges such that F = δ(S) for some S ⊆ V . A cut F is proper if F = δ(S)
for some ∅ �= S ⊂ V . For every node v, we will write δ(v) := δ({v}) to
denote the set of edges containing v. The degree of node v is |δ(v)|.

Minimum Weight s, t-Cuts

Let s, t be two distinct nodes of a connected graph G. An s, t-cut is a
cut of the form δ(S) such that s ∈ S and t /∈ S. Given nonnegative weights
on the edges, we for e ∈ E, the minimum weight s, t-cut problem is to find
an s, t-cut F that minimizes

∑
e∈F we.

An s, t-path in G is a path between s and t in G. Equivalently, an s,
t-path is a minimal set of edges that induce a connected graph containing
both s and t. Let S be the family of inclusionwise minimal s, t-cuts. Note
that its blocker T is the family of s, t-paths. Therefore the minimum weight
s, t-cut problem can be formulated as follows:

min
∑

e∈E wexe∑
e∈P xe ≥ 1 for all s, t-paths P

xe ∈ {0, 1} e ∈ E.

Fulkerson [156] showed that the above formulation is a perfect formu-
lation. Ford and Fulkerson [146] gave a polynomial-time algorithm for the
minimumweight of an s, t-cut problem, and proved that the minimum weight
of an s, t-cut is equal to the maximum value of an s, t-flow. This will be dis-
cussed in Chap. 4.

Let A be the incidence matrix of a clutter and B the incidence matrix
of its blocker. Lehman [254] proved that SC(A) is a perfect formulation if

56 CHAPTER 2. INTEGER PROGRAMMING MODELS

and only if SC(B) is a perfect formulation. Lehman’s theorem together with
Fulkerson’s theorem above imply that the following linear program solves
the shortest s, t-path problem when w ≥ 0:

min
∑

e∈E wexe∑
e∈C xe ≥ 1 for all s, t-cuts C

0 ≤ xe ≤ 1 e ∈ E.

We give a more traditional formulation of the shortest s, t-path problem in
Sect. 4.3.2.

Minimum Cut

In the min-cut problem one wants to find a proper cut of minimum total
weight in a connected graph G with nonnegative edge weights we, e ∈ E.
An edge set T ⊆ E is a spanning tree of G if it is an inclusionwise minimal
set of edges such that the graph (V, T) is connected.

Let S be the family of inclusionwise minimal proper cuts. Note that the
blocker of S is the family of spanning trees of G, hence one can formulate
the min-cut problem as

min
∑

e∈E wexe∑
e∈T xe ≥ 1 for all spanning trees T

xe ∈ {0, 1} e ∈ E.
(2.4)

This is not a perfect formulation (see Exercise 2.13). Nonetheless, the
min-cut problem is polynomial-time solvable. A solution can be found by
fixing a node s ∈ V , computing a minimum weight s, t-cut for every choice
of t in V \ {s}, and selecting the cut of minimum weight among the |V | − 1
cuts computed.

Max-Cut

Given a graph G = (V,E) with edge weights we, e ∈ E, the max-cut
problem asks to find a set F ⊆ E of maximum total weight in G such that
F is a cut of G. That is, F = δ(S), for some S ⊆ V .

Given a graph G = (V,E) and C ⊆ E, let V (C) denote the set of nodes
that belong to at least one edge in C. A set of edges C ⊆ E is a cycle in G if
the graph (V (C), C) is connected and all its nodes have degree two. A cycle
C in G is an odd cycle if C has an odd number of edges. A basic fact in
graph theory states that a set F ⊆ E is contained in a cut of G if and only
if (E \ F) ∩ C �= ∅ for every odd cycle C of G (see Exercise 2.14).

2.4. PACKING, COVERING, PARTITIONING 57

Therefore when we ≥ 0, e ∈ E, the max-cut problem in the graph
G = (V,E) can be formulated as the problem of finding a set E′ ⊆ E of
minimum total weight such that E′ ∩ C �= ∅ for every odd cycle C of G.

min
∑

e∈E wexe∑
e∈C xe ≥ 1 for all odd cycles C

xe ∈ {0, 1} e ∈ E.
(2.5)

Given an optimal solution x̄ to (2.5), the optimal solution of the max-cut
problem is the cut {e ∈ E : x̄e = 0}.

Unlike the two previous examples, the max-cut problem is NP-hard.
However, Goemans and Williamson [173] show that a near-optimal solution
can be found in polynomial time, using a semidefinite relaxation that will
be discussed in Sect. 10.2.1.

2.4.5 Set Covering with Many Variables: Crew Scheduling

An airline wants to operate its daily flight schedule using the smallest
number of crews. A crew is on duty for a certain number of consecutive
hours and therefore may operate several flights. A feasible crew schedule is
a sequence of flights that may be operated by the same crew within its duty
time. For instance it may consist of the 8:30–10:00 am flight from Pitts-
burgh to Chicago, then the 11:30 am–1:30 pm Chicago–Atlanta flight and
finally the 2:45–4:30 pm Atlanta–Pittsburgh flight.

Define A = {aij} to be the 0, 1 matrix whose rows correspond to the
daily flights operated by the company and whose columns correspond to all
the possible crew schedules. The entry aij equals 1 if flight i is covered by
crew schedule j, and 0 otherwise. The problem of minimizing the number
of crews can be formulated as

min{
∑
j

xj : x ∈ SC(A)}.

In an optimal solution a flight may be covered by more than one crew: One
crew operates the flight and the other occupies passenger seats. This is
why the above formulation involves covering constraints. The number of
columns (that is, the number of possible crew schedules) is typically enor-
mous. Therefore, as in the cutting stock example, column generation is
relevant in crew scheduling applications.

58 CHAPTER 2. INTEGER PROGRAMMING MODELS

2.4.6 Covering Steiner Triples

Fulkerson, Nemhauser, and Trotter [157] constructed set covering problems
of small size that are notoriously difficult to solve. A Steiner triple system
of order n (denoted by STS(n)) consists of a set E of n elements and a
collection S of triples of E with the property that every pair of elements in
E appears together in a unique triple in S. It is known that a Steiner triple
system of order n exists if and only if n ≡ 1 or 3 mod 6. A subset C of
E is a covering of the Steiner triple system if C ∩ T �= ∅ for every triple T
in S. Given a Steiner triple system, the problem of computing the smallest
cardinality of a cover is

min{
∑
j

xj : x ∈ SC(A)}

where A is the |S| × n incidence matrix of the collection S. Fulkerson,
Nemhauser, and Trotter constructed an infinite family of Steiner triple sys-
tems in 1974 and asked for the smallest cardinality of a cover. The question
was solved 5 years later for STS(45), it took another 15 years for STS(81),
and the current record is the solution of STS(135) and STS(243) [292].

2.5 Generalized Set Covering: The Satisfiability

Problem

We generalize the set covering model by allowing constraint matrices whose
entries are 0,±1 and we use it to formulate problems in propositional logic.

Atomic propositions x1, . . . , xn can be either true or false. A truth

assignment is an assignment of “true” or “false” to every atomic proposition.
A literal L is an atomic proposition xj or its negation ¬xj. A conjunction
of two literals L1 ∧ L2 is true if both literals are true and a disjunction of
two literals L1 ∨ L2 is true if at least one of L1, L2 is true. A clause is a
disjunction of literals and it is satisfied by a given truth assignment if at
least one of its literals is true.

For example, the clause with three literals x1 ∨ x2 ∨ ¬x3 is satisfied if
“x1 is true or x2 is true or x3 is false.” In particular, it is satisfied by the
truth assignment x1 = x2 = x3 = “false.”

2.5. GENERALIZED SET COVERING: THE SATISFIABILITY. . . 59

It is usual to identify truth assignments with 0,1 vectors: xi = 1 if
xi = “true” and xi = 0 if xi = “false.” A truth assignment satisfies the
clause ∨

j∈P
xj ∨ (

∨
j∈N

¬xj)

if and only if the corresponding 0, 1 vector satisfies the inequality

∑
j∈P

xj −
∑
j∈N

xj ≥ 1− |N |.

For example the clause x1 ∨ x2 ∨ ¬x3 is satisfied if and only if the corre-
sponding 0, 1 vector satisfies the inequality x1 + x2 − x3 ≥ 0.

A logic statement consisting of a conjunction of clauses is said to be in
conjunctive normal form. For example the logical proposition (x1 ∨ x2 ∨
¬x3) ∧ (x2 ∨ x3) is in conjunctive normal form. Such logic statements can
be represented by a system of m linear inequalities, where m is the number
of clauses in the conjunctive normal form. This can be written in the form:

Ax ≥ 1− n(A) (2.6)

where A is an m × n 0,±1 matrix and the ith component of n(A) is the
number of −1’s in row i of A. For example the logical proposition (x1∨x2∨
¬x3) ∧ (x2 ∨ x3) corresponds to the system of constraints

x1 + x2 − x3 ≥ 0
x2 + x3 ≥ 1

xi ∈ {0, 1}3.

In this example A =

(
1 1 −1
0 1 1

)
and n(A) =

(
1
0

)
.

Every logic statement can be written in conjunctive normal form by using
rules of logic such as L1 ∨ (L2 ∧ L3) = (L1 ∨ L2) ∧ (L1 ∨ L3), ¬(L1 ∧ L2) =
¬L1 ∨ ¬L2, etc. This will be illustrated in Exercises 2.24, 2.25.

We present two classical problems in logic.
The satisfiability problem (SAT) for a set S of clauses, asks for a truth

assignment satisfying all the clauses in S or a proof that none exists.
Equivalently, SAT consists of finding a 0, 1 solution x to (2.6) or showing
that none exists.

Logical inference in propositional logic consists of a set S of clauses (the
premises) and a clause C (the conclusion), and asks whether every truth

60 CHAPTER 2. INTEGER PROGRAMMING MODELS

assignment satisfying all the clauses in S also satisfies the conclusion C.
To the clause C, we associate the inequality

∑
j∈P (C)

xj −
∑

j∈N(C)

xj ≥ 1− |N(C)|. (2.7)

Therefore the conclusion C cannot be deduced from the premises S if and
only if (2.6) has a 0, 1 solution that violates (2.7).

Equivalently C cannot be deduced from S if and only if the integer
program

min

⎧⎨
⎩

∑
j∈P (C)

xj −
∑

j∈N(C)

xj : Ax ≥ 1− n(A), x ∈ {0, 1}n
⎫⎬
⎭

has a solution with value −|n(C)|.

2.6 The Sudoku Game

The game is played on a 9×9 grid which is subdivided into 9 blocks of 3×3
contiguous cells. The grid must be filled with numbers 1, . . . , 9 so that all
the numbers between 1 and 9 appear in each row, in each column and in
each of the nine blocks. A game consists of an initial assignment of numbers
in some cells (Fig. 2.2).

1

1
1

2

2

3

3

3
4

4

5
5

5

6

6

7

7
7

8

8
8

8

9

Figure 2.2: An instance of the Sudoku game

This is a decision problem that can be modeled with binary variables
xijk, 1 ≤ i, j, k ≤ 9 where xijk = 1 if number k is entered in position with
coordinates i, j of the grid, and 0 otherwise.

2.7. THE TRAVELING SALESMAN PROBLEM 61

The constraints are:

∑9
i=1 xijk = 1, 1 ≤ j, k ≤ 9 (each number k appears once in column j)∑9
j=1 xijk = 1, 1 ≤ i, k ≤ 9 (each k appears once in row i)∑2

q,r=0 xi+q,j+r,k = 1, i, j = 1, 4, 7, 1 ≤ k ≤ 9 (each k appears once in a block)∑9
k=1 xijk = 1, 1 ≤ i, j ≤ 9 (each cell contains exactly one number)

xijk ∈ {0, 1}, 1 ≤ i, j, k ≤ 9

xijk = 1, when the initial assignment has number k in cell i, j.

In constraint programming, variables take values in a specified domain,
which may include data that are non-quantitative, and constraints restrict
the space of possibilities in a way that is more general than the one given
by linear constraints. We refer to the book “Constraint Processing” by R.
Dechter [108] for an introduction to constraint programming. One of these
constraints is \alldifferent{z1, . . . , zn} which forces variables z1, . . . , zn
to take distinct values in the domain. Using the \alldifferent{} con-
straint, we can formulate the Sudoku game using 2-index variables, instead
of the 3-index variables used in the above integer programming formulation.
Variable xij represents the value in the cell of the grid with coordinates
(i, j). Thus xij take its values in the domain {1, . . . , 9} and there is an
\alldifferent{} constraint that involves the set of variables in each row,
each column and each of the nine blocks.

2.7 The Traveling Salesman Problem

This section illustrates the fact that several formulations may exist for a
given problem, and it is not immediately obvious which is the best for
branch-and-cut algorithms.

A traveling salesman must visit n cities and return to the city he started
from. We will call this a tour. Given the cost cij of traveling from city i to
city j, for each 1 ≤ i, j ≤ n with i �= j, in which order should the salesman
visit the cities to minimize the total cost of his tour? This problem is
the famous traveling salesman problem. If we allow costs cij and cji to be
different for any given pair of cities i, j, then the problem is referred to as
the asymmetric traveling salesman problem, while if cij = cji for every pair
of cities i and j, the problem is known as the symmetric traveling salesman
problem. In Fig. 2.3, the left diagram represents eight cities in the plane.
The cost of traveling between any two cities is assumed to be proportional
to the Euclidean distance between them. The right diagram depicts the
optimal tour.

62 CHAPTER 2. INTEGER PROGRAMMING MODELS

Figure 2.3: An instance of the symmetric traveling salesman problem in the
Euclidean plane, and the optimal tour

It will be convenient to define the traveling salesman problem on a graph
(directed or undirected). Given a digraph (a directed graph) D = (V,A),
a (directed) Hamiltonian tour is a circuit that traverses each node exactly
once. Given costs ca, a ∈ A, the asymmetric traveling salesman problem on
D consists in finding a Hamiltonian tour in D of minimum total cost. Note
that, in general, D might not contain any Hamiltonian tour. We give three
different formulations for the asymmetric traveling salesman problem.

The first formulation is due to Dantzig, Fulkerson, and Johnson [103].
They introduce a binary variable xij for all ij ∈ A, where xij = 1 if the tour
visits city j immediately after city i, and 0 otherwise. Given a set of cities
S ⊆ V , let δ+(S) := {ij ∈ A : i ∈ S, j /∈ S}, and let δ−(S) := {ij ∈ A :
i /∈ S, j ∈ S}. For ease of notation, for v ∈ V we use δ+(v) and δ−(v) instead
of δ+({v}) and δ−({v}). The Dantzig–Fulkerson–Johnson formulation of the
traveling salesman problem is as follows.

min
∑
a∈A

caxa (2.8)

∑
a∈δ+(i)

xa = 1 for i ∈ V (2.9)

∑
a∈δ−(i)

xa = 1 for i ∈ V (2.10)

∑
a∈δ+(S)

xa ≥ 1 for ∅ ⊂ S ⊂ V (2.11)

xa ∈ {0, 1} for a ∈ A. (2.12)

Constraints (2.9)–(2.10), known as degree constraints, guarantee that the
tour visits each node exactly once and constraints (2.11) guarantee that
the solution does not decompose into several subtours. Constraints (2.11)
are known under the name of subtour elimination constraints. Despite the

2.7. THE TRAVELING SALESMAN PROBLEM 63

exponential number of constraints, this is the formulation that is most widely
used in practice. Initially, one solves the linear programming relaxation
that only contains (2.9)–(2.10) and 0 ≤ xij ≤ 1. The subtour elimination
constraints are added later, on the fly, only when needed. This is possible
because the so-called separation problem can be solved efficiently for such
constraints (see Chap. 4).

Miller, Tucker and Zemlin [278] found a way to avoid the subtour elim-
ination constraints (2.11). Assume V = {1, . . . , n}. The formulation has
extra variables ui that represent the position of node i ≥ 2 in the tour,
assuming that the tour starts at node 1, i.e., node 1 has position 1. Their
formulation is identical to (2.8)–(2.12) except that (2.11) is replaced by

ui − uj + 1 ≤ n(1− xij) for all ij ∈ A, i, j �= 1. (2.13)

It is not difficult to verify that the Miller–Tucker–Zemlin formulation
is correct. Indeed, if x is the incident vector of a tour, define ui to be
the position of node i in the tour, for i ≥ 2. Then constraint (2.13) is
satisfied. Conversely, if x ∈ {0, 1}E satisfies (2.9)–(2.10) but is not the
incidence vector of a tour, then (2.9)–(2.10) and (2.12) imply that there is
at least one subtour C ⊆ A that does not contain node 1. Summing the
inequalities (2.13) relative to every ij ∈ C gives the inequality |C| ≤ 0, a
contradiction. Therefore, if (2.9)–(2.10), (2.12), (2.13) are satisfied, x must
represent a tour. Although the Miller–Tucker–Zemlin formulation is correct,
we will show in Chap. 4 that it produces weaker bounds for branch-and-cut
algorithms than the Dantzig–Fulkerson–Johnson formulation. It is for this
reason that the latter is preferred in practice.

It is also possible to formulate the traveling salesman problem using
variables xak for every a ∈ A, k ∈ V , where xak = 1 if arc a is the kth leg
of the Hamiltonian tour, and xak = 0 otherwise. The traveling salesman
problem can be formulated as follows.

min
∑
a∈A

∑
k

caxak

∑
a∈δ+(i)

∑
k

xak = 1 for i = 1, . . . , n

∑
a∈δ−(i)

∑
k

xak = 1 for i = 1, . . . , n

(2.14)

64 CHAPTER 2. INTEGER PROGRAMMING MODELS

∑
a∈A

xak = 1 for k = 1, . . . , n

∑
a∈δ−(i)

xak =
∑

a∈δ+(i)

xa,k+1 for i = 1, . . . , n and k = 1, . . . , n− 1

∑
a∈δ−(1)

xan =
∑

a∈δ+(1)

xa1 = 1

xak = 0 or 1 for a ∈ A, k = 1, . . . , n.

The first three constraints impose that each city is entered once, left once,
and each leg of the tour contains a unique arc. The next constraint imposes
that if leg k brings the salesman to city i, then he leaves city i on leg k+1.
The last constraint imposes that the first leg starts from city 1 and the last
returns to city 1. The main drawback of this formulation is its large number
of variables.

The Dantzig–Fulkerson–Johnson formulation has a simple form in the
case of the symmetric traveling salesman problem. Given an undirected
graph G = (V,E), a Hamiltonian tour is a cycle that goes exactly once
through each node of G. Given costs ce, e ∈ E, the symmetric traveling
salesman problem is to find a Hamiltonian tour in G of minimum total cost.
The Dantzig–Fulkerson–Johnson formulation for the symmetric traveling
salesman problem is the following.

min
∑
e∈E

cexe

∑
e∈δ(i)

xe = 2 for i ∈ V

∑
e∈δ(S)

xe ≥ 2 for ∅ ⊂ S ⊂ V

xe ∈ {0, 1} for e ∈ E.

(2.15)

In this context
∑

e∈δ(i) xe = 2 for i ∈ V are the degree constraints and∑
e∈δ(S) xe ≥ 2 for ∅ ⊂ S ⊂ V are the subtour elimination constraints.

Despite its exponential number of constraints, the formulation (2.15) is very
effective in practice. We will return to this formulation in Chap. 7.

Kaibel andWeltge [224] show that the traveling salesman problem cannot
be formulated with polynomially many inequalities in the space of variables
xe, e ∈ E.

2.8. THE GENERALIZED ASSIGNMENT PROBLEM 65

2.8 The Generalized Assignment Problem

The generalized assignment problem is the following 0,1 program, defined by
coefficients cij and tij, and capacities Tj , i = 1, . . . ,m, j = 1, . . . , n,

max

m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1 i = 1, . . . ,m

m∑
i=1

tijxij ≤ Tj j = 1, . . . , n

x ∈ {0, 1}m×n.

(2.16)

The following example is a variation of this model. In hospitals, operat-
ing rooms are a scarce resource that needs to be utilized optimally. The basic
problem can be formulated as follows, acknowledging that each hospital will
have its own specific additional constraints. Suppose that a hospital has n
operating rooms. During a given time period T , there may be m surgeries
that could potentially be scheduled. Let tij be the estimated time of oper-
ating on patient i in room j, for i = 1, . . . ,m, j = 1, . . . , n. The goal is to
schedule surgeries during the given time period so as to waste as little of the
operating rooms’ capacity as possible.

Let xij be a binary variable that takes the value 1 if patient i is oper-
ated on in operating room j, and 0 otherwise. The basic operating rooms
scheduling problem is as follows:

max
∑m

i=1

∑n
j=1 tijxij∑n

j=1 xij ≤ 1 i = 1, . . . ,m∑m
i=1 tijxij ≤ T j = 1, . . . , n

x ∈ {0, 1}m×n.

(2.17)

The objective is to maximize the utilization time of the operating rooms
during the given time period (this is equivalent to minimizing wasted
capacity). The first constraints guarantee that each patient i is operated
on at most once. If patient i must be operated on during this period, the
inequality constraint is changed into an equality. The second constraints are
the capacity constraints on each of the operating rooms.

A special case of interest is when all operating rooms are identical, that
is, tij := ti, i = 1, . . . ,m, j = 1, . . . , n, where the estimated time ti of
operation i is independent of the operating room. In this case, the above
formulation admits numerous symmetric solutions, since permuting operat-
ing rooms does not modify the objective value. Intuitively, symmetry in the

66 CHAPTER 2. INTEGER PROGRAMMING MODELS

problem seems helpful but, in fact, it may cause difficulties in the context of
a standard branch-and-cut algorithm. This is due to the creation of a poten-
tially very large number of isomorphic subproblems in the enumeration tree,
resulting in a duplication of the computing effort unless the isomorphisms
are discovered. Special techniques are available to deal with symmetries,
such as isomorphism pruning, which can be incorporated in branch-and-cut
algorithms. We will discuss this in Chap. 9.

The operating room scheduling problem is often complicated by the fact
that there is also a limited number of surgeons, each surgeon can only
perform certain operations, and a support team (anesthesiologist, nurses)
needs to be present during the operation. To deal with these aspects of the
operating room scheduling problem, one needs new variables and constraints.

2.9 The Mixing Set

We now describe a mixed integer linear set associated with a simple make-
or-buy problem. The demand for a given product takes values b1, . . . , bn ∈ R

with probabilities p1, . . . , pn. Note that the demand values in this problem
need not be integer. Today we produce an amount y ∈ R of the product
at a unit cost h, before knowing the actual demand. Tomorrow the actual
demand bi is experienced; if bi > y then we purchase the extra amount
needed to meet the demand at a unit cost c. However, the product can only
be purchased in unit batches, that is, in integer amounts. The problem is
to describe the production strategy that minimizes the expected total cost.
Let xi be the amount purchased tomorrow if the demand takes value bi.
Define the mixing set

MIX :=
{
(y, x) ∈ R+ × Z

n
+ : y + xi ≥ bi, 1 ≤ i ≤ n

}
.

Then the above problem can be formulated as

min hy + c
∑n

i=1 pixi
(y, x) ∈ MIX.

2.10 Modeling Fixed Charges

Integer variables naturally represent entities that come in discrete amounts.
They can also be used to model:

– logical conditions such as implications or dichotomies;

– nonlinearities, such as piecewise linear functions;

– nonconvex sets that can be expressed as a union of polyhedra.

2.10. MODELING FIXED CHARGES 67

y

cost

M

Figure 2.4: Fixed and variable costs

We introduce some of these applications. Economic activities frequently
involve both fixed and variable costs. In this case, the cost associated with
a certain variable y is 0 when the variable y takes value 0, and it is c + hy
whenever y takes positive value (see Fig. 2.4). For example, variable y may
represent a production quantity that incurs both a fixed cost if anything
is produced at all (e.g., for setting up the machines), and a variable cost
(e.g., for operating the machines). This situation can be modeled using a
binary variable x indicating whether variable y takes a positive value. Let
M be some upper bound, known a priori, on the value of variable y. The
(nonlinear) cost of variable y can be written as the linear expression

cx+ hy

where we impose

y ≤ Mx
x ∈ {0, 1}
y ≥ 0.

Such “big M” formulations should be used with caution in integer program-
ming because their linear programming relaxations tend to produce weak
bounds in branch-and-bound algorithms. Whenever possible, one should
use the tightest known bound, instead of an arbitrarily large M . We give
two examples.

2.10.1 Facility Location

A company would like to set up facilities in order to serve geographically
dispersed customers at minimum cost. Them customers have known annual
demands di, for i = 1, . . . ,m. The company can open a facility of capacity uj
and fixed annual operating cost fj in location j, for j = 1, . . . , n. Knowing

68 CHAPTER 2. INTEGER PROGRAMMING MODELS

the variable cost cij of transporting one unit of goods from location j to
customer i, where should the company locate its facilities in order to mini-
mize its annual cost

To formulate this problem, we introduce variables xj that take the value
1 if a facility is opened in location j, and 0 if not. Let yij be the fraction of
the demand di transported annually from j to i.

min
m∑
i=1

n∑
j=1

cijdiyij +
n∑

j=1

fjxj

n∑
j=1

yij = 1 i = 1, . . . ,m

m∑
i=1

diyij ≤ ujxj j = 1, . . . , n

y ≥ 0

x ∈ {0, 1}n.

The objective function is the total yearly cost (transportation plus
operating costs). The first set of constraints guarantees that the demand is
met, the second type of constraints are capacity constraints at the facilities.
Note that the capacity constraints are fixed charge constraints, since they
force xj = 1 whenever yij > 0 for some i.

A classical special case is the uncapacitated facility location problem, in
which uj = +∞, j = 1, . . . , n. In this case, it is always optimal to satisfy
all the demand of client i from the closest open facility, therefore yij can be
assumed to be binary. Hence the problem can be formulated as

min
∑∑

cijdiyij +
∑

fjxj∑
j yij = 1 i = 1, . . . ,m∑
i yij ≤ mxj j = 1, . . . , n

y ∈ {0, 1}m×n, x ∈ {0, 1}n.

(2.18)

Note that the constraint
∑

i yij ≤ mxj forces xj = 1 whenever yij > 0 for
some i. The same condition could be enforced by the disaggregated set of
constraints yij ≤ xj , for all i, j.

min
∑∑

cijdiyij +
∑

fjxj∑
j yij = 1 i = 1, . . . ,m

yij ≤ xj i = 1, . . . ,m, j = 1, . . . , n
y ∈ {0, 1}m×n, x ∈ {0, 1}n.

(2.19)

2.10. MODELING FIXED CHARGES 69

The disaggregated formulation (2.19) is stronger than the aggregated
one (2.18), since the constraint

∑
i yij ≤ mxi is just the sum of the con-

straints yij ≤ xi, i = 1, . . . ,m. According to the paradigm presented in
Sect. 2.2 in this chapter, the disaggregated formulation is better, because it
yields tighter bounds in a branch-and-cut algorithm. In practice it has been
observed that the difference between these two bounds is typically enormous.
It is natural to conclude that formulation (2.19) is the one that should be
used in practice. However, the situation is more complicated. When the
aggregated formulation (2.18) is given to state-of-the-art solvers, they are
able to detect and generate disaggregated constraints on the fly, whenever
these constraints are violated by the current feasible solution. So, in fact, it
is preferable to use the aggregated formulation because the size of the linear
relaxation is much smaller and faster to solve.

Let us elaborate on this interesting point. Nowadays, state-of-the-art
solvers automatically detect violated minimal cover inequalities (this notion
was introduced in Sect. 2.2), and the disaggregated constraints in (2.19)
happen to be minimal cover inequalities for the aggregated constraints. More
formally, let us write the aggregated constraint relative to facility j as

mzj +
m∑
j=1

yij ≤ m

where zj = 1−xj is also a 0, 1 variable. This is a knapsack constraint. Note
that any minimal cover inequality is of the form zj + yij ≤ 1. Substituting
1− xj for zj , we get the disaggregated constraint yij ≤ xj . We will discuss
the separation of minimal cover inequalities in Sect. 7.1.

2.10.2 Network Design

Network design problems arise in the telecommunication industry. Let N
be a given set of nodes. Consider a directed network G = (N,A) consisting
of arcs that could be constructed. We need to select a subset of arcs from
A in order to route commodities. Commodity k has a source sk ∈ N , a
destination tk ∈ N , and volume vk for k = 1, . . . ,K. Each commodity can
be viewed as a flow that must be routed through the network. Each arc
a ∈ A has a construction cost fa and a capacity ca. If we select arc a,
the sum of the commodity flows going through arc a should not exceed its
capacity ca. Of course, if we do not select arc a, no flow can be routed
through a. How should we design the network in order to route all the
demand at minimum cost?

70 CHAPTER 2. INTEGER PROGRAMMING MODELS

Let us introduce binary variables xa, for a ∈ A, where xa = 1 if arc a is
constructed, 0 otherwise. Let yka denote the amount of commodity k flowing
through arc a. The formulation is

min
∑
a∈A

faxa

∑
a∈δ+(i)

ykij −
∑

a∈δ−(i)

ykji =

⎧⎨
⎩

vk for i = sk
−vk for i = tk

0 for i ∈ N \ {sk, tk}
for k = 1, . . . K

K∑
k=1

yka ≤ caxa for a ∈ A

y ≥ 0

xa ∈ {0, 1} for a ∈ A.

The first set of constraints are conservation of flow constraints: For each
commodity k, the amount of flow out of node i equals to the amount of flow
going in, except at the source and destination. The second constraints are
the capacity constraints that need to be satisfied for each arc a ∈ A. Note
that they are fixed-charge constraints.

2.11 Modeling Disjunctions

Many applications have disjunctive constraints. For example, when schedul-
ing jobs on a machine, we might need to model that either job i is scheduled
before job j or vice versa; if pi and pj denote the processing times of these
two jobs on the machine, we then need a constraint stating that the starting
times ti and tj of jobs i and j satisfy tj ≥ ti + pi or ti ≥ tj + pj . In such
applications, the feasible solutions lie in the union of two or more polyhedra.

In this section, the goal is to model that a point belongs to the union of
k polytopes in R

n, namely bounded sets of the form

Aiy ≤ bi
0 ≤ y ≤ ui,

(2.20)

for i = 1, . . . , k. The same modeling question is more complicated for
unbounded polyhedra and will be discussed in Sect. 4.9.

A way to model the union of k polytopes in R
n is to introduce k vari-

ables xi ∈ {0, 1}, indicating whether y is in the ith polytope, and k vectors
of variables yi ∈ R

n. The vector y ∈ R
n belongs to the union of the k

polytopes (2.20) if and only if

2.11. MODELING DISJUNCTIONS 71

k∑
i=1

yi = y

Aiyi ≤ bixi i = 1, . . . , k
0 ≤ yi ≤ uixi i = 1, . . . , k

k∑
i=1

xi = 1

x ∈ {0, 1}k.

(2.21)

The next proposition shows that formulation (2.21) is perfect in the
sense that the convex hull of its solutions is simply obtained by dropping
the integrality restriction.

Proposition 2.6. The convex hull of solutions to (2.21) is

k∑
i=1

yi = y

Aiyi ≤ bixi i = 1, . . . , k
0 ≤ yi ≤ uixi i = 1, . . . , k

k∑
i=1

xi = 1

x ∈ [0, 1]k.

Proof. Let P ⊂ R
n×R

kn×R
k be the polytope given in the statement of the

proposition. It suffices to show that any point z̄ := (ȳ, ȳ1, . . . , ȳk, x̄1, . . . , x̄k)
in P is a convex combination of solutions to (2.21). For t such that x̄t �= 0,
define the point zt = (yt, yt1, . . . , y

t
k, x

t
1, . . . , x

t
k) where

yt :=
ȳt
x̄t

, yti :=

{ ȳt
x̄t

for i = t,

0 otherwise,
xti :=

{
1 for i = t,
0 otherwise.

The zts are solutions of (2.21). We claim that z̄ is a convex combination
of these points, namely z̄ =

∑
t : x̄t �=0 x̄tz

t. To see this, observe first that

ȳ =
∑

ȳi =
∑

t : x̄t �=0 ȳt =
∑

t : x̄t �=0 x̄ty
t. Second, note that when x̄i �= 0 we

have ȳi =
∑

t : x̄t �=0 x̄ty
t
i . This equality also holds when x̄i = 0 because then

ȳi = 0 and yti = 0 for all t such that x̄t �= 0. Finally x̄i =
∑

t : x̄t �=0 x̄tx
t
i for

i = 1, . . . , k.

72 CHAPTER 2. INTEGER PROGRAMMING MODELS

2.12 The Quadratic Assignment Problem
and Fortet’s Linearization

In this book we mostly deal with linear integer programs. However, non-
linear integer programs (in which the objective function or some of the
constraints defining the feasible region are nonlinear) are important in some
applications. The quadratic assignment problem (QAP) is an example of
a nonlinear 0, 1 program that is simple to state but notoriously difficult to
solve. Interestingly, we will show that it can be linearized.

We have to place n facilities in n locations. The data are the amount fk�
of goods that has to be shipped from facility k to facility 	, for k = 1, . . . , n
and 	 = 1, . . . , n, and the distance dij between locations i, j, for i = 1, . . . , n
and j = 1, . . . , n.

The problem is to assign facilities to locations so as to minimize the total
cumulative distance traveled by the goods. For example, in the electronics
industry, the quadratic assignment problem is used to model the problem of
placing interconnected electronic components onto a microchip or a printed
circuit board.

Let xki be a binary variable that takes the value 1 if facility k is assigned
to location i, and 0 otherwise. The quadratic assignment problem can be
formulated as follows:

max
∑
i,j

∑
k,�

dijfk�xkix�j

∑
k

xki = 1 i = 1, . . . , n

∑
i

xki = 1 k = 1, . . . , n

x ∈ {0, 1}n×n.

The quadratic assignment problem is an example of a 0,1 polynomial
program

min z = f(x)
gi(x) = 0 i = 1, . . . ,m
xj ∈ {0, 1} j = 1, . . . , n

(2.22)

where the functions f and gi (i = 1, . . . ,m) are polynomials. Fortet [144]
observed that such nonlinear functions can be linearized when the variables
only take value 0 or 1.

Proposition 2.7. Any 0,1 polynomial program (2.22) can be formulated as
a pure 0,1 linear program by introducing additional variables.

2.13. FURTHER READINGS 73

Proof. Note that, for any integer exponent k ≥ 1, the 0,1 variable xj satisfies
xkj = xj . Therefore we can replace each expression of the from xkj with xj,
so that no variable appears in f or gi with exponent greater than 1.

The product xixj of two 0,1 variables can be replaced by a new 0,1
variable yij related to xi, xj by linear constraints. Indeed, to guarantee that
yij = xixj when xi and xj are binary variables, it suffices to impose the
linear constraints yij ≤ xi, yij ≤ xj and yij ≥ xi + xj − 1 in addition to the
0,1 conditions on xi, xj , yij .

As an example, consider f defined by f(x) = x51x2 +4x1x2x
2
3. Applying

Fortet’s linearization sequentially, function f is initially replaced by z =
x1x2 + 4x1x2x3 for 0,1 variables xj, j = 1, 2, 3. Subsequently, we introduce
0,1 variables y12 in place of x1x2, and y123 in place of y12x3, so that the
objective function is replaced by the linear function z = y12 + 4y123, where
we impose

y12 ≤ x1, y12 ≤ x2, y12 ≥ x1 + x2 − 1,
y123 ≤ y12, y123 ≤ x3, y123 ≥ y12 + x3 − 1,

y12, y123, x1, x2, x3 ∈ {0, 1}.

2.13 Further Readings

The book “Applications of Optimization with Xpress” by Guéret, Prins, and
Servaux [193], which can also be downloaded online, provides an excellent
guide for constructing integer programming formulations in various areas
such as planning, transportation, telecommunications, economics, and
finance. The book “Production Planning by Mixed-Integer Programming”
by Pochet and Wolsey [309] contains several optimization models in pro-
duction planning and an accessible exposition of the theory of mixed inte-
ger linear programming. The book “Optimization Methods in Finance” by
Cornuéjols and Tütüncü [96] gives an application of integer programming to
modeling index funds. Several formulations in this chapter are defined on
graphs. We refer to Bondy and Murty [62] for a textbook on graph theory.

The knapsack problem is one of the most widely studied models in integer
programming. A classic book for the knapsack problem is the one of Martello
and Toth [268], which is downloadable online. A more recent textbook is
[234]. In Sect. 2.2 we introduced alternative formulations (in the context
of 0, 1 knapsack set) and discussed the strength of different formulations.
This topic is central in integer programming theory and applications. In
fact, a strong formulation is a key ingredient to solving integer programs

74 CHAPTER 2. INTEGER PROGRAMMING MODELS

even of moderate size: A weak formulation may prove to be unsolvable by
state-of-the-art solvers even for small-size instances. Formulations can be
strengthened a priori or dynamically, by adding cuts and this will be dis-
cussed at length in this book. Strong formulations can also be obtained with
the use of additional variables, that model properties of a mixed integer set
to be optimized and we will develop this topic. The book “Integer Program-
ming” by Wolsey [353] contains an accessible exposition of this topic.

There is a vast literature on the traveling salesman problem: This problem
is easy to state and it has been popular for testing the methods exposed in
this book. The book edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys
[253] contains a series of important surveys; for instance the chapters on
polyhedral theory and computations by Grötschel and Padberg. The book
by Applegate, Bixby, Chvátal, and Cook [13] gives a detailed account of the
theory and the computational advances that led to the solution of traveling
salesman instances of enormous size. The recent book “In the pursuit of the
traveling salesman” by Cook [86] provides an entertaining account of the
traveling salesman problem, with many historical insights.

Vehicle routing is related to the traveling salesman problem and refers
to a class of problems where goods located at a central depot need to be
delivered to customers who have placed orders for such goods. The goal is
to minimize the cost of delivering the goods. There are many references in
this area. We just cite the monograph of Toth and Vigo [337].

Constraint programming has been mentioned while introducing formu-
lations for the Sudoku game. The interaction between integer programming
and constraint programming is a growing area of research, see, e.g., Hooker
[206] and Achterberg [5].

For machine scheduling we mention the survey of Queyranne and
Schulz [312].

2.14 Exercises

Exercise 2.1. Let

S := {x ∈ {0, 1}4 : 90x1 +35x2 +26x3 +25x4 ≤ 138}.

(i) Show that

S = {x ∈ {0, 1}4 : 2x1 +x2 +x3 +x4 ≤ 3},

2.14. EXERCISES 75

and
S = {x ∈ {0, 1}4 : 2x1 +x2 +x3 +x4 ≤ 3

x1 +x2 +x3 ≤ 2
x1 +x2 +x4 ≤ 2
x1 +x3 +x4 ≤ 2}.

(ii) Can you rank these three formulations in terms of the tightness of their
linear relaxations, when x ∈ {0, 1}4 is replaced by x ∈ [0, 1]4? Show any
strict inclusion.

Exercise 2.2. Give an example of a 0, 1 knapsack set where both P \ PC �= ∅
and PC \P �= ∅, where P and PC are the linear relaxations of the knapsack
and minimal cover formulations respectively.

Exercise 2.3. Produce a family of 0, 1 knapsack sets (having an increasing
number n of variables) whose associated family of minimal covers grows
exponentially with n.

Exercise 2.4. (Constraint aggregation) Given a finite set E and a clutter
C of subsets of E, does there always exist a 0, 1 knapsack set K such that C
is the family of all minimal covers of K? Prove or disprove.

Exercise 2.5. Show that any integer linear program of the form

min cx
Ax = b
0 ≤ x ≤ u
x integral

can be converted into a 0,1 knapsack problem.

Exercise 2.6. The pigeonhole principle states that the problem

(P) Place n+1 pigeons into n holes so that no two pigeons share a hole

has no solution.

Formulate (P) as an integer linear program with two kinds of constraints:

(a) those expressing the condition that every pigeon must get into a hole;

(b) those expressing the condition that, for each pair of pigeons, at most
one of the two birds can get into a given hole.

Show that there is no integer solution satisfying (a) and (b), but that the
linear program with constraints (a) and (b) is feasible.

76 CHAPTER 2. INTEGER PROGRAMMING MODELS

Exercise 2.7. Let A be a 0, 1 matrix and let Amax be the row submatrix
of A containing one copy of all the rows of A whose support is not included
in the support of another row of A. Show that the packing sets SP (A) and
SP (Amax) coincide and that their linear relaxations are equivalent.

Similarly let Amin be the row submatrix of A containing one copy of
all the rows of A whose support does not include the support of another
row of A. Show that SC(A) and SC(Amin) coincide and that their linear
relaxations are equivalent.

Exercise 2.8. We use the notation introduced in Sect. 2.4.2. Given the
matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• What is GA?

• What is Ac?

• Give a formulation for SP (A) that is better than Acx ≤ 1, 0 ≤ x ≤ 1.

Exercise 2.9. Let A be a matrix with two 1’s per row. Show that the sets
SP (A) and SC(A) have the same cardinality.

Exercise 2.10. Given a clutter F , let A be the incidence matrix of the
family F and GA the intersection graph of A. Prove that A is the clique
matrix of GA if and only if the following holds:

For every F1, F2, F3 in F , there is an F ∈ F that contains (F1 ∩ F2) ∪
(F1 ∩ F3) ∪ (F2 ∩ F3).

Exercise 2.11. Let T be a minimal transversal of S and ej ∈ T . Then
T ∩ Si = {ej} for some Si ∈ S.

Exercise 2.12. Prove that, for an undirected connected graph G = (V,E),
the following pairs of families of subsets of edges of G are blocking pairs:

2.14. EXERCISES 77

• Spanning trees and minimal cuts

• st-paths and minimal st-cuts.

• Minimal postman sets and minimal odd cuts. (A set E′ ⊆ E is a
postman set if G = (V,E \E′) is an Eulerian graph and a cut is odd if
it contains an odd number of edges.) Assume that G is not an Eulerian
graph.

Exercise 2.13. Construct an example showing that the formulation (2.4)
is not perfect.

Exercise 2.14. Show that a graph is bipartite if and only if it contains no
odd cycle.

Exercise 2.15. (Chromatic number) The following is (a simplified version
of) a frequency assignment problem in telecommunications. Transmitters
1, . . . , n broadcast different signals using preassigned frequencies. Transmit-
ters that are geographically close might interfere and they must therefore use
distinct frequencies. The problem is to determine the minimum number of
frequencies that need to be assigned to the transmitters so that interference
is avoided.

This problem has a natural graph-theoretic counterpart: The chromatic
number χ(G) of an undirected graph G = (V,E) is the minimum number
of colors to be assigned to the nodes of G so that adjacent nodes receive
distinct colors. Equivalently, the chromatic number is the minimum number
of (maximal) stable sets whose union is V .

Define the interference graph of a frequency assignment problem to be
the undirected graph G = (V,E) where V represents the set of transmitters
and E represents the set of pairs of transmitters that would interfere with
each other if they were assigned the same frequency. Then the minimum
number of frequencies to be assigned so that interference is avoided is the
chromatic number of the interference graph.

Consider the following integer programs. Let S be the family of all
maximal stable sets of G. The first one has one variable xS for each maximal
stable set S of G, where xS = 1 if S is used as a color, xS = 0 otherwise.

χ1(G) = min
∑
S∈S

xS

∑
S⊇{v}

xS ≥ 1 v ∈ V

xS ∈ {0, 1} S ∈ S.

78 CHAPTER 2. INTEGER PROGRAMMING MODELS

The second one has one variable xv,c for each node v in V and color c
in a set C of available colors (with |C| ≥ χ(G)), where xv,c = 1 if color c is
assigned to node v, 0 otherwise. It also has color variables, yc = 1 if color c
used, 0 otherwise.

χ2(G) = min
∑
c∈C

yc

xu,c + xv,c ≤ 1 ∀uv ∈ E and c ∈ C

xv,c ≤ yc v ∈ V, c ∈ C∑
c∈C

xv,c = 1 v ∈ V

xv,c ∈ {0, 1}, yc ≥ 0 v ∈ V, c ∈ C.

• Show that χ1(G) = χ2(G) = χ(G).

• Let χ∗
1(G), χ∗

2(G) be the optimal values of the linear programming
relaxations of the above integer programs. Prove that χ∗

1(G) ≥ χ∗
2(G)

for all graphs G. Prove that χ∗
1(G) > χ∗

2(G) for some graph G.

Exercise 2.16 (Combinatorial auctions). A company sets an auction for N
objects. Bidders place their bids for some subsets of the N objects that they
like. The auction house has received n bids, namely bids bj for subset Sj,
for j = 1, . . . , n. The auction house is faced with the problem of choosing
the winning bids so that profit is maximized and each of the N objects is
given to at most one bidder. Formulate the optimization problem faced by
the auction house as a set packing problem.

Exercise 2.17. (Single machine scheduling) Jobs {1, . . . , n} must be pro-
cessed on a single machine. Each job is available for processing after a
certain time, called release time. For each job we are given its release time
ri, its processing time pi and its weight wi. Formulate as an integer linear
program the problem of sequencing the jobs without overlap or interruption
so that the sum of the weighted completion times is minimized.

Exercise 2.18. (Lot sizing) The demand for a product is known to be dt
units in periods t = 1, . . . , n. If we produce the product in period t, we
incur a machine setup cost ft which does not depend on the number of units
produced plus a production cost pt per unit produced. We may produce
any number of units in any period. Any inventory carried over from period
t to period t + 1 incurs an inventory cost it per unit carried over. Initial
inventory is s0. Formulate a mixed integer linear program in order to meet
the demand over the n periods while minimizing overall costs.

2.14. EXERCISES 79

Exercise 2.19. A firm is considering project A,B, . . . ,H. Using binary
variables xa, . . . , xh and linear constraints, model the following conditions
on the projects to be undertaken.

1. At most one of A,B, . . . ,H.

2. Exactly two of A,B, . . . ,H.

3. If A then B.

4. If A then not B.

5. If not A then B.

6. If A then B, and if B then A.

7. If A then B and C.

8. If A then B or C.

9. If B or C then A.

10. If B and C then A.

11. If two or more of B, C,D, E then A.

12. If m or more than n projects B, . . . ,H then A.

Exercise 2.20. Prove or disprove that the formulation F = {x ∈ {0, 1}n2
,∑n

i=1 xij = 1 for 1 ≤ j ≤ n,
∑n

j=1 xij = 1 for 1 ≤ i ≤ n} describes the set
of n× n permutation matrices.

Exercise 2.21. For the following subsets of edges of an undirected graph
G = (V,E), find an integer linear formulation and prove its correctness:

• The family of Hamiltonian paths of G with endnodes u, v. (A Hamil-
tonian path is a path that goes exactly once through each node of the
graph.)

• The family of all Hamiltonian paths of G.

• The family of edge sets that induce a triangle of G.

• Assuming that G has 3n nodes, the family of n node-disjoint triangles.

• The family of odd cycles of G.

80 CHAPTER 2. INTEGER PROGRAMMING MODELS

Exercise 2.22. Consider a connected undirected graph G = (V,E). For
S ⊆ V , denote by E(S) the set of edges with both ends in S. For i ∈ V ,
denote by δ(i) the set of edges incident with i. Prove or disprove that the
following formulation produces a spanning tree with maximum number of
leaves.

max
∑

i∈V zi∑
e∈E xe = |V | − 1∑

e∈E(S) xe ≤ |S| − 1 S ⊂ V, |S| ≥ 2∑
e∈δ(i) xe + (|δ(i)| − 1)zi ≤ |δ(i)| i ∈ V

xe ∈ {0, 1} e ∈ E
zi ∈ {0, 1} i ∈ V.

Exercise 2.23. One sometimes would like to maximize the sum of nonlinear
functions

∑n
i=1 fi(xi) subject to x ∈ P , where fi : R → R for i = 1, . . . , n and

P is a polytope. Assume P ⊂ [l, u] for l, u ∈ R
n. Show that, if the functions

fi are piecewise linear, this problem can be formulated as a mixed integer
linear program. For example a utility function might be approximated by
fi as shown in Fig. 2.5 (risk-averse individuals dislike more a monetary loss
of y than they like a monetary gain of y dollars).

utility

monetary value

Figure 2.5: Example of a piecewise linear utility function

Exercise 2.24.

(i) Write the logic statement (x1 ∧ x2 ∧ ¬x3) ∨ (¬(x1 ∧ x2) ∧ x3) in con-
junctive normal form.

(ii) Formulate the following logical inference problem as an integer linear
program. “Does the proposition (x1 ∧ x2 ∧ ¬x3) ∨ (¬(x1 ∧ x2) ∧ x3)
imply x1 ∨ x2 ∨ x3?”

Exercise 2.25. Let x1, . . . , xn be atomic propositions and let A and B be
two logic statements in CNF. The logic statement A =⇒ B is satisfied if
any truth assignment that satisfies A also satisfies B. Prove that A =⇒ B
is satisfied if and only if the logic statement ¬A ∨B is satisfied.

2.14. EXERCISES 81

Exercise 2.26. Consider a 0,1 set S := {x ∈ {0, 1}n : Ax ≤ b} where
A ∈ R

m×n and b ∈ R
m. Prove that S can be written in the form S = {x ∈

{0, 1}n : Dx ≤ d} where D is a matrix all of whose entries are 0,+1 or −1
(Matrices D and A may have a different number of rows).

Exercise 2.27 (Excluding (0, 1)-vectors). Find integer linear formulations
for the following integer sets (Hint: Use the generalized set covering inequal-
ities).

• The set of all (0, 1)-vectors in R
4 except

⎛
⎜⎜⎝
0
1
1
0

⎞
⎟⎟⎠.

• The set of all (0, 1)-vectors in R
6 except

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

• The set of all (0, 1)-vectors in R
6 except all the vectors having exactly

two 1s in the first 3 components and one 1 in the last 3 components.

• The set of all (0, 1)-vectors in R
n with an even number of 1s.

• The set of all (0, 1)-vectors in R
n with an odd number of 1’s.

Exercise 2.28. Show that if P = {x ∈ R
n : Ax ≤ b} is such that P ∩ Z

n

is the set of 0–1 vectors with an even number of 1’s, then Ax ≤ b contains
at least 2n−1 inequalities.

Exercise 2.29. Given a Sudoku game and a solution x̄, formulate as an
integer linear program the problem of certifying that x̄ is the unique solution.

Exercise 2.30 (Crucipixel Game). Given a m× n grid, the purpose of the
game is to darken some of the cells so that in every row (resp. column)
the darkened cells form distinct strings of the lengths and in the order pre-
scribed by the numbers on the left of the row (resp. on top of the column).

82 CHAPTER 2. INTEGER PROGRAMMING MODELS

Two strings are distinct if they are separated by at least one white cell.
For instance, in the figure below the tenth column must contain a string of
length 6 followed by some white cells and then a sting of length 2. The game
consists in darkening the cells to satisfy the requirements.

1

1

111

1111

1111

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

22

2

2

2

2

2

2

2

22

3

3

3

3

3

3

3

3

3

4

4

4

4

6

• Formulate the game as an integer linear program.

• Formulate the problem of certifying that a given solution is unique as
an integer linear program.

• Play the game in the figure.

Exercise 2.31. Let P = {A1x ≤ b1} be a polytope and S = {A2x < b2}.
Formulate the problem of maximizing a linear function over P \S as a mixed
0,1 program.

Exercise 2.32. Consider continuous variables yj that can take any value
between 0 and uj, for j = 1, . . . , k. Write a set of mixed integer linear
constraints to impose that at most 	 of the k variables yj can take a nonzero
value. [Hint: use k binary variables xj ∈ {0, 1}.] Either prove that your
formulation is perfect, in the spirit of Proposition 2.6, or give an example
showing that it is not.

2.14. EXERCISES 83

Exercise 2.33. Assume c ∈ Z
n, A ∈ Z

m×n, b ∈ Z
m. Give a polynomial

transformation of the 0,1 linear program

max cx
Ax ≤ b
x ∈ {0, 1}n

into a quadratic program

max cx−MxT (1− x)
Ax ≤ b
0 ≤ x ≤ 1,

i.e., show how to choose the scalar M as a function of A, b and c so that an
optimal solution of the quadratic program is always an optimal solution of
the 0,1 linear program (if any).

The authors working on Chap. 2

84 CHAPTER 2. INTEGER PROGRAMMING MODELS

Giacomo Zambelli at the US border. Immigration Officer: What is the
purpose of your trip? Giacomo: Visiting a colleague; I am a mathematician.
Immigration Officer: What do mathematicians do? Giacomo: Sit in a chair
and think.

http://www.springer.com/978-3-319-11007-3

	2 Integer Programming Models
	2.1 The Knapsack Problem
	2.2 Comparing Formulations
	2.3 Cutting Stock: Formulations with Many Variables
	2.4 Packing, Covering, Partitioning
	2.4.1 Set Packing and Stable Sets
	2.4.2 Strengthening Set Packing Formulations
	2.4.3 Set Covering and Transversals
	2.4.4 Set Covering on Graphs: Many Constraints
	2.4.5 Set Covering with Many Variables: Crew Scheduling
	2.4.6 Covering Steiner Triples

	2.5 Generalized Set Covering: The Satisfiability Problem
	2.6 The Sudoku Game
	2.7 The Traveling Salesman Problem
	2.8 The Generalized Assignment Problem
	2.9 The Mixing Set
	2.10 Modeling Fixed Charges
	2.10.1 Facility Location
	2.10.2 Network Design

	2.11 Modeling Disjunctions
	2.12 The Quadratic Assignment Problemand Fortet's Linearization
	2.13 Further Readings
	2.14 Exercises

