
Chapter 2

Formal Methods for PDE Systems

Abstract This chapter discusses formal methods which transform a system of par-
tial differential equations (PDEs) into an equivalent form that allows to determine
its power series solutions. Janet’s algorithm deals with the case of systems of linear
PDEs. The first section presents a generalization of this algorithm to linear func-
tional equations defined over Ore algebras. As a byproduct of a Janet basis com-
putation, a generalized Hilbert series enumerates either a vector space basis for the
linear equations that are consequences of the given system or those Taylor coeffi-
cients of a power series solution of the PDE system which can be chosen arbitrarily.
Systems of polynomially nonlinear PDEs are treated in the second section from the
same point of view. A Thomas decomposition of such a system consists of finitely
many so-called simple differential systems whose sets of solutions form a partition
of the solution set of the given system. Each simple differential system admits a
straightforward method of determining its power series solutions. If the given PDE
system generates a prime differential ideal, then exactly one of the simple differen-
tial systems is the most generic one in a precise sense. Both Janet’s and Thomas’
algorithm also solve certain elimination problems as described and employed in the
following chapter.

2.1 Janet’s Algorithm

A system of linear functional equations

Ru = 0 (2.1)

for a vector u of p unknown functions is given by a matrix R ∈ Dq×p with entries
in a ring D of linear operators. We outline an algebraic approach of handling such a
linear system. This approach assumes that the set F of functions which are candi-
dates for solutions of (2.1) is chosen as a left D-module, the left action of D being
the one used in (2.1). In particular, the assumption that the result of applying any
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6 2 Formal Methods for PDE Systems

operator in D to any function in F is a function in F is unavoidable as soon as
algebraic manipulations are performed on the equations of system (2.1).

In this section the focus is on the case of linear partial differential equations
(PDEs). Then we choose D as a ring of differential operators with left action on
smooth functions by partial differentiation. (We will concentrate on analytic func-
tions.)

Every solution of (2.1) satisfies all consequences of (2.1); we restrict our atten-
tion here to consequences which are obtained from (2.1) by multiplying a matrix
with q columns and entries in D from the left. The condition that a vector of p
functions solves (2.1) can be restated as follows. Let (e1, . . . ,ep) be the standard
basis of the free left D-module D1×p. Then every homomorphism ϕ : D1×p → F
of left D-modules is uniquely determined by its values u1, . . . , up for e1, . . . , ep,
and every choice of values for e1, . . . , ep defines such a homomorphism. Now,
(u1, . . . ,up) solves (2.1) if and only if the corresponding homomorphism ϕ factors
over D1×p/D1×q R, i.e., is well-defined on residue classes modulo D1×q R. In other
words, we have

homD(D1×p/D1×q R,F )∼= {u ∈ F p×1 | Ru = 0} (2.2)

as abelian groups. (We attribute this remark to B. Malgrange [Mal62, Subsect. 3.2];
it is a basic principle of algebraic analysis, cf., e.g., [Kas03]. For recent work
combining algebraic analysis with systems and control theory, cf., e.g., [PQ99],
[Pom01], [CQR05], [CQ08], [Qua10b], [Rob14], and the references therein.)

Understanding the structure of the solution set of (2.1) therefore requires at least
being able to compute in the residue class module

M := D1×p/D1×q R.

Moreover, the left D-module M is an intrinsic description of the given system of lin-
ear functional equations in the following sense. Let Sv = 0 with S ∈ Ds×r be another
system of linear functional equations (defined over the same ring) and assume that
Ru = 0 and Sv = 0 are equivalent, i.e., there exist T ∈ Dr×p and U ∈ Dp×r such that
the homomorphisms of abelian groups

F p×1 −→ F r×1 : u �−→ T u, F r×1 −→ F p×1 : v �−→U v

induce isomorphisms between {u ∈ F p×1 | Ru = 0} and {v ∈ F r×1 | Sv = 0}
which are inverse to each other. If the set F is chosen appropriately (viz. an injective
cogenerator for the category of left D-modules, cf. Remark 3.1.52, p. 154), then this
implies that the homomorphisms of left D-modules

D1×p −→ D1×r : a �−→ aU, D1×r −→ D1×p : b �−→ bT

induce isomorphisms between D1×p/D1×q R and D1×r/D1×s S which are inverse to
each other. Hence, the left D-modules which are associated with two equivalent
systems of linear functional equations are isomorphic.
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Computation in M = D1×p/D1×q R for certain rings D of linear operators is made
possible by (a generalization of) an algorithm named after the French mathematician
Maurice Janet (1888–1983). Having computed a special generating set for the left
D-module D1×q R, called Janet basis, a (unique) normal form for the representatives
of each residue class in M is defined and can be computed effectively.

The origin of Janet bases can roughly be described as follows. In work of
C. Méray [Mér80] and C. Riquier [Riq10] in the second half of the 19th century
the analytic solvability of systems of PDEs was investigated and a generalization
of the Cauchy-Kovalevskaya Theorem was obtained. A typical formulation of this
classical theorem (cf., e.g., [RR04, Sect. 2.2], [Eva10, Thm. 2 in Subsect. 4.6.3])
assumes a Cauchy problem for unknown functions u1, . . . , um of x1, . . . , xn in a
neighborhood of the origin of the following form. The given PDEs are solved for
the partial derivatives of u1, . . . , um with respect to the first argument x1, say, their
right hand sides being linear in the other (first order) partial derivatives of u1, . . . , um
with coefficients which are analytic in x2, . . . , xm and u1, . . . , um, and boundary data
for ui(0,x2, . . . ,xn), i = 1, . . . , m, are given by analytic functions. Then this Cauchy
problem has a unique analytic solution. Other common formulations of this theorem
allow higher order of differentiation (which can be reduced to the above situation by
introducing further unknown functions). Analytic coordinate changes may be used
to transform boundary data on an analytic hypersurface which is non-characteristic
for the first order PDE system to the hypersurface x1 = 0.

Riquier’s Existence Theorem asserts the existence of analytic solutions to sys-
tems of PDEs of a certain class (cf. also [Tho28, Tho34], [Rit34, Chap. IX], [Rit50,
Chap. VIII]). The equations are solved for certain distinct partial derivatives and
their right hand sides are analytic functions of x1, . . . , xn and of partial derivatives
of u1, . . . , um which are less than the ones on the respective left hand side with re-
spect to some total ordering1. Moreover, the system is assumed to incorporate all
integrability conditions in some sense (i.e., to be passive as in Definition 2.1.40,
p. 28, or Definition 2.2.48, p. 94).

First the existence of formal power series solutions is investigated (formal inte-
grability). Given appropriate boundary conditions, convergence is considered as a
second step. Confining ourselves, for the moment, to systems of linear PDEs, the
first problem can be solved by transforming any given system into an equivalent
one whose formal power series solutions can readily be determined. More precisely,
the resulting system allows to partition the set of Taylor coefficients of a power
series solution into two sets: coefficients which can be chosen arbitrarily and coeffi-
cients which are then uniquely determined by these choices. M. Janet developed an
effective procedure which accomplishes such a transformation into a formally inte-
grable system of PDEs (cf. [Jan29, Jan20]; certainly Janet was influenced by work
of D. Hilbert [Hil90] as well). The result is now called a Janet basis.

More details on Riquier’s Existence Theorem and, in particular, a version for dif-
ferential regular chains can be found in [PG97, Sect. I.2], [Lem02, Chap. 3]. For

1 The ordering is assumed to be a Riquier ranking as discussed in Remark 3.1.39, p. 142, and is
assumed to respect the differentiation order; a PDE system of this form is called orthonomic.



8 2 Formal Methods for PDE Systems

applications of the theory of Riquier and Janet to the study of Bäcklund transforma-
tions, symmetries of differential equations, and related questions, we refer, e.g., to
[Sch84], [Sch08a], [RWB96], [MRC98], [Dra01].

Around 1990 the similarity of Janet bases and Gröbner bases became evident
to several researchers (cf., e.g., [Wu91], [Pom94, pp. 16–17], [ZB96]). In the case
of a commutative polynomial algebra D, the result of Janet’s algorithm is actually
a Gröbner basis for the ideal of D which is generated by the input. The develop-
ment of the notion of involutive division and involutive basis by V. P. Gerdt, Y. A.
Blinkov, A. Y. Zharkov, and others (cf. [Ger05] and the references therein) turned
Janet’s algorithm into an efficient alternative to Buchberger’s algorithm [Buc06] for
computing Gröbner bases, cf. also Remark 2.1.49 below. In fact, the decomposi-
tion of multiple-closed sets of monomials into disjoint cones in a computation of an
involutive basis (cf. Subsect. 2.1.1) allows to neglect many S-polynomials that are
dealt with by Buchberger’s original algorithm (cf. also [Ger05, Sect. 5]).

Janet’s and Buchberger’s algorithms solve the problem of constructing a con-
vergent (i.e., confluent and terminating) rewriting system for the representatives of
residue classes of a multivariate polynomial ring modulo an ideal. In other words,
given a representative of a residue class, reduction modulo a Janet or Gröbner basis
constructs the unique irreducible representative of the same residue class in finitely
many steps. In fact, a unification of Buchberger’s algorithm and the Knuth-Bendix
completion procedure [KB70] can be achieved (cf. [Buc87, pp. 24–25], [BG94]),
e.g., by incorporating constraints for coefficients into term rewriting (the inverse of
a non-zero element of the ground field being the solution of an equation). In con-
trast to the general Knuth-Bendix completion procedure, Janet’s and Buchberger’s
algorithms always terminate. For a study of rewriting systems for free associative
algebras over commutative rings, we refer to [Ber78].

Generalizations of Gröbner bases to non-commutative algebras have been studied
since a couple of decades, cf., e.g., [KRW90], [Kre93], [Mor94], [Lev05], [GL11];
for rings of differential operators, cf., e.g., [CJ84], [Gal85], [IP98], [SST00]. Buch-
berger’s algorithm was adapted to Ore algebras by F. Chyzak (cf. [Chy98], [CS98],
where it is also applied to the study of special functions and combinatorial se-
quences). Involutive divisions were studied for the Weyl algebra in [HSS02] and
were extended to non-commutative rings in [EW07]. However, we follow a more
direct approach below, in order to develop Janet’s algorithm for Ore algebras.

The following presentation generalizes earlier descriptions that were given in
[PR05, Rob06, Rob07]. In Subsect. 2.1.1 we discuss the combinatorics on which
Janet’s algorithm is based. In each non-zero polynomial a unique term is selected
as the most significant one in a certain sense, and it is the technique of forming a
partition of the set of monomials arising in this way which directs Janet’s algorithm
to new polynomials to be included in the resulting Janet basis. The same technique
will be used in Sect. 2.2 for the computation of Thomas decompositions of systems
of nonlinear partial differential equations and inequations.

After recalling the concept of Ore algebra in Subsect. 2.1.2, Janet’s algorithm is
adapted to a certain class of Ore algebras in Subsect. 2.1.3. The relation between
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Janet bases and Gröbner bases is described in Subsect. 2.1.4, where we also com-
ment on the complexity of their computation.

Subsection 2.1.5 develops the notion of generalized Hilbert series and applies
this combinatorial device to the construction of a Noether normalization of a finitely
generated commutative algebra over a field and to the solution of systems of linear
partial differential equations. Subsection 2.1.6 summarizes work by the author of
this monograph which resulted in implementations of the involutive basis technique
in Maple and C++ and refers to related software.

2.1.1 Combinatorics of Janet Division

Janet’s algorithm constructs a distinguished generating set, called Janet basis, for an
ideal of a commutative polynomial algebra, or for a left ideal of a ring of differential
operators, or, more generally, for finitely generated left modules over certain Ore
algebras. Following Maurice Janet [Jan29], this method examines in a precise sense
the highest terms occurring in the generators and their divisibility relations. We
therefore restrict our attention in this subsection to the combinatorial properties of
certain sets of monomials which are relevant for Janet’s algorithm.

Let X := {x1, . . . ,xn} be a set of n symbols. For any subset Y = {y1, . . . ,yr} of X
we denote by

Mon(Y ) :=

{
r

∏
i=1

yαi
i

∣∣∣∣∣α ∈ (�≥0)
r

}
the monoid of monomials in y1, . . . , yr, which is the free commutative semigroup
with identity element generated by y1, . . . , yr with the usual divisibility relation |.
For m = yα1

1 · . . . · yαr
r we define degyi

(m) := αi, i = 1, . . . , r. We will often write m
as yα , and we denote by |α| the length α1 + . . .+αr of the multi-index α .

Definition 2.1.1. A set S ⊆ Mon(X) is said to be Mon(X)-multiple-closed, if

ms ∈ S for all m ∈ Mon(X), s ∈ S.

Every set G ⊆ Mon(X) satisfying

Mon(X) ·G = {mg | m ∈ Mon(X), g ∈ G}= S

is called a generating set for S.

Janet used the following lemma for his “calcul inverse de la dérivation” (cf.
[Jan29]). It can be seen as the special case of Hilbert’s Basis Theorem dealing with
ideals generated by monomials, which amounts to the statement that every sequence
of monomials in which no monomial has a divisor among the previous ones is fi-
nite. This combinatorial fact is also referred to as Dickson’s Lemma and is proved
by induction on n.
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Lemma 2.1.2. Every Mon(X)-multiple-closed subset of Mon(X) has a finite gener-
ating set. Equivalently, every ascending chain of Mon(X)-multiple-closed subsets
of Mon(X) terminates.

Remark 2.1.3. Every Mon(X)-multiple-closed set has a unique minimal generating
set, which is obtained from any generating set G by removing all elements which
have a proper divisor in G.

We are going to partition multiple-closed sets (and, more importantly, their com-
plements in Mon(X)) into cones of monomials, one instrumental fact being that the
latter are again Mon(μ)-multiple-closed sets for some μ ⊆ X .

Definition 2.1.4. a) A set C ⊆ Mon(X) is called a (monomial) cone if there ex-
ist m ∈ C and μ ⊆ {x1, . . . ,xn} such that Mon(μ)m = C. The monomial m is
uniquely determined by C and is called the generator of the cone C, and the
elements of μ (of μ := {x1, . . . ,xn}−μ) are called the multiplicative (resp. non-
multiplicative) variables for C. Geometrically speaking, the extremal rays of the
cone are parallel to the coordinate axes corresponding to multiplicative variables
when monomials are visualized as points in the positive orthant (cf. Ex. 2.1.7).
We often refer to such a cone C by the pair (m,μ).

b) Let S ⊆ Mon(X) be a set of monomials. A cone decomposition of S is a finite set
{(m1,μ1), . . . ,(mr,μr)} of monomial cones such that the sets Ci := Mon(μi)mi,
i = 1, . . . , r, satisfy C1 ∪ . . .∪Cr = S and Ci ∩Cj = /0 for all i 
= j.

Given a finite set M = {m1, . . . ,mr} of monomials, there may exist in general
no or many ways of arranging sets of multiplicative variables μ1, . . . , μr such that
{(m1,μ1), . . . ,(mr,μr)} is a cone decomposition of the Mon(X)-multiple-closed set
S generated by M. After enlarging the set M by elements of S, cone decompositions
of S of this form exist. The possible strategies generating such cone decompositions
are addressed by the notion of involutive division, studied, e.g., by Gerdt, Blinkov
[GB98a, GB98b], Apel [Ape98], Seiler [Sei10] and others; cf. [Ger05] for a survey2.
We restrict our attention to the strategy developed by Janet:

Definition 2.1.5. [GB98a] Let M ⊂ Mon(X) be finite. For each m ∈ M, the Janet
division defines the set μ of multiplicative variables for the cone with generator m
as follows. Let m = xα = xα1

1 · . . . · xαn
n ∈ M. For 1 ≤ i ≤ n, let

xi ∈ μ :⇐⇒ αi = max{βi | xβ ∈ M, β j = α j for all j < i},

i.e., xi is a multiplicative variable for the cone with generator m if and only if its
exponent in m is maximal among the corresponding exponents of all monomials in
M whose sequence of exponents of x1, x2, . . . , xi−1 coincides with that of m.

2 At the time of this writing, computer experiments have been carried out by Y. A. Blinkov and
V. P. Gerdt which indicate that an involutive division which is computationally superior to the
one of Janet can be defined by determining the non-multiplicative variables for a generator mi as
the union of those necessary for separating each two cones Mon(X)mi, Mon(X)m j , i 
= j, and by
deciding the latter using a suitable term ordering on Mon(X), cf. [GB11].
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There are also other common involutive divisions. For instance, J. M. Thomas
proposed to define xi to be a multiplicative variable for the cone with generator
m if and only if αi = max{βi | xβ ∈ M } (cf. [Tho37, § 36]). Pommaret division
defines the set of multiplicative variables for the cone with generator m 
= 1 to be
{x1, . . . ,xk}, where k=min{ j |α j 
= 0} is the class of m (cf. [Pom94, p. 90], [Jan29,
no. 58]).

We mention that, in the context of combinatorics, cone decompositions as defined
above are referred to as Stanley decompositions, cf., e.g., [SW91].

Given a finite generating set for a Mon(X)-multiple-closed set S, the following
algorithm constructs a cone decomposition of S using the strategy proposed by Janet
division. A given total ordering > on X determines the order in which exponents of
monomials are compared. (In Definition 2.1.5 we have x1 > x2 > .. . > xn.)

Algorithm 2.1.6 (Decompose).

Input: A finite subset G of Mon(X), a subset η of X , and a total ordering > on
X = {x1, . . . ,xn}

Output: A cone decomposition of the Mon(η)-multiple-closed subset of Mon(X)

generated by G
Algorithm:

1: if |G| ≤ 1 or η = /0 then

2: return {(g,η) | g ∈ G}
3: else

4: let y be the maximal element of η with respect to >

5: d ← max{degy(g) | g ∈ G}
6: for i = 0, . . . ,d do

7: C(i) ← Decompose(
i⋃

j=0

{yi− j g | g ∈ G, degy(g) = j}, η −{y}, >)

8: end for

9: replace each (m,μ) in C(d) with (m,μ ∪{y})
10: return

d⋃
i=0

C(i)

11: end if

Proof. Termination follows from the fact that the cardinality of η decreases in re-
cursive calls of the algorithm.

We show the correctness by induction on |η |. First of all, a Mon(η)-multiple-
closed set which is generated by a single element or is empty admits a trivial cone
decomposition. If η = /0, then each element of G is the generator of a cone without
multiplicative variables. In any other case, the sets of multiples of elements of G
with a fixed degree in the maximal variable y in η are treated separately. Let us
assume that Algorithm 2.1.6 is correct if the input is any Mon(η ′)-multiple-closed
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subset of Mon(X), where η ′ ⊂ X has cardinality less than |η |. Then we assert that
the monomial cones in each C(i), i = 0, . . . , d, in step 10 are mutually disjoint. This
assertion holds for i= d because mutually disjoint cones with generators of the same
degree d in y for which y is a non-multiplicative variable are still mutually disjoint
after y has been added as a multiplicative variable (in step 9). By the induction
hypothesis, the assertion is true for i = 0, . . . , d − 1. Since y is only chosen to be
multiplicative for the cones in C(d), and since cones in different C(i) contain only
monomials of distinct degrees in y, it is clear that the cones in

⋃d
i=0 C(i) are mutually

disjoint. Finally, we show that we have⋃
(m,μ)∈⋃d

i=0 C(i)

Mon(μ)m = Mon(η)G

after step 9. The inclusion “⊆” is obvious. By the induction hypothesis, for each
i = 0, . . . , d, the cones in C(i) resulting from step 7 form a partition of

Mon(η −{y}) ·
i⋃

j=0

{yi− j g | g ∈ G, degy(g) = j}.

Every element s in Mon(η)G can be written as myk g for some m ∈ Mon(η −{y}),
k ∈ �≥0, and g ∈ G. If the degree i of s in y is at most d, then s is an element of a
unique cone in C(i). If i is greater than d, then s is an element of the cone in C(d)

resulting from step 9 which contains myk−(i−d) g. ��
Algorithm 2.1.6 will be applied both in Subsect. 2.1.3 and Subsect. 2.2.2 for

the construction of Janet bases for Ore algebras and of Thomas decompositions of
differential systems, respectively. Whenever possible, Algorithm 2.1.6 should be ap-
plied to the minimal generating set for the multiple-closed set under consideration
(also in recursive calls). This is easily achieved by an additional preliminary step
which removes all elements from G which have a proper divisor in G. The algo-
rithms discussed in Subsects. 2.1.3 and 2.2.2 produce a more compact result when
making use of this modification. It is not incorporated into Algorithm 2.1.6 because
for the computation of Janet bases over the ring of integers, the numeric coefficients
of highest terms of polynomials must be taken into account, so that an adaptation of
(auto-) reduction of a generating set is required (cf. also Def. 2.1.33).

Example 2.1.7. Let R denote the commutative polynomial algebra K[x1,x2,x3] over
a field K and define X := {x1,x2,x3}. We are going to apply the previous algorithm
with the total ordering x1 > x2 > x3. Let η = X and let S ⊂ Mon(X) be the Mon(X)-
multiple-closed set generated by {x1x2,x3

1x3 }. Then Algorithm 2.1.6 sets d = 3 and
is applied recursively to

( /0,{x2,x3}), ({x1x2},{x2,x3}), ({x2
1x2},{x2,x3}), ({x3

1x2,x3
1x3},{x2,x3}),

where the first component in each pair is a generating set for a Mon({x2,x3})-
multiple-closed set. Only the last recursive run starts new recursions; the respective
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{(x3
1x2,{x1,x2,x3}), (x3

1x3,{x1,x3}), (x2
1x2,{x2,x3}), (x1x2,{x2,x3})}.

We also display this decomposition in the following form, where the symbol ∗ in-
dicates a non-multiplicative variable and does not represent an element of the set of
multiplicative variables:

x3
1x2, { x1 , x2 , x3 },

x3
1x3, { x1 , ∗ , x3 },

x2
1x2, { ∗ , x2 , x3 },

x1x2, { ∗ , x2 , x3 }.
The cones of this decomposition may also be visualized in the positive orthant of a
coordinate system whose axes specify the exponents of x1, x2, x3 in monomials:

Fig. 2.1 A visualization of the cone decomposition in Example 2.1.7

Next we give a similar algorithm which produces a cone decomposition for the
complement of a Mon(X)-multiple-closed set S in Mon(X). Decompositions pro-
duced by this algorithm will be used later in the case of the set of leading mono-
mials of a submodule of D1×q, where D is an Ore algebra, viz. to get a partition of
the set of “standard monomials”, and in the case of the set of leaders of a system of
polynomial differential equations (cf. also Remarks 2.1.67 and 2.2.79).

x1

x2

x3

(minimized) arguments are ({x3
1x3},{x3}), ({x3

1x2},{x3}). The final result is
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Algorithm 2.1.8 (DecomposeComplement).

Input: A finite subset G of Mon(X), a subset η of X , and v ∈ Mon(X) such that
G ⊆ Mon(η)v, and a total ordering > on X = {x1, . . . ,xn}

Output: A cone decomposition of Mon(η)v−S, where S is the Mon(η)-multiple-
closed subset of Mon(X) generated by G

Algorithm:

1: if G = /0 then // the complement equals Mon(η)v, which is a cone
2: return {(v,η)}
3: else if η = /0 then // thus, G = S = {v}
4: return /0
5: else

6: let y be the maximal element of η with respect to >

7: d ← max{degy(g) | g ∈ G}; e ← degy(v)
8: for i = e, . . . ,d do

9: C(i) ← DecomposeComplement(
i⋃

j=e

{yi− j g | g∈G, degy(g) = j}, η−{y},

yi−e v, >)
10: end for

11: replace each (m,μ) in C(d) with (m,μ ∪{y})
12: return

d⋃
i=e

C(i)

13: end if

Proof. It is clear that Algorithm 2.1.8 terminates. If G is empty, then S = /0, and
{(v,η)} is a trivial cone decomposition of Mon(η)v. Otherwise, if η is empty, then
S = {v}, and Mon(η)v− S is empty. If |η | = 1, then the algorithm enumerates the
monomials in Mon(η)v−Mon(η)G, which are finitely many. These monomials are
generators of cones without multiplicative variables. The rest of Algorithm 2.1.8 is
similar to Algorithm 2.1.6. The only difference is the additional argument v, which
comprises the information in which set Mon(η)v the complement is to be taken.
The recursive treatment of the sets of multiples of elements of G with a fixed degree
in y needs to consider only monomials of degree at least e = degy(v). ��
Remark 2.1.9. The result of applying Algorithm 2.1.8 to a finite generating set G
for a Mon(X)-multiple-closed subset S of Mon(X) and v = 1 is a cone decomposi-
tion of Mon(X)− S. An additional preliminary step removing all elements from G
which have a proper divisor in G reduces the number of unnecessary recursive calls.

Example 2.1.10. Applying Algorithm 2.1.8 to the same data as in Example 2.1.7
and v= 1 leads again to d = 3 and the same recursive calls with additional arguments
v = 1, x1, x2

1, and x3
1, respectively. After additional recursive runs, the results are

{(1,{x2,x3})}, {(x1,{x3})}, {(x2
1,{x3})}, and {(x3

1, /0)},
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respectively. The final result is: {(1,{x2,x3}), (x1,{x3}), (x2
1,{x3}), (x3

1,{x1})}. An
alternative representation of the result is the following, where, as in Example 2.1.7,
the symbol ∗ replaces a non-multiplicative variable in the set of all variables and is
not to be understood as an element of the set:

1, { ∗ , x2 , x3 },
x1, { ∗ , ∗ , x3 },
x2

1, { ∗ , ∗ , x3 },
x3

1, { x1 , ∗ , ∗ }.
A visualization of the cone decompositions of both the multiple-closed set S and its
complement in the same orthant is given as follows:

Fig. 2.2 A visualization of the cone decompositions in Examples 2.1.7 and 2.1.10

Definition 2.1.11. Let S be a Mon(X)-multiple-closed subset of Mon(X) with finite
generating set G, and let > be a total ordering on X . We call the cone decomposition
of S (of Mon(X)−S) which is constructed by Algorithm 2.1.6 (resp. 2.1.8) a Janet
decomposition of S (resp. of Mon(X)−S). (If Algorithms 2.1.6 and 2.1.8 reduce G
to the minimal generating set in the beginning, then this notion only depends on S
and >.) The set of generators of the cones is called the Janet completion of G.

x1

x2

x3
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2.1.2 Ore Algebras

Ore algebras form a large class of algebras, many instances of which are encoun-
tered in applications as algebras of linear operators. The name refers to Ø. Ore, who
studied non-commutative rings of polynomials under the assumption that the de-
gree of a product of two non-zero polynomials is the sum of their degrees [Ore33].
Under the same assumption E. Noether and W. Schmeidler proved earlier that one-
sided ideals of such rings are finitely generated and investigated the decompositions
of such ideals as intersections of irreducible ones [NS20].

For instance, the Weyl algebra A1(�) consists of the polynomials in d
dt whose

coefficients are real polynomials in t, and the structure of A1(�) as a (non-commu-
tative) algebra is defined in such a way that its elements represent ordinary differen-
tial operators with polynomial coefficients (i.e., the commutation rules in A1(�) are
determined by the product rule of differentiation; cf. Ex. 2.1.18 a)). Many types of
systems of linear equations can be analyzed structurally by viewing them as (left)
modules over appropriate Ore algebras. The Ore algebra is chosen to contain all
polynomials in the operators occurring in the system equations (cf. also the intro-
duction to this section).

An Ore algebra is obtained as an iterated Ore extension of another algebra. An
Ore extension forms a skew polynomial ring by adjoining one indeterminate, which
does not necessarily commute with the specified algebra of coefficients. After giving
the definition of skew polynomial rings and Ore algebras following [CS98], several
examples of Ore algebras are discussed. At the end of this subsection important
properties of Ore algebras are recalled.

In what follows, let K be a field (of any characteristic) or K = �, and let A be a
(not necessarily commutative) K-algebra which is a domain, i.e., an associative and
unital3 algebra over K without zero divisors.

Definition 2.1.12 ([MR01], [Coh71]). Let ∂ be an indeterminate, σ : A → A a K-
algebra endomorphism and δ : A → A a σ -derivation, i.e., a K-linear map which
satisfies

δ (ab) = σ(a)δ (b)+δ (a)b for all a,b ∈ A.

The skew polynomial ring A[∂ ;σ ,δ ] is the (not necessarily commutative) K-algebra
generated by A and ∂ obeying the commutation rules

∂ a = σ(a)∂ +δ (a) for all a ∈ A.

(K-linearity of both σ and δ implies that ∂ commutes with every element of K.)

Remark 2.1.13. If σ is injective, then A[∂ ;σ ,δ ] is a domain because the maximum

3 All algebra homomorphisms are assumed to map the multiplicative identity element to the mul-
tiplicative identity element.

multiplicity of ∂ as a factor in the terms of an element p of A[∂ ;σ ,δ ] is then referred
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A[∂ ;σ ,δ ] equals the sum of their degrees.

We recall the notion of Ore algebra as defined in [Chy98, CS98], which is an
iterated skew polynomial ring with commuting indeterminates.

Definition 2.1.14. Let A be a K-algebra which is a domain and ∂1, . . . , ∂l indeter-
minates, l ∈ �≥0. The Ore algebra D = A[∂1;σ1,δ1][∂2;σ2,δ2] . . . [∂l ;σl ,δl ] is the
(not necessarily commutative) K-algebra generated by A and ∂1, . . . , ∂l subject to
the relations

∂i d = σi(d)∂i +δi(d), d ∈ A[∂1;σ1,δ1] . . . [∂i−1;σi−1,δi−1], i = 1, . . . , l, (2.3)

where the map σi is a K-algebra monomorphism of A[∂1;σ1,δ1] . . . [∂i−1;σi−1,δi−1]
and δi is a σi-derivation of A[∂1;σ1,δ1] . . . [∂i−1;σi−1,δi−1] (cf. Def. 2.1.12) satisfy-
ing for all 1 ≤ j < i ≤ l {

σi(∂ j) = ∂ j,

δi(∂ j) = 0
(2.4)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σi ◦σ j = σ j ◦σi,

δi ◦δ j = δ j ◦δi,

σi ◦δ j = δ j ◦σi,

σ j ◦δi = δi ◦σ j

(2.5)

as restrictions to A[∂1;σ1,δ1] . . . [∂ j−1;σ j−1,δ j−1]. Moreover, we require that (2.3)
holds for all d ∈ D by extending σi and δi to D as K-algebra monomorphism and
σi-derivation, respectively, subject to σi(∂ j) = ∂ j and δi(∂ j) = 0 for all 1≤ i< j ≤ l.

Remark 2.1.15. Conditions (2.4) imply that the indeterminates ∂i and ∂ j commute
in D for all 1≤ i, j ≤ l, and conditions (2.5) ensure that this postulation is compatible
with associativity of the multiplication in D. Indeed, for all 1 ≤ j < i ≤ l and all
d ∈ A[∂1;σ1,δ1] . . . [∂ j−1;σ j−1,δ j−1] we have

∂i(∂ j d) = ∂i(σ j(d)∂ j +δ j(d))

= σi(σ j(d)∂ j +δ j(d))∂i +δi(σ j(d)∂ j +δ j(d))

= σi(σ j(d))∂ j ∂i +σi(δ j(d))∂i +δi(σ j(d))∂ j +δi(δ j(d))

= σ j(σi(d))∂i ∂ j +σ j(δi(d))∂ j +δ j(σi(d))∂i +δ j(δi(d))

= σ j(σi(d)∂i +δi(d))∂ j +δ j(σi(d)∂i +δi(d))

= ∂ j(σi(d)∂i +δi(d))

= ∂ j(∂i d).

Moreover, since all maps σi and δ j are K-linear, each indeterminate ∂i commutes
with every element of K. Extending Remark 2.1.13 we note that, since every σi is a
K-algebra monomorphism, D is a domain.

to as the degree of p, and the degree of a product of two non-zero elements of
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We will concentrate on K-algebras A that are either fields (e.g., a field of rational
functions over a field K or a field of meromorphic functions on a connected open
subset of Kn, where K =�) or commutative polynomial algebras over K (where K
is a field or �) with finitely many indeterminates. The definition of a monomial in
an Ore algebra depends on the type of the K-algebra A in this sense.

Definition 2.1.16. Let D = A[∂1;σ1,δ1] . . . [∂l ;σl ,δl ] be an Ore algebra.

a) In case A = K[z1, . . . ,zn] is a commutative polynomial algebra over a field K or
over K = �, then the set of indeterminates of D is defined by

Indet(D) := {z1, . . . ,zn,∂1, . . . ,∂l }.

A monomial of D is then defined to be an element of the form zα ∂ β , where
zα := zα1

1 · . . . · zαn
n , ∂ β := ∂ β1

1 · . . . ·∂ βl
l , α ∈ (�≥0)

n, β ∈ (�≥0)
l , and we set

Mon(D) := {zα ∂ β | α ∈ (�≥0)
n, β ∈ (�≥0)

l }.

The total degree of zα ∂ β is defined to be |α|+ |β |=α1+ . . .+αn+β1+ . . .+βl .
b) If A is a field, then we define

Indet(D) := {∂1, . . . ,∂l }, Mon(D) := {∂ β | β ∈ (�≥0)
l },

and the total degree of ∂ β is defined to be |β |= β1 + . . .+βl .

We denote the total degree of a monomial m ∈ Mon(D) by deg(m).
For any subset Y of Indet(D), let Mon(Y ) be the subset of elements of Mon(D)

which do not involve any indeterminate in Indet(D)−Y .
Let q ∈ � and denote by e1, . . . , eq the standard basis vectors of the free left

D-module D1×q. We set

Mon(D1×q) :=
q⋃

k=1

Mon(D)ek.

Remark 2.1.17. The definition of the commutation rules of D implies that D1×q is
a free left A-module with basis

{∂ β ei | β ∈ (�≥0)
l , 1 ≤ i ≤ q}. (2.6)

Moreover, if A = K[z1, . . . ,zn], then Mon(D1×q) is a basis of D1×q as a free left
K-module. In other words, every p ∈ D1×q has a unique representation

p =
q

∑
k=1

∑
m∈Mon(D)

ck,m mek (2.7)
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as linear combination of the elements of Mon(D1×q) with coefficients ck,m ∈ K,
where only finitely many ck,m are non-zero. In case A is a field the same holds true
with ck,m ∈ A (because the basis in (2.6) equals Mon(D1×q)).

Since D is a non-commutative ring in general, elements p ∈ D1×q may have
more than one representation as sum of terms with unspecified order of the indeter-
minates. However, by the previous definition of monomials and the choice to write
coefficients in A on the left, we distinguish a normal form (2.7) for the elements of
D1×q. For any p ∈ D−{0}, we define the total degree of p by

deg(p) := max{deg(m) | cm,k 
= 0},

using the representation (2.7). (Note that, if σ1, . . . , σl are injective, then the max-
imum of the total degrees of monomials with non-zero coefficient is the same for
any representation of p as sum of terms.)

We list important examples of Ore algebras.

Examples 2.1.18. a) If A = K[z1, . . . ,zn], σi = idD and δi = 0 for all i = 1, . . . , l,
then the Ore algebra D = K[z1, . . . ,zn][∂1;σ1,δ1] . . . [∂l ;σl ,δl ] is the commutative
polynomial algebra over K in n+ l indeterminates.

b) For n ∈�, the Weyl algebra

An(K) := K[z1, . . . ,zn][∂1;σ1,δ1] . . . [∂n;σn,δn]

over K is defined by

σi = idAn(K), δi =

(
a �→ ∂a

∂ zi

)
, i = 1, . . . ,n.

In An(K) the commutation rules

∂ j zi = zi ∂ j +δi, j, 1 ≤ i, j ≤ n,

hold, where δi, j is the Kronecker symbol, i.e., δi, j = 1 if i = j and δi, j = 0 other-
wise. Let K be� or�. We may interpret z1, . . . , zn as coordinates of the smooth
manifold Kn. Then the indeterminate zi in An(K) can be understood as a name for
the linear operator acting from the left on the K-vector space of smooth functions
on Kn by multiplication with zi, and the indeterminate ∂ j represents the partial
differential operator with respect to z j. (The indeterminates ∂i and ∂ j commute,
cf. Rem. 2.1.15, which is required by Schwarz’ Theorem in this context.)
Another variant of the Weyl algebra is the algebra of differential operators with
rational function coefficients

Bn(K) := K(z1, . . . ,zn)[∂1;σ1,δ1] . . . [∂n;σn,δn],

where σi and δi, i = 1, . . . , n, are defined in the same way as above, but the
elements of A = K(z1, . . . ,zn) are rational functions in z1, . . . , zn.
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c) For h ∈� let Sh :=�[t][δh;σ ,δ ] be the algebra of shift operators, where

σ = (a(t,δh) �→ a(t −h,δh)) , δ = (a �→ 0) , a = a(t,δh) ∈ Sh.

This implies the commutation rule

δh t = (t −h)δh

in Sh. Hence, δh represents the linear operator which shifts the argument of a
function of t by the amount h.

d) For h ∈� define Dh :=�[t][∂ ;σ1,δ1][δh;σ2,δ2], where σ1 = idDh is the identity
map, δ1 is defined by formal differentiation with respect to t, and

σ2 = (a(t,∂ ,δh) �→ a(t −h,∂ ,δh)) , δ2 = (a �→ 0) , a = a(t,∂ ,δh) ∈ Dh.

This algebra consists of linear operators which are relevant for differential time-
delay systems.

e) Let D = K[z1, . . . ,zn][∂1;σ1,δ1] . . . [∂n;σn,δn], where

σi(a) = a(z1, . . . ,zi−1, zi −1, zi+1, . . . ,zn,∂1, . . . ,∂n), a ∈ D,

and δi = 0, i = 1, . . . , n. This algebra is used for the algebraic treatment of (mul-
tidimensional) discrete systems. Of course, the direction of the shifts can be re-
versed.

We only recall the essential property of Ore algebras, studied by Ore [Ore33],
which ensures the existence of left skew fields of fractions. (All concepts dealing
with left multiplication, left ideals, etc., can of course be translated into analogous
concepts for right multiplication, right ideals and so on.)

Definition 2.1.19. A ring D is said to satisfy the left Ore condition if for all a1,
a2 ∈ D−{0} there exist b1, b2 ∈ D−{0} such that b1 a2 = b2 a1.

If the left Ore condition is satisfied, then every right-fraction a1 · 1
a2

has a repre-
sentation4 as left-fraction 1

b2
· b1. Thus, if D−{0} is multiplicatively closed, non-

commutative localization with set of denominators D−{0} is made possible.

Proposition 2.1.20 ([MR01], Cor. 2.1.14). Let D be a domain. A left skew field of
fractions of D exists if and only if D satisfies the left Ore condition.

In fact, if we confine ourselves to left Noetherian rings, i.e., rings for which every
ascending chain of left ideals terminates, then every domain has this property.

Proposition 2.1.21 ([MR01], Thm. 2.1.15). If D is a left Noetherian domain, then
D satisfies the left Ore condition.

4 If Janet bases can be computed over D, as explained in the next subsection, then pairs (b1,b2)
can be determined effectively as syzygies of (a2,a1), cf. Subsect. 3.1.5, p. 147.
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Moreover, in analogy to Hilbert’s Basis Theorem, we have the following impor-
tant proposition.

Proposition 2.1.22 ([MR01], Thm. 1.2.9 (iv)). If A is a left Noetherian domain and
σ is an automorphism of A, then A[∂ ;σ ,δ ] is also a left Noetherian domain.

All Ore algebras in the Examples 2.1.18 are left Noetherian (with bijective twist).

2.1.3 Janet Bases for Ore Algebras

In this subsection we present Janet’s algorithm for a certain class of Ore algebras
D. Given a submodule M of the free left D-module D1×q, q ∈ �, in terms of a
finite generating set, a distinguished generating set for M is constructed, which, in
particular, allows to decide effectively whether a given element of D1×q is in M and
to read off important invariants of M. In case D is a commutative polynomial algebra
over a field, Janet’s algorithm can be viewed as a simultaneous generalization of
Euclid’s algorithm (dealing with univariate polynomials) and Gaussian elimination
(dealing with linear polynomials).

We deal at the same time with both cases of D being an iterated Ore extension
of either a field K (whose elements do not necessarily commute with every element
of D) or of a commutative polynomial algebra (over a field or over �) with finitely
many indeterminates (cf. Def. 2.1.16).

In the former case we define

D = K[∂1;σ1,δ1] . . . [∂l ;σl ,δl ],

where for some subfield K0 of K, each monomorphism σi is assumed to be a K0-al-
gebra automorphism and each δi is a K0-linear σi-derivation as in Definition 2.1.14,
i = 1, . . . , l. We set n := 0 in this case. Note that K plays the role of the algebra A
in the previous subsection, so that elements of K do not necessarily commute with
the elements ∂1, . . . , ∂l in D. We also use the notation K〈∂1, . . . ,∂l〉 for such a skew
polynomial ring.

In the latter case we define

D = K[z1, . . . ,zn][∂1;σ1,δ1] . . . [∂l ;σl ,δl ], n ∈ �≥0,

where each monomorphism σi is assumed to be a K-algebra automorphism and each
δi is a σi-derivation as in Definition 2.1.14, i = 1, . . . , l, and where K is a field (of
any characteristic) or K = �, and K[z1, . . . ,zn] is the commutative polynomial alge-
bra over K with standard grading. Moreover, in order to be able to develop Janet’s
algorithm for Ore algebras employing the notion of multiple-closed sets of mono-
mials (as discussed in Subsect. 2.1.1), we restrict ourselves to the following class of
Ore algebras. Let K∗ denote the group of multiplicatively invertible elements of K.
(In case n = 0 the next assumption is vacuous.)
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Assumption 2.1.23. The automorphisms σ1, . . . , σl are of the form

σi(z j) = ci j z j +di j, ci j ∈ K∗, di j ∈ K, j = 1, . . . ,n, i = 1, . . . , l,

and each σi-derivation δi satisfies

δi(z j) = 0 or deg(δi(z j))≤ 1, j = 1, . . . ,n, i = 1, . . . , l,

where deg(δi(z j)) denotes the total degree of the polynomial δi(z j) ∈ K[z1, . . . ,zn].

By Proposition 2.1.22, in both of the above cases D is a left Noetherian domain.
We assume that the operations in D which are necessary for executing the algorithms
described below can be carried out effectively, e.g., arithmetic in D and deciding
equality of elements in D.

Let q ∈ �, and denote by e1, . . . , eq the standard basis vectors of the free left
D-module D1×q. Recall from Remark 2.1.17 that every p ∈ D1×q has a unique rep-
resentation

p =
q

∑
k=1

∑
m∈Mon(D)

ck,m mek (2.8)

as linear combination of monomials in Mon(D1×q) with coefficients ck,m ∈K, where
only finitely many ck,m are non-zero.

Definition 2.1.24. A term ordering > on Mon(D1×q) (or on D1×q) is a total ordering
on Mon(D1×q) which satisfies the following two conditions.

a) For all 1 ≤ i ≤ n, 1 ≤ j ≤ l, and 1 ≤ k ≤ q, we have ziek > ek and ∂ jek > ek.
b) For all m1ek, m2el ∈ Mon(D1×q) the following implications hold:

m1 ek > m2 el =⇒ zi m1 ek > zi m2 el for all i = 1, . . . ,n

and

m1 ek > m2 el =⇒ m1 ∂ j ek > m2 ∂ j el for all j = 1, . . . , l.

If a term ordering > on Mon(D1×q) is fixed, then for every non-zero p ∈ D1×q

the >-greatest monomial occurring (with non-zero coefficient) in the representation
(2.8) of p as left K-linear combination of monomials is uniquely determined and
is called the leading monomial of p, denoted by lm(p). The coefficient of lm(p) in
this representation of p is called the leading coefficient of p, denoted by lc(p). For
any subset S ⊆ D1×q we define

lm(S) := { lm(p) | 0 
= p ∈ S}.

Remark 2.1.25. By Lemma 2.1.2, every term ordering on D1×q is a well-ordering,
i.e., every non-empty subset of Mon(D1×q) has a least element. Equivalently, every
descending sequence of elements of Mon(D1×q) terminates.
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Example 2.1.26. Let π : {1, . . . ,n+ l}→ Indet(D) be a bijection. The lexicographi-
cal ordering (lex) on Mon(D) (which extends the total ordering π(1)> π(2)> .. . >
π(n+ l) of the indeterminates) is defined for monomials m1, m2 ∈ Mon(D) by

m1 > m2 :⇐⇒
⎧⎨⎩m1 
= m2 and degπ( j)(m1)> degπ( j)(m2) for

j = min{1 ≤ i ≤ n+ l | degπ(i)(m1) 
= degπ(i)(m2)}.

Example 2.1.27. Let π : {1, . . . ,n + l} → Indet(D) be a bijection. The degree-
reverse lexicographical ordering (degrevlex) on Mon(D) (extending the total order-
ing π(1) > π(2) > .. . > π(n+ l) of the indeterminates) is defined for monomials
m1, m2 ∈ Mon(D) by

m1 > m2 :⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

deg(m1)> deg(m2) or(
deg(m1) = deg(m2) and m1 
= m2 and

degπ( j)(m1)< degπ( j)(m2) for

j = max{1 ≤ i ≤ n+ l | degπ(i)(m1) 
= degπ(i)(m2)}
)
.

Example 2.1.28. Two ways of extending a given term ordering >1 on Mon(D) to
Mon(D1×q) for q > 1 are often used. The term-over-position ordering (extending
>1 and the total ordering e1 > .. . > eq of the standard basis vectors) is defined for
m1, m2 ∈ Mon(D) by

m1 ei > m2 e j :⇐⇒ m1 >1 m2 or (m1 = m2 and i < j) .

Accordingly, the position-over-term ordering (extending >1 and e1 > .. . > eq) is
defined by

m1 ei > m2 e j :⇐⇒ i < j or (i = j and m1 >1 m2) .

In order to apply Janet’s method of partitioning multiple-closed sets of monomi-
als into cones, we make the following assumption. It ensures that left multiplication
by ∂ j has an easily predictable effect on leading monomials, namely multiplication
of the leading monomial by ∂ j yields the leading monomial of the product.

Assumption 2.1.29. The term ordering > on Mon(D1×q) has the property that for
all i = 1, . . . , n and j = 1, . . . , l such that δ j(zi) 
= 0, and all k = 1, . . . , q we have

zi ∂ j ek > lm(δ j(zi)ek)

(where lm is defined with respect to >). We call such a term ordering admissible.

Example 2.1.30. If D satisfies Assumption 2.1.23, then every degree-reverse lexi-
cographical ordering > on Mon(D) is admissible. If, in addition, δ j(zi) is a poly-
nomial in K[zi] of total degree at most one for all i = 1, . . . , n, j = 1, . . . , l, then
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every lexicographical ordering > on Mon(D) is admissible. (For a common gen-
eralization of both types of term orderings, cf. Definition 3.1.4, p. 123.) If > is an
admissible term ordering on Mon(D), then its extensions to a term-over-position or
a position-over-term ordering on Mon(D1×q) are admissible.

Remark 2.1.31. Let D be an Ore algebra as above, satisfying Assumption 2.1.23,
and let > be a term ordering on D1×q. Then, for every non-zero p ∈ D1×q, the
monomials which occur with non-zero coefficient in the representation (2.8) of p
form a finite sequence that is sorted with respect to >. Left multiplication of these
monomials by any non-zero element of D produces a sequence of non-zero elements
of D1×q. If the term ordering > satisfies Assumption 2.1.29, then the sequence that is
obtained from the sequence of products by extracting the leading monomial of each
element is necessarily sorted with respect to >. In particular, the leading monomial
of every non-zero left multiple of p can easily be determined as a result of combining
Assumptions 2.1.23 and 2.1.29. Moreover, in this situation the combinatorics of
Janet division discussed in Subsect. 2.1.1 become applicable as follows.

Let X := {x1, . . . ,xn+l} serve as the set of symbols used in Subsect. 2.1.1 and let

Ξ : Mon(D)−→ Mon(X)

be any bijection of the set Mon(D) onto the monoid Mon(X) satisfying that
Ξ(zα1∂ β1) divides Ξ(zα2∂ β2) if and only if α1 and β1 are componentwise less than
or equal to α2 and β2, respectively, where α1, α2 ∈ (�≥0)

n, β1, β2 ∈ (�≥0)
l . This

implies that Ξ maps Indet(D) onto X .
Suppose that L is a subset of D−{0}. Let S be the set of leading monomials

of all left multiples of elements of L by non-zero elements of D. Then Ξ(S) is a
multiple-closed set of monomials in X .

In order to apply Algorithms 2.1.6 and 2.1.8, which construct Janet decomposi-
tions of multiple-closed sets of monomials in X and of their complements, respec-
tively, a total ordering on X is assumed to be chosen (independently of the choice of
term ordering on D1×q).

Definition 2.1.32. Let Ξ be a bijection as defined in the previous remark and let
S ⊆ Mon(D1×q). For k ∈ {1, . . . ,q} we define Sk := {m ∈ Mon(D) | mek ∈ S}.

a) We call the set S multiple-closed if Ξ(S1), . . . , Ξ(Sq) are Mon(X)-multiple-
closed. A set G ⊆ Mon(D1×q) such that Ξ(G1), . . . , Ξ(Gq) are generating sets
for Ξ(S1), . . . , Ξ(Sq), respectively, where Gk := {m ∈ Mon(D) | mek ∈ G}, is
called a generating set for S. In other words, the multiple-closed set generated by
G is

[G] :=
q⋃

k=1

Ξ−1(Mon(X) ·Ξ(Gk))ek.

b) Let S be multiple-closed. For k = 1, . . . , q, let

{(m(k)
1 ,μ(k)

1 ), . . . ,(m(k)
tk ,μ(k)

tk )}
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be a Janet decomposition of Ξ(Sk) (or of Mon(X)−Ξ(Sk)) with respect to the
chosen total ordering on X (cf. Def. 2.1.11). Then

q⋃
k=1

{(
Ξ−1(m(k)

1 )ek,Ξ−1(μ(k)
1 )

)
, . . . ,

(
Ξ−1(m(k)

tk )ek,Ξ−1(μ(k)
tk )

)}
is called a Janet decomposition of S (resp. of Mon(D1×q)−S). The cones of the
Janet decomposition are given by

Ξ−1(Mon(μ(k)
i )m(k)

i )ek, i = 1, . . . , tk, k = 1, . . . ,q.

If the Janet decomposition is constructed from the generating set G for S, then
we call the set of generators Ξ−1(m(k)

i )ek of the cones the Janet completion of G.

For the rest of this section, let D be an Ore algebra as described in the begin-
ning of this subsection which satisfies Assumption 2.1.23, and let > be an admis-
sible term ordering on D1×q (i.e., satisfying Assumption 2.1.29). We fix a bijection
Ξ : Mon(D)→ Mon(X) as above and a total ordering on X such that the Janet com-
pletion of any set G ⊆ Mon(D1×q) is uniquely defined.

Let M be a submodule of D1×q. Starting with a finite generating set L of M,
Janet’s algorithm possibly removes elements from L and inserts new elements of M
into L repeatedly in order to finally achieve that

[ lm(L) ] = lm(M).

An element p ∈ L is removed if it is reduced to zero by subtraction of suitable left
multiples of other elements of L. Before describing the process of auto-reduction we
define when a coefficient in K is reducible modulo another one. This notion depends
on whether K is a field or not.

Definition 2.1.33. Let a, b ∈ K, b 
= 0. If K is a field, then a is said to be reducible
modulo b if a 
= 0. If K = �, then a is said to be reducible modulo b if |a| ≥ |b|.
In both cases, if a is not reducible modulo b, then the element a is also said to be
reduced modulo b.

Definition 2.1.34. A subset L of D1×q is said to be auto-reduced if 0 
∈ L holds, and
for every p1, p2 ∈ L, p1 
= p2, there exists no monomial m ∈ Mon(D1×q) such that
the following two conditions are satisfied.

a) We have Ξ(lm(p2)) | Ξ(m).
b) The coefficient c of m in the representation of p1 as left K-linear combination of

monomials is reducible modulo lc(p2).

Given any finite subset L of D1×q, there is an obvious way of computing an
auto-reduced subset L′ of D1×q which generates the same submodule of D1×q as L,
namely by subtracting suitable left multiples of elements of L from other elements
of L. We denote by D〈L〉 the submodule of D1×q generated by L.
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Algorithm 2.1.35 (Auto-reduce).

Input: L ⊆ D1×q finite and an admissible term ordering > on D1×q

Output: L′ ⊆ D1×q −{0} finite such that D〈L′ 〉= D〈L〉 and L′ is auto-reduced
Algorithm:

1: L′ ← L−{0}
2: while there exist p1, p2 ∈ L′, p1 
= p2 and m ∈ Mon(D1×q) occurring with co-

efficient c in the representation (2.8) of p1 such that Ξ(lm(p2)) | Ξ(m) and c is
reducible modulo lc(p2) do

3: L′ ← L′ −{p1}
4: subtract a suitable left multiple of p2 from p1 such that the coefficient of m

in the representation (2.8) of the result r is reduced modulo lc(p2)

5: if r 
= 0 then

6: L′ ← L′ ∪{r}
7: end if

8: end while

9: return L′

Remark 2.1.36. Termination and the result of Algorithm 2.1.35 depend on the order
in which reductions are performed. Our intention is to construct any auto-reduced set
L′ satisfying [ lm(L) ]⊆ [ lm(L′) ] (and D〈L′ 〉= D〈L〉). By the choice of reductions,
the result of Algorithm 2.1.35 is auto-reduced. Since only elements are removed
from or replaced in L′ whose leading monomial m satisfies Ξ(lm(p2)) | Ξ(m) for
a different element p2 ∈ L′, the property [ lm(L) ]⊆ [ lm(L′) ] is ensured as well (cf.
also Def. 2.1.32 a)). Clearly, the assertion D〈L′ 〉= D〈L〉 also holds. Moreover, it is
easy to see that, if in each round of the loop, the monomial m in step 2 is chosen as
large as possible with respect to >, then Algorithm 2.1.35 terminates because > is
a well-ordering. In fact, if K is a field, then step 4 can be understood as replacing
the term c ·m of p1 with a sum of terms whose monomials are smaller than m with
respect to >. In case K = �, either the same kind of substitution takes place or
this substitution also adds a term with monomial m, whose coefficient, however, is
smaller in absolute value than c; this can be repeated only finitely many times.

In case K =�, computing the coefficient of m in r amounts to Euclidean division
for integers. If m is the leading monomial of p1, then it is more efficient in practice
to apply the extended Euclidean algorithm to lc(p1) and lc(p2) in order to obtain
a representation of the greatest common divisor g of lc(p1) and lc(p2) as linear
combination of these. If lc(p1) is not a multiple of lc(p2), then the corresponding
linear combination r of p1 and p2 is computed such that the leading coefficient of r
equals g. Then both p1 and r are inserted into L′. In this context, p2 in step 2 should
be chosen with the least possible absolute value of lc(p2) among the candidates with
the same leading monomial. In this way, Euclid’s algorithm and polynomial division
in the sense of Janet are interwoven.
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Next we describe a reduction process which takes the Janet division into account.
If a divisor of the leading monomial exists in a set defined as follows, then it is
uniquely determined due to the disjointness of a cone decomposition.

Definition 2.1.37. Let T = {(b1,μ1),(b2,μ2), . . . ,(bt ,μt)}, where bi ∈ D1×q −{0}
and μi ⊆ Indet(D), i = 1, . . . , t.

a) The set T is said to be Janet complete if { lm(b1), lm(b2), . . . , lm(bt)} equals
its Janet completion5 and, for each i ∈ {1, . . . , t}, μi is the set of multiplica-
tive variables of the cone with generator lm(bi) in the Janet decomposition
{(lm(b1),μ1), . . . ,(lm(bt),μt)} of [ lm(b1), . . . , lm(bt) ] (cf. Def. 2.1.32).

b) An element p ∈ D1×q is said to be Janet reducible modulo T if there exist
(b,μ) ∈ T and a monomial m ∈ Mon(D1×q) which occurs with coefficient c in
the representation of p as left K-linear combination of monomials such that

Ξ(m) ∈ Mon(Ξ(μ))Ξ(lm(b))

and c is reducible modulo lc(b). In this case, (b,μ) is called a Janet divisor of p.
Otherwise, p is also said to be Janet reduced modulo T .

The following algorithm subtracts suitable multiples of Janet divisors from a
given element p ∈ D1×q as long as a term in p is Janet reducible modulo T .

Algorithm 2.1.38 (Janet-reduce).

Input: p ∈ D1×q, T = {(b1,μ1), . . . ,(bt ,μt)}, and an admissible term ordering >

on D1×q, where T is Janet complete (with respect to >, cf. Def. 2.1.37)
Output: r ∈ D1×q such that r + D〈b1, . . . ,bt 〉 = p+ D〈b1, . . . ,bt 〉 and r is Janet

reduced modulo T
Algorithm:

1: p′ ← p; r ← 0
2: while p′ 
= 0 do

3: if there exists a Janet divisor (b,μ) of lc(p′) lm(p′) in T then

4: subtract a suitable left multiple of b from p′ such that the coefficient of
lm(p′) in the result is reduced modulo lc(b); replace p′ with this result

5: else

6: subtract the term of p′ with monomial lm(p′) from p′ and add it to r
7: end if

8: end while

9: return r

5 More generally, a set of monomials is said to be complete (with respect to an involutive division),
if it consists of the generators of the cones in a cone decomposition of the multiple-closed set
they generate, where multiplicative variables for each cone are defined according to the involutive
division (cf. Def. 2.1.5 for the case of Janet division). Here we confine ourselves to the complete
sets of monomials which are constructed by Algorithm 2.1.6.
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Remarks 2.1.39. a) Algorithm 2.1.38 terminates because, as long as p′ is non-zero,
the leading monomial of p′ decreases with respect to the term ordering >, which
is a well-ordering, or, if K = �, the absolute value of its coefficient decreases.
Its correctness is clear. The result r of Algorithm 2.1.38 is uniquely determined
for the given input because every monomial has at most one Janet divisor in
T , and also the course of Algorithm 2.1.38 is uniquely determined as opposed
to reduction procedures which apply multivariate polynomial division without
distinguishing between multiplicative and non-multiplicative variables.

b) Let p1, p2 ∈ D1×q and T be as in the input of Algorithm 2.1.38. In general, the
equality p1 + D〈b1, . . . ,bt 〉 = p2 + D〈b1, . . . ,bt 〉 does not imply that the results
of applying Janet-reduce to p1 and p2, respectively, are equal. But later on (cf.
Thm. 2.1.43 d)) it is shown that, if T is a Janet basis, then the result of Janet-
reduce constitutes a unique representative for every coset in D1×q/D〈b1, . . . ,bt 〉.
This unique representative of p1 +D〈b1, . . . ,bt 〉 is called the Janet normal form
of p1 modulo T . For the sake of conciseness, we write NF(p,T,>) for Janet-
reduce(p,T,>), even if T is not a Janet basis.

Definition 2.1.40. A Janet complete set T = {(b1,μ1), . . . ,(bt ,μt)} (as in Defini-
tion 2.1.37 a)) is said to be passive if

NF(v ·bi,T,>) = 0 for all v ∈ μi, i = 1, . . . , t (2.9)

(where we recall that NF(p,T,>) is the result of Algorithm 2.1.38 (Janet-reduce)
applied to p, T , >). If T is passive, then it is called a Janet basis for D〈b1, . . . ,bt 〉,
and {b1, . . . ,bt } is often referred to as a Janet basis for D〈b1, . . . ,bt 〉 as well.

The term “passive” can be understood as the property of T which ensures that
taking left D-linear combinations of b1, . . . , bt does not produce any p∈D1×q−{0}
such that lm(p) 
∈ [ lm(b1), . . . , lm(bt) ] (cf. also Remark 2.1.41 below).

More generally, an involutive basis is defined by replacing the reference to Janet
completeness in the previous definition with a possibly different way of partitioning
multiple-closed sets of monomials into cones, as determined by an involutive divi-
sion (cf. the paragraphs before and after Def. 2.1.5, p. 10). For instance, Pommaret
bases, i.e., involutive bases with respect to Pommaret division (cf. [Pom94, p. 90],
[Jan29, no. 58]) are investigated, e.g., in [Sei10]. Pommaret bases are guaranteed to
be finite only in coordinate systems that are sufficiently generic (so-called δ -regular
coordinates). Essentially the same technique has been applied to a study of homo-
geneous ideals in a commutative algebra context by Mutsumi Amasaki in [Ama90]
(where this form of Gröbner basis in generic coordinates is referred to as a system
of Weierstraß polynomials).

Remark 2.1.41. Let M be a submodule of D1×q. Then lm(M) is multiple-closed
(cf. Rem. 2.1.31 and Def. 2.1.32). Janet’s algorithm (cf. Alg. 2.1.42 below) con-
structs an ascending chain of multiple-closed subsets of lm(M), which terminates
by Lemma 2.1.2. In each round, a cone decomposition is computed for the current
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multiple-closed set S generated by the leading monomials of an auto-reduced gen-
erating set G for M. Note that, if K is a field, these leading monomials form not just
any generating set, but the minimal generating set for S.

The Janet decomposition is constructed by applying Algorithm 2.1.6, p. 11, di-
rectly to G, in the sense that its run is determined by the monomials Ξ(lm(g)), g∈G,
but left multiplications of such a monomial by y are replaced with left multiplica-
tions of g by Ξ−1(y). Accordingly, the result J = {(b1,μ1), . . . ,(bt ,μt)} consists of
pairs of a non-zero element bi of D1×q and a subset μi of Indet(D). In the follow-
ing algorithm, this adapted version of Algorithm 2.1.6 (Decompose) will be applied
(using the given total ordering on X).

Since {b1, . . . ,bt } is a generating set for M, every element of M is a left D-linear
combination of b1, . . . , bt . We assume that J is passive. Let ki mi bi be a summand
in such a linear combination, where ki ∈ K and mi ∈ Mon(D). If mi involves some
variable which is non-multiplicative for bi, then this summand can be replaced with
a left K-linear combination of elements in Mon(μ1)b1, . . . , Mon(μt)bt . Using (2.9),
this can be achieved by applying successively Algorithm 2.1.38 to terms involving
only one non-multiplicative variable. This substitution process should deal with the
largest term with respect to > first. Elimination of all non-multiplicative variables
demonstrates that the leading monomial of every element of M −{0} has a Janet
divisor in J. We conclude that passivity of the Janet complete set J is equivalent to

[ lm(b1), . . . , lm(bt) ] = lm(M).

Now Janet’s algorithm is presented, which computes a Janet basis for a submod-
ule of D1×q, given in terms of a finite generating set. Note that we ignore efficiency
issues in favor of a concise formulation of the algorithm (cf. also Subsect. 2.1.6).

For any set S we denote by P(S) the power set of S.

Algorithm 2.1.42 (JanetBasis).

Input: A finite set L ⊆ D1×q, an admissible term ordering > on D1×q, and a total
ordering on Ξ(Indet(D)) = X (used by Decompose)

Output: A finite subset J of D1×q×P(Indet(D)) which is a Janet basis for the left
D-module D〈 p | (p,μ) ∈ J 〉= D〈L〉 (and J = /0 if and only if D〈L〉= {0})

Algorithm:

1: G ← L
2: repeat

3: G ← Auto-reduce(G, >) // cf. Alg. 2.1.35
4: J ← Decompose(G) // cf. Rem. 2.1.41
5: P ←{NF(v · p,J,>) | (p,μ) ∈ J, v ∈ μ } // cf. Alg. 2.1.38
6: G ←{ p | (p,μ) ∈ J }∪P
7: until P ⊆ {0}
8: return J
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Theorem 2.1.43. a) Algorithm 2.1.42 terminates and is correct.
b) A K-basis of D〈L〉 is given by

⊎
(p,μ)∈J

Mon(μ)p, where J is the result of Algo-

rithm 2.1.42. In particular, every r ∈ D〈L〉 has a unique representation

r = ∑
(p,μ)∈J

c(p,μ) p,

where each c(p,μ) ∈ D is a left K-linear combination of elements in Mon(μ).
c) The cosets in D1×q/D〈L〉 with representatives in

Mon(D1×q)− [ lm(p) | (p,μ) ∈ J, 1 is reducible modulo lc(p) ]

form a generating set for the left K-module D1×q/D〈L〉, and the cosets with rep-
resentatives in C := Mon(D1×q)− [ lm(p) | (p,μ) ∈ J ] form the unique maximal
K-linearly independent subset.
Let C1, . . . , Ck be the cones of a Janet decomposition of C (cf. Fig. 2.2, p. 15, for
an illustration). If K is a field, then the cosets with representatives in C1 � . . .�Ck
form a basis for the left K-vector space D1×q/D〈L〉.

d) For every r1, r2 ∈ D1×q the following equivalence holds.

r1 +D〈L〉= r2 +D〈L〉 ⇐⇒ NF(r1,J,>) = NF(r2,J,>).

Proof. a) First we show that JanetBasis terminates. For the result G of Auto-reduce
in step 3, [ lm(G) ] contains the multiple-closed set generated by the leading
monomials of the previous set G. Decompose only augments the generating
set G by elements p ∈ D1×q satisfying lm(p) ∈ [ lm(G) ] if it is necessary for
the chosen strategy of decomposing [ lm(G) ] into disjoint cones. In any case
it ensures [ lm(p) | (p,μ) ∈ J ] = [ lm(G) ]. If all Janet normal forms in step 5
are zero, then the algorithm terminates. If P 
⊆ {0}, then G′ := G ∪ P satis-
fies [ lm(G) ] � [ lm(G′) ]. By Lemma 2.1.2, after finitely many steps we have
[ lm(G) ] = [ lm(G′) ], which is equivalent to P ⊆ {0} (cf. Rem. 2.1.41). There-
fore, JanetBasis terminates in any case.
In order to prove correctness of JanetBasis, we note that the result J of step 4 is
Janet complete. Therefore NF(v · p,J,>) in step 5 is well-defined. Once P ⊆ {0}
holds in step 7, the set J is passive, thus a Janet basis. The equality of left D-
modules D〈 p | (p,μ) ∈ J 〉= D〈L〉 is an invariant of the loop.

b) Set B :=
⋃

(p,μ)∈J Mon(μ)p.
For the K-linear independence of B we note first that 0 
∈ B holds because J is
constructed as Janet completion of an auto-reduced set. Furthermore, we have
lm(p1) 
= lm(p2) for all p1, p2 ∈ B with p1 
= p2 because J is Janet complete,
which proves that B is K-linearly independent.
We are going to show that B is a generating set for the free left K-module D〈L〉.
Let 0 
= r ∈ D〈L〉. Then r is Janet reducible modulo J by Remark 2.1.41. Now,
NF(r,J,>)∈ D〈L〉, and NF(r,J,>) is not Janet reducible modulo J. The previous
argument implies NF(r,J,>) = 0. Hence, we have r ∈ K〈B〉.
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c) Let 0 
= r + D〈L〉 ∈ D1×q/D〈L〉. Then NF(r,J,>) is a representative of the
residue class r+D〈L〉 as well, and NF(r,J,>) 
= 0 because otherwise r ∈ D〈L〉.
Janet reduction (Alg. 2.1.38) ensures that if a term c ·m in NF(r,J,>), where
c ∈ K and m ∈ Mon(D1×q), has a Janet divisor (p,μ) in J, then c is reduced
modulo lc(p). Therefore, the cosets represented by those monomials lm(p),
(p,μ) ∈ J, for which 1 is reducible modulo lc(p), are not needed to generate
D1×q/D〈L〉 as a left K-module.
Due to the equality [ lm(p) | (p,μ) ∈ J ] = lm(D〈L〉) (cf. Rem. 2.1.41) we have
C = Mon(D1×q)− lm(D〈L〉). The cosets with representatives in C are K-linearly
independent because no K-linear combination of these has a non-zero represen-
tative with leading monomial in lm(D〈L〉). The rest is clear.

d) It remains to show that the normal form NF(r,J,>) is uniquely determined by
the coset r+ D〈L〉 ∈ D1×q/D〈L〉. But if n1, n2 ∈ D1×q are Janet normal forms
of the same coset r+ D〈L〉, then n1 − n2 ∈ D〈L〉, and n1 − n2 is Janet reduced
modulo J because n1 and n2 are so. The same argument as in the last part of b)
shows that n1 −n2 = 0. ��
We present a couple of examples demonstrating Janet’s algorithm.

Example 2.1.44. Let D = K[x,y] be the commutative polynomial algebra over a
field K of arbitrary characteristic or over K = �. We choose the degree-reverse
lexicographical ordering on Mon(D) satisfying x > y (cf. Ex. 2.1.27). Let the ideal
I of D be generated by

g1 := x2 − y, g2 := xy− y.

Then the method of Subsect. 2.1.1 (using the total ordering on {x,y} for which x is
greater than y) constructs the following cone decomposition of the multiple-closed
set which is generated by the (underlined) leading monomials of g1 and g2:

{(x2, {x,y}), (xy, {y})}.

This result indicates that we need to check whether f := x ·g2 can be written as

f = c1 · (x2 − y)+ c2 · (xy− y), c1 ∈ K[x,y], c2 ∈ K[y]. (2.10)

The monomials appearing in f = x2 y − xy ∈ I lie in the cones (x2, {x,y}) and
(xy, {y}), respectively. Reduction yields g3 := y2 − y ∈ I, which does not have a
representation as in (2.10). So, we include g3 in our list of generators, and for this
example, we already arrive at the (minimal) Janet basis

{(g1,{x,y}), (g2,{y}), (g3,{y})}

for I.
No division by any coefficient was necessary to arrive at a Janet basis for I. The

statements above therefore hold for a field K of any characteristic and for K =�. In
Example 2.1.47, the relevance of Janet bases with integer coefficients for construct-
ing matrix representations of finitely presented groups is demonstrated.
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Example 2.1.45. Let us consider the system

∂u
∂x

= x
∂u
∂y

, u(x−1,y) = u(x,y) (2.11)

of one linear partial differential equation and one linear delay equation for one un-
known smooth function u of two independent variables x and y. According to the
types of functional operators occurring in the system (2.11) we define the Ore alge-
bra6 D =�[x,y][∂x; id,δ1][∂y; id,δ2][δx;σ ,δ3], where the derivations δ1 and δ2 are
defined by partial differentiation with respect to x and y, respectively, where σ is the
�-algebra automorphism of D defined by

a(x,y,∂x,∂y,δx) �−→ a(x−1,y,∂x,∂y,δx),

and where δ3 is the zero map. By writing the equations in (2.11) as

(∂x − x∂y)u = 0, (δx −1)u = 0,

we are led to study the left ideal I of D which is generated by

{∂x − x∂y, δx −1}.

Janet’s algorithm can be applied for determining all linear consequences of (2.11).
We choose the degree-reverse lexicographical ordering (cf. Ex. 2.1.27) on Mon(D)
satisfying ∂x > ∂y > δx > x > y. The multiple-closed set which is generated by the
leading monomials ∂x and δx is partitioned into cones. Using the total ordering on
{∂x,∂y,δx,x,y} which is defined by ∂x > ∂y > δx > x > y, all indeterminates are
assigned as multiplicative variables to the first generator g1, whereas ∂x is a non-
multiplicative variable for the second generator g2. Janet reduction of ∂x (δx − 1)
yields

g3 := ∂x (δx −1)− (δx −1)(∂x − x∂y)− (x−1)∂y (δx −1) =−∂y.

After adding −g3 to the generating set and updating the Janet decomposition, Janet
reduction replaces g1 with g1 − xg3 = ∂x. It can be easily checked that the resulting
Janet complete set is passive. Therefore, the (minimal) Janet basis is given by

∂u
∂x

= 0, { ∂x , ∂y , δx , x , y },
∂u
∂y

= 0, { ∗ , ∂y , δx , x , y },

u(x−1,y)−u(x,y) = 0, { ∗ , ∗ , δx , x , y }.
The system (2.11) only admits constant solutions.

6 The computations performed in this example do not change if we replace�[x,y] with its field of
fractions�(x,y) in the definition of D.
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The following example applies Janet’s algorithm to a system of linear partial
differential equations which arises from linearization of a nonlinear PDE system.
Linearization is a common simplification technique for studying differential equa-
tions. Being an approximation, the linearized system reflects only a few properties
of the original system in general. It can be understood as the first order term of the
Taylor expansion of the nonlinear system around a chosen solution (e.g., a criti-
cal point for ordinary differential equations) using the Fréchet derivative (cf., e.g.,
[Olv93, Sect. 5.2], [Rob06, Sect. 3.2]). By computing these derivatives symboli-
cally, we do not need any particular solution of the nonlinear system, but work with
a symbol which is subject to the nonlinear equations. We refer to the resulting lin-
ear system as the general linearization. (Alternatively, the linearization of algebraic
differential equations can also be expressed in terms of Kähler differentials, cf. also
Subsect. 3.3.3.)

In the given example all real analytic solutions of the nonlinear PDE system are
available explicitly, which is obviously a very special case, but which allows a com-
parison of the solutions of the linearized system and those of the original one. (For
notation that concerns notions of differential algebra, we refer to Sect. A.3. More
details on the notion of general linearization can be found in [Rob06, Sect. 3.2].)

Example 2.1.46. [Rob06, Ex. 3.3.9] We consider the system of nonlinear PDEs

∂u
∂x

−u2 = 0,
∂ 2u
∂y2 −u3 = 0 (2.12)

for one unknown real analytic function u of two independent variables x and y. Note
that

u(x,y) =
2

−2x±√
2y+ c

, c ∈�, (2.13)

are explicit solutions of (2.12). We are going to apply Janet’s algorithm to the gen-
eral linearization

∂U
∂x

−2uU = 0,
∂ 2U
∂y2 −3u2 U = 0 (2.14)

of (2.12), which is a system of linear PDEs for an unknown real analytic function
U of x and y, and where the function u is subject to (2.12). Since Janet’s algorithm
has to decide whether coefficients of polynomials are equal to zero or not, it is
required to bring the nonlinear system (2.12) into a form that allows effective com-
putation with u. Applying the techniques to be discussed in Sect. 2.2 to (2.12) yields
a Thomas decomposition of that system (where subscripts indicate differentiation):

ux −u2 = 0 { ∂x , ∂y }

2uy
2 −u4 = 0 { ∗ , ∂y }

u 
= 0 u = 0 { ∂x , ∂y }
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We are interested in the first case, solve the second equation for uy, and use

ux = u2, uy =±
√

2
2

u2 (2.15)

as rewriting rules for the coefficients in Janet’s algorithm. For the second rule a
choice of sign should be made and used consistently in what follows. Let�(

√
2){u}

be the differential polynomial ring in one differential indeterminate u with coeffi-
cients in �(

√
2) and commuting derivations δx, δy (cf. Sect. A.3). Moreover, let I

be the differential ideal of�(
√

2){u} which is generated by ux −u2 and uy ∓
√

2
2 u2.

Then �(
√

2){u}/I is a domain because it is isomorphic to �(
√

2)[u]. We denote
by K the field of fractions of�(

√
2){u}/I, which is a differential field with deriva-

tions extending δx and δy (using the quotient rule). Now the left hand sides of the
input (2.14) for Janet’s algorithm are to be understood as elements of the skew poly-
nomial ring K〈∂x,∂y〉 = K[∂x; id,δ1][∂y; id,δ2], where the derivations δ1 and δ2 are
defined as the extensions of δx and δy to K〈∂x,∂y〉 satisfying δ1(∂x) = δ1(∂y) = 0
and δ2(∂x) = δ2(∂y) = 0, respectively (cf. also Def. 2.1.14).

In this example the passivity check only involves the partial derivative with re-
spect to x of the second equation in (2.14), whose normal form is computed by
subtracting the second partial derivative with respect to y of the first equation. After
simplification using the rewriting rules (2.15) we obtain

±2
√

2u2 Uy −4u3 U = 0,

and since u 
= 0, a Janet basis for the linearized system is

Ux −2uU = 0, { ∂x , ∂y },
Uy ∓

√
2uU = 0, { ∗ , ∂y }.

Substituting (2.13) for u in this Janet basis results in a system of linear PDEs for U
whose analytic solutions are given by

U(x,y) =
C

(−2x±√
2y+ c)2

, C ∈�. (2.16)

If we consider the map (between Banach spaces) which associates with ε in a small
real interval containing 0 the explicit solution in (2.13) with constant c+ε , then the
solution (2.16) for a certain value of C coincides, as expected, with the coefficient
of ε in the Taylor expansion of this (sufficiently differentiable) map around 0. (We
refer to [Rob06, Sect. 3.2] for more details.)

For applications of Janet bases with integer coefficients, e.g., for constructing
matrix representations of finitely presented groups (without specifying the char-
acteristic of the field in advance), for a constructive version of the Quillen-Suslin
Theorem, and for primary decomposition, we refer to [PR06], [Fab09], [FQ07],
[Jam11]. The following example is an application of the first kind.



2.1 Janet’s Algorithm 35

Example 2.1.47. [Rob07, Ex. 5.1] We would like to construct matrix representa-
tions of degree 3 over various fields K of the finitely presented group

G2,3,13;4 := 〈a,b | a2, b3, (ab)13, [a,b]4 〉,

where [a,b] := aba−1 b−1. To this end, we write the images of (the residue classes
of) a and b under such a representation as 3×3 matrices A and B with indeterminate
entries. The relators a2, b3, (ab)13, [a,b]4 of the above presentation are translated
into relations for commutative polynomials obtained from the entries of the matrix
equations

A2 = I3, B3 = I3, (AB)13 = I3, [A,B]4 = I3, (2.17)

where I3 is the identity matrix in GL(3,K). (We refer to [PR06] for more details
on this approach.) We may choose a K-basis (v1,v2,v3) of K3×1 with respect to
which the K-linear action on K3×1 of (the residue classes of) a and b in G2,3,13;4
is represented by A and B, respectively. We let v1 be an eigenvector of A ·B with
eigenvalue λ , possibly in an algebraic extension field of K, and let v2 := Bv1 and
v3 := Bv2. We confine ourselves to finding irreducible representations, which im-
plies that (v1,v2,v3) is K-linearly independent. By using (v1,v2,v3) as a basis for
K3×1, we may assume without loss of generality that A and B have the form

A :=

⎛⎝ 0 c2 c3
c1 0 c4
0 0 c5

⎞⎠ , B :=

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ,

where c1 = λ−1, c2 = λ , because ABv1 = λ v1 implies v2 = Bv1 = A2 Bv1 = λ Av1
and we have B3 v1 = v1 due to the given relations (2.17). Moreover, we derive from
(2.17) a system of algebraic equations for c1, . . . , c5. We compute

A2 =

⎛⎝ c1 c2 0 c2 c4 + c3 c5
0 c1 c2 c1 c3 + c4 c5
0 0 c2

5

⎞⎠ .

The determinant of A equals −c1 c2 c5. Now, by (2.17) we have det(A2) = 1,
det(B) = 1, and det((AB)13) = 1, which implies det(A) = 1. Due to c1 c2 = 1 we
have c5 = −1. Hence, we substitute −1 for c5 in A and we are left with four un-
knowns. We define L to be the set of all entries of the matrices A2 − I3, (AB)13 − I3,
(ABAB2)2 − (BAB2 A)2. Thus L consists of polynomials in c1, c2, c3, c4 with in-
teger coefficients. We compute a Janet basis for the ideal of �[c1,c2,c3,c4] which
is generated by L. The result consists of the polynomial 1 only. This shows that the
above system of algebraic equations for c1, c2, c3, c4 has no solution in �4, hence
there exists no irreducible matrix representation G2,3,13;4 → GL(3,�).

Next we check whether there are such matrix representations of G2,3,13;4 in pos-
itive characteristic. To this end, we compute a Janet basis J with respect to the
degree-reverse lexicographical ordering extending c1 > c2 > c3 > c4 (and using the
same total ordering of variables for determining Janet decompositions) for the ideal
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of �[c1,c2,c3,c4] which is generated by L:

15, { ∗ , ∗ , ∗ , ∗ },
15c4, { ∗ , ∗ , ∗ , ∗ },
15c3, { ∗ , ∗ , ∗ , ∗ },
15c2, { ∗ , ∗ , ∗ , ∗ },
c1 +4c2 + c3 +4c4, { c1 , c2 , c3 , c4 },
15c2

4, { ∗ , ∗ , ∗ , ∗ },
15c3 c4, { ∗ , ∗ , ∗ , ∗ },
c2 c4 − c3, { ∗ , ∗ , ∗ , c4 },
c2

3 +4c3 c4 + c2
4 + c3 + c4 +4, { ∗ , ∗ , c3 , c4 },

c2 c3 −4c2
4 −4c3 −1, { ∗ , ∗ , c3 , c4 },

c2
2 + c2

4 +2c3 −7, { ∗ , c2 , c3 , c4 },
c3

4 +2c3 c4 +4c2
4 +4c3 −7c4 +1, { ∗ , ∗ , ∗ , c4 },

c3 c2
4 −4c3 c4 − c2

4 + c2 +7c3 −2c4 −4, { ∗ , ∗ , ∗ , c4 }.
We find that solutions of the system of algebraic equations exist only if 15 = 0, i.e.,
possibly in characteristic 3 or 5. We are going to check both possibilities. It turns out
that replacing each coefficient of the above polynomials with its remainder modulo
3 (resp. 5) yields (after removing zero polynomials) the minimal Janet basis for the
algebraic system over �/3� (resp. �/5�) with the same multiplicative variables.
A Janet decomposition of the complement in Mon({c1,c2,c3,c4}) of the multiple-
closed set generated by the leading monomials is given by

{(1, /0), (c4, /0), (c3, /0), (c2, /0), (c2
4, /0), (c3c4, /0)}.

Denoting by F either �/3� or �/5�, and by I the ideal of F [c1,c2,c3,c4] which
is generated by L (modulo 3 resp. 5), we conclude that R := F [c1,c2,c3,c4]/I is 6-
dimensional as an F-vector space. By the Chinese Remainder Theorem, the residue
class ring of R modulo its radical is isomorphic to a direct sum of at most six fields,
which define at most six solutions to the above algebraic system over an algebraic
closure of F , the bound being attained precisely if R has no nilpotent elements. For
the present example we obtain quickly the Janet basis

c6
4 + c4

4 + c4 +1, { ∗ , ∗ , ∗ , c4 },
c3 +2c5

4 +2c4
4 + c3

4 +2c4 +2, { ∗ , ∗ , c3 , c4 },
c2 + c5

4 +2c4
4 + c2

4, { ∗ , c2 , c3 , c4 },
c1 +2c4

4 +2c3
4 +2c2

4 +2c4 +1, { c1 , c2 , c3 , c4 }
for I with respect to the lexicographical ordering extending c1 > c2 > c3 > c4, which
allows to solve for c1, c2, c3 in terms of c4. In (�/3�)[c4] we have

c6
4 + c4

4 + c4 +1 = (c3
4 + c2

4 +2)(c3
4 +2c2

4 +2c4 +2),

the factors on the right hand side being irreducible. Hence, we have found matrix
representations of G2,3,13;4 of degree 3 over the fields (�/3�)[ξ ]/(ξ 3 +ξ 2 +2) and
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(�/3�)[ξ ]/(ξ 3 +2ξ 2 +2ξ +2). For instance, in the first case we obtain

A =

⎛⎝ 0 2ξ +1 2ξ 2 +ξ
ξ 2 +2ξ +2 0 ξ

0 0 2

⎞⎠ .

For F = �/5� an analogous computation yields irreducible matrix representations
over the fields (�/5�)[ζ ]/(ζ 2+2ζ +4) and (�/5�)[ζ ]/(ζ 4+3ζ 3+ζ 2+2ζ +4);
e.g., we may choose A as

A =

⎛⎝ 0 4ζ 3 +ζ 2 +3 4ζ 3 +ζ 2 +4
ζ +4 0 ζ

0 0 4

⎞⎠
in the second case.

2.1.4 Comparison and Complexity

In this subsection we comment on the relationship between Janet bases and Gröbner
bases and on complexity results. For surveys on the latter topic, cf., e.g., [May97],
[vzGG03, Sect. 21.7].

We use the same notation as in the previous subsection.

Remark 2.1.49. If J = {(p1,μ1), . . . ,(pt ,μt)} is a Janet basis for the submodule
M = D〈 p1, . . . , pt 〉 of D1×q, then the multiple-closed set [ lm(p1), . . . , lm(pt) ] equals
lm(M) (cf. also Rem. 2.1.41). More generally, this equality is used as a criterion for
the termination of algorithms constructing involutive bases, cf., e.g., [Ger05], and is
also well-known from Buchberger’s algorithm computing Gröbner bases (cf., e.g.,
his PhD thesis of 1965, [Buc06]). In fact, for this reason, every involutive basis
is also a Gröbner basis, whenever both notions exist in the same context, but the
former reflects a lot more combinatorial information about the ideal or module (cf.
Subsect. 2.1.5). More precisely, in general the reduced Gröbner basis of a module
(cf., e.g., [CLO07, § 2.7]) is a proper subset of a Janet basis for the same module
(and with respect to the same term ordering). For another comparison of Janet and
Gröbner bases, cf. also [CJMF03].

Definition 2.1.48. Let M be a submodule of the free left D-module D1×q. A finite
subset G ⊆ M−{0} is said to be a Gröbner basis for M (with respect to the term
ordering > on D1×q) if the leading monomial of every non-zero element of M is the
leading monomial of a left multiple of some element of G.

Janet’s algorithm can be understood as a refinement of the original version of
Buchberger’s algorithm (cf., e.g., [CLO07, § 2.7], [Eis95, Sect. 15.4], [vzGG03,
Sect. 21.5]). For simplicity we assume that the module is an ideal of Q[x1, . . . ,xn].
Given a finite generating set L, Buchberger’s algorithm forms the S-polynomial
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S(p1, p2) :=
lcm(lm(p1), lm(p2))

lc(p1) lm(p1)
p1 − lcm(lm(p1), lm(p2))

lc(p2) lm(p2)
p2

for each unordered pair of (non-zero) generators p1, p2 in L and reduces it mod-
ulo L using multivariate polynomial division. Non-zero remainders are added to L,
and this process is repeated until every S-polynomial reduces to zero. Janet’s algo-
rithm decomposes the multiple-closed set generated by the leading monomials of
the generators in L into disjoint cones as described in Subsect. 2.1.1 and consid-
ers the S-polynomials which are determined by the non-multiplicative variables v of
generators p and the (uniquely determined) Janet divisor of v · p in the current gener-
ating set (if any). This strategy avoids many S-polynomials which are examined by
Buchberger’s original algorithm (cf. also [Ger05, Sect. 5]). However, Buchberger’s
algorithm was enhanced as well by incorporating criteria which allow to neglect
certain S-polynomials (cf., e.g., [Buc79], [CLO07, § 2.9]).

Algorithm 2.1.42 constructs a Janet basis which is minimal with respect to inclu-
sion for the fixed total ordering on Ξ(Indet(D)) = X . This Janet basis J is uniquely
determined under the assumption that no term in any of its elements is Janet re-
ducible modulo J and that, if K is a field, the coefficient of each leading monomial
equals one, say. In case K =�, a choice for the systems of residues modulo integers,
e.g., the symmetric one, should be fixed to ensure uniqueness.

Redundancy of a Janet basis (compared with the reduced Gröbner basis) is di-
minished by the concept of Janet-like Gröbner basis [GB05a, GB05b]. For each
generator the partition of the set of indeterminates into sets of multiplicative and
non-multiplicative variables is replaced with a map of this set into �≥0 ∪{∞} in-
dicating the multiplicative degree for each indeterminate. If the image of each of
these maps is required to be a subset of {0,∞}, then the Janet division is recovered
as a special case. The number of left multiples of generators by non-multiplicative
variables to be included for completion is often reduced when applying Janet-like
division.

Let D =�[x1, . . . ,xn] be a commutative polynomial algebra in n variables.

The complexity of the problem to decide whether a given polynomial is an ele-
ment of an ideal of D (the latter being given in terms of a finite generating set) was
studied by G. Hermann [Her26]. Her result states the following.

Theorem 2.1.50. Let G ⊂ D−{0} be a finite generating set of cardinality m for an
ideal I of D, and let p ∈ D. Let d be the maximum total degree of the elements of G.
If p is an element of I, then p is a linear combination of the generators in G with
coefficients that are either zero or polynomials of total degree at most

deg(p)+(md)2n
.

The following upper bound on the degrees of the elements of a reduced Gröbner
basis is proved, e.g., in [Dub90], where techniques of partitioning sets of monomials
similar to Subsect. 2.1.1 are used.
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Theorem 2.1.51. Let G ⊂ D−{0} be a finite generating set for an ideal I of D. Let
d be the maximum total degree of the elements of G. Then the total degree of the
elements of the reduced Gröbner basis for I with respect to any term ordering on
Mon(D) is bounded by

2
(

d2

2
+d

)2n−1

.

Better bounds for special cases are also known. For instance, if n = 3, then the
total degree of the polynomials constructed by Buchberger’s algorithm computing a
Gröbner basis for I (including the elements of G) is bounded by (8d+1) ·2δ , where
δ is the minimum total degree of the elements of G [Win84].

A corresponding doubly exponential degree bound for Janet bases over the Weyl
algebras was obtained in [GC08] by reducing the problem to solving linear sys-
tems over a variant of the Weyl algebra whose commutation rules have been made
homogeneous by introducing an additional commuting variable (cf. also [Gri91],
[Gri96]).

E. W. Mayr and A. R. Meyer constructed a family of ideals (generated by bino-
mials) for which the doubly exponential upper bound is attained [MM82]. Further
work by E. W. Mayr showed that the computation of a Gröbner basis for a general
polynomial ideal is an EXPSPACE-complete problem.

Remark 2.1.52. In practice a behavior much better than the worst case has been ob-
served for algorithms computing Gröbner or Janet bases when applied to, e.g., prob-
lems arising in algebraic geometry or systems of linear partial equations with origin
in physics or the engineering sciences. In the algebraic geometry context a growth
measure was introduced for the degrees of (iterated) syzygies (cf. Subsect. 3.1.5) for
a given ideal I of a commutative polynomial algebra, which reflects the difficulty of
computing Gröbner or Janet bases for I. This measure, called Castelnuovo-Mumford
regularity, denoted by reg(I), is significant not only from the computational, but also
from the geometric and algebraic point of view, cf., e.g., [Eis95, Eis05].

The regularity of the ideal generated by lm(I) is an upper bound for the regu-
larity of I. In generic coordinates, the maximum total degree of the elements of the
reduced Gröbner basis for I equals reg(〈 lm(I)〉). If leading monomials are deter-
mined with respect to the degree-reverse lexicographical ordering, then we have, in
generic coordinates, reg(〈 lm(I)〉) = reg(I), cf. [BS87]. Therefore, this term order-
ing is preferably used.

For lack of space, we do not discuss here recent approaches by J.-C. Faugère
(cf., e.g., [Fau99]) to compute Gröbner bases using linear algebra techniques, which
result in very efficient programs and applications to cryptography.
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2.1.5 The Generalized Hilbert Series

In this subsection we extend the notion of generalized Hilbert series (cf. [PR05],
[Rob06]) to Ore algebras and present applications of this combinatorial invariant.

Throughout this subsection, let K be a field.

Let D be an Ore algebra as described in the beginning of Subsect. 2.1.3 which sat-

ordering on Mon(D1×q) (cf. Assumption 2.1.29, p. 23). For combinatorial purposes
we introduce a totally ordered set

X := {x1, . . . ,xn+l}

of indeterminates and we choose a bijection Ξ : Mon(D) → Mon(X) as in Re-
mark 2.1.31 (p. 24), where it was used to apply the combinatorics of Janet division
to a set of monomials of the Ore algebra D.

Definition 2.1.53. For any subset S of Mon(D1×q), the generalized Hilbert series of
S is defined by

HS(x1, . . . ,xn+l) := ∑
sek∈S

Ξ(s) fk ∈
q⊕

k=1

�[[x1, . . . ,xn+l ]] fk,

where the symbols f1, . . . , fq form a basis of a free left �[[x1, . . . ,xn+l ]]-module of
rank q. For k = 1, . . . , q, we define HS,k(x1, . . . ,xn+l) by

HS(x1, . . . ,xn+l) =
q

∑
k=1

HS,k(x1, . . . ,xn+l) fk,

and we identify HS(x1, . . . ,xn+l) with HS,1(x1, . . . ,xn+l) in case q = 1.

Remark 2.1.54. Let M be a submodule of D1×q and let J be a Janet basis for M
with respect to some term ordering on D1×q. We denote by S the multiple-closed set
generated by { lm(p) | (p,μ) ∈ J } (cf. Def. 2.1.32).

a) According to Theorem 2.1.43 b), the (disjoint) union of the cones Mon(μ)p,
(p,μ)∈ J, is a K-basis of M. Thus, the generalized Hilbert series HS(x1, . . . ,xn+l)
enumerates a K-basis of M, in the sense that its terms enumerate the leading
monomials of the above K-basis via Ξ−1.

b) Similarly, by Theorem 2.1.43 c), a K-basis of the factor module D1×q/M is
given by the cosets in D1×q/M which are represented by the monomials in
C1 � . . . � Ck, where C1, . . . , Ck are the cones of a Janet decomposition of
S := Mon(D1×q)− S. Therefore, the generalized Hilbert series HS(x1, . . . ,xn+l)
enumerates a K-basis of D1×q/M via Ξ−1.

When the Janet basis J for M is clear from the context, we also call HS and HS the
generalized Hilbert series of M and D1×q/M, respectively.

isfies Assumption 2.1.23 (p. 22). Moreover, let q ∈N and > be an admissible term
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The next remark shows that the generalized Hilbert series of a set S of monomials
has a succinct representation in finite terms if a cone decomposition of S is available.

Remark 2.1.55. Let (C,μ) be a monomial cone, i.e., C ⊆ Mon(X), μ ⊆ X , and

S :=C = Mon(μ) · v

for some v ∈C. We use the (formal) geometric series

1
1− x

= ∑
i∈�≥0

xi

to write down the generalized Hilbert series HS(x1, . . . ,xn+l) as follows:

HS(x1, . . . ,xn+l) =
v

∏x∈μ(1− x)
.

More generally, every cone decomposition of a multiple-closed set S allows to com-
pute the generalized Hilbert series of S by adding the generalized Hilbert series of
the cones. In an analogous way this remark applies to the complements of multiple-
closed sets.

Example 2.1.56. Let R be the commutative polynomial algebra K[x1,x2,x3] over
any field K and S the multiple-closed set generated by {x1x2, x3

1x3 }. The Janet de-
composition of S which is computed in Example 2.1.7 yields the generalized Hilbert
series

HS(x1,x2,x3) =
x3

1 x2

(1− x1)(1− x2)(1− x3)
+

x3
1 x3

(1− x1)(1− x3)

+
x2

1 x2

(1− x2)(1− x3)
+

x1 x2

(1− x2)(1− x3)
.

The Janet decomposition of the complement S =Mon({x1,x2,x3})−S of S obtained
in Example 2.1.10 yields

HS(x1,x2,x3) =
1

(1− x2)(1− x3)
+

x1

1− x3
+

x2
1

1− x3
+

x3
1

1− x1
.

Note that the sum of the two Hilbert series equals 1/((1−x1)(1−x2)(1−x3)), i.e.,

HS +HS = HMon({x1,x2,x3}).

Next we describe the relationship between the generalized Hilbert series and the
Hilbert series of filtered and graded modules.

Definition 2.1.57. Let A be a (not necessarily commutative) K-algebra and assume
that F = (Fi)i∈�≥0 is an (exhaustive) increasing filtration of A (cf., e.g., [Bou98b]),
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i.e., each Fi is a (left) K-subspace of A and we have 1 ∈ F0,⋃
i∈�≥0

Fi = A, and Fi ⊆ Fi+1, Fi ·Fj ⊆ Fi+ j for all i, j ∈ �≥0.

Moreover, let M be a left A-module endowed with an (exhaustive) increasing F-
filtration Φ = (Φi)i∈�, i.e., each Φi is a (left) K-subspace of M such that⋃

i∈�
Φi = M and Φi ⊆ Φi+1, Fi ·Φ j ⊆ Φi+ j for all i ∈ �≥0, j ∈ �.

We assume that M is finitely generated and that each Φi has finite K-dimension.
Then the Hilbert series of M with respect to Φ is defined by the (formal) Laurent
series

HM,Φ(λ ) := ∑
i∈�

(dimK Φi)λ i ∈ �((λ )).

The map
�−→ �≥0 : i �−→ dimK Φi

is called the Hilbert function of M with respect to Φ .

Definition 2.1.58. Let A be a (not necessarily commutative) K-algebra and assume
that A is positively graded, i.e., it is endowed with a family G = (Gi)i∈�≥0 of (left)
K-subspaces of A such that

A =
⊕

i∈�≥0

Gi and Gi ·G j ⊆ Gi+ j for all i, j ∈ �≥0.

Moreover, let M be a left A-module with G-grading Γ = (Γi)i∈�, i.e., a family of
(left) K-subspaces of M such that

M =
⊕
i∈�

Γi and Gi ·Γj ⊆ Γi+ j for all i ∈ �≥0, j ∈ �.

We assume that M is finitely generated and that each Γi has finite K-dimension. Then
the Hilbert series of M with respect to Γ is defined by the (formal) Laurent series

HM,Γ (λ ) := ∑
i∈�

(dimK Γi)λ i ∈ �((λ )).

The map
�−→ �≥0 : i �−→ dimK Γi

is called the Hilbert function of M with respect to Γ .

We recall that every grading defines an increasing filtration on the same module
and that every increasing filtration defines an associated graded module over the
associated graded ring.
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Remark 2.1.59. Given a K-algebra A with grading G = (Gi)i∈�≥0 and a left A-
module M with G-grading Γ = (Γi)i∈� as in the previous definition, an (exhaustive)
increasing filtration F = (Fi)i∈�≥0 of A is defined by

Fi :=
⊕
j≤i

G j, i ∈ �≥0,

and an (exhaustive) increasing F-filtration Φ = (Φi)i∈� of M is defined by

Φi :=
⊕
j≤i

Γj, i ∈ �.

If M is finitely generated and each Γi has finite K-dimension, then each Φi has finite
K-dimension, and we have

HM,Φ(λ ) = HM,Γ (λ ) · 1
1−λ

.

Conversely, in the situation of Definition 2.1.57, the associated graded ring is de-
fined to be the K-algebra

gr(A) :=
⊕

i∈�≥0

(Fi/Fi−1) (where F−1 := {0})

with multiplication

(p1 +Fi−1) · (p2 +Fj−1) := p1 · p2 +Fi+ j−1, p1 ∈ Fi, p2 ∈ Fj,

and the associated graded module is defined by

gr(M) :=
⊕
i∈�

(Φi/Φi−1)

with left gr(A)-action

(p+Fi−1)(m+Φ j−1) = p ·m+Φi+ j−1, p ∈ Fi, m ∈ Φ j.

The grading of gr(M) defines again an increasing filtration of gr(M), but since A and
gr(A) are non-isomorphic rings in general, the resulting filtration reflects only partial
information about M. (Note also that, even if M is assumed to be finitely generated
and each Φi has finite K-dimension, gr(M) is not a finitely generated gr(A)-module
in general; cf., e.g., [Bjö79, Sect. 1.2] or [Cou95, Sect. 8.3].)

The following two remarks establish a link between the Hilbert series of cer-
tain graded modules and filtered modules, respectively, and the generalized Hilbert
series, which is computable via Janet bases. (The first remark will be applied in
Remark 2.1.64, the second one in Remark 3.2.17.)
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Remark 2.1.60. Let D = K[x1, . . . ,xn] be a commutative polynomial algebra over
the field K and assume D is positively graded. We denote by deg(xi) the degree of
xi, i = 1, . . . , n, with respect to this grading G. Let q ∈� and let Γ = (Γi)i∈� be a
G-grading of D1×q such that each Γi is a finite-dimensional K-vector space. For any
submodule M of D1×q such that Γ ′

i :=Γi ∩ M, i ∈�, defines a G-grading Γ ′ of M, a
Janet basis J for M (with respect to any term ordering) provides via the generalized
Hilbert series a K-basis of M (cf. Rem. 2.1.54 a)). Then the Hilbert series of M with
respect to Γ ′ is obtained from the generalized Hilbert series by substitution:

HM,Γ ′(λ ) =
q

∑
k=1

HS,k(λ deg(x1), . . . ,λ deg(xn)),

where S is the multiple-closed set generated by the leading monomials of elements
of J.

In this case, D1×q/M has the G-grading Γ ′′ = (Γ ′′
i )i∈�, where Γ ′′

i is defined as
the image of Γi under the canonical projection D1×q → D1×q/M. The generalized
Hilbert series of the complement S of S in Mon(D1×q) yields the Hilbert series of
D1×q/M with respect to Γ ′′:

HD1×q/M,Γ ′′(λ ) =
q

∑
k=1

HS,k

(
λ deg(x1), . . . ,λ deg(xn)

)
(cf. Rem. 2.1.54 b)).

The maximum number of multiplicative variables of cones in a Janet decom-
position of D1×q/M, and therefore the order of 1 as a pole of the corresponding
generalized Hilbert series, equals the Krull dimension of D1×q/M (cf., e.g., [Sta96,
I.5] or [SW91]).

Remark 2.1.61. Let D be an Ore algebra as before, q ∈�, and M a submodule of
D1×q. We define an (exhaustive) increasing filtration F = (Fi)i∈�≥0 on D by

Fi := { p ∈ D | p = 0 or deg(p)≤ i}, i ∈ �≥0,

where deg denotes the total degree, and an (exhaustive) increasing F-filtration on
D1×q by

Φi := { t ∈ D1×q | t = 0 or deg(t)≤ i}, i ∈ �,
where deg(t) is defined as the maximum of the total degrees of the non-zero com-
ponents of the tuple t. (In case of the Weyl algebras An(K) this filtration is known as
the Bernstein filtration; cf., e.g., [Bjö79] or [Cou95].) Intersecting with M defines
an F-filtration Φ ′ := (Φi ∩ M)i∈� of M.

Assumption 2.1.23 implies that the associated graded ring gr(D) is isomorphic to
the commutative polynomial algebra K[ξ1, . . . ,ξn,η1, . . . ,ηl ] with standard grading
G (since the degrees of the indeterminates of D are all equal to one), and the gr(D)-
module gr(M) is isomorphic to a graded K[ξ1, . . . ,ξn,η1, . . . ,ηl ]-module. Let Γ be
the G-grading of gr(M).
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Let J be a Janet basis for M with respect to an admissible term ordering which is
compatible with the total degree. Then the corresponding generalized Hilbert series
HS(x1, . . . ,xn+l) enumerates a K-basis of M (cf. Rem. 2.1.54 a)), where S is the
multiple-closed set generated by the leading monomials of elements of J. Since the
term ordering is compatible with the total degree,⊎

(p,μ)∈J

Mon(μ)(lm(p)+Φ ′
deg(p)−1)

is a K-basis of gr(M), so that the coefficient of λ i in the formal power series
HS(λ , . . . ,λ ) equals dimK Γi for all i ∈ �≥0. (Of course, we have dimK Γi = 0 for
all i ∈ �<0.) Therefore, we have

Hgr(M),Γ (λ ) =
q

∑
k=1

HS,k(λ , . . . ,λ ).

More generally, if degrees (not necessarily equal to one) are assigned to the inde-
terminates z1, . . . , zn, ∂1, . . . , ∂l of D, the corresponding Hilbert series of gr(M)
with respect to Γ is obtained from the generalized Hilbert series of S by substituting
λ deg(zi) for xi, i = 1, . . . , n, and λ deg(∂ j) for xn+ j, j = 1, . . . , l.

An (exhaustive) increasing F-filtration of the factor module D1×q/M is given
by Φ ′′ := (Φ ′′

i )i∈�, where Φ ′′
i is the image of Φi under the canonical projection

D1×q → D1×q/M. Note that gr(D1×q/M) is a finitely generated gr(D)-module. Let
Γ ′′ be the grading of gr(D1×q/M). If C is a cone decomposition of the complement
S of S in Mon(D1×q) (cf. Rem. 2.1.54 b)), then⊎

(t,ν)∈C

Mon(ν)((t +M)+Γ ′′
deg(t)−1)

is a K-basis of gr(D1×q/M) and we obtain the Hilbert series of gr(D1×q/M) with
respect to Γ ′′ as follows:

Hgr(D1×q/M),Γ ′′(λ ) =
q

∑
k=1

HS,k(λ , . . . ,λ ).

Remark 2.1.62. Let K be a field, D = K[x1, . . . ,xn] a commutative polynomial al-
gebra over K which is positively graded, and q ∈�. We denote by G the grading of
D and let Γ = (Γi)i∈� be a G-grading of the free left D-module D1×q such that each
Γi is a finite-dimensional K-vector space. Let M be a submodule of D1×q such that

Γ ′
i := Γi ∩ M, i ∈ �,

defines a G-grading Γ ′ of M. Moreover, let

J = {(p1,μ1), . . . ,(pt ,μt)}
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be a Janet basis for M with respect to any admissible term ordering on Mon(D1×q).
Then the Hilbert series of M with respect to Γ ′ is given by

HM,Γ ′(λ ) = ∑
i∈�

(dimK Γ ′
i )λ i

=
t

∑
k=1

λ deg(pk)

(1−λ )|μk| (2.18)

=
t

∑
k=1

λ deg(pk) ∑
j≥0

(|μk|+ j−1
j

)
λ j.

For i ≥ max{deg(pk) | k = 1, . . . , t }, we have

dimK Γ ′
i =

t

∑
k=1

(|μk|+ i−deg(pk)−1
i−deg(pk)

)
=

t

∑
k=1

(|μk|+ i−deg(pk)−1
|μk|−1

)
,

which is a polynomial in i of degree less than n+ l. In other words, the Hilbert func-
tion of M with respect to Γ ′ is a polynomial function when restricted to integers
greater than or equal to max{deg(pk) | k = 1, . . . , t }. This polynomial is called the
Hilbert polynomial of M with respect to Γ ′. In a similar way the notion of Hilbert
polynomial is defined for a residue class module of D1×q with respect to some G-
grading and for submodules and residue class modules of D1×q with respect to (ex-
haustive) increasing filtrations.

Note that if non-standard degrees are assigned to the indeterminates of D, these
have to be taken into account in the right hand side of (2.18) in terms of the cor-
responding powers of λ . Thus, in general, the Hilbert function is asymptotically
polynomial on residue classes (also called quasipolynomial, cf. [Sta96, Sect. 0.1]).

Remark 2.1.63. In the situation of the previous remark let I be a homogeneous
ideal of the commutative polynomial algebra D with standard grading, i.e., q = 1.
Then the degree d of the Hilbert polynomial of D/I equals the dimension of the
corresponding projective variety in projective (n− 1)-space defined over an alge-
braic closure K of K (cf., e.g., [Eis95]). The product of the leading coefficient of
the Hilbert polynomial and d! is called the degree of the corresponding projective
variety and coincides with the number of points in which the variety intersects a
generic projective subspace of dimension n−1−d.

For the case of an algebra D of differential operators with rational function co-
efficients (cf. Ex. 2.1.18 b), p. 19) and general q an upper bound for this product in
terms of the numbers of independent and dependent variables, the number of equa-
tions, the maximum differential order, and the degree of the Hilbert polynomial of
the given system was derived in [Gri05].

In the following remark we outline one application of the generalized Hilbert
series to commutative algebra and algebraic geometry. This application provides a
constructive and deterministic approach to the Noether normalization lemma.
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Remark 2.1.64. For a given finitely generated commutative algebra over a field, the
Noether normalization lemma (cf., e.g., [Eis95], [Vas98]) ensures the existence of
a maximal subset of algebraically independent elements such that the given algebra
is an integral extension of the polynomial ring generated by this system of param-
eters. An affine variety whose coordinate ring is isomorphic to the given algebra is
therefore shown to be a branched covering of some affine space.

The normalization lemma can be proved in a constructive manner, but most of the
computational approaches today perform a random change of coordinates producing
very large polynomials, which are difficult to handle afterwards.

Given an ideal I of a commutative polynomial algebra D = K[x1, . . . ,xn] over
a field K, the generalized Hilbert series of D/I can be used effectively to construct
sparse coordinate changes which achieve Noether normal position for the given ideal
[Rob09].

The maximum number of multiplicative variables of cones in a Janet decomposi-
tion of D/I equals the Krull dimension d of D/I (cf. Rem. 2.1.60). Let ν be the union
of all sets of multiplicative variables of the cones of such a decomposition. The cru-
cial observation is that a variable is not an element of ν if and only if a power of that
variable is a leading monomial of an element of the Janet basis J for I. If |ν | = d,
then the set Y of residue classes of the elements of ν in D/I is a maximal subset
of algebraically independent elements of D/I such that D/I is an integral extension
of K[Y ]. Otherwise, we have |ν | > d and coordinates should be changed in such a
way that the Janet basis for the transformed ideal has more elements whose leading
monomial is a power of a variable. It turns out that a good strategy is to investigate
an element p ∈ J such that lm(p) ∈ Mon(ν) and lm(p) involves the least number of
variables and is maximal with respect to the chosen term ordering > among these
candidates. Then the coordinate transformation is chosen in such a way that each
variable dividing lm(p) is mapped to a linear combination of variables in which the
>-greatest variable in ν has non-zero coefficient7. We demonstrate this procedure
in the following example and refer to [Rob09] for more details.

Example 2.1.65. Let D =�[w,x,y,z] be the commutative polynomial algebra and
choose the degree-reverse lexicographical ordering > on D which extends the or-
dering w > x > y > z. Let I be the ideal of D which is generated by

L := {wxy2 − y2 z, xyz−wz2, y2 z−wx2 yz}.

It is not radical and has five minimal associated primes of dimensions 1, 2, 2, 2, 2,
respectively, and one embedded associated prime of dimension 1. All the follow-
ing computations were done in the computer algebra system Maple in a couple of
seconds using the package Involutive [BCG+03a] (cf. also Subsect. 2.1.6).

Let J1 be a Janet basis for I with respect to the term ordering > (using the total or-
dering w> x> y> z for determining the multiplicative variables). The Janet decom-
position of the complement of lm(I) in Mon({w,x,y,z}) (determined by Alg. 2.1.8,

7 If the ground field K is finite and not large enough, it may be necessary to use polynomials of
higher degree to define the coordinate transformation.
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p. 14) yields the generalized Hilbert series8 of D/I:

1
1− z

+
y

1− z
+

x
(1− x)(1− z)

+
w

1− z
+

y2

1− y
+

xy
(1− x)(1− y)

+wy+
wx

(1− x)(1− z)
+

w2 +
y2 z

1− y
+wyz+w2 z+wy2 +

wxy
1− x

+w2 y+
w2 x
1− x

+
w3

1−w
+

y2 z2

1− y
+wyz2 +w2 z2+

wy2 z+w2 yz+
w2 xz
1− x

+
w3 z

1−w
+

wy3

1− y
+w2 y2 +

w2 xy
1− x

+
w3 y

1−w
+

w3 x
(1−w)(1− x)

+

y2 z3

1− y
+w2 z3 +wy2 z2 +

w3 z2

1−w
+w2 y2 z+

w3 yz
1−w

+
w3 xz

(1−w)(1− x)
+

w2 y3

1− y
+

w3 y2

1−w
+

w3 xy
(1−w)(1− x)

+
y2 z4

1− y
+

w3 y2 z
1−w

+
w3 y3

(1−w)(1− y)
.

Hence, the sets of multiplicative variables μi of the Janet decomposition are among
the following ones:

/0, {w}, {x}, {y}, {z}, {w,x}, {w,y}, {x,y}, {x,z}.

The Krull dimension d of D/I equals 2. We have ν1 :=
⋃

μi = {w,x,y,z}, and so
|ν1| = 4 > d. In order to keep the coordinate transformation sparse, it is advisable
to choose

p1 = w2 z4 −wy2 z2 ∈ J1,

whose leading monomial lm(p1) = w2 z4 involves only two variables. We choose
the automorphism ψ1 : D → D (restricting to the identity on K) which maps z to
z−w and fixes all other variables.

Let J2 be a Janet basis for ψ1(I) (with the same specifications as above). The
generalized Hilbert series of D/ψ1(I) is given by

1
(1− y)(1− z)

+
x

1− z
+

w
1− z

+
xy

1− z
+

wy
1− z

+
x2

1− z
+

wx
(1− x)(1− z)

+
w2

1− z
+ xy2+

wy2

1− z
+

x2 y
1− z

+
wxy

(1− x)(1− z)
+

w2 y
1− z

+
x3

(1− x)(1− z)
+

w2 x
1− z

+ xy2 z+ xy3 +
wy3

1− y
+

x2 y2 +w2 y2 +
x3 y

(1− x)(1− z)
+

w2 xy
1− z

+
w2 x2

(1− x)(1− z)
+ xy3 z+

wy3 z
1− y

+ x2 y2 z+w2 y2 z+

xy4

1− y
+

x2 y3

1− y
+

x3 y2

(1− x)(1− y)
+

wy3 z2

1− y
+w2 y2 z2 +

wy3 z3

1− y
.

In particular, the Janet decomposition of Mon({w,x,y,z})− lm(ψ1(I)) has sets of
multiplicative variables among the following ones:

/0, {y}, {z}, {x,y}, {x,z}, {y,z}.

We have ν2 := {x,y,z}, and therefore |ν2|= 3 > d. Now we choose the polynomial

8 Using the package Involutive (cf. Subsect. 2.1.6), the generalized Hilbert series can be ob-
tained with the command FactorModuleBasis, after applying InvolutiveBasis to L.
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p2 = xy2 z2 −w2 y2 +wy3 +3wy2 z− y3 z−2y2 z2 ∈ J2

with lm(p2) = xy2 z2, and the automorphism ψ2 of D mapping y to y− x, z to z− x,
and fixing w and x.

Finally, we compute a Janet basis J3 for (ψ2 ◦ψ1)(I). The generalized Hilbert
series of D/(ψ2 ◦ψ1)(I) is given by

1
(1− y)(1− z)

+
x

(1− y)(1− z)
+

w
(1− y)(1− z)

+
x2

(1− y)(1− z)
+

wx
(1− y)(1− z)

+

w2

(1− y)(1− z)
+

x3

(1− y)(1− z)
+

wx2

1− z
+

w2 x
1− z

+
wx2 y
1− y

+
w2 xy
1− z

+ x4 +w2 x2+

wx2 yz
1− y

+ x4 z+w2 x2 z+w2 xy2 +
wx2 yz2

1− y
+w2 x2 z2 +

wx2 yz3

1− y
.

The Janet decomposition of the complement of lm((ψ2◦ψ1)(I)) in Mon({w,x,y,z})
consists of cones having sets of multiplicative variables among the following ones:

/0, {y}, {z}, {y,z}.

Thus, ν3 := {y,z} and |ν3|= d, and we are done9. The coordinate change ψ2 ◦ψ1 is
defined by

w �→ w, x �→ x, y �→ y− x, z �→ z− x−w.

The maximum number of summands of a polynomial in J3 is 102. The coefficient
in J3 of largest absolute value equals 40.

A typical coordinate transformation to Noether normal position returned by the
(randomized) command noetherNormal of the computer algebra system Singu-
lar (version 3-1-6) [DGPS12] is defined by

w �→ w, x �→ 10w+ x, y �→ 6w+10x+ y, z �→ 8w+4x+3y+ z,

which in this case results in a Gröbner basis of the transformed ideal with coefficient
of largest absolute value of more than 30 decimal digits and maximum number of
summands 123.

For more details about this approach to Noether normalization and a more sys-
tematic comparison of some existing implementations, we refer to [Rob09].

In the rest of this subsection we discuss the relevance of the generalized Hilbert
series for systems of linear partial differential equations. Computation of a Janet ba-
sis for such a system produces an equivalent system which is ensured to be formally
integrable, i.e., it admits a straightforward method of determining all formal power
series solutions from the equations of the system (which is in some sense similar
to back substitution applied to the result of Gaussian elimination). In general, two
distinct equations may yield a non-trivial consequence of lower differentiation order

9 Note that neither of the Janet bases J1, J2, J3 is a Pommaret basis, i.e., Noether normalization is
achieved using a sparse transformation which does not define δ -regular coordinates.
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when the highest terms in a suitable linear combination of certain of their deriva-
tives cancel. If the system is not formally integrable, the computation of a power
series solution from the given equations may miss the conditions implied by such
consequences. Since Janet’s algorithm determines the multiple-closed set of mono-
mials which occur as leading monomials of consequences of the system, a Janet
basis reveals all conditions on Taylor coefficients of a solution.

We recall that the vector space which is dual to a polynomial algebra over a field
is given by the algebra of formal power series in the same number of indeterminates.
This relationship will be generalized to Ore algebras in the following remark.

Remark 2.1.66. Let D := A[∂1;σ1,δ1] . . . [∂l ;σl ,δl ] be an Ore algebra, where the
domain A is an algebra over the field K, and define

F := homK(D,K).

Since multiplication in K is commutative, the set F of all homomorphisms from the
left K-vector space D to K is a left K-vector space. Moreover, F is a left D-module
in virtue of

D×F −→ F : (d, f ) �−→ (a �→ f (a ·d)),
and this left action of D restricts to the left action of K because every element of K
commutes with every element of D. We have a pairing of D and F , i.e., a K-bilinear
form

( , ) : D×F −→ K : (d, f ) �−→ f (d) (2.19)

which is non-degenerate in both arguments. With respect to this pairing, D and F
can be considered as dual to each other. Moreover, the linear map D → D defined
by right multiplication by a fixed element d ∈ D and the linear map F → F given
by left multiplication by the same element d are adjoint to each other:

(a ·d, f ) = f (a ·d) = (d · f )(a) = (a,d · f ), a ∈ D, f ∈ F . (2.20)

Since every homomorphism f ∈ F = homK(D,K) is uniquely determined by its
values for the elements of the K-basis Mon(D) of D, we can write f in a unique
way as a (not necessarily finite) formal sum

∑
m∈Mon(D)

(m, f )m. (2.21)

Due to (2.20), for every d ∈ D the representation of d · f can be obtained from

∑
m∈Mon(D)

(m,d · f )m = ∑
m∈Mon(D)

(m ·d, f )m. (2.22)

It is reasonable to write the monomials in the sum (2.21) using new indeterminates,
which will be done in the following remark dealing with the case of commutative
polynomial algebras.
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Remark 2.1.67. Let D be the commutative polynomial algebra K[∂1, . . . ,∂n] over a
field K of characteristic zero and > a term ordering on D. Then (∂ β | β ∈ (�≥0)

n) is
a K-basis of D. We define F := homK(D,K) with (left) D-module structure and the
pairing in (2.19) as in the previous remark. The discussion leading to (2.21) shows
that F can be considered as the K-algebra K[[z1, . . . ,zn]] of formal power series in
the same number n of indeterminates. Moreover, it follows from (2.22) that the (left)
action on F of any monomial in D effects a shift of the coefficients of the power
series according to the exponent vector of the monomial, which is the same action as
the one defined by partial differentiation. Therefore, we establish the identification
of F with K[[z1, . . . ,zn]] in such a way that

(zα/α! | α ∈ (�≥0)
n) and (∂ β | β ∈ (�≥0)

n)

are dual to each other with respect to the pairing (2.19), i.e.,⎛⎝∂ β , ∑
α∈(�≥0)n

cα
zα

α!

⎞⎠= cβ , β ∈ (�≥0)
n, α! := α1! · . . . ·αn!.

Suppose that a system of (homogeneous) linear PDEs with constant coefficients for
one unknown function of n arguments is given. We compute a Janet basis J for the
ideal of D which is generated by the left hand sides p of these equations with respect
to the term ordering >. The differential equations are considered as linear equations
for (∂ β , f ), β ∈ (�≥0)

n, where f ∈ F is a formal power series solution, and using
the term ordering >, we may solve each of these equations for (lm(p), f ). Then
Janet’s algorithm partitions Mon(D) into a set of monomials m for which (m, f )∈ K
can be chosen arbitrarily and a set S of monomials for which (lm(p), f ) ∈ K is
uniquely determined by these choices. The latter set is the multiple-closed subset

S := [ lm(p) | (p,μ) ∈ J ]

of Mon(D). In particular, the K-dimension of the space of formal power series solu-
tions, if finite, can be computed as the number of monomials in the complement C of
S in Mon(D). In fact, the generalized Hilbert series HC(∂1, . . . ,∂n) of C enumerates
a basis for the Taylor coefficients (∂ β , f ) of f whose values can be assigned freely.

M. Janet called the monomials ∂ β in Mon(D)−S parametric derivatives because
the corresponding Taylor coefficients (∂ β , f ) of a formal power series solution f can
be chosen arbitrarily. The monomials in S are called principal derivatives [Jan29,
e.g., no. 22, no. 38]. The Taylor coefficients (∂ β , f ) which correspond to principal
derivatives ∂ β are uniquely determined by K-linear equations in terms of the Tay-
lor coefficients of parametric derivatives. Of course, the extension of this method
of determining the formal power series solutions of a system of linear partial dif-
ferential equations is extended to the case of more than one unknown function in a
straightforward way by using submodules of D1×q instead of ideals of D.

Note that convergence of series solutions is to be investigated separately.

For a similar treatment of partial difference equations, we refer to [OP01].
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Example 2.1.68. [Jan29, no. 23] The left hand side of the heat equation

∂u
∂ t

− ∂ 2u
∂x2 = 0 (2.23)

for an unknown real analytic function u of t and x is represented by the polynomial

p := ∂t −∂ 2
x ∈ D := K[∂t ,∂x],

where K =� or�. Choosing a degree-reverse lexicographical term ordering on the
polynomial algebra D, the leading monomial of p is ∂ 2

x . The polynomial p forms a
Janet basis for the ideal of D it generates, and the parametric derivatives are given
by ∂ i

t , ∂ j
t ∂x, i, j ∈ �≥0. Hence, any choice of formal power series in t for u(t,0)

and ∂u
∂x (t,0) uniquely determines a formal power series solution u to (2.23). In this

case, every choice of convergent power series yields a convergent series solution
u. On the other hand, using the lexicographical term ordering extending t > x, the
parametric derivatives are given by ∂ i

x, i ∈ �≥0. Now, the choice

u(0,x) = ∑
i≥0

xi

determines a divergent series solution u.

The following example demonstrates how a Janet decomposition (and the result-
ing generalized Hilbert series) of the complement of the set of principal derivatives
in Mon(D) allows to collect the parametric derivatives in such a way as to express
the solutions in terms of arbitrary functions and constants.

Example 2.1.69. For illustrative reasons, we consider the system of linear partial
differential equations for one unknown analytic function u of x, y, z which corre-
sponds to the set of monomials dealt with in Examples 2.1.7, p. 12, and 2.1.10:

∂ 2u
∂x∂y

= 0,
∂ 4u

∂x3 ∂ z
= 0. (2.24)

The Janet completion already yields the (minimal) Janet basis

∂ 2u
∂x∂y

= 0, { ∗ , ∂y , ∂z },

∂ 3u
∂x2 ∂y

= 0, { ∗ , ∂y , ∂z },

∂ 4u
∂x3 ∂ z

= 0, { ∂x , ∗ , ∂z },

∂ 4u
∂x3 ∂y

= 0, { ∂x , ∂y , ∂z }
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and we obtain the following Janet decomposition of the set of parametric derivatives
(cf. also Ex. 2.1.10 and Fig. 2.2, p. 15):

1, { ∗ , ∂y , ∂z },
∂x, { ∗ , ∗ , ∂z },
∂ 2

x , { ∗ , ∗ , ∂z },
∂ 3

x , { ∂x , ∗ , ∗ }.
The corresponding generalized Hilbert series is

1
(1−∂y)(1−∂z)

+
∂x

1−∂z
+

∂ 2
x

1−∂z
+

∂ 3
x

1−∂x
.

Accordingly, a formal power series solution u of (2.24) is uniquely determined as

u(x,y,z) = f0(y,z)+ x f1(z)+ x2 f2(z)+ x3 f3(x)

by any choice of formal power series f0, f1, f2, f3 of the indicated variables.

In general, the expression of the solutions in terms of arbitrary functions and
constants depends on the choices of the coordinate system, the term ordering, and
the total ordering which is used for determining the Janet decomposition. However,
the maximum number of arguments of functions which occur in such an expression
is invariant because it is the Krull dimension of the corresponding (graded) module
(over the associated graded ring defined in Rem. 2.1.61), cf. also Rem. 2.1.60. The
number of cones in a Janet decomposition having a fixed number of multiplicative
variables and generator of a certain degree is also referred to as Cartan character.

Remark 2.1.70. The statements of Remark 2.1.67 also apply to systems of linear
PDEs whose coefficients are rational functions in z1, . . . , zn, i.e., D = K[∂1, . . . ,∂n]
is replaced with Bn(K) = K(z1, . . . ,zn)〈∂1, . . . ,∂n〉 (introduced also in Ex. 2.1.18 b)
using Ore algebra notation), where K is the subfield of constants of K(z1, . . . ,zn).

Let M be the submodule of Bn(K)1×p which is generated by the left hand sides
of the equations (for p unknown functions) and let J be a Janet basis for M. Now, a
formal power series solution is determined by any choice of Taylor coefficients for
the parametric derivatives, if the left hand sides of the given PDE system are also
defined over A〈∂1, . . . ,∂n〉1×p, where A is a K-subalgebra of K(z1, . . . ,zn) whose
elements do not have a pole in 0 ∈ Kn, if J is computed within A〈∂1, . . . ,∂n〉1×p, and
if 0 is not a zero of the leading coefficient of any element of J. In other words, if 0
is not a zero of any denominator arising in the course of Janet’s algorithm applied
to the PDE system and is not a zero of any leading coefficient, then all power series
solutions are obtained in this way. Accordingly, having computed a Janet basis for
M, the center c ∈ Kn for the Taylor series expansion of an analytic solution has to
be chosen in such a way that the previous conditions are met with 0 replaced with c.

Similar remarks hold for the case of coefficients in a field of meromorphic func-
tions on a connected open subset of �n.
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2.1.6 Implementations

Work by the author of this monograph on implementations of techniques related
to Janet’s algorithm is summarized in this subsection. We also give references to
software serving similar purposes. However, because of the large number of imple-
mentations of Buchberger’s algorithm, a complete review is not aimed for.

The formulation of Algorithm 2.1.42, p. 29, computing Janet bases (and of the
algorithms on which it depends) ignores the matter of realizing these techniques
as efficient computer programs. For instance, the alternating use of Auto-reduce
and Decompose in Algorithm 2.1.42 clearly removes left multiples of generators by
non-multiplicative variables which may be added again if required by the Janet de-
composition. Moreover, the computation of the Janet normal form of left multiples
of generators by non-multiplicative variables should not be performed a second time
when it is clear that the reduction steps will not differ from the previous computa-
tion.

The involutive basis algorithm (cf., e.g., [Ger05]), developed in work of V. P.
Gerdt, Y. A. Blinkov, and A. Y. Zharkov, provides an efficient method to compute
Janet bases. It builds on the more general concept of involutive division, which
allows for other ways of defining multiplicative variables for generators than the
pattern named after Janet. (We refer to [GB11] and ongoing work for a recent de-
velopment of an even more efficient involutive division.) Using a very small part
of the history of an involutive basis computation, the reduced Gröbner basis for the
same ideal or module (and with respect to the same term ordering) can be extracted
as a subset of the involutive basis without further computation. Moreover, analogues
of Buchberger’s criteria [Buc79] in the context of involutive division avoid unneces-
sary passivity checks. Heuristic strategies determining in which order the left mul-
tiples of generators by non-multiplicative variables should be considered for reduc-
tion are incorporated into the involutive approach.

A software package ALLTYPES realizing Riquier’s and Janet’s theory in the
computer algebra system REDUCE [Hea99] has been developed by F. Schwarz
(cf. [Sch08b, Sch84]). Another implementation in the programming language RE-
FAL was described in [Top89]. The REDUCE package INVSYS, which computes
Janet bases for ideals of commutative polynomial algebras, was developed by A. Y.
Zharkov and Y. A. Blinkov [ZB96]. A program computing involutive bases for
monomial ideals in Mathematica [Wol99] was reported on in [GBC98]. More-
over, involutive basis techniques have been implemented in MuPAD [CGO04] by
M. Hausdorf and W. M. Seiler [HS02].

Symmetry analysis of systems of partial differential equations (cf., e.g., [Olv93],
[Pom78], [Vin84], [BCA10], [Sch08a]) is an important area of application of
Riquier’s and Janet’s theory. G. Reid and collaborators have been developing the rif
algorithm and have been applying it in the symmetry analysis context, cf. [RWB96]
and the references therein, and also [MRC98], where it had been combined with
the differential Gröbner basis package of E. Mansfield [Man91]. By repeated pro-
longation and elimination steps as described in geometric approaches to differential
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systems (cf., e.g., [Pom78] and the references therein), the rif algorithm transforms
a system of nonlinear PDEs into reduced involutive f orm, which is formally inte-
grable. An implementation by A. Wittkopf is available as a Maple package. For a
review of further symbolic software for symmetry analysis of differential equations,
cf. also [Her97].

Implementations of Buchberger’s algorithm for computing Gröbner bases are
available in many computer algebra systems and more specialized software, e.g., in
AXIOM [JS92], Maple [MAP], Mathematica [Wol99], Magma [BCP97], REDUCE
[Hea99], Singular [DGPS12], Macaulay2 [GS], CoCoA [CoC] (cf. also [CLO07,
Appendix C] for a further discussion of such implementations). A variant of Buch-
berger’s algorithm for systems of linear differential or difference equations and al-
gorithms for computing Hilbert polynomials along with an implementation in the
programming language REFAL were described in [Pan89].

An implementation of the involutive basis technique for commutative polynomial
algebras over fields and for K〈∂1, . . . ,∂n〉 as packages Involutive and Janet,
respectively, for the computer algebra system Maple has been started by C. F. Cid
at Lehrstuhl B für Mathematik, RWTH Aachen, in 2000. Here, K〈∂1, . . . ,∂n〉 is the
skew polynomial ring of differential operators with coefficients in a differential field
K (of characteristic zero), whose arithmetic is implemented in Maple.

Since the year 2001 the author of this monograph has been adapting the packages
Involutive and Janet to more recent versions of the involutive basis algorithm
(with the help of V. P. Gerdt and Y. A. Blinkov) and has been extending these pack-
ages with new features.

Starting in 2003, the author of this monograph has been developing a Maple
package JanetOre, which implements the involutive basis technique for certain
iterated Ore extensions of a commutative polynomial algebra (as in Subsect. 2.1.3).

In collaboration with V. P. Gerdt a Maple package LDA (for “linear difference
algebra”) has been developed since 2005, which computes involutive bases for left
ideals of (and left modules over) rings of difference operators with coefficients in a
difference field (of characteristic zero), whose arithmetics are supported by Maple.
For applications of the package LDA to formal computational consistency checks of
finite difference approximation of linear PDE systems, cf. [GR10].

We refer to [BCG+03a, BCG+03b, Rob07, GR06, GR12], the Maple help pages
accompanying these packages, and the related web pages for more information.

The package Involutive computes Janet bases and Janet-like Gröbner bases
(cf. Rem. 2.1.49, p. 37) for submodules of finitely generated free modules over
commutative polynomial algebras with coefficients in � or finitely generated exten-
sion fields of � or finite fields that are supported by Maple. The implementation
of the involutive basis algorithm has the additional feature that its computations
may be performed in a parallel way on auxiliary data, which yields a means to
record the history of a Janet basis computation. Syzygies and free resolutions, cf.
Subsect. 3.1.5, can be computed by Involutive. Further procedures implement-
ing module-theoretic constructions build on this possibility. (We also refer to the
package homalg [BR08], which implements methods of homological algebra in
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an abstract way, and to which Involutive can be connected. Delegating ring
arithmetics to separate software, the package homalg provides an additional layer
of abstraction. Meanwhile, homalg has been redesigned by M. Barakat as a pack-
age in GAP4 [GAP] and has been widely extended, e.g., being capable now of
computing certain spectral sequences.) The package Involutive has been ex-
tended with functionality improving computation with rational function coefficients
by M. Schröer and with procedures dealing with localizations at maximal ideals by
M. Lange-Hegermann.

The Maple package Janet computes Janet bases and Janet-like Gröbner bases
for submodules of finitely generated free left modules over the skew polynomial ring
K〈∂1, . . . ,∂n〉 of partial differential operators. Apart from implementing the counter-
part of the module-theoretic methods of Involutive for the ring K〈∂1, . . . ,∂n〉,
it provides, e.g., procedures which compute (truncated) formal power series solu-
tions and polynomial solutions up to a given degree of systems of linear PDEs. The
package Janet uses some data structures and procedures of the Maple package
jets developed by M. Barakat [Bar01] and can be combined with jets, in order
to compute symmetries of differential equations (cf., e.g., [Olv93]).

The functionality of the packages JanetOre and LDA, although handling dif-
ferent types of algebras, is analogous to that of Involutive and Janet, respec-
tively.

Each of the above mentioned Maple packages provides combinatorial tools like
the generalized Hilbert series (cf. Subsect. 2.1.5), Hilbert polynomials, Cartan char-
acters, etc.

A very useful feature of these packages is the possibility to collect all expres-
sions (typically arising as coefficients of polynomials) by which a Janet basis com-
putation divided. Hence, the applicability of the performed computation for special
values of parameters can be checked and singular configurations can be determined
afterwards (cf. also Rem. 2.1.70).

The open source software package ginv implements the involutive basis tech-
nique in C++, using Python as an interpreter in addition [BG08]. Its development
was initiated by V. P. Gerdt and Y. A. Blinkov. Contributions have been made at
Lehrstuhl B für Mathematik, RWTH Aachen, during the last seven years, in partic-
ular by S. Jambor and the author of this monograph.

Interfaces between the Maple package Involutive and ginv are available
including the possibility to delegate involutive basis computations during the current
session of Involutive to the considerably faster C++ routines.

The author of this monograph implemented some parts of the involutive basis
technique as a package InvolutiveBases [Rob] in Macaulay2 [GS].

Another Maple implementation of the involutive basis technique for linear PDEs
is described in [ZL04].
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2.2 Thomas Decomposition of Differential Systems

A system of polynomial partial differential equations and inequations

p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0 (s, t ∈ �≥0) (2.25)

for m unknown smooth functions of independent variables z1, . . . , zn is given by
differential polynomials p1, . . . , ps, q1, . . . , qt in u1, . . . , um, i.e., elements of the
differential polynomial ring K{u1, . . . ,um} with commuting derivations ∂1, . . . , ∂n,
where K is a differential field of characteristic zero. (For definitions of these notions
of differential algebra, cf. Sect. A.3.) Similarly to Sect. 2.1 we will concentrate on
analytic solutions.

Every solution of (2.25) satisfies all consequences of (2.25); the consequences
we consider here are given by linear combinations of arbitrary partial derivatives of
system equations with coefficients in K{u1, . . . ,um}, polynomial factors of (left hand
sides of) such equations and of inequations, and quotients of (the respective left hand
sides of) equations by inequations. Leaving aside for a moment the inequations, we
then deal with the radical differential ideal of K{u1, . . . ,um} which is generated by
p1, . . . , ps. Taking the inequations into account, the present section is concerned
with an effective procedure which constructs a finite set of differential systems as
in (2.25), whose sets of solutions form a partition of the solution set of (2.25), and
such that all consequences of each resulting system can easily be described.

Let us assume for simplicity that (2.25) already has the same quality as each of
these resulting systems. Then all consequences of (2.25) in terms of equations are

{ p = 0 | p ∈
√

E : q∞ }, (2.26)

where E is the differential ideal of R := K{u1, . . . ,um} which is generated by the
polynomials p1, . . . , ps, the differential polynomial q is the product of q1, . . . , qt ,
and

E : q∞ := { p ∈ R | qr · p ∈ E for some r ∈ �≥0 }
is the saturation of E with respect to q. The solutions of (2.25) form an open subset
of the set of solutions of (2.26) with respect to a certain topology. (It is, in fact, a
dense subset, cf. Lemma 2.2.62.)

Let F be a differential algebra over K, whose elements we think of as candidates
for solutions of (2.26). Every homomorphism ϕ : K{u1, . . . ,um}→F of differential
algebras over K is uniquely determined by its values f1, . . . , fm for u1, . . . , um, and
every choice of these values defines such a homomorphism. Now, ( f1, . . . , fm) solves
(2.26) if and only if the corresponding homomorphism ϕ of differential algebras
factors over K{u1, . . . ,um}/

√
E : q∞. Thus, the set of homomorphisms

K{u1, . . . ,um}/
√

E : q∞ −→ F

of differential algebras over K is in one-to-one correspondence with the set of solu-
tions ( f1, . . . , fm) ∈ F m of (2.26).
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This structural description of the solutions of (2.26) is analogous to the linear
case (cf. the introduction to Sect. 2.1). However, only to some extent does it incor-
porate the conditions on solutions of (2.25) that are imposed by the given inequa-
tions. Moreover, even if no inequations are present in the given system, inequations
emerge naturally. As it turns out, an equivalent form of (2.25) which allows to keep
track of all of its consequences effectively, requires splittings into complementary
systems. The approach we pursue here introduces inequations, which results in a
partition of the solution set.

In this section we describe a method introduced by the American mathematician
Joseph Miller Thomas (1898–1979) to deal in an effective way with systems of
polynomial differential equations and inequations [Tho37, Tho62]. It belongs to the
class of triangular decomposition methods (cf., e.g., the survey papers [Hub03a,
Hub03b] by Evelyne Hubert) and can be used to compute characteristic sets (cf.
also Subsect. A.3.2). Each system in the resulting decomposition admits an effective
membership test for the corresponding differential ideal. A first implementation of
this decomposition method was realized in the computer algebra system Maple by
Dongming Wang [Wan98, LW99, Wan01, Wan04].

While the development of differential algebra following Joseph Fels Ritt in the
twentieth century, in particular the work by Ellis R. Kolchin, did not seem to adapt
the ideas of Thomas, they have been revived in recent years by Vladimir P. Gerdt
[Ger08]. In the context of algebraic equations, Wilhelm Plesken introduced a uni-
variate polynomial which is a counting invariant of a quasi-affine or quasi-projective
variety (in given coordinates) in the sense that it counts the (closed) points using
the indeterminate ∞ for the cardinality of the affine line [Ple09a]. Markus Lange-
Hegermann defined a differential counting polynomial and generalized the differen-
tial dimension polynomial, which had been introduced by E. R. Kolchin [Kol64]
for prime differential ideals and which had been elaborated by Joseph Johnson
[Joh69a], to differential systems which result from Thomas’ method [LH14]. For
further applications of the algebraic Thomas decomposition to algebraic varieties,
to algebraic groups, and to linear codes and hyperplane arrangements we refer to
[Ple09b], [PB14], [Bäc14]. An application of the differential Thomas decomposi-
tion to nonlinear control systems is developed in [LHR13].

In joint work of T. Bächler, V. P. Gerdt, M. Lange-Hegermann, and the author

posing algebraic and differential systems into simple systems in combination with
the notion of passive differential system following M. Janet have been worked out
[BGL+10, BGL+12]. Implementations in Maple have been developed by T. Bächler
and M. Lange-Hegermann (cf. also Subsect. 2.2.6).

The characteristic set method developed by J. F. Ritt and Wen-tsün Wu provides
another decomposition algorithm, which, however, depends on the possibility to fac-
tor polynomials (cf., e.g., [Rit50] and also Subsect. A.3.2 for the rudiments of this
theory, and [Wu89] for another variant). For algebraic systems, Wu’s method com-
petes with Janet and Gröbner basis techniques and has been applied to automated
proving of theorems in geometry (cf., e.g., [Wan04]).

of this monograph the algorithmic details of J. M. Thomas’ method of decom-
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For applications of the characteristic set method to systems theory, we refer to
work by Sette Diop, cf., e.g., [Dio92].

Abraham Seidenberg developed an elimination method for differential algebra
[Sei56] by using the same splitting technique as J. M. Thomas. As a result, a con-
structive analog of Hilbert’s Nullstellensatz for differential algebra was obtained.
For the case of ordinary differential equations an algorithm with improved com-
plexity was given by Dmitry Grigoryev in [Gri89].

Combining Seidenberg’s theory and Buchberger’s algorithm, the Rosenfeld-
Gröbner algorithm, described in [BLOP95, BLOP09], computes a representation
of a radical differential ideal as finite intersection of certain differential ideals, each
of which also allows an effective membership test. The interactions of the rele-
vant differential and algebraic constructions were investigated in [Hub00]. This ap-
proach is based on Rosenfeld’s Lemma in differential algebra [Ros59], which is
also applicable in the context of Thomas’ theory. However, the assumption of co-
herence of an auto-reduced set of differential polynomials is replaced here with a
passivity condition in the sense of Janet (cf. Sect. 2.1). The Rosenfeld-Gröbner algo-
rithm is implemented in the Maple package DifferentialAlgebra (formerly
diffalg). A description of its foundation based on Kolchin’s book [Kol73] was
given in [Sad00]. Another approach to characteristic sets using Gröbner bases was
presented in [BKRM01].

Yet another direction of research tries to adapt the notion of Gröbner basis to
the case of a differential polynomial ring, cf., e.g., [CF07]. In general a differen-
tial ideal may admit only infinite differential Gröbner bases as defined by Giuseppa
Carrà Ferro or infinite standard bases as defined by François Ollivier in this con-
text [Oll91]. Elizabeth L. Mansfield developed an algorithm for the computation of
a different kind of (finite) differential Gröbner basis (cf. [Man91]), which applies
pseudo-reductions, but does not analyze the initials of divisors, and which there-
fore may result in a basis which cannot be used to decide membership to the given
differential ideal.

Subsection 2.2.1 is devoted to the Thomas decomposition of systems of algebraic
equations and inequations, its geometric properties, and its construction. Subsec-
tion 2.2.2 builds on the algebraic techniques of the previous subsection and devel-
ops Thomas’ algorithm for systems of differential equations and inequations. The
combinatorics of Janet’s algorithm (cf. Subsect. 2.1.1) are used here to ensure for-
mal integrability for each simple system in the resulting Thomas decomposition.
After defining and discussing the notion of the generic simple system of a Thomas
decomposition of a prime (algebraic or differential) ideal in Subsect. 2.2.3, which
will be an essential ingredient for the elimination methods in Sect. 3.3, the follow-
ing subsection comments on the relationship of simple systems and other types of
triangular sets and on the complexity of differential elimination. Subsection 2.2.5
introduces the generalized Hilbert series for simple differential systems. In the last
subsection implementations of J. M. Thomas’ ideas are discussed and references to
related packages are given.
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2.2.1 Simple Algebraic Systems

Let K be a computable field of characteristic zero and R := K[x1, . . . ,xn] a commu-
tative polynomial algebra with standard grading. We assume that the set {x1, . . . ,xn}
is totally ordered, without loss of generality

x1 > x2 > .. . > xn,

and we denote by K an algebraic closure of K.

This subsection presents the approach of J. M. Thomas [Tho37] transforming a
given system of polynomial equations and inequations in x1, . . . , xn, defined over K,
into a finite collection of so-called simple systems, each of which can in principle be
solved recursively by determining roots of univariate polynomials according to the
recursive structure of the solution set as finite-sheeted covering. In other words, the
set V of solutions in Kn of the given system is partitioned into finitely many subsets
V1, . . . , Vm in such a way that, for each i, the projection of the last k+1 coordinates
of Vi onto the last k coordinates has fibers of the same finite or co-finite cardinality
(where the cardinality may depend on i and where k ranges from n−1 down to 1).

The corresponding decomposition of differential systems (cf. Subsect. 2.2.2) is
based on the decomposition of algebraic systems discussed here, but the algebraic
part is interesting and of high value in itself.

In the present context we adopt a recursive representation of the elements of
R = K[x1, . . . ,xn] as follows.

Definition 2.2.1. For p∈R−K we denote by ld(p) the >-greatest variable such that
p is a non-constant polynomial in that variable. According to standard terminology
in differential algebra we call it the leader of p (although often main variable is also
used when dealing with algebraic systems). The coefficient of the highest power of
ld(p) occurring in p is called the initial of p and denoted by init(p). Finally, the
discriminant of p is defined in terms of the resultant of p and its partial derivative
with respect to its leader as

disc(p) := (−1)d(d−1)/2 · res
(

p,
∂ p

∂ ld(p)
, ld(p)

)/
init(p),

where d is the degree of p in ld(p) and res(p1, p2,x) denotes the resultant of the
polynomials p1 and p2 with respect to the indeterminate x. Recall that the above re-
sultant is divisible by init(p) because every entry of the first column of the Sylvester
matrix of p and ∂ p/∂ ld(p) is so. The discriminant of p is used to determine those
values for the indeterminates smaller than ld(p) with respect to > for which p as a
polynomial in ld(p) has zeros of multiplicity greater than one.

Every non-constant polynomial p ∈ R is now considered as univariate polyno-
mial in ld(p), whose coefficients are univariate polynomials in their leaders (if not
constant) and so on, i.e., we regard R as K[xn][xn−1] . . . [x1].
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Definition 2.2.2. Let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

be a system of algebraic equations and inequations, where I and J are index sets.
We define the set of solutions or variety of S in Kn by

SolK(S) := {a ∈ Kn | pi(a) = 0, q j(a) 
= 0 for all i ∈ I, j ∈ J }

(a1, . . . , an are substituted for x1, . . . , xn, respectively). For k ∈ {0,1, . . . ,n−1} let

πk : Kn −→ Kn−k : (a1,a2, . . . ,an) �−→ (ak+1,ak+2, . . . ,an)

be the projection onto the last n− k components (i.e., the first k components are
dropped).

Remark 2.2.3. By Hilbert’s Basis Theorem (cf., e.g., [Eis95]), the index set I may
be assumed to be finite without loss of generality. In general, the set of inequations
cannot be replaced with an equivalent finite set of inequations. Since we aim at
effective methods for dealing with algebraic systems, both index sets I and J will be
assumed to be finite. The subsets of affine space Kn which are of the form SolK(S)
for systems S of algebraic equations defined over K, i.e., J = /0, are the closed sets
of the Zariski topology on Kn.

The notion of simple system, central for constructing partitions of varieties as
proposed by J. M. Thomas, can now be defined using the projections πk as follows.

Definition 2.2.4. A system S of algebraic equations and inequations

p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0,

where p1, . . . , ps, q1, . . . , qt ∈ R−K, s, t ∈�≥0, is said to be simple if the following
three conditions are satisfied.

a) The leaders of p1, . . . , ps, q1, . . . , qt are pairwise distinct.
b) For every r ∈ {p1, . . . , ps,q1, . . . ,qt}, if ld(r) = xk, then the equation init(r) = 0

has no solution in πk(SolK(S)).
c) For every r ∈ {p1, . . . , ps,q1, . . . ,qt}, if ld(r) = xk, then the equation disc(r) = 0

has no solution in πk(SolK(S)).

(In b) and c), we have init(r), disc(r) ∈ K[xk+1, . . . ,xn].)

Remark 2.2.5. A set of polynomials satisfying condition a) is called triangular set
(cf., e.g., [Hub03a]). This condition implies that s+ t ≤ n.

Furthermore, a simple system S admits the following recursive solution proce-
dure. We introduce the notations S<xk and S≤xk for the subsets of S consisting of the
equations and inequations with leader smaller than xk and with leader smaller than
or equal to xk, respectively. For every k ∈ {1,2, . . . ,n−1}, every tuple
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(ak+1,ak+2, . . . ,an) ∈ Kn−k

which is a solution of S<xk can be extended to a solution

(ak,ak+1, . . . ,an) ∈ Kn−(k−1)

of S≤xk , and every solution a ∈ Kn of S with projection πk(a) = (ak+1,ak+2, . . . ,an)
is obtained through this process. The possible values of ak are determined exactly by
the equation or inequation in S with leader xk if it exists, and ak may take an arbitrary
value in K otherwise. Condition b) of Definition 2.2.4 implies that the degree of the
equation or inequation in S in its leader xk, if it exists, does not depend on the choice
of the values ak+1, ak+2, . . . , an of xk+1, xk+2, . . . , xn. The result of substituting
xk+1 = ak+1, . . . , xn = an into the left hand side of the equation or inequation is a
square-free polynomial by condition c). Therefore, the fibers of the projection of
πk−1(SolK(S)) onto πk(SolK(S)) have the same finite or co-finite cardinality, which
is given by the degree in xk of the equation or inequation, respectively.

Geometrically speaking, the solution set of S is identified recursively as a
branched covering. If the variety of interest has a non-trivial ramification locus as a
branched covering, then the Thomas decomposition represents it as a partition into
solution sets of several simple systems.

Before giving a precise definition and describing the algorithmic construction
of a Thomas decomposition, we draw an algebraic consequence that will also be
relevant for the differential case. First we recall the notion of vanishing ideal.

Definition 2.2.6. For any X ⊆ Kn we define the vanishing ideal of X in R by

IR(X) := { p ∈ R | p(x) = 0 for all x ∈ X }.

It is a radical ideal of R = K[x1, . . . ,xn]. By Hilbert’s Nullstellensatz (cf., e.g.,
[Eis95]), the closed sets of the Zariski topology on Kn are in one-to-one and
inclusion-reversing correspondence with the radical ideals of K[x1, . . . ,xn]. There-
fore, SolK(IR(X)) is the closure of X in Kn with respect to the Zariski topology.

Proposition 2.2.7. Let a simple algebraic system S over R be given by

p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0.

Let E be the ideal of R which is generated by p1, . . . , ps and define q to be the
product of all init(pi), i = 1, . . . , s. Then we have the equality

E : q∞ := { p ∈ R | qr · p ∈ E for some r ∈ �≥0 }= IR(SolK(S)).

In particular, E : q∞ is a radical ideal. A polynomial p ∈ R is an element of E : q∞ if
and only if the remainder of pseudo-reduction of p modulo p1, . . . , ps is zero.

Remark 2.2.8. Since SolK(E : q∞) = SolK(IR(SolK(S))) is the closure of SolK(S)
in Kn with respect to the Zariski topology, the inequations q1 
= 0, . . . , qt 
= 0 do not
figure on the left hand side of the equality asserted in Proposition 2.2.7.
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Proof (of Proposition 2.2.7). From the discussion in Remark 2.2.5 it follows that
SolK(S) is not empty. Hence, the vanishing ideal I :=IR(SolK(S)) is contained in
a maximal ideal of R, and, in particular, we have I ∩K = {0}. The inclusion “⊆”
in the assertion of the proposition is clear. Moreover, if I = {0}, then the reverse
inclusion is also clear. Otherwise, let p ∈ I −{0} and xk := ld(p). Let

(ak+1, . . . ,an) ∈ Kn−k

be a solution of S<xk (possibly the empty tuple). As in Remark 2.2.5, this tuple can
be extended to a solution

(ak,ak+1, . . . ,an) ∈ Kn−(k−1)

of S≤xk . If S contains no equation with leader xk or contains an inequation with that
leader, then the set of possible ak is infinite, which is a contradiction to the fact
that the equation p = 0 allows only degxk

(p) values for ak. Hence, S contains an
equation pi = 0 with ld(pi) = xk and degxk

(pi) ≤ degxk
(p). Now, pseudo-division

of p modulo pi (i.e., Euclidean division of c · p modulo pi for a suitable power c
of init(pi)) yields a polynomial p′ which is either zero or has smaller degree in xk
than p and which is an element of I . Iteration of this argument shows that pseudo-
reduction of p modulo equations in S yields the zero polynomial. Hence, p ∈ E : q∞,
which proves the inclusion “⊇”. ��
Remark 2.2.9. The same argument as in the proof of Proposition 2.2.7 shows that
the residue classes in R/(E : q∞) of the variables in {x1, . . . ,xn} that are not lead-
ers of an equation in a simple system S form a maximal subset of R/(E : q∞) that
is algebraically independent over K. In other words, these residue classes form a
system of parameters for the coordinate ring R/(E : q∞) of the Zariski closure V of
SolK(S), in the sense that their number equals the dimension of the affine variety V
and any choice of values for these “coordinates” defines a point on (one branch of)
the variety.

Definition 2.2.10. Let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

be a system of algebraic equations and inequations, where I and J are index sets
and J is finite. A Thomas decomposition of S or of SolK(S) is a finite collection of
simple systems S1, . . . , Sk such that

SolK(S) = SolK(S1) � . . . � SolK(Sk)

is a partition of SolK(S).

Remark 2.2.11. We outline Thomas’ algorithm (for algebraic systems), which com-
putes a Thomas decomposition for any given system of finitely many algebraic equa-
tions and inequations (defined over the computable field K) in finitely many steps.
A more precise description will be given on pages 67–87.
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First of all, systems containing an equation whose left hand side is a non-zero
constant or an inequation with zero left hand side are inconsistent and will be dis-
carded. On the other hand, an equation with zero left hand side and an inequation
whose left hand side is a non-zero constant are supposed to be removed from each
system. In what follows, we therefore assume that the left hand side of every equa-
tion and inequation is a non-constant polynomial.

According to the recursive representation of polynomials, Euclidean pseudo-
division is applied to (the left hand sides of) pairs of distinct equations with the
same leader, i.e., if p1 = 0, p2 = 0 are distinct equations of the system satisfying
ld(p1) = ld(p2) =: x and degx(p1)≥ degx(p2), then usual Euclidean division is per-
formed on c · p1 modulo p2, where the polynomial c is chosen as (a suitable power
of) the initial of p2 such that division without fractions is made possible.

Let the result of the pseudo-division be p3. When p1 = 0 is replaced with p3 = 0
in the system S under consideration, a sufficient condition for the set of solutions
of S to be unaltered is that c does not vanish for any solution of S. In order to
guarantee that the solution set is not changed, the algorithm actually replaces S with
two systems S′ and S′′ and continues to work with S′ and S′′ separately in the same
way as it did with S. The systems S′ and S′′ are obtained from S by replacing p1 = 0
with p3 = 0 and inserting the inequation c 
= 0 in case of S′ and the equation c = 0
in case of S′′.

For each pair p = 0, q 
= 0 in S with ld(p) = ld(q), the greatest common divisor10

r of p and q is computed. To this end, pseudo-divisions are performed, assuming
that the initials of the divisors do not vanish11, which possibly generates new case
distinctions. If q is a multiple of p, then S is inconsistent and will be discarded. If r
is a non-zero constant, then q 
= 0 is removed from S. Otherwise, p = 0 is replaced
with p/r = 0.

If q1 
= 0, q2 
= 0 are two inequations in S with ld(q1) = ld(q2), then these are
replaced with q3 
= 0, where q3 is the least common multiple of q1 and q2. The
computation of the least common multiple involves pseudo-divisions and case dis-
tinctions according to vanishing of initials as above.

In the same way as Euclid’s algorithm terminates with a single polynomial (being
the greatest common divisor of the input polynomials), after finitely many steps the
systems produced by Thomas’ algorithm will be triangular sets (i.e., condition a) in
Def. 2.2.4 will be satisfied), and initials of equations and inequations of each system
will not vanish for any solution of the respective system (condition b)). Condition c)
in Def. 2.2.4 is accomplished as follows. Since the field of definition K is of charac-
teristic zero, the square-free part of a non-constant polynomial r can be determined
as quotient of r by the greatest common divisor of r and the partial derivative of r

10 The terms greatest common divisor and least common multiple should actually be used with care
here because the coefficients of the polynomials in question will be considered subject to equations
and inequations with smaller leader so that these notions may not be uniquely defined. For a more
precise description, we refer to pages 67–87.
11 Using subresultant polynomial remainder sequences (cf., e.g., [Mis93]) to compute greatest
common divisors often reduces the growth of initials and therefore the number of case distinctions.
For more details, cf. [BGL+12, Sect. 2].
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with respect to its leader. Again, coefficients of r must be handled with care, and
computation of this greatest common divisor usually involves case distinctions. By
equating some element of the polynomial remainder sequence with zero, the possi-
ble cases for the greatest common divisor are dealt with separately, which in general
produces new systems to be treated again in the same way as above.

There are a number of possible ways how to combine these steps. One strategy
is to deal in each system with the polynomials of least leader first. For each variable
x at most one equation or inequation with leader x is registered which is guaranteed
to have non-vanishing initial in the above sense, where equations are preferred to
inequations. The next equation or inequation in the current algebraic system to be
processed is reduced modulo the registered equations. If the resulting left hand side
is not a constant and if an equation or inequation with the same leader is registered,
then this pair is treated as discussed above. Splittings of systems regarding initials
and square-free parts result in new equations and inequations with smaller leader.
Since a registered equation is only replaced with an equation of smaller degree (in
the same leader) and since inequations are replaced with equations if possible or
with the least common multiple of inequations with the same leader, this strategy
terminates after finitely many steps.

The result of the algorithm is a Thomas decomposition of the given algebraic
system. It depends on the chosen ordering of the variables x1, . . . , xn and on the order
in which the steps of Thomas’ algorithm are carried out. Moreover, polynomial
factorization of left hand sides of equations is often favorable because proper factors
lead to a splitting of the system into smaller systems, each of which is obtained by
replacing the original equation with one of its factors of smaller degree.

Thomas’ algorithm returns an empty result if and only if no solution (defined
over K) exists for the input system. The result being { /0} (i.e., a set consisting of one
empty system) is equivalent to the solution set being Kn.

Example 2.2.12. [BGL+12, Ex. 2.5] Let us examine

ax2 +bx+ c = 0, (2.27)

a quadratic equation in x with parameters a, b, c. In order to discuss the well-known
types of solution sets (in an algebraic closure of � or in �) such an equation can
have, we consider the left hand side p of (2.27) as element of �[x,a,b,c], where
x > c > b > a, and apply Thomas’ algorithm to this algebraic system.

The initial of p equals a. The given system is therefore replaced with

S1 := { p = 0, a 
= 0}, S2 := { p = 0, a = 0}.

Conditions a) and b) in Definition 2.2.4 are already satisfied for S1. Euclid’s algo-
rithm applied to p and ∂ p

∂ ld(p) (as polynomials in ld(p) = x) computes the polynomial
remainder sequence

p,
∂ p

∂ ld(p)
, 4ac−b2.
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Multiplication by a for pseudo-division is harmless because a is assumed not to van-
ish. Note that the last polynomial equals the discriminant of p (up to sign). There-
fore, we replace S1 with

S1,1 := { p = 0, 4ac−b2 
= 0, a 
= 0}, S1,2 := {2ax+b = 0, 4ac−b2 = 0, a 
= 0},

where 2ax+b is the square-free part of p in case 4ac−b2 = 0. These two systems
are simple.

On the other hand, S2 is not a triangular set. Euclidean division simplifies p = 0
to bx+ c = 0, whose initial equals b. Thus S2 is split into two systems

S2,1 := {bx+ c = 0, b 
= 0, a = 0}, S2,2 := {bx+ c = 0, b = 0, a = 0},

which are easily dealt with. The final result is given by the following four simple
systems, where leaders of polynomials are underlined, where not obvious:

ax2 +bx+ c = 0

4ac−b2 
= 0

a 
= 0

2ax+b = 0

4ac−b2 = 0

a 
= 0

bx+ c = 0

b 
= 0

a = 0

c = 0

b = 0

a = 0

We give another example, which shows that an algebraic system may be simple,
although it contains no inequations.

Example 2.2.13. Let R =�[x,y] and x > y. Then

(y+1)x = 0, y(y−1) = 0

is a simple algebraic system S over R. Using the factorization of the second equation,
a splitting of this system into

{(y+1)x = 0, y = 0}, {(y+1)x = 0, y−1 = 0}

makes further reductions possible, which results in another Thomas decomposition

{x = 0, y = 0}, {x = 0, y = 1}

of the same system S. Using the factorization of the first equation yields the same
answer after removing inconsistent systems.

Remark 2.2.14. Let us assume that a system S of algebraic equations and inequa-
tions, defined over �, is given. A variant of Thomas’ algorithm (neglecting square-
freeness) allows to compute a finite collection of systems from which partitions of
the solution sets Sol�(S) and Sol�p

(S) can be extracted for algebraic closures �
of � and �p of �p = �/p�, where p is a prime number. To this end, vanishing of
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initials has to be checked also if these are integers, and division by non-invertible
integers must be prevented. This leads to new splittings, in particular when the great-
est common divisor of two polynomials is an integer of absolute value at least 2. For
instance, a system could be split into two systems which include a new equation
6 = 0 and a new inequation 6 
= 0, respectively. Integer factorization can be used to
split the first system again.

Example 2.2.15. We consider the system of algebraic equations

yx2 − x+1 = 0, y2 x− y3 +2 = 0, x+ y = 0,

which is defined over � and where x > y. Euclidean division of the first and the
second modulo the third polynomial yields

−2y3 +2 = 0, y3 + y+1 = 0, x+ y = 0. (2.28)

The result of applying Euclidean division to the first polynomial modulo the second
one is 2y+ 4. In order to be able to replace the second polynomial by its pseudo-
remainder modulo the new polynomial without changing the solution set of the sys-
tem, we assume that 2 
= 0 holds. Then the pseudo-division yields 18 = 0, which is
equivalent to 9 = 0. Since we consider the solutions in an algebraic closure of a field
�p, the final result in this case is

x+1 = 0, y+2 = 0, 3 = 0.

If 2 = 0, only the second and third equation in (2.28) remain, and the final result in
this case is

x+ y = 0, y3 + y+1 = 0, 2 = 0.

For a different approach to decomposing algebraic systems into simple systems
in positive characteristic, cf. [LMW10, MLW13].

We finish this subsection by giving a more precise description of the algebraic
part of Thomas’ algorithm, ignoring, however, efficiency issues. The total ordering
> on the set of indeterminates {x1, . . . ,xn} of R is part of the input. It determines
the leader of each non-constant polynomial in x1, . . . , xn.

Definition 2.2.16. Let p ∈ R, q ∈ R−K, and G ⊆ R−K.

a) The polynomial p is said to be reduced with respect to q if p ∈ K or if p ∈ R−K
and we have degv(p)< degv(q) for v := ld(q).

b) The polynomial p is said to be reduced with respect to G if p ∈ K or if p ∈ R−K
and p is reduced with respect to each element of G, and if each coefficient of p
(as a polynomial in its leader) is reduced with respect to each element of G.

c) An equation or inequation (with zero right hand side) is said to be reduced with
respect to q or reduced with respect to G if its left hand side is so.
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Given a polynomial r in R and a finite set G of non-constant polynomials in R,
the following algorithm subtracts from r suitable multiples of polynomials in G with
the same leader as r until the result is reduced with respect to each polynomial in G
with that leader. It treats the coefficients of the result, which are polynomials with
smaller leader, if not constant, in the same way. This recursive reduction is essential
for the description of Thomas’ algorithm below because we suppose that the highest
term of the left hand side of p = 0 (or of p 
= 0) will be canceled if init(p) = 0 is
an equation of the same algebraic system. However, the reduction of coefficients
of terms of lower degree could be omitted (which would require an adaptation of
Definition 2.2.16).

Algorithm 2.2.17 (Reduce).

Input: r ∈ R, G = { p1, p2, . . . , ps } ⊆ R−K, and a total ordering > on {x1, . . . ,xn}
Output: r′ ∈ R and an element b of the multiplicatively closed set generated by⋃s

i=1{ init(pi)}∪ {1} such that r′ is reduced with respect to G, and such that
r′ = r, b = 1 if G = /0, and r′+ 〈 p1, . . . , ps 〉= b · r+ 〈 p1, . . . , ps 〉 otherwise

Algorithm:

1: r′ ← r
2: b ← 1
3: if r′ 
∈ K then

4: v ← ld(r′)
5: while r′ 
∈ K and there exists p ∈ G with ld(p) = v, degv(r

′)≥ degv(p) do

6: r′ ← init(p) · r′ − init(r′) · vd−d′ · p, where d := degv(r
′) and d′ := degv(p)

7: b ← init(p) ·b
8: end while

9: while there exists a coefficient c of r′ (as a polynomial in v) which is not
reduced with respect to G do

10: (r′′,b′)← Reduce(c, G, >)
11: replace the coefficient b′ · c in b′ · r′ with r′′ and replace r′ with this result
12: b ← b′ ·b
13: end while

14: end if

15: return (r′,b)

Remarks 2.2.18. a) The loop in steps 5–8 ensures that r′ is reduced with respect
to each p ∈ G with ld(p) = v. Termination of Algorithm 2.2.17 follows from
the facts that the coefficients c which are dealt with recursively in step 10 are
either constant or have leaders which are smaller than v with respect to > and
that the property of r′ which is achieved by the loop in steps 5–8 is retained by
the recursion. The asserted equation follows recursively from the updates of b.
Note that in general, if b 
= 1, then r and r′ are not in the same residue class of
R/(〈 p1, . . . , ps 〉 : q∞) (cf. also the following example).
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b) Let r1, r2 ∈ R and G = { p1, p2, . . . , ps } be as in the input of Algorithm 2.2.17,
and define q to be the product of all init(pi), i = 1, . . . , s. In general, the equality

r1 + 〈 p1, . . . , ps 〉 : q∞ = r2 + 〈 p1, . . . , ps 〉 : q∞

does not imply that the results of applying Reduce to r1 and r2, respectively, are
equal. However, Proposition 2.2.7 shows that, if p1 = 0, p2 = 0, . . . , ps = 0 are
the equations of a simple algebraic system, then the result r′ of applying Reduce
to r1 is zero if and only if we have r1 ∈ 〈 p1, . . . , ps 〉 : q∞.

Example 2.2.19. Let R =�[x,y] and x > y. Then

yx−1 = 0, y 
= 0

is a simple algebraic system over R. Algorithm 2.2.17 (Reduce) applied to r := x,
G := {yx−1}, and > computes

r′ := yr− (yx−1) = 1,

and the output is (r′,b) = (1,y). Note that r and r′ are not in the same residue class
of R/(〈yx − 1〉 : q∞), where q := y, but b · r and r′ are. Moreover, the result of
applying Reduce to yx, which is in the same residue class as 1, is (y,y). Hence, for
different representatives of the same residue class, the first component of the output
of Reduce may be different in general.

The following description of the algebraic part of Thomas’ algorithm deals with
triples (L,M,N) of finite algebraic systems over R which are gathered in a set Q.
Initially this set contains only the triple (S, /0, /0), where S is the input system, more
triples will usually be inserted into Q as such triples are processed, and after finitely
many steps the set Q will be empty. Another set T collects the simple algebraic
systems of the Thomas decomposition to be constructed.

The second and third component of every triple have the following properties
throughout the algorithm. The left hand side p of every equation and inequation
in M is non-constant and init(p) 
= 0 holds if a solution of the algebraic system
L ∪ M ∪ N is substituted for x1, . . . , xn. Similarly, the left hand side p of every
equation and inequation in N is non-constant and both init(p) 
= 0 and disc(p) 
= 0
hold if a solution of L∪M ∪N is substituted for x1, . . . , xn. Moreover, for every
v ∈ {x1, . . . ,xn}, M∪N contains at most one equation or inequation with leader v.

For any algebraic system

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

where I and J are index sets, we denote by

S= := { pi | i ∈ I }

the set of left hand sides of equations in S.
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Algorithm 2.2.20 (AlgebraicThomasDecomposition).

Input: A finite algebraic system S over R and a total ordering > on {x1, . . . ,xn}
Output: A Thomas decomposition of S
Algorithm:

1: Q ←{(S, /0, /0)}
2: T ← /0
3: repeat

4: choose (L,M,N) ∈ Q and remove (L,M,N) from Q
5: replace the left hand side p of each equation and inequation in L with the first

entry of the result of Reduce(p, M=∪N=, >) // cf. Alg. 2.2.17
6: remove 0 = 0 and p 
= 0 from L for any p ∈ K −{0}
7: if L does neither contain p = 0 with p ∈ K −{0} nor 0 
= 0 then

8: if L = /0 then

9: if M = /0 then

10: insert N into T
11: else

12: Q ← ProcessDiscriminant((L,M,N), Q, >) // cf. Alg. 2.2.23
13: end if

14: else

15: Q ← ProcessInitial((L,M,N), Q, >) // cf. Alg. 2.2.21
16: end if

17: end if

18: until Q = /0
19: return T

The proof that Algorithm 2.2.20 terminates and is correct will be given after the
description of the algorithms on which it depends (cf. Thm. 2.2.32, p. 79).

SolK(Q) :=
⋃

(L,M,N)∈Q

SolK(L∪M∪N)

the union of the solution sets of all triples in Q.

Moreover, let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

be an algebraic system, where no pi and no q j is constant, and let v ∈ {x1, . . . ,xn}.
Then S≥v (resp. S<v) is a notation for the subset of S which consists of the equa-
tions and inequations with leader greater than or equal to (resp. smaller than) v with
respect to >. We are also going to write S=<v instead of (S<v)

= (in Remarks 2.2.26).

The following terminology will be useful for the rest of this subsection. For a
triple (L,M,N) of algebraic systems over R we refer to SolK(L∪M ∪N) as the
solution set of the triple (L,M,N), and for a set Q of such triples we denote by
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Algorithm 2.2.21 (ProcessInitial).

Input: A triple (L,M,N) of finite algebraic systems over R, a finite set P of such
triples, and a total ordering > on {x1, . . . ,xn}, where L 
= /0, the left hand sides of
elements of L∪M∪N are non-constant, those of M∪N having pairwise distinct
leaders, those of L being reduced with respect to M=∪N= (cf. Def. 2.2.16 b)),
where SolK(L∪M∪N) and the solution sets of triples in P are pairwise disjoint

Output: A finite set Q ⊇ P of triples as in P whose solution sets form a partition of
SolK(L∪M∪N) � SolK(P) such that either

a) each triple in Q−P has the property that all of its solutions satisfy init(p) 
= 0
or all of its solutions satisfy init(p) = 0, where p is the left hand side of the
equation or inequation in L chosen in step 2, or

b) the triples in Q−P have been inserted by Algorithm 2.2.27 (LCMSplit)

Algorithm:

1: Q ← P
2: among the elements of L with least possible leader v with respect to > choose

one with left hand side p of least possible degree in v, preferably an equation
3: if the equation p = 0 is chosen then

4: insert ((L−{ p = 0})∪M≥v ∪N≥v ∪{ init(p) 
= 0},
(M−M≥v)∪{ p = 0}, N −N≥v) into Q

5: insert (L∪{ init(p) = 0}, M, N) into Q
6: else // the inequation p 
= 0 is chosen
7: if M∪N contains an equation q = 0 with ld(q) = v then

8: Q ← GCDSplit(q, p, (L,M,N), Q, >) // cf. Alg. 2.2.25
9: else if M∪N contains an inequation q 
= 0 with ld(q) = v then

10: if degv(p)≥ degv(q) then

11: Q ← LCMSplit(p, q, (L,M,N), Q, >) // cf. Alg. 2.2.27
12: else

13: insert ((L−{ p 
= 0})∪{q 
= 0, init(p) 
= 0},
(M−{q 
= 0})∪{ p 
= 0}, N −{q 
= 0}) into Q

14: insert (L∪{ init(p) = 0}, M, N) into Q
15: end if

16: else

17: insert ((L−{ p 
= 0})∪{ init(p) 
= 0}, M∪{ p 
= 0}, N) into Q
18: insert (L∪{ init(p) = 0}, M, N) into Q
19: end if

20: end if

21: return Q
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Remark 2.2.22. Termination of Algorithm 2.2.21 follows from the fact that Algo-
rithm 2.2.25 and Algorithm 2.2.27 terminate (cf. Lemma 2.2.28 and Lemma 2.2.29).
An inspection of steps 4, 5, 13, 14, 17, and 18 and of the specifications of Algo-
rithms 2.2.25 and 2.2.27 shows that the solution sets of triples in Q form a partition
of SolK(L∪M ∪N) � SolK(P). In order to show the last assertion stated in the de-
scription of the output, we observe that in each of these steps as well as in steps 6

either the inequation init(p) 
= 0 or the equation init(p) = 0 is imposed.

Algorithm 2.2.23 (ProcessDiscriminant).

Input: (L,M,N), P, and > with the same specification as in Algorithm 2.2.21 and
satisfying L = /0 and M 
= /0

Output: A finite set Q ⊇ P of triples as in P whose solution sets form a partition of
SolK(M∪N) � SolK(P) such that either

a) each triple in Q−P has the property that all solutions satisfy disc(p) 
= 0,
where p is the left hand side of the equation or inequation in M with least
leader with respect to >, or

b) the triples in Q−P have been inserted by Algorithm 2.2.30 (SquarefreeSplit)

Algorithm:

1: Q ← P
2: let p = 0 or p 
= 0 be the equation or inequation in M with least leader with

respect to > and let v be its leader
3: if degv(p) = 1 then

4: if M contains p = 0 then

5: insert ( /0, M−{ p = 0}, N ∪{ p = 0}) into Q
6: else // M contains p 
= 0
7: insert ( /0, M−{ p 
= 0}, N ∪{ p 
= 0}) into Q
8: end if

9: else

10: Q ← SquarefreeSplit(p, ( /0,M,N), Q, >) // cf. Alg. 2.2.30
11: end if

12: return Q

Remark 2.2.24. Termination of Algorithm 2.2.23 follows from the fact that Algo-
rithm 2.2.30 terminates (cf. Lemma 2.2.31). It is easily checked by considering
steps 5 and 7 and the specification of Algorithm 2.2.30 that the solution sets of
triples in Q form a partition of SolK(M ∪N) � SolK(P). The last assertion which
is stated in the description of the output is shown as follows. A solution of a triple
in Q−P satisfies disc(p) = 0 if and only if the univariate polynomial p which is
obtained by substituting this solution for x1, . . . , xn except ld(p) in p has multiple
roots. But in steps 5 and 7 the polynomial p has degree one.

and 7 in Algorithm 2.2.25, where ri+2 is equal to p2 in the first round of the loop,
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Algorithm 2.2.25 (GCDSplit).

Input: p1, p2 ∈ R−K with the same leader v and (L,M,N), P, > with the same
specification as in Algorithm 2.2.21, where p1 = 0 is in M ∪N, p2 
= 0 is in L,
degv(p1)≥ degv(p2), and p2 is reduced with respect to M=∪N=

Output: A finite set Q ⊇ P of triples as in P whose solution sets form a partition of
SolK(L∪M∪N) � SolK(P) such that for each triple in Q−P we have either

a) the polynomials p1 and p2 which are obtained from p1 and p2 by substituting
a solution of the triple for x1, . . . , xn except v have a greatest common divisor
whose degree does not depend on the choice of the solution of the triple, or

b) the triple has been inserted in step 6

Algorithm:

1: Q ← P; U ← /0
2: v ← ld(p1); i ← 0
3: r1 ← p1; c1 ← 0
4: r2 ← p2; c2 ← 1
5: repeat

6: insert (L∪{ init(ri+2) = 0}∪U, M, N) into Q
7: U ←U ∪{ init(ri+2) 
= 0}
8: i ← i+1
9: ri+2 ← ai · ri −qi · ri+1, where ai is a power of init(ri+1) and qi ∈ R such that

ri+2 = 0 or degv(ri+2)< degv(ri+1)

10: (ri+2,bi+2)← Reduce(ri+2, M=∪N=, >) // cf. Alg. 2.2.17
11: ci+2 ← bi+2 · (ai · ci +qi · ci+1)

12: until ri+2 = 0 or degv(ri+2) = 0
13: insert (L∪{ci+2 = 0, ri+2 = 0}∪U, M−{ p1 = 0}, N −{ p1 = 0}) into Q
14: insert ((L−{ p2 
= 0})∪{ri+2 
= 0}∪U, M, N) into Q
15: return Q

The proof that Algorithm 2.2.25 terminates and is correct (cf. Lemma 2.2.28) is
based on the following remarks.

Remarks 2.2.26. a) The triples which are inserted into Q in steps 6, 13, and 14 in
Algorithm 2.2.25 define inconsistent algebraic systems if init(ri+2) in step 6 or
ri+2 in step 13 is a non-zero constant or if ri+2 is the zero polynomial in step 14.
These triples should be discarded right away. For the sake of conciseness these
case distinctions are omitted here.

b) Since we have r1 = p1 and degv(ri+2)< degv(ri+1) after step 9 and since p1 = 0
is the unique equation with leader v in M∪N, the reduction in step 10 considers
only left hand sides of equations with leader smaller than v as pseudo-divisors.
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c) Algorithm 2.2.25 is a variant of Euclid’s Algorithm with bookkeeping, where
(coefficients of) intermediate results are also reduced with respect to M=

<v ∪N=
<v.

Steps 9–11 ensure that the following congruence holds for all i ∈ �≥0:

ci+2 · ri+1 ≡
(

i

∏
j=1

a j

)
·
(

i+2

∏
k=3

bk

)
· p1 − ci+1 · ri+2 mod 〈M=

<v ∪N=
<v 〉. (2.29)

Its significance derives from the following special case. If, for all i ∈ �≥0, both
sides are not merely congruent modulo 〈M=

<v ∪N=
<v 〉, but equal, and if i is mi-

nimal with the property that ri+2 is the zero polynomial, then ri+1 is the great-
est common divisor of p1 and p2 in Quot(K[x | v > x])[v], where we denote by
Quot(K[x | v > x]) the field of fractions of the polynomial ring K[x | v > x]. Then
ci+2 is the quotient of a1 ·a2 · . . . ·ai ·b3 ·b4 · . . . ·bi+2 · p1 divided by ri+1.
We prove (2.29) by induction on i. Indeed, for i = 0 we have c2 · r1 = p1 by
steps 3 and 4 (where an empty product is equal to 1 by convention). Let i > 0.
After step 11 we have

ri+2 ≡ bi+2 · (ai · ri −qi · ri+1) mod 〈M=
<v ∪N=

<v 〉,
ci+2 = bi+2 · (ai · ci +qi · ci+1).

}
(2.30)

The induction hypothesis states that we have

ci+1 · ri ≡
(

i−1

∏
j=1

a j

)
·
(

i+1

∏
k=3

bk

)
· p1 − ci · ri+1 mod 〈M=

<v ∪N=
<v 〉. (2.31)

Using (2.30) and (2.31), we deduce

ci+2 ri+1 ≡ bi+2 (ai ci +qi ci+1)ri+1

≡ bi+2 ai ci ri+1 + ci+1 bi+2 qi ri+1

≡ bi+2 ai ci ri+1 + ci+1 (bi+2 ai ri − ri+2)

≡ bi+2 ai ci ri+1 − ci+1 ri+2 +bi+2 ai

((
i−1

∏
j=1

a j

)(
i+1

∏
k=3

bk

)
p1 − ci ri+1

)

≡
(

i

∏
j=1

a j

)(
i+2

∏
k=3

bk

)
p1 − ci+1 ri+2

modulo 〈M=
<v ∪N=

<v 〉, which proves (2.29).
Similarly, if we set d2 := 0 and d3 := 1 and update, if i > 1,

di+2 ← bi+2 · (ai ·di +qi ·di+1)

after step 11, then the following congruence holds for all i ∈ �≥1:
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di+2 · ri+1 ≡
(

i

∏
j=2

a j

)
·
(

i+2

∏
k=4

bk

)
· p2 −di+1 · ri+2 mod 〈M=

<v ∪N=
<v 〉. (2.32)

This is proved in the same way as (2.29).

The next algorithm applies a reduction, analogous to the one used in the previous
algorithm, to a pair of inequations p1 
= 0, p2 
= 0 instead of p1 = 0 and p2 
= 0.

Algorithm 2.2.27 (LCMSplit).

Input: p1, p2 ∈ R−K with the same leader v and (L,M,N), P, > with the same
specification as in Algorithm 2.2.21, where p1 
= 0 is in L, p2 
= 0 is in M ∪N,
and degv(p1)≥ degv(p2)

Output: A finite set Q ⊇ P of triples as in P whose solution sets form a partition of
SolK(L∪M∪N) � SolK(P) such that for each triple in Q−P we have either

a) the polynomials p1 and p2 which are obtained from p1 and p2 by substituting
a solution of the triple for x1, . . . , xn except v have a least common multiple
whose degree does not depend on the choice of the solution of the triple, or

b) the triple has been inserted in step 11

Algorithm:

1: Q ← P; U ← /0
2: v ← ld(p1); i ← 0
3: r1 ← p1; c1 ← 0
4: r2 ← p2; c2 ← 1
5: repeat

6: i ← i+1
7: ri+2 ← ai · ri −qi · ri+1, where ai is a power of init(ri+1) and qi ∈ R such that

ri+2 = 0 or degv(ri+2)< degv(ri+1)

8: (ri+2,bi+2)← Reduce(ri+2, M=∪N=, >) // cf. Alg. 2.2.17
9: ci+2 ← bi+2 · (ai · ci +qi · ci+1)

10: if ri+2 
= 0 and degv(ri+2)> 0 then

11: insert (L∪{ init(ri+2) = 0}∪U, M, N) into Q
12: U ←U ∪{ init(ri+2) 
= 0}
13: end if

14: until ri+2 = 0 or degv(ri+2) = 0
15: insert ((L−{ p1 
= 0})∪{ci+2 · p2 
= 0, ri+2 = 0}∪U, M−{ p2 
= 0},

N −{ p2 
= 0}) into Q
16: insert ((L−{ p1 
= 0})∪{ p1 · p2 
= 0, ri+2 
= 0}∪U, M−{ p2 
= 0},

N −{ p2 
= 0}) into Q
17: return Q



76 2 Formal Methods for PDE Systems

Lemma 2.2.28. Algorithm 2.2.25 (on page 73) terminates and is correct.

Proof. Termination of Algorithm 2.2.25 follows from the fact that the degree in v
of the elements of the sequence r2, r3, r4, . . . is decreasing.

The solution set of (L,M,N) is partitioned into solution sets of several triples in
the result Q due to steps 6, 13, and 14. In the beginning of each round of the loop
the splitting of the current triple into the one defined in step 6 and complementary
ones incorporating the update of U in step 7 ensures that in step 9 the inequation
init(ri+1) 
= 0 holds if a solution of the current triple is substituted for x1, . . . , xn.
This also implies ai 
= 0. Since the initials of left hand sides of elements of M∪N do
not vanish on solutions of the current triple, the inequation bi+2 
= 0 holds as well.

In step 13 the condition ri+2 = 0 is imposed, which is complemented by ri+2 
= 0
in the triple defined in step 14. Note that the first component of the triple in step 13
contains the inequation p2 
= 0, so that the inequation ri+1 
= 0 holds for all solutions
of this triple because of (2.32), ri+2 = 0, and a2 ·a3 · . . . ·ai ·b4 ·b5 · . . . ·bi+2 
= 0. Then,
by (2.29), the equation ci+2 = 0 holds for all solutions of the triple. Conversely, the
equations ci+2 = 0 and ri+2 = 0 and the inequation a1 ·a2 · . . . ·ai ·b3 ·b4 · . . . ·bi+2 
= 0
imply p1 = 0. Therefore, the solution set of L∪U ∪M∪N is not changed if p1 = 0
is replaced with ci+2 = 0.

Finally, in step 14 the condition ri+2 
= 0 is imposed. Since ri+2 is an R-linear
combination of p2 and the left hand sides of the equations in M∪N, this condition
implies p2 
= 0, so that the latter inequation is dispensable for the updated triple.

Let p1 and p2 be obtained from p1 and p2, respectively, by substituting a solution
of the triple in step 13 or 14 for x1, . . . , xn except v. The same substitution special-
izes the sequence of polynomials r1, r2, r3, . . . to the one (up to non-zero constant
factors) which is computed by Euclid’s algorithm for the univariate polynomials p1
and p2, because init(ri) does not vanish for any polynomial ri preceding the final
one. This shows the last assertion stated in the description of the output. ��
Lemma 2.2.29. Algorithm 2.2.27 (on page 75) terminates and is correct.

Proof. Termination is shown exactly as in the proof of Lemma 2.2.28.
The solution set of (L,M,N) is partitioned into solution sets of several triples in

the result Q due to steps 11, 15, and 16. As opposed to the input of Algorithm 2.2.25,
the inequation p2 
= 0 is an element of M ∪ N rather than L. This ensures that
init(ri+1) 
= 0 holds if a solution of the current triple in step 7 in the first round
of the loop is substituted for x1, . . . , xn. The splitting of algebraic systems in step 11
arranges for the corresponding property in the next round.

Similarly to step 13 in Algorithm 2.2.25, in step 15 the condition ri+2 = 0 is
imposed, which is complemented by ri+2 
= 0 in the triple defined in step 16. Again,
the inequation ri+1 
= 0 holds for all solutions of the triple in step 15 because of
(2.32), ri+2 = 0, a1 · a2 · . . . · ai · b3 · b4 · . . . · bi+2 
= 0, and p2 
= 0 (imposed by the
first entry of the triple). Given these conditions, the inequations ci+2 
= 0 and p1 
= 0
are equivalent by (2.29). Hence, replacing p1 
= 0 and p2 
= 0 with ci+2 · p2 
= 0 in
step 15 does not change the solution set of L∪U ∪M ∪N. Replacing p1 
= 0 and
p2 
= 0 with p1 · p2 
= 0 does not change the solution set in step 16 either.
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The last assertion stated in the description of the output is proved in the same
way as the corresponding one for Algorithm 2.2.25. ��

Finally, the same reduction technique is applied to determine square-free parts.

Algorithm 2.2.30 (SquarefreeSplit).

Input: p ∈ R−K with degree at least 2 in its leader v and (L,M,N), P, > with the
same specification as in Algorithm 2.2.21, where L = /0 and p is the left hand
side of an equation or inequation in M

Output: A finite set Q ⊇ P of triples as in P whose solution sets form a partition of
SolK(M∪N) � SolK(P) such that for each triple in Q−P we have either

a) the two polynomials which are obtained from p and ∂ p
∂v by substituting a

solution of the triple for x1, . . . , xn except v have a greatest common divisor
whose degree does not depend on the choice of the solution of the triple, or

b) the triple has been inserted in step 10

Algorithm:

1: Q ← P; U ← /0; v ← ld(p); i ← 0
2: r1 ← p; c1 ← 0
3: r2 ← ∂ p

∂v ; c2 ← 1
4: repeat

5: i ← i+1
6: ri+2 ← ai · ri −qi · ri+1, where ai is a power of init(ri+1) and qi ∈ R such that

ri+2 = 0 or degv(ri+2)< degv(ri+1)

7: (ri+2,bi+2)← Reduce(ri+2, M=∪N=, >) // cf. Alg. 2.2.17
8: ci+2 ← bi+2 · (ai · ci +qi · ci+1)

9: if ri+2 
= 0 and degv(ri+2)> 0 then

10: insert ({ init(ri+2) = 0}∪U, M, N) into Q
11: U ←U ∪{ init(ri+2) 
= 0}
12: end if

13: until ri+2 = 0 or degv(ri+2) = 0
14: if M contains p = 0 then

15: insert ({ci+2 = 0, ri+2 = 0}∪U, M−{ p = 0}, N) into Q
16: insert ({ri+2 
= 0}∪U, M−{ p = 0}, N ∪{ p = 0}) into Q
17: else // M contains p 
= 0
18: insert ({ci+2 
= 0, ri+2 = 0}∪U, M−{ p 
= 0}, N) into Q
19: insert ({ri+2 
= 0}∪U, M−{ p 
= 0}, N ∪{ p 
= 0}) into Q
20: end if

21: return Q
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Lemma 2.2.31. Algorithm 2.2.30 terminates and is correct.

Proof. Again, the same argument as in the proof of Lemma 2.2.28 shows that Al-
gorithm 2.2.30 terminates.

The solution set of (L,M,N) is partitioned into solution sets of several triples in
the result Q due to steps 10 and 15, 16 or 18, 19. Since p has degree at least two in
v, the initial of ∂ p

∂v is a constant multiple of init(p), and since the inequation p 
= 0
is an element of M, the inequation init(ri+1) 
= 0 holds if a solution of the current
triple in step 6 in the first round of the loop is substituted for x1, . . . , xn. For further
rounds the inequation init(ri+1) 
= 0 has been added to U in the previous round.

After step 8 the congruence (2.29) holds with p1 replaced with p, and if the
sequence d2, d3, d4, . . . defined in Remark 2.2.26 c) is also computed, then the
congruence (2.32) holds with p2 replaced with ∂ p

∂v .
In steps 15 and 18 the condition ri+2 = 0 is imposed, which is complemented by

ri+2 
= 0 in the triple defined in step 16 or 19, respectively. We claim that replacing
the equation p = 0 with ci+2 = 0 does not change the solution set of the triple in
step 15. First of all, by (2.29), the equations ci+2 = 0 and ri+2 = 0 and the inequation
a1 · a2 · . . . · ai · b3 · b4 · . . . · bi+2 
= 0 imply p = 0. Conversely, we show that every
solution of (L∪U ∪{ri+2 = 0},M,N) is a solution of ci+2 = 0. Let p, ci+2, ri+1, a j,
and bk be obtained from p, ci+2, ri+1, a j, and bk, respectively, by substituting such
a solution for x1, . . . , xn except v. Then (2.29) specializes to

ci+2 · ri+1 =

(
i

∏
j=1

a j

)
·
(

i+2

∏
k=3

bk

)
· p, (2.33)

where the degree in v of each factor is the same as the degree in v of the correspond-
ing factor in (2.29) because init(p) and init(ri+1) do not vanish. Let η ∈ K be the
component of the solution which corresponds to v. If ri+1(η) = 0, then (2.33) im-
plies ci+2(η) = 0, which proves the claim in this case. Otherwise, the corresponding
specialization of (2.32) shows that η is a common root of p and its derivative. Then
η is a root of p of multiplicity greater than one. Since ri+1 divides both p and its
derivative, we conclude that η is a root of p/ri+1 and hence of ci+2.

Next we show that replacing the inequation p 
= 0 with ci+2 
= 0 does not change
the solution set of the triple in step 18. Clearly, by (2.29), the equation ri+2 = 0
and the inequations p 
= 0 and a1 · a2 · . . . · ai · b3 · b4 · . . . · bi+2 
= 0 imply ci+2 
= 0.
Conversely, we show that the inequation p 
= 0 holds for all solutions of the triple in
step 18. Using the same notation as above, we have ri+1(η) = 0 or ri+1(η) 
= 0. In
the former case we conclude in the same way as above that η is a common root of
p and its derivative and therefore a root of ci+2, which is a contradiction. Hence, we
have ri+1(η) 
= 0 and therefore, p 
= 0 holds.

The last assertion stated in the description of the output follows by the same
argument as in the proof of Lemma 2.2.28. Finally, in order to justify the transfer
of p = 0 or p 
= 0 from the second to the third component of the triple in step 16 or
19, we note that either ri+2 is the zero polynomial and the triple has no solution, or
the greatest common divisor of p and its derivative is the non-zero constant which
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is obtained from ri+2 by substituting the solution that defines p, which shows that p
and its derivative have no common root. ��
Theorem 2.2.32. Algorithm 2.2.20, p. 70, terminates and is correct.

Proof. In order to prove correctness, we note first that step 5 in Algorithm 2.2.20
(AlgebraicThomasDecomposition) ensures that the left hand sides of elements of L
in step 15 are reduced with respect to M= ∪N=, and steps 6 and 7 guarantee that
they are not constant. The property that M ∪N contains at most one equation or
inequation with a given leader is retained throughout.

An equation or inequation with left hand side p is only inserted into the sec-
ond component M of a triple (L,M,N) if all solutions of the updated triple satisfy
init(p) 
= 0, namely in steps 4, 13, and 17 in Algorithm 2.2.21 (ProcessInitial).
Similarly, an equation or inequation with left hand side p is only inserted into the
third component N of such a triple if it is moved there from the second component
M and if all solutions of the updated triple satisfy disc(p) 
= 0, namely in steps 5
and 7 in Algorithm 2.2.23 (ProcessDiscriminant) and in steps 16 and 19 in Algo-
rithm 2.2.30 (SquarefreeSplit) (cf. the end of Remark 2.2.24 and the end of the proof
of Lemma 2.2.31 for justifications).

As a result of the above discussion, if an algebraic system N is inserted into T in
step 10, this system is simple. The output T is a Thomas decomposition of the input
system S because the solution sets of triples in Q are pairwise disjoint throughout
the algorithm, the solution sets of algebraic systems in T are pairwise disjoint, and
the union of SolK(Q) and the solution sets of algebraic systems in T equals SolK(S)
(cf. Remarks 2.2.22 and 2.2.24, Lemmas 2.2.28, 2.2.29, and 2.2.31).

Termination of Algorithm 2.2.20 follows if we show that after finitely many steps
the set Q is empty. Since every triple in Q arises from splittings of algebraic systems,
whose common origin is the triple (S, /0, /0), it is sufficient to prove that every triple is
removed after finitely many steps and that no triple has infinitely many descendants.
In fact, we are going to argue for each splitting that the further treatment of a new
triple (L′,M′,N′) leads to a modification of M′ or N′ and that only finitely many
consecutive modifications are possible for each triple and its descendants.

Each triple (L,M,N) in Q is either discarded or is dealt with by Algorithm 2.2.21
(ProcessInitial) or Algorithm 2.2.23 (ProcessDiscriminant). The first case occurs
if an equation or inequation with constant left hand side reveals that the algebraic
system is inconsistent, or if L and M are empty, in which case N is inserted into
the set T . Algorithms 2.2.21 and 2.2.23, using also Algorithms 2.2.25 (GCDSplit),
2.2.27 (LCMSplit), and 2.2.30 (SquarefreeSplit), insert further triples into Q whose
solution sets form a partition of SolK(L∪M∪N).

A modification of M or N is possible precisely in the following ways:

a) An equation p = 0 with leader v is transferred from L to M after equations and
inequations with leader greater than or equal to v have been transferred from
M ∪N to L (Alg. 2.2.21, step 4). If M ∪N contained an equation with leader v
before, then p has smaller degree in v than the left hand side of the old equation
because p was reduced with respect to M=∪N= before the insertion.
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b) An inequation p 
= 0 with leader v is transferred from L to M only if M∪N does
not contain an equation with leader v (Alg. 2.2.21, steps 13 and 17). If M ∪N
contained an inequation with leader v before, then p has smaller degree in v than
the left hand side of the old inequation, and the old inequation is transferred to L.

c) An equation p1 = 0 with leader v is removed from M or from N and an equation
ci+2 = 0 is inserted into L, where ci+2 is constant, but non-zero, or the leader of
ci+2 is v, and degv(ci+2) is less than degv(p1), and init(ci+2) is not in the ideal
〈M=

<v ∪N=
<v 〉 (Alg. 2.2.25, step 13). Finitely many inequations whose left hand

sides are constant, but non-zero, or have leaders which are smaller than v may be
inserted into L as well.
In order to confirm these properties, we note that c3 in Algorithm 2.2.25 is con-
stant if and only if we have degv(p1) = degv(p2), that the degree in v of the
entries of the sequence c3, c4, c5, . . . is increasing and the degree in v of those
in r2, r3, r4, . . . is decreasing. If c3 is constant, then it is non-zero because c1
is zero, but b3, q1, and c2 are not, so that the new triple defines an inconsistent
algebraic system. Otherwise, ci+2 has leader v and degree in v less than degv(p1)
due to (2.29), p. 74, and because of the properties of the above sequences. The
initial of ci+2 is not in the ideal 〈M=

<v ∪N=
<v 〉 because the initial of p1 is not.

The set L in the input of Algorithm 2.2.25 contains neither equations with leader
v nor equations or inequations with smaller leader. When the new triple defined
in step 13 with degv(ci+2)> 0 will be further processed, inequations with leader
smaller than v, contributed by the set U in step 13, if any, and equations and
inequations with leader smaller than v produced by this process will be dealt with.
Further splittings may occur. Since init(ci+2) is not in 〈M=

<v ∪N=
<v 〉, a reduction

may decrease the degree of ci+2 in v only if an equation with leader smaller than v
has been inserted into the second component of the triple in question. Otherwise,
(a reduced form of) the new equation ci+2 = 0 will be inserted into the second
component. In all cases a modification of type a) along with the generation of a
new triple as in g) below will occur.

d) Inequations p1 
= 0 and p2 
= 0 with the same leader v are removed from L and M
or N, respectively, and an inequation with leader v is inserted into L (Alg. 2.2.27,
steps 15 and 16). Finitely many equations and inequations whose left hand sides
are constant or have leaders smaller than v may be inserted into L as well.

e) An equation or inequation with left hand side p is removed from M or N and, cor-
respondingly, an equation or inequation with left hand side ci+2 is inserted into
L, where ci+2 is constant, but non-zero, or the leader of ci+2 is v, and degv(ci+2)
is less than degv(p), and init(ci+2) is not in the ideal 〈M=

<v ∪N=
<v 〉 (Alg. 2.2.30,

steps 15 and 18). An equation and finitely many inequations whose left hand
sides are constant or have leaders smaller than v may be inserted into L as well.
The fact that ci+2 has the above property follows in the same way as in c).

f) An equation or inequation with left hand side p is transferred from M to N
(Alg. 2.2.23, steps 5 and 7, Alg. 2.2.30, steps 16 and 19). Finitely many inequa-
tions whose left hand sides are constant or have leaders which are smaller than v
may also be inserted into L.
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New triples with unmodified second and third component arise as follows:

g) An equation is inserted into L whose left hand side is the initial of a polynomial
whose coefficients are reduced with respect to M= ∪N= (Alg. 2.2.21, steps 5,
14, and 18, Alg. 2.2.25, step 6, Alg. 2.2.27, step 11, or Alg. 2.2.30, step 10). A
similar argument about the insertion of equations into M as given in c) applies in
this case (if the left hand side is not constant).

h) An inequation p2 
= 0 in L is replaced with finitely many inequations whose left
hand sides are constant, but non-zero, or have leaders which are smaller than v
(Alg. 2.2.25, step 14).

Every new triple which is inserted into Q arises in exactly one of the cases a)–h).
Modifications of type c) and g) entail, after finitely many steps, modifications of
type a) for each resulting triple and the creation of a new triple as in g). In this way
only finitely many triples are generated because the vector (d1, . . . ,dn) defined by

di :=
{

degv(p), if M∪N contains the equation p = 0 with leader v,
∞, if M∪N contains no equation with leader v,

where v is the i-th smallest variable with respect to >, decreases with respect to
the lexicographical ordering as a result of a) and also as an indirect result of c) or
g). Moreover, the leader of left hand sides of equations dealt with in g) decreases
with respect to >. We claim that modifications of type b), d), e), f), and h) can
be repeated (in any order) only finitely many times before a modification of type
a) is applied or the algorithm stops. If an inequation in M ∪N is replaced with an
inequation with the same leader v, then the new inequation has smaller degree in
v (cf. b)). This shows that a sequence of modifications as in the assertion contains
types b) and f) only finitely many times. Modifications of the remaining types either
replace two inequations with the same leader v with one inequation with leader v in
L∪M∪N (cf. d)) or remove one inequation from L∪M∪N (cf. e) and h)), besides
possibly inserting finitely many inequations into L whose left hand sides are constant
or have smaller leader than the left hand side(s) of the removed inequation(s). Since
no infinite sequence of non-constant polynomials exists in which each polynomial
is followed by one with smaller leader, after finitely many steps either L and M
will be empty or the element which is chosen in step 2 in Algorithm 2.2.21 will
be an equation. Termination of Algorithm 2.2.20 now follows from the fact that
modifications of type b), d), e), f), and h) do not change the vector (d1, . . . ,dn). ��

Remark 2.2.33. In order to prevent a large growth of expressions and to simplify
the final result, two strategies should be included at certain stages of the above algo-
rithms. The left hand side of each equation and inequation should be divided by its
numerical content, i.e., to obtain a primitive (multivariate) polynomial. Moreover,
and also more generally, if all coefficients of the left hand side of an equation p = 0
or inequation p 
= 0 are divisible by a non-trivial factor r of the left hand side of an
inequation q 
= 0, then they should be replaced with their quotients by r. In particu-
lar, it is worthwhile to apply this simplification, if possible, after init(p) 
= 0 has been
inserted into the first component of a triple (cf. steps 4, 13, and 17 in Alg. 2.2.21).
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For instance, the following two simple algebraic systems over�[x,y] are equiv-
alent, where x > y.

2yx+4y2 = 0

2y 
= 0
⇐⇒

x+2y = 0

y 
= 0

In Algorithms 2.2.25 (GCDSplit), 2.2.27 (LCMSplit), and 2.2.30 (SquarefreeSplit) it
is not specified in step 9, 7, and 6, respectively, which power ai of init(ri+1) should
be chosen. The power with exponent degv(ri)−degv(ri+1)+1 allows a polynomial
division without fractions in any case because the polynomial division involves at
most degv(ri)−degv(ri+1)+1 subtractions, but a proper divisor of this power may
allow this as well for a particular pair ri, ri+1 of polynomials. Using subresultant
polynomial remainder sequences (cf., e.g., [Mis93]) is a considerable improvement
(cf. also [BGL+12, Sect. 2]).

Furthermore, in order to avoid repeated computations, for each equation and
inequation information about whether the initial and discriminant of its left hand
side are ensured not to vanish on the solution set of the algebraic system should be
recorded. If the equation or inequation is inserted into M and its initial is known not
to vanish, the insertion of init(p) 
= 0 can be neglected in steps 4, 13, and 17 in Al-
gorithm 2.2.21 (ProcessInitial) and step 5, 14, or 18, respectively, can be skipped.
Similarly, in Algorithm 2.2.23 (ProcessDiscriminant) step 5 or 7 can be applied
to an equation or inequation, respectively, which is chosen in step 2 and which is
known to have non-vanishing discriminant.

We demonstrate Algorithm 2.2.20 (AlgebraicThomasDecomposition) on two ex-
amples.

Example 2.2.34. We revisit Example 2.2.12, p. 65, where R =�[x,a,b,c] and the
total ordering > on the set of variables is given by x > c > b > a. In step 1 we have

Q = {({ax2 +bx+ c = 0}, /0, /0)}.

Steps 4 and 5 in Algorithm 2.2.21 (ProcessInitial) insert two triples into Q whose
solution sets form a partition of the solution set of the initial triple:

Q = {({a = 0, ax2 +bx+ c = 0}, /0, /0), ({a 
= 0}, {ax2 +bx+ c = 0}, /0)}.

The first triple in this enumeration is dealt with by Algorithm 2.2.21, which moves
the equation a = 0 to the second component. We omit both the inequation 1 
= 0 and
the inconsistent algebraic system containing the equation 1 = 0, which arise from
the splitting in steps 4 and 5. Similarly, the inequation in the second triple is moved
to the second component, and we omit inequations with constant left hand sides and
inconsistent systems here:

Q = {({ax2 +bx+ c = 0}, {a = 0}, /0), ( /0, {a 
= 0, ax2 +bx+ c = 0}, /0)}.
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The left hand side of the first equation in the first triple is replaced with bx+ c by
Algorithm 2.2.17 (Reduce), and steps 4 and 5 in Algorithm 2.2.21 split this triple
according to the vanishing or non-vanishing of the initial of the modified equa-
tion. Algorithm 2.2.23 (ProcessDiscriminant) is applied to the second triple, which
moves the inequation to the third component in step 7:

Q = {({b = 0, bx+ c = 0}, {a = 0}, /0), ({b 
= 0}, {a = 0, bx+ c = 0}, /0),

( /0, {ax2 +bx+ c = 0}, {a 
= 0})}.

The equation c = 0 in the first triple is moved to the second component and subse-
quently all three equations are moved to the third component. Similarly, all elements
of the second component of the second triple are moved to the third component in
steps 5 and 7 in Algorithm 2.2.23. These two triples give rise to the following simple
algebraic systems (cf. also the end of Ex. 2.2.12):

bx+ c = 0

b 
= 0

a = 0

c = 0

b = 0

a = 0

The equation b = 0 in the first triple is moved to the second component and a sub-
sequent reduction replaces bx+ c with c. The inequation b 6= 0 in the second triple
is moved to the second component. Steps 15 and 16 in Algorithm 2.2.30 split the
third triple and add the inequation 4ac− b2 6= 0 and the equation 4ac− b2 = 0,
respectively:

Q = {({c = 0}, {a = 0, b = 0}, /0), ( /0, {a = 0, b 6= 0, bx+ c = 0}, /0),

({4ac−b2 6= 0}, /0, {a 6= 0, ax2 +bx+ c = 0}),

({4ac−b2 = 0, 2ax+b = 0}, /0, {a 6= 0})}.

(2.34)

Algorithm 2.2.21 (ProcessInitial) splits the third triple in (2.34) according to the
vanishing or non-vanishing initial of 4ac−b2 (steps 17 and 18):

({a 6= 0}, {4ac−b2 6= 0}, {a 6= 0, ax2 +bx+ c = 0}),

({a = 0, 4ac−b2 6= 0}, /0, {a 6= 0, ax2 +bx+ c = 0}).

The equation a= 0 in the first component of the second triple is moved to the second
component and the inequation a 6= 0 from the third to the first one. A subsequent
reduction shows that this triple defines an inconsistent algebraic system.

The first triple is dealt with by applying Algorithm 2.2.27 (LCMSplit) to the pair
of inequations a 6= 0, a 6= 0. Step 15 produces the triple

( /0, {a 6= 0, 4ac−b2 6= 0}, {ax2 +bx+ c = 0}),
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We give an outline of a computation of a Thomas decomposition which is a
little bit more involved. Advantage is taken of simplifications as described in Re-
mark 2.2.33.

Example 2.2.35. Let R =�[x,y,z]. The Steiner quartic surface (cf., e.g., [Bak10,
p. 221]) is defined by the equation

x2 y2 + x2 z2 + y2 z2 − xyz = 0. (2.36)

We choose the total ordering x > y > z on the set of variables.
Algorithm 2.2.20 (AlgebraicThomasDecomposition) starts by splitting the origi-

nal algebraic system according to vanishing or non-vanishing of the initial y2 + z2.
In the former case the original equation is reduced to zyx+z4 = 0. The updated sys-
tem is split again according to vanishing or non-vanishing of the initial zy. Again,
in the former case the analogous case distinction yields, after application of Algo-
rithm 2.2.30 (SquarefreeSplit), the simple system

{z = 0, y = 0}

which yields the simple system

ax2 +bx+ c = 0

4ac−b2 6= 0

a 6= 0

after the inequations have been moved from the second to the third component by
Algorithm 2.2.23 (ProcessDiscriminant).

The fourth triple in (2.34) is split into two triples by steps 4 and 5 in Algo-
rithm 2.2.21 (ProcessInitial):

({4a 6= 0, 2ax+b = 0}, {4ac−b2 = 0}, {a 6= 0}),

({4a = 0, 4ac−b2 = 0, 2ax+b = 0}, /0, {a 6= 0}).

Again, a reduction reveals that the second triple has an empty solution set. After
another application of Algorithm 2.2.27 (LCMSplit), we obtain the remaining simple
algebraic system of the Thomas decomposition (cf. also the end of Ex. 2.2.12):

2ax+b = 0

4ac−b2 = 0

a 6= 0

(2.35)



2.2 Thomas Decomposition of Differential Systems 85

and produces only inconsistent algebraic systems otherwise. In case of the algebraic
system containing the inequation zy 
= 0, Algorithm 2.2.25 (GCDSplit) is applied
to p1 = y2 + z2 and p2 = zy. Three new algebraic systems are generated, one in
step 6 containing the equation z = 0, which is inconsistent, one in step 13 containing
z 
= 0 and z4 = 0, which is also inconsistent, and one in step 14, which after applying
Algorithms 2.2.27 (LCMSplit) and 2.2.30 (SquarefreeSplit) yields the simple system

{z 
= 0, y2 + z2 = 0, yx+ z3 = 0}.

The branch emerging from the case y2+z2 
= 0 remains to be dealt with. Application
of SquarefreeSplit to this inequation splits the algebraic system into one containing
z2 = 0 and y 
= 0 and another one containing z2 
= 0 and y2 + z2 
= 0. In the former
case (2.36) is reduced to y2 x2−zyx= 0, which simplifies to yx2−zx= 0 because of
y 
= 0. After computing the square-free part of z2, the reduced form of the simplified
equation modulo z, and the square-free part of x2, we obtain the simple system

{z = 0, y 
= 0, x = 0}.

In the latter case SquarefreeSplit is applied to z2 
= 0 and then to (2.36). This gener-
ates two new branches to which the equation or inequation with left hand side

4z2 y4 +(4z4 − z2)y2 (2.37)

is added, respectively. The first branch, where the original equation is replaced with

2(y2 + z2)x− zy = 0, (2.38)

produces two simple systems. The essential steps amount to applying Square-
freeSplit to z2 
= 0 and to the equation with left hand side (2.37). Thus, the cases
of vanishing or non-vanishing of 4z2−1 and in the latter case that of 16z4−8z2+1
are investigated. If 4z2 − 1 = 0 is imposed, then (2.37) is reduced to y4 and (2.38)
is reduced to (4y2 + 1)x− 2zy = 0. Applying GCDSplit to 4z2 − 1 = 0 and z 
= 0,
SquarefreeSplit to y4 = 0, and reduction modulo y yields the simple system

{4z2 −1 = 0, y = 0, x = 0}.

Since 4z2 − 1 divides 16z4 − 8z2 + 1, the algebraic system containing 4z2 − 1 
= 0
and 16z4−8z2+1= 0 does not contribute to the Thomas decomposition. In the case
of the algebraic system containing 4z2 −1 
= 0 and 16z4 −8z2 +1 
= 0 the equation
with left hand side (2.37) is replaced with 4y3+(4z2−1)y = 0. After application of
SquarefreeSplit to the least common multiple 16z5 −8z3 + z 
= 0 of the inequations
with leader z which have been encountered before, we obtain the simple system

{4z3 − z 
= 0, 4y3 +(4z2 −1)y = 0, 2(y2 + z2)x− zy = 0}.

The branch addressing the inequation with left hand side (2.37) yields the rest of the
Thomas decomposition. It is treated by first applying LCMSplit to this inequation
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and y2 + z2 
= 0, which essentially reveals that, in presence of the inequation z 
= 0,
the least common multiple of their left hand sides is

4z2 y6 +(8z4 − z2)y4 +(4z6 − z4)y2.

Again, due to the inequation z 
= 0, only the case of non-vanishing initial 4z2 is
relevant. Application of SquarefreeSplit to the simplified inequation

4y6 +(8z2 −1)y4 +(4z4 − z2)y2 
= 0 (2.39)

produces five algebraic systems. One of them contains 8z2 − 1 = 0 and the oth-
ers contain the corresponding inequation. Among the latter systems one contains
16z4 −4z2 +1 = 0 and the others contain the complementary condition. The equa-
tion 4z4 − z2 = 0 is imposed in exactly one of the complementary systems and the
two remaining ones incorporate the inequation with the same left hand side. One of
these two contains z4 (2z+1)2 (2z−1)2 (8z2 −1) = 0 and the other one the corre-
sponding inequation.

In the very first case (2.36) is reduced to (8y2 +1)x2 −8zyx+y2 = 0 and (2.39)
is reduced to 64y6 − y2 
= 0. After applying SquarefreeSplit to 8z2 − 1 = 0 and to
64y6 − y2 
= 0, we obtain the simple system

{8z2 −1 = 0, 64y5 − y 
= 0, (8y2 +1)x2 −8zyx+ y2 = 0}.

The algebraic system containing 16z4 − 4z2 + 1 = 0 leads after the application of
GCDSplit to this equation and the least common multiple of 8z2 −1 
= 0 and z 
= 0
and the application of SquarefreeSplit to the equation 16z4 −4z2 +1 = 0 and to the
inequation 16y6 +(32z2 −4)y4 − y2 
= 0 to the simple system

{16z4 −4z2 +1 = 0, 16y5 +4(8z2 −1)y3 − y 
= 0, (y2 + z2)x2 − zyx+ z2 y2 = 0}.

The third of the five systems mentioned previously is dealt with by first applying
LCMSplit to 8z2 − 1 
= 0 and z 
= 0. The equation 4z4 + z2 = 0 is used to reduce
(2.39) to 4y6 + (8z2 − 1)y4 
= 0. Then GCDSplit is applied to 4z4 + z2 = 0 and
8z3 − z 
= 0, which replaces the equation with 4z3 − z = 0, and the inequation is
reduced to z 
= 0. Subsequently, GCDSplit replaces the equation with 4z2 − 1 = 0
and removes z 
= 0. Then (2.36) is reduced to (4y2 + 1)x2 − 4zyx + y2 = 0 and
4y6 +(8z2 −1)y4 
= 0 to 4y6 + y4 
= 0. After application of SquarefreeSplit, we get

{4z2 −1 = 0, 4y3 + y 
= 0, (4y2 +1)x2 −4zyx+ y2 = 0}.

Finally, the inequations with leader z in the last of the five systems are combined by
a series of calls of LCMSplit resulting in the inequation

z4 (2z+1)2 (2z−1)2 (8z2 −1)(16z4 −4z2 +1) 
= 0. (2.40)

The inequation (2.39) had been replaced by SquarefreeSplit with an inequation
whose left hand side has degree five in y. After imposing the condition that its initial
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does not vanish, this inequation simplifies to 4y5 +(8z2 − 1)y3 +(4z4 − z2)y 
= 0.
The square-free part of the inequation with leader z is determined next. Then
SquarefreeSplit is applied to the inequation with leader y, distinguishing the cases
of vanishing or non-vanishing of 8z2 − 1, of 32z4 − 8z2 + 3, of 4z4 − z2, and of
z4 (2z+ 1)2 (2z− 1)2 (8z2 − 1). After further applications of GCDSplit, LCMSplit,
and SquarefreeSplit, the algebraic system containing 32z4−8z2+3 = 0 and the one
containing z4 (2z+1)2 (2z−1)2 (8z2 −1) 
= 0 each yield one simple system.

We conclude by displaying the constructed Thomas decomposition of (2.36),
listing the simple systems in order of increasing dimension of their solution sets.

(2z+1)(2z−1) = 0

y = 0

x = 0

z(2z+1)(2z−1) 
= 0

y(4y2 +4z2 −1) = 0

2(y2 + z2)x− zy = 0

z = 0

y = 0

z = 0

y 
= 0

x = 0

8z2 −1 = 0

y(8y2 +1)(8y2 −1) 
= 0

(8y2 +1)x2 −8zyx+ y2 = 0

(2z+1)(2z−1) = 0

y(4y2 +1) 
= 0

(4y2 +1)x2 −4zyx+ y2 = 0

16z4 −4z2 +1 = 0

y(16y4 +4(8z2 −1)y2 −1) 
= 0

(y2 + z2)x2 − zyx+ z2 y2 = 0

z 
= 0

y2 + z2 = 0

yx+ z3 = 0

32z4 −8z2 +3 = 0

y(32y4 +8(8z2 −1)y2 −3) 
= 0

(y2 + z2)x2 − zyx+ z2 y2 = 0

z(2z+1)(2z−1)(8z2 −1)(16z4 −4z2 +1)(32z4 −8z2 +3) 
= 0

y(4y4 +(8z2 −1)y2 + z2 (4z2 −1)) 
= 0

(y2 + z2)x2 − zyx+ z2 y2 = 0

(2.41)

The simple system (2.41) is the generic simple system for the prime ideal of R
generated by (2.36) as discussed in Subsect. 2.2.3 (cf. also Ex. 2.2.68, p. 107).

Note that some unnecessary case distinctions are avoided when using subresul-
tants. For more details about this technique, we refer to [BGL+12].
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2.2.2 Simple Differential Systems

This subsection gives a modern description of the method of J. M. Thomas of de-
composing systems of finitely many partial differential equations and inequations
into finitely many so-called simple systems. The set of solutions of the given sys-
tem is thereby partitioned into the solution sets of the simple systems, and using the
simple systems, e.g., an effective membership test for the radical differential ideal
defined by the given system is made possible. We restrict our attention to analytic
solutions on connected open subsets of �n. Before stating the definition of a sim-
ple differential system, we elaborate on certain formal manipulations of differential
polynomials, on which Thomas’ algorithm is based.

Let R := K{u1, . . . ,um} be the differential polynomial ring in u1, . . . , um with
commuting derivations ∂1, . . . , ∂n, where K is a computable differential field of
characteristic zero (with derivations ∂1|K , . . . , ∂n|K). We define the set

Δ := {∂1, . . . ,∂n}

and the (commutative) monoid Mon(Δ) consisting of the monomials in ∂1, . . . , ∂n.
For θ ∈ Mon(Δ) we denote by deg(θ) the total degree of the monomial θ . If L is a
subset of R, then 〈L〉 is defined to be the differential ideal of R generated by L.

In what follows, we fix a ranking > on K{u1, . . . ,um} (i.e., a total ordering on

Mon(Δ)u := {(uk)J | 1 ≤ k ≤ m, J ∈ (�≥0)
n } (2.42)

which respects the action of the derivations and which is a well-ordering; cf. Sub-
sect. A.3.2, p. 249, for more details). Then for every non-constant differential poly-
nomial p ∈ R−K, the leader ld(p), the initial init(p), and the discriminant disc(p)
are defined as in Definition 2.2.1 by considering p as polynomial in the finitely
many indeterminates (uk)J which occur in it, totally ordered by the ranking >. For
any subset P ⊆ R we define

ld(P) := { ld(p) | p ∈ P, p 
∈ K }.

Remark 2.2.36. For any non-constant differential polynomial p ∈ R−K and any
i∈ {1, . . . ,n}, the defining properties of a ranking imply that the leader of ∂i p equals
∂i ld(p). In fact, ∂i p is a polynomial of degree one in ∂i ld(p), i.e., every proper par-
tial derivative of a differential polynomial is quasi-linear. This observation implies
important relations among differential polynomials in terms of polynomial division,
which we discuss next.

Definition 2.2.37. Let p ∈ R−K. The separant of p is defined to be the differential
polynomial

sep(p) :=
∂ p

∂ ld(p)
,
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i.e., the formal partial derivative of p with respect to its leader. It is the coefficient
of the leader ∂i ld(p) of the derivative ∂i p for any i ∈ {1, . . . ,n}.

Remark 2.2.38. Let p1 ∈ R and p2 ∈ R−K. Proper partial derivatives of the leader
of p2 can be eliminated from p1 by applying Euclidean pseudo-division in an ap-
propriate way, using the fact that any proper derivative of p2 is quasi-linear (cf.
Rem. A.3.6, p. 250, for details). In order to avoid to deal with a partial derivative of
ld(p2) twice, these derivatives should be processed in decreasing order with respect
to the ranking. Apart from this differential reduction, which multiplies p1 by the
separant of p2 to realize the desired cancelation, Euclidean pseudo-division modulo
p2 eliminates powers of ld(p2) in p1 whose exponents are greater than or equal to

p2. In both cases, the computation is performed in such a way that no fractions of
non-constant differential polynomials are involved.

Remark 2.2.39. Using the algebraic reduction technique from the previous remark,
we apply the algebraic version of Thomas’ algorithm (cf. Rem. 2.2.11, Alg. 2.2.20)
to a finite differential system S over R, i.e., a finite set of equations and inequa-
tions whose left hand sides are elements of R and whose right hand sides are zero.
This set is viewed as an algebraic system in the finitely many indeterminates (uk)J
which occur in it. Let us consider (m-tuples of) F-valued analytic functions as can-
didates for solutions, where F is an extension field of the subfield of constants of
K. A solution of the system consists of one analytic function fk of z1, . . . , zn for
each differential indeterminate uk such that every equation and inequation of the
system is satisfied upon substitution of ∂ |J| fk

∂ zJ for (uk)J , J ∈ (�≥0)
n. Taylor expan-

sion translates the problem into algebraic equations and inequations for the Taylor
coefficients of a solution. It is therefore convenient to assume that F is algebraically
closed. The defining properties of a simple algebraic system (cf. Def. 2.2.4) ensure
that a sequence of Taylor coefficients defining a solution of the algebraic system
corresponding to S<(uk)J , i.e., the equations and inequations in S with leader smaller
than (uk)J , can be adjusted to be a sequence defining a solution of the algebraic sys-
tem corresponding to S≤(uk)J . However, differential consequences of S must also be
taken into account, which may again be equations with a smaller leader (cf. also the
discussion leading to Remark 2.1.67).

Recall that Thomas’ algorithm splits systems according to vanishing or non-
vanishing initials so that pseudo-divisions do not change the total solution set. It also
splits systems according to the possible square-free parts until every left hand side
in each system is a square-free polynomial (for every possible specialization). Let
us assume that a differential system is a simple algebraic system in the above sense.
Then the discriminant of each equation is non-zero when evaluated at any solution
of the system. Note that in the differential algebra context the discriminant is es-
sentially the resultant of the differential polynomial and its separant (cf. Def. 2.2.1).
Moreover, the initial of any partial derivative of a differential polynomial is equal to
the separant. Therefore, pseudo-division modulo partial derivatives of equations of
a system that is simple in the above sense transforms a differential polynomial into

the degree of p2 in ld(p2). This algebraic reduction multiplies p1 by the initial of
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an equivalent one. (For comments about singular solutions of a differential system,
cf. Remark 2.2.59.)

We adopt the following piece of notation from the case of algebraic systems. For
any differential system

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi,q j ∈ R,

where I and J are index sets, we denote by

S= := { pi | i ∈ I }, S 
= := {q j | j ∈ J }

the set of left hand sides of equations and inequations in S, respectively.

Given a set of differential polynomials which are the left hand sides of the equa-
tions of a simple algebraic system, the following algorithm performs differential
reductions in order to eliminate leaders which are proper partial derivatives of other
leaders in the system. This is a preparatory step for computing a cone decomposi-
tion of the multiple-closed set (with respect to the action of Mon(Δ)) generated by
the leaders, which is discussed afterwards.

Algorithm 2.2.40 (Auto-reduce for differential polynomials).

Input: L ⊂ R−K finite and a ranking > on R such that L = S= for some finite
differential system S which is simple as an algebraic system (in the finitely
many indeterminates (uk)J which occur in it, totally ordered by >)

Output: a ∈ {true, false} and L′ ⊂ R−K finite such that

〈L′ 〉 : q∞ = 〈L〉 : q∞, q := ∏
p∈L

sep(p), (2.43)

and, in case a = true, there exists no p1, p2 ∈ L′, p1 
= p2, such that we have
ld(p1) ∈ Mon(Δ)ld(p2)

Algorithm:

1: L′ ← L
2: while there exist p1, p2 ∈ L′, p1 
= p2 and θ ∈ Mon(Δ) such that we have

ld(p1) = θ ld(p2) do

3: L′ ← L′ −{p1}; v ← ld(p1)

4: r ← sep(p2) · p1 − init(p1) · vd−1 ·θ p2, where d := degv(p1)

5: if r 
= 0 then

6: return (false,L′ ∪{r})
7: end if

8: end while

9: return (true,L′)
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Remarks 2.2.41. a) Since L is the set of left hand sides of equations in a simple
algebraic system, we have L∩K = /0. For the same reason, L′ is a triangular set
with respect to the ranking > in the first round of the loop and, while r = 0,
also in later rounds. Therefore, deg(θ) > 0 holds inside the loop, and step 4
eliminates ld(p1) from p1 (cf. also Rem. A.3.6 a), p. 250). Since this process can
be understood as replacing the largest term (possibly multiplied by a polynomial
with smaller leader) with a sum of terms that are smaller with respect to >, and
since > is a well-ordering, the algorithm terminates. By Remark 2.2.39, sep(p2)
does not vanish when evaluated at any solution of the system. Hence, (2.43)
holds. Correctness of the algorithm is clear.

b) Note that, once we have r 
= 0, the equality (2.43) still holds, but further reduc-
tions as in step 4 would not be guaranteed to respect the solution set (when p2 = r
is chosen as a divisor). Therefore, L′ ∪ {r} is returned immediately in this case
with the intention that the algebraic consequences of this system are examined by
the algebraic version of Thomas’ algorithm, which also takes care of the initials
and separants of the system.

c) For efficiency reasons it is desirable to find pseudo-remainders in step 4 with least
possible leader with respect to the ranking (if not constant), because these lend
themselves to be divisors of many other polynomials of the system. Therefore,
p2 and then p1 should be chosen with least possible leaders12 in step 2.

Remark 2.2.42. We apply the combinatorics of Janet division (cf. Subsect. 2.1.1)
in the present context in order to construct a generating set (in an appropriate sense)
of all differential polynomial consequences of a finite system of polynomial partial
differential equations (ignoring for a moment necessary splittings of systems). Let
p1, . . . , ps ∈ R−K be non-constant differential polynomials. The chosen ranking on
R uniquely determines θ1, . . . , θs ∈ Mon(Δ) and k1, . . . , ks ∈ {1, . . . ,m} such that

ld(pi) = θi uki , i = 1, . . . ,s.

We interpret p1, . . . , ps as left hand sides of PDEs. Then every partial derivative
of each pi is the left hand side of a consequence of the system. Therefore, for each
k ∈ {1, . . . ,m}, the set of θ ∈ Mon(Δ) such that θ uk is the leader of an equation
that is a consequence of the system is Mon(Δ)-multiple-closed. Hence, Δ serves
as the set X of symbols referred to in Subsect. 2.1.1. We assume that a total order-
ing on Δ is chosen which is used by Algorithms 2.1.6 and 2.1.8 to construct Janet
decompositions of multiple-closed sets of monomials in Δ and their complements,
respectively. The choice of the ranking > on R and the choice of the total ordering
on Δ are independent, the former one singling out the leader of each non-constant
differential polynomial, the latter one determining Janet decompositions. The sym-
bol > will continue to refer to the ranking on R.

12 More information about the polynomials at hand should be taken into account to enhance this
basic heuristic strategy, because it turns out that an implementation is slowed down drastically
when polynomials get too large (measured in number of terms, say), so that it may be reasonable
to trade compactness against rank.
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Definition 2.2.43. Let M ⊆ Mon(Δ)u (cf. (2.42)). For k ∈ {1, . . . ,m} we define
Mk := {θ ∈ Mon(Δ) | θ uk ∈ M }.

a) We call the set M multiple-closed if M1, . . . , Mm are Mon(Δ)-multiple-closed.
A set G ⊆ Mon(Δ)u such that G1, . . . , Gm are generating sets for M1, . . . , Mm,
respectively, where

Gk := {θ ∈ Mon(Δ) | θ uk ∈ G},

is called a generating set for M. The multiple-closed set generated by G is de-
noted by

[G] := Mon(Δ)G =
m⋃

k=1

Mon(Δ)Gk uk.

b) Let M be multiple-closed. For k = 1, . . . , m, let

{(θ (k)
1 ,μ(k)

1 ), . . . ,(θ (k)
tk ,μ(k)

tk )}

be a Janet decomposition of Mk (or of Mon(Δ)−Mk, cf. Def. 2.1.11, p. 15). Then

m⋃
k=1

{(θ (k)
1 uk,μ

(k)
1 ), . . . ,(θ (k)

tk uk,μ
(k)
tk )}

is called a Janet decomposition of M (resp. of Mon(Δ)u−M). The cones of the
Janet decomposition are given by Mon(μ(k)

i )θ (k)
i uk, i = 1, . . . , tk, k = 1, . . . , m.

If the Janet decomposition is constructed from the generating set G for M, then
we call the set of generators θ (k)

i uk of the cones the Janet completion of G.

For the rest of this section, we fix a total ordering on Δ such that the Janet com-
pletion of any set G ⊆ Mon(Δ)u is uniquely defined.

Definition 2.2.44. Let T = {(p1,μ1), . . . ,(ps,μs)}, pi ∈ R−K, μi ⊆ Δ , i = 1, . . . , s.

a) The set T is said to be Janet complete if

{ ld(p1), ld(p2), . . . , ld(ps)}

equals its Janet completion and, for each i ∈ {1, . . . ,s}, μi is the set of multi-
plicative variables of the cone with generator ld(pi) in the Janet decomposition
{(ld(p1),μ1), . . . ,(ld(ps),μs)} of [ ld(p1), . . . , ld(ps) ] (cf. Def. 2.2.43).

b) An element r ∈ R is said to be Janet reducible modulo T if there exist a jet vari-
able v ∈ Mon(Δ)u and (p,μ) ∈ T such that v occurs in r and v ∈ Mon(μ) ld(p).
In this case, (p,μ) is called a Janet divisor of r. If r is not Janet reducible modulo
T , then r is also said to be Janet reduced modulo T .

The following algorithm applies differential and algebraic reductions to a given
differential polynomial in such a way that the remainder of these pseudo-reductions
is Janet reduced modulo a given Janet complete set.
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Algorithm 2.2.45 (Janet-reduce for differential polynomials).

Input: r ∈ R, T = {(p1,μ1),(p2,μ2), . . . ,(ps,μs)}, and a ranking > on R, where
T is Janet complete (with respect to >, cf. Def. 2.2.44)

Output: r′ ∈ R and an element b of the multiplicatively closed set generated by⋃s
i=1{ init(pi),sep(pi)}∪{1} such that r′ is Janet reduced modulo T , and such

that r′ = r, b = 1 if T = /0, and r′+ 〈 p1, . . . , ps 〉= b · r+ 〈 p1, . . . , ps 〉 otherwise
Algorithm:

1: r′ ← r
2: b ← 1
3: if r′ 
∈ K then

4: v ← ld(r′)
5: while r′ 
∈ K and there exist (p,μ) ∈ T and θ ∈ Mon(μ) with deg(θ) > 0

such that v = θ ld(p) do

6: r′ ← sep(p) · r′ − init(r′) · vd−1 ·θ p, where d := degv(r
′)

7: b ← sep(p) ·b
8: end while

9: while r′ 
∈ K and there exists (p,μ) ∈ T with ld(p) = v, degv(r
′) ≥ degv(p)

do

10: r′ ← init(p) · r′ − init(r′) · vd−d′ · p, where d := degv(r
′) and d′ := degv(p)

11: b ← init(p) ·b
12: end while

13: while there exists a coefficient c of r′ (as a polynomial in v) which is not
Janet reduced modulo T do

14: (r′′,b′)← Janet-reduce(c, T , >)
15: replace the coefficient b′ · c in b′ · r′ with r′′ and replace r′ with this result
16: b ← b′ ·b
17: end while

18: end if

19: return (r′,b)

The following remarks are analogous to Remarks 2.2.18 for the algebraic case.

Remarks 2.2.46. a) Algorithm 2.2.45 terminates because for the recursive calls
in step 14 each coefficient c of r′ is either constant or has a leader which is
smaller than v with respect to >, which is a well-ordering, and the proper-
ties of r′ which are achieved by steps 5–12 are retained by the recursion. The
uniqueness of the Janet divisor of a jet variable implies that the result of Algo-
rithm 2.2.45 is uniquely determined for the given input, so that remarks similar to
Remark 2.1.39 a), p. 28, can be made. However, as opposed to Algorithm 2.1.38,
the differential and the algebraic reductions are pseudo-reductions in general.
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b) Let r1, r2 ∈ R and T be as in the input of Algorithm 2.2.45, and define q to be the
product of all init(pi) and all sep(pi), i = 1, . . . , s. In general, the equality

r1 + 〈 p1, . . . , ps 〉 : q∞ = r2 + 〈 p1, . . . , ps 〉 : q∞

does not imply that the results of applying Janet-reduce to r1 and r2, respectively,
are equal. However, later on (cf. Prop. 2.2.50) it is shown that, if T is defined by
the subset S= of equations of a simple differential system S (cf. Def. 2.2.49),
then the result of applying Janet-reduce to r ∈ R is zero if and only if we have
r ∈ 〈 p1, . . . , ps 〉 : q∞. In this case, we refer to the first component r′ of the output
of Janet-reduce applied to r as the Janet normal form of r modulo T . In order to
simplify notation, we denote the result r′ of Janet-reduce applied to r, T , > by
NF(r,T,>), even if T does not have the properties mentioned above.

The polynomial q defined in part b) of the previous remarks will play an impor-
tant role in what follows.

Remark 2.2.47. The method of J. M. Thomas for treating a differential system S
applies the algebraic decomposition technique (cf. Rem. 2.2.11, Alg. 2.2.20), which
in general causes a splitting of the system. Restricting attention to one of these sim-
ple systems and assuming that this system is not split further, an ascending chain of
multiple-closed subsets of Mon(Δ)u is produced, which terminates by Lemma 2.1.2,
p. 10. The current multiple-closed set is generated by the leaders of the equations
of the differential system, from which dispensable equations have been removed by
Algorithm 2.2.40 (Auto-reduce). If the latter algorithm finds a new differential con-
sequence, Thomas’ algorithm for algebraic systems is applied first to the augmented
system, and this process is iterated until Algorithm 2.2.40 (Auto-reduce) confirms
that the leaders of the differential equations form the minimal generating set for the
multiple-closed set they generate.

Let G be the set of left hand sides of these equations. The Janet decomposition
of the multiple-closed set [ ld(G) ] is constructed as described in Subsect. 2.1.1. To
this end, Algorithm 2.1.6 (Decompose), p. 11, is applied, but in a slightly modified
way (cf. also Rem. 2.1.41, p. 28, for the corresponding adaptation of Decompose for
Janet’s algorithm). This algorithm is applied directly to G, in the sense that its run is
determined by ld(g) for g ∈ G, but the application of d ∈ Δ to ld(g) is replaced with
the application of the derivation d to g. The result {(p1,μ1), . . . ,(ps,μs)} consists
of pairs of a non-constant differential polynomial pi in R and a subset μi of Δ . The
elements of μi (of Δ − μi) are called the (non-) admissible derivations for pi = 0.
In the differential version of Thomas’ algorithm, Decompose will be applied in this
adapted version.

Using the Janet decomposition, Thomas’ algorithm tries to find new differen-
tial consequences by applying derivations to an equation for which they are non-
admissible and computing the Janet reductions of these derivatives.

Definition 2.2.48. A Janet complete set T = {(p1,μ1), . . . ,(ps,μs)} (as in Defini-
tion 2.2.44 a)) is said to be passive, if
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NF(d pi,T,>) = 0 for all d ∈ μi = Δ −μi, i = 1, . . . ,s

(where we recall that NF(r,T,>) is the result of Algorithm 2.2.45 (Janet-reduce)
applied to r, T , >). A system of partial differential equations { p1 = 0, . . . , ps = 0},
where pi ∈ R − K, i = 1, . . . , s, is said to be passive if the Janet completion of
{ p1, . . . , ps } (using the fixed ranking on R and the fixed total ordering on Δ ) and the
corresponding sets of admissible derivations define a passive Janet complete set.

The result of Thomas’ algorithm for differential systems is a finite set of differ-
ential systems which are simple, a notion that is defined next.

Definition 2.2.49. Let a ranking > on K{u1, . . . ,um} and a total ordering on the set
Δ = {∂1, . . . ,∂n} be fixed. A system S of polynomial partial differential equations
and inequations

p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0,

where p1, . . . , ps, q1, . . . , qt ∈ R−K, s, t ∈�≥0, is said to be simple if the following
three conditions are satisfied.

a) The system S is simple as an algebraic system (in the finitely many indetermi-
nates (uk)J which occur in it, totally ordered by the ranking >).

b) The system of partial differential equations { p1 = 0, . . . , ps = 0} is passive.
c) The left hand sides of the inequations q1 
= 0, . . . , qt 
= 0 are Janet reduced mod-

ulo the left hand sides of the passive system { p1 = 0, . . . , ps = 0}.

Janet division associates (according to the chosen ordering of Δ ) with each equation
pi = 0 a set μi ⊆ Δ of admissible derivations in the sense that the monomials in
the derivations in μi are those elements of Mon(Δ) which are potentially applied
to pi for Janet reduction of some differential polynomial. The complement μi of μi
in Δ consists of the non-admissible derivations for pi = 0. We refer to θ pi, where
θ ∈ Mon(μi), as an admissible derivative of pi.

The next proposition gives a description in terms of a radical differential ideal
of all differential equations that are consequences of a simple differential system.
Janet reduction modulo the simple differential system decides membership of a dif-
ferential polynomial to the corresponding radical differential ideal. The statements
are analogous to Proposition 2.2.7 in the algebraic case, which is used in the proof.

Proposition 2.2.50. Let a simple differential system S over R be given by

p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0.

Let E := 〈P〉 be the differential ideal of R generated by P := { p1, . . . , ps } and define
the product q of the initials and separants of all elements of P. Then

E : q∞ := { p ∈ R | qr · p ∈ E for some r ∈ �≥0 }

is a radical differential ideal. A differential polynomial p ∈ R is an element of E : q∞

if and only if the Janet normal form of p modulo p1, . . . , ps is zero.
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Remark 2.2.51. Similarly to the algebraic case (cf. Rem. 2.2.8, p. 62), the assertion
of Proposition 2.2.50 does not depend on the inequations q1 
= 0, . . . , qt 
= 0 because
it describes the radical differential ideal of all differential polynomials in R vanish-
ing on the analytic solutions of the given simple differential system, which is not
influenced by inequations (cf. also p. 98).

Proof (of Proposition 2.2.50). By definition of the saturation E : q∞, every element
p∈R for which Algorithm 2.2.45 (Janet-reduce) yields pseudo-remainder zero is an
element of E : q∞. Conversely, let p ∈ E : q∞ be arbitrary. Then there exist r ∈ �≥0,
k1, . . . , ks ∈�≥0, and ci, j ∈ R−{0}, θi, j ∈ Mon(Δ), j = 1, . . . , ki, i = 1, . . . , s, such
that

qr · p =
s

∑
i=1

(
ki

∑
j=1

ci, j θi, j

)
pi. (2.44)

Our aim is to replace each term ci, j θi, j pi on the right hand side for which θi, j is di-
visible by a derivation that is non-admissible for pi = 0, with a suitable linear com-
bination of derivatives of p1, . . . , ps not involving any non-admissible derivations
(cf. also Rem. 2.1.41, p. 28). Passivity of { p1 = 0, . . . , ps = 0} (cf. Def. 2.2.49 b))
guarantees that Janet reduction (Alg. 2.2.45) computes such a linear combination
if θi, j involves only one non-admissible derivation. This computation is a pseudo-
reduction in general, so that substitution of the term in question may require mul-
tiplying equation (2.44) by a suitable power of q first. Iterating this substitution
process and dealing with terms as above in decreasing order with respect to the
ranking constructs a representation as in (2.44), possibly with larger r, in which no
θi, j is divisible by any derivation that is non-admissible for pi = 0. This shows that
for every non-zero element p of E : q∞ there exists a Janet divisor of ld(p) in the
passive set defined by p1 = 0, . . . , ps = 0. Consequently, the last part of the asser-
tion holds. (Moreover, the uniqueness of the Janet divisor of a jet variable implies
the uniqueness of the representation of qr · p as in (2.44) with admissible derivations
only and further conditions on ci, j (for fixed r).)

In order to prove that E : q∞ is a radical differential ideal, let us first define,
for any polynomial algebra K[V ] ⊂ R, where V is a finite subset of Mon(Δ)u such
that S= ⊂ K[V ] and S 
= ⊂ K[V ], the (non-differential) ideal IV of K[V ] which is
generated by p1, . . . , ps. Since S is simple as an algebraic system (cf. Def. 2.2.49
a)), Proposition 2.2.7, p. 62, implies that IV : q∞ is a radical ideal of K[V ].

Assume that p ∈ R satisfies pk ∈ E : q∞ for some k ∈�. Using the first part of the
proof, the Janet normal form of pk modulo p1, . . . , ps is zero. Hence, we obtain an
equation of the form (2.44), where p is replaced with pk. Let p′ be the Janet normal
form of p modulo p1, . . . , ps. Then, using the passivity again, no proper derivative
of any ld(pi) occurs in p′. We raise the equation

qr′ · p = p′+
s

∑
i=1

⎛⎝ k′i
∑
j=1

c′i, j θ ′
i, j

⎞⎠ pi, (2.45)
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which is constructed by Janet reduction, to the k-th power. After arranging for the
left hand sides of this power and of the equation for pk to be equal by multiplying
by a suitable power of q, the difference of the right hand sides expresses ql · (p′)k

for some l ∈ �≥0 as an R-linear combination of p1, . . . , ps because the proper ad-
missible derivatives of the ld(pi) and hence the proper admissible derivatives of the
pi cancel. By defining the polynomial algebra K[V ] appropriately (such that K[V ]
contains all relevant jet variables), we conclude that we have ql · (p′)k ∈ IV , thus
(p′)k ∈ IV : q∞. It follows that p′ ∈ IV : q∞ ⊆ E : q∞, and therefore, p ∈ E : q∞. ��

In order to define a Thomas decomposition for differential systems, we first need
to discuss the notion of solution of a differential system.

Recall from Definition 2.2.2 that the set SolK(S) of solutions of a given algebraic
system S is the set of tuples in Kn which satisfy the equations and inequations of S.
Correspondingly, we are going to define now the set of analytic solutions SolΩ (S)
on a certain subset Ω of �n of a differential system S.

From now on we focus on differential equations with (complex) analytic or mero-
morphic coefficients and we will consider analytic solutions. Let Ω be an open and
connected subset of �n with coordinates z1, . . . , zn and K the field of meromorphic
functions on Ω . The differential polynomial ring R := K{u1, . . . ,um} is defined with
meromorphic coefficients and with commuting derivations ∂1, . . . , ∂n extending par-
tial differentiation with respect to z1, . . . , zn on K. Let a ranking > on R be fixed.
We assume that input to the algorithms is provided in such a way that the arithmetic
operations can be carried out effectively when computing with coefficients in K, that
equality of such coefficients can be decided, etc.

Given a differential system, an appropriate choice of the set Ω may often be dif-
ficult to make before the algebraic and differential consequences of the system have
been analyzed. The latter task is achieved by the methods discussed in this section.
The defining properties of a simple differential system imply that each PDE of such
a system can locally be solved for the highest derivative of some uk. Therefore, an-
alytic solutions exist in some open neighborhood of any point that is sufficiently
generic. (It is sufficient to exclude those points which are poles of meromorphic
functions occurring in the given PDEs and those which are zeros of meromorphic
functions f for which the resolution process uses division by f , cf. also Rem. 2.1.70,
p. 53, for the linear case.) Usually, we assume that Ω is chosen in such a way that
the given system has analytic solutions on Ω .

The following example shows that a prior choice of Ω may in general exclude
certain solutions (depending also on initial or boundary conditions).

Example 2.2.52. The analytic solutions of the ordinary differential equation (ODE)
u′+ u2 = 0 for an unknown function u of z are uniquely determined by the choice
of u(z0) for any z0 ∈ �. Let us choose z0 = 0. For u(0) = 0 the solution is iden-
tically zero. Given u(0) = 1

c with c ∈ �−{0}, the solution u(z) = 1
z+c is analytic

in an open neighborhood of any point in �−{−c} and has a pole at z = −c. The
open neighborhood and Ω have to avoid the point −c. Alternatively, one may allow
meromorphic solutions.
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Definition 2.2.53. Let Ω ⊆ �n be open and connected, K the differential field of
meromorphic functions on Ω , and R := K{u1, . . . ,um}. Let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

where I and J are index sets. We define the set of (complex analytic) solutions (on
Ω ) or differential variety13 of S (defined on Ω ) by

SolΩ (S) := { f = ( f1, . . . , fm) | fk : Ω →� analytic, k = 1, . . . ,m,

pi( f ) = 0, q j( f ) 
= 0, i ∈ I, j ∈ J },

where pi( f ) and q j( f ) are obtained from pi and q j, respectively, by substituting fk
for uk and the partial derivatives of fk for the corresponding jet variables in uk. For
any set V of m-tuples of analytic functions Ω →� the set

IR(V ) := { p ∈ R | p(v) = 0 for all v ∈V }

is called the vanishing ideal of V in R.

Remark 2.2.54. Usually, we assume that I and J are finite index sets. By the Basis
Theorem of Ritt-Raudenbush (cf., e.g., Thm. A.3.22, p. 256, or [Kol73, Sect. III.4]),
every system of polynomial PDEs is equivalent to a finite one, which shows that the
assumption on I is without loss of generality. However, similarly to the algebraic
case (cf. Rem. 2.2.3), in general, an infinite set of inequations cannot be reduced to
a finite set of inequations with the same solution set. (If F is a differentially closed
differential field (cf. [Kol99, pp. 580–583]), then the subsets of Fm which are sets
of solutions of systems S of polynomial differential equations defined over F , i.e.,
J = /0, are the closed sets of the Kolchin topology on Fm.)

Definition 2.2.55. Let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

be a system of partial differential equations and inequations, where I and J are index
sets and J is finite. A Thomas decomposition of S or of SolΩ (S) is a finite collection
of simple differential systems S1, . . . , Sk such that

SolΩ (S) = SolΩ (S1) � . . . � SolΩ (Sk)

is a partition of SolΩ (S).

The following algorithm constructs a Thomas decomposition of a given finite
differential system S in finitely many steps. Note that we give a succinct presentation
of such an algorithm and ignore efficiency issues. For other variants and details

13 The term differential variety is used here mainly in contrast to the term variety in Definition 2.2.2
and should not be confused with the solution set of a differential system in an infinite jet space,
which is also referred to as a diffiety, cf., e.g., [Vin84].
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about the latter point we refer to [Ger08], [Ger09], [BGL+10], [BGL+12, Sect. 3].
Some remarks about implementations are also given in Subsect. 2.2.6.

Similarly to the algebraic case, a Thomas decomposition of a differential system
is by no means uniquely determined. Its algorithmic construction may be enhanced
by using factorization of polynomials (cf. also Remark 2.2.11). Since this possibility
depends on the properties of the differential field K, we will not use factorization.

Algorithm 2.2.56 (DifferentialThomasDecomposition).

Input: A finite differential system S over R, a ranking > on R, and a total ordering
on Δ (used by Decompose)

Output: A Thomas decomposition of S
Algorithm:

1: Q ←{S}; T ← /0
2: repeat

3: choose L ∈ Q and remove L from Q
4: compute a Thomas decomposition {A1, . . . ,Ar } of L considered as an alge-

braic system (cf. Rem. 2.2.11 or Alg. 2.2.20, and Rem. 2.2.39)
5: for i = 1, . . . , r do

6: if Ai = /0 then // no equation and no inequation
7: return { /0}
8: else

9: (a,G)← Auto-reduce(A=
i , >) // cf. Alg. 2.2.40

10: if a = true then

11: J ← Decompose(G) // cf. Rem. 2.2.47
12: P ←{NF(d p,J,>) | (p,μ) ∈ J, d ∈ μ } // cf. Alg. 2.2.45
13: if P ⊆ {0} then // J is passive
14: replace each inequation q 
= 0 in Ai with NF(q,J,>) 
= 0
15: if 0 
∈ A 
=

i then

16: insert { p = 0 | (p,μ) ∈ J }∪{q 
= 0 | q ∈ A
=
i } into T

17: end if

18: else if P∩K ⊆ {0} then

19: insert { p = 0 | (p,μ) ∈ J }∪{ p = 0 | p ∈ P−{0}}∪
{q 
= 0 | q ∈ A 
=

i } into Q
20: end if

21: else

22: insert { p = 0 | p ∈ G}∪{q 
= 0 | q ∈ A 
=
i } into Q

23: end if

24: end if

25: end for

26: until Q = /0
27: return T
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Theorem 2.2.57. a) Algorithm 2.2.56 terminates and is correct.
b) Let

S = { p1 = 0, . . . , ps = 0, q1 
= 0, . . . , qt 
= 0}
be a simple system in the result T of Algorithm 2.2.56. Define q to be the product
of all init(pi) and all sep(pi), i = 1, . . . , s. Moreover, let I := 〈 p1, . . . , ps 〉 : q∞,
and let μ1, . . . , μs ⊆ Δ be the sets of admissible derivations of p1, . . . , ps, respec-
tively, and J := {(pi,μi) | i = 1, . . . ,s}. Then we have

s⊎
i=1

Mon(μi) ld(pi) = ld(I).

For any r ∈ R we have

r ∈ I ⇐⇒ NF(r,J,>) = 0.

c) Let C1, . . . , Ck be the cones of a Janet decomposition of the complement of
[ ld(p1), . . . , ld(ps) ] in Mon(Δ)u. Then the cosets in R/I with representatives in
the disjoint union C1 � . . .�Ck form a maximal subset of R/I that is algebraically
independent over K.

Proof. In order to prove that DifferentialThomasDecomposition terminates, it is suf-
ficient to show that we have Q = /0 after finitely many steps. Apart from step 1, new
elements are inserted into Q in steps 19 and 22.

In case of step 22, differential reduction in Algorithm 2.2.40 (Auto-reduce) com-
puted in step 9 a non-zero differential polynomial, which is the left hand side of an
equation in the new system that is inserted into Q. The algebraic version of Thomas’
algorithm in step 4 will apply algebraic reductions to this system and possibly split
this system. Hence, steps 4 and 9 apply algebraic and differential reductions alter-
nately until the result G is simple as an algebraic system and for every pair (p, p′)
of distinct elements of G, ld(p) is reduced with respect to p′. Similarly to the auto-
reduction method without case distinctions (cf. Rem. A.3.6 c), p. 250), each system
constructed in step 4 will, after finitely many steps, either be recognized as inconsis-
tent or be turned into a system G having the above property. During this process, the
differentiation order of leaders in such a system is bounded by the maximum of the
differentiation orders of the leaders in the system from which the algebraic version
of Thomas’ algorithm started. The generation of systems is therefore governed by
the algebraic splitting method for a polynomial ring in finitely many variables.

In case of step 19, Algorithm 2.2.45 (Janet-reduce) returned a non-constant dif-
ferential polynomial p′ in step 12 which is Janet reduced modulo J. Therefore, we
have either ld(p′) 
∈ [ ld(G) ], or ld(p′) equals ld(p) for some (p,μ) ∈ J and the de-
gree of p′ in ld(p′) is smaller than the corresponding one of p. In the former case,
the new system N inserted into Q in step 19 will define a multiple-closed set which
properly contains [ ld(G) ]. In the latter case, we distinguish two kinds of systems
that are derived from N by the algebraic version of Thomas’ algorithm in step 4
(e.g., by steps 4 and 5 of Algorithm 2.2.21). A system of the first kind contains
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an equation (e.g., p′ = 0) with leader ld(p) = ld(p′), different from p = 0, whose
initial is guaranteed not to vanish, so that a pseudo-reduction of p is performed.
Then the degree of p in ld(p) decreases. In a system of the second kind such a
pseudo-reduction of p (as a polynomial in ld(p) = ld(p′)) is prevented as a result of
equating init(p′) with zero. If init(p′) is constant, such a system will be discarded.
Otherwise, it contains a new equation with leader ld(init(p′)). Since init(p′) is Janet
reduced modulo J, a pseudo-reduction of init(p′) could at most be performed mod-
ulo equations originating from other elements of P. We may assume that p′ ∈ P is
chosen such that no pseudo-reduction of init(p′) is possible. Again, we have either
ld(init(p′)) 
∈ [ ld(G) ], or a pseudo-reduction of the left hand side of an equation
with leader ld(init(p′)) is performed, or the initial of the new equation is equated
with zero. By iterating this argument, we conclude that either we obtain an equation
whose leader is not contained in [ ld(G) ] or for some generator v of [ ld(G) ] the min-
imal degree of v as a leader in equations in G is decreased. Since the latter situation
can occur only finitely many times, in any case the multiple-closed set [ ld(G) ] will
be enlarged after finitely many steps.

Hence, termination follows from the termination of the algebraic version of
Thomas’ algorithm and Dickson’s Lemma (cf. Lemma 2.1.2, p. 10).

We are going to show the correctness of DifferentialThomasDecomposition. The
algebraic version of Thomas’ algorithm only performs algebraic pseudo-reductions
and splittings while maintaining the total solution set. Hence, the solution sets of
the systems A1, . . . , Ar in step 4 form a partition of the solution set of L.

In step 9, Algorithm 2.2.40 (Auto-reduce) applies differential reductions to equa-
tions in a system Ai which is simple as an algebraic system. An equation is replaced
with its pseudo-remainder if the latter is non-zero, and Algorithm 2.2.40 stops after
the first proper replacement. From the discussion in Remark 2.2.39 we conclude
that this transformation does not change the solution set of Ai because the separant
which is used for pseudo-division does not vanish on the solution set.

The set J constructed in step 11 is Janet complete. Therefore, NF(d p,J,>) in
step 12 and NF(q,J,>) in step 14 are well-defined and are realized by applying Al-
gorithm 2.2.45 (Janet-reduce). Step 12 computes left hand sides of equations that
are consequences of Ai. If some of them are non-zero constants, then these con-
sequences reveal an inconsistent differential system, which is therefore discarded.
If some non-constant consequences are obtained and all constant consequences are
zero, then the former ones are inserted into the system to be processed again in a
later round. If P ⊆ {0} holds in step 13, then J is a passive set. Then conditions a)
and b) of Definition 2.2.49 are satisfied, and after step 14 condition c) is also ensured
if the system is not inconsistent. Thus, every differential system which is inserted
into T in step 16 is simple.

In every step of DifferentialThomasDecomposition the solution sets of the dif-
ferential systems in Q and in T form a partition of the solution set of S. Hence, the
result T is a Thomas decomposition of S.

The statements in parts b) and c) of the theorem are immediate consequences of
Proposition 2.2.50. ��



102 2 Formal Methods for PDE Systems

Remark 2.2.58. The result of Algorithm 2.2.56 is empty if and only if the input
system S is inconsistent. If it equals { /0} (i.e., a set consisting of one empty system),
then the input system admits all analytic functions on Ω as solutions.

Remark 2.2.59. The notion of a singular solution of a differential equation dates
back to the 18th century and research by, e.g., A. C. Clairaut, J.-L. Lagrange, P.-S.
Laplace, and S. D. Poisson (cf., e.g., [Inc56, footnote on p. 87], [Kol99, Sect. 1.8]).
The intuitive idea of this concept is that the solutions of a differential equation form
a number of families, each of which is parametrized by a number of constants (or
functions in case of underdetermined systems) which can be chosen arbitrarily. If
one family is identified as constituting the general solution (obtained by a generic
choice of the constants or functions), then all solutions which do not belong to this
family are said to be singular. A more rigorous definition was given by J.-G. Dar-
boux [Dar73, p. 158]: A solution of a differential equation is said to be singular if it
is also a solution of the separant of the equation.

Thomas’ algorithm splits systems according to vanishing or non-vanishing ini-
tials of equations and their partial derivatives, the initials of the latter being the sep-
arants of the equations (cf. Rem. 2.2.39). A Thomas decomposition of a differential
system therefore allows to detect singular solutions of the system. More generally,
the problem of determining how singular solutions are distributed among irreducible
components of a differential variety was a major motivation for J. F. Ritt to develop
differential algebra. For more details and contributions to this problem we refer to
[Ham93], [Rit36], [Hub97, Hub99], [Kol99, Sect. 1.8], and the references therein.

Example 2.2.60. In order to investigate the singular solutions of the ordinary differ-
ential equation (with non-constant coefficients)

dU
dt

2
−4 t

dU
dt

−4U +8 t2 = 0,

we are going to compute a Thomas decomposition of this system. We denote by
R the differential polynomial ring �(t){u} in one differential indeterminate u with
derivation ∂t , which restricts to formal differentiation with respect to t on�(t). Let
the differential polynomial corresponding to the left hand side be

p := u2
t −4 t ut −4u+8 t2.

No case distinction is necessary for the initial. The separant of p equals 2ut − 4 t.
Euclidean division applied to p and sep(p) (as polynomials in ut ) yields u − t2,
which is, up to a constant factor, the discriminant of p as a polynomial in ut . We
obtain the following Thomas decomposition (where the set of admissible derivations
is also recorded for each equation):

ut
2 −4 t ut −4u+8 t2 = 0 { ∂t }

u− t2 
= 0 u− t2 = 0 { ∂t }
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The analytic solutions of the first system are given by U(t) = 2((t+c)2+c2), where
c is an arbitrary (real or complex) constant. The solution U(t) = t2 of the second
system is an essential singular solution. Considering all real analytic solutions at
the same time, the singular solution is distinguished as an envelope of the general
solution.

Fig. 2.3 A visualization of the essential singular solution in Example 2.2.60 as an envelope

Example 2.2.61. We are going to compute a Thomas decomposition of

∂U
∂ t

−6U
∂U
∂x

+
∂ 3U
∂x3 = 0, U

∂ 2U
∂ t∂x

− ∂U
∂ t

∂U
∂x

= 0,

the differential system given by the Korteweg-de Vries equation (cf., e.g., [BC80])
and another partial differential equation for U(t,x) to be discussed in Sect. 3.3 (cf.
also Ex. 3.3.49, p. 228).

Let R := K{u} be the differential polynomial ring in one differential indetermi-
nate u with commuting derivations ∂t , ∂x over a differential field K of characteristic
zero (with derivations ∂t |K , ∂x|K). The jet variable u(i, j), i, j ∈ �≥0, will also be
denoted by uti,x j . We set

p := ut −6uux +ux,x,x, q := uut,x −ut ux

and choose the degree-reverse lexicographical ranking on R satisfying ut > ux (cf.
Ex. A.3.3, p. 250).

We have ld(p) = ux,x,x, ld(q) = ut,x, init(p) = 1, and init(q) = u. Hence,

{ p = 0, q = 0}

is a triangular set. We replace this system with two systems

{ p = 0, q = 0, u = 0}, { p = 0, q = 0, u 
= 0}

according to vanishing or non-vanishing initial of q. (No case distinctions are nec-
essary for the separants.) The first system is equivalent to the simple differential
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system
S1 := {u = 0}.

The second system is simple as an algebraic system (cf. Def. 2.2.49 a)), but
not passive. We define Δ := {∂t ,∂x} and give ∂t priority over ∂x for Janet divi-
sion (cf. Alg. 2.1.6 and Def. 2.2.43). Then the admissible derivations for p and
q are given by {∂x} and {∂t ,∂x}, respectively. Janet reduction of ∂t p modulo
{(p,{∂x}), (q,{∂t ,∂x})} yields the following non-zero pseudo-remainder:

r := u(u pt −qx,x)−uut p+ux qx = u2 ut,t −u(6u2 −ux,x)ut,x −ut ux ux,x −uu2
t .

The augmented system { p = 0, q = 0, r = 0, u 
= 0} is simple as an algebraic
system, and the passivity check only involves Janet reduction of ∂t q modulo
{(p,{∂x}), (q,{∂x}), (r,{∂t ,∂x})}. The result is:

s := u((uqt − rx)− (6u2 −ux,x)qx +q p)+3ux r+3(2u2 ux −uut −ux ux,x)q

= 6u3 ut ux,x.

We have init(s) = 6u3 ut . Now, init(s) 
= 0 implies ux,x = 0, which results in the
simple system

S2 := {ut −6uux = 0, ux,x = 0, u 
= 0}.
On the other hand, init(s) = 0 implies ut = 0, hence the simple system

S3 := {ut = 0, ux,x,x −6uux = 0, ux,x 
= 0, u 
= 0}.

u = 0 {∂t , ∂x}

ut −6uux = 0 {∂t , ∂x}

ux,x = 0 { ∗ , ∂x}

u 
= 0

ut = 0 {∂t , ∂x}

ux,x,x −6uux = 0 { ∗ , ∂x}

ux,x 
= 0

u 
= 0

For an explicit integration of these simple systems, cf. Example 3.3.49, p. 228.

2.2.3 The Generic Simple System for a Prime Ideal

In this subsection we prove that in every Thomas decomposition of a prime (alge-
braic or differential) ideal there exists a unique simple system that is in a precise
sense the most generic one in the decomposition. Moreover, a corollary to Theo-
rem 2.2.57 of the previous subsection is obtained, which shows how membership to
a radical (algebraic or differential) ideal can be decided using a Thomas decompo-
sition.
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The statements below will be at the same time about algebraic and differential
systems using the following notation.

For the rest of this section, R denotes either the commutative polynomial algebra
K[x1, . . . ,xn] over a field K of characteristic zero or the differential polynomial ring
K{u1, . . . ,um}, where K is the field of meromorphic functions on a connected open
subset Ω of �n, as in the previous subsection. If S is an algebraic or differential
system, we will write Sol(S) referring to either SolK(S) (cf. Def. 2.2.2) or SolΩ (S)
(cf. Def. 2.2.53). We will also use 〈P〉 to denote the ideal and the differential ideal,
respectively, generated by the set P depending on the context, and IR is a notation
for the vanishing ideal in both cases.

Recall that for both algebraic and differential systems

S = { p1 = 0, . . . , ps = 0}

of equations over R a theorem holds, called Nullstellensatz, which states that, if
p ∈ R vanishes on Sol(S), then some power of p is an element of E := 〈 p1, . . . , ps 〉,
i.e., we have

IR(Sol(S)) =
√

E. (2.46)

(The theorem is due to D. Hilbert in the algebraic case and to J. F. Ritt and H. W.
Raudenbush in the differential case; cf. also Thm. A.3.24, p. 258). In particular, if
〈 p1, . . . , ps 〉 is a radical ideal, then IR(Sol(S)) = 〈 p1, . . . , ps 〉 holds.

The following lemma generalizes (2.46) and will be essential in what follows.

Lemma 2.2.62. Let

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

be a (not necessarily simple) system, where I and J are index sets and J is finite.
Define E := 〈 pi | i ∈ I 〉 and q := ∏ j∈J q j. Then we have

IR(Sol(S)) =
√

E : q∞.

Proof. Let f ∈ R. If qr f s ∈ E for some r ∈ �≥0 and s ∈�, then f (x)s = 0 for all
x ∈ Sol(S) because q(x)r 
= 0 for all x ∈ Sol(S). Since Sol(S) is a subset of an inte-
gral domain, we have f (x) = 0 for all x ∈ Sol(S), i.e., f ∈ IR(Sol(S)). Conversely,
f (x) = 0 for all x ∈ Sol(S) implies (q f )(x) = 0 for all x ∈ Sol({ pi = 0 | i ∈ I }).
By the Nullstellensatz, there exists s ∈ � such that (q f )s ∈ E. It follows that
f ∈√

E : q∞. ��
For any set V of elements of Kn or of m-tuples of analytic functions on Ω , we

define
V := Sol({ p = 0 | p ∈ IR(V )}),

which is a shorthand notation used in the next corollary and in what follows, and
which is reminiscent of the closure with respect to the Zariski topology. (We expect
no confusion with the notation K for an algebraic closure of K.)
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Corollary 2.2.63. Let S be a (not necessarily simple) system as in Lemma 2.2.62,
E := 〈 pi | i ∈ I 〉, and q := ∏ j∈J q j. Then we have

Sol(S)−Sol(S) = Sol({ p = 0 | p ∈
√

E : q∞ }∪{q = 0}).

In particular, Sol(S)−Sol(S) is closed (i.e., equals its closure).

Proof. Since on the one hand all polynomials in
√

E : q∞ vanish on Sol(S) and on
the other hand pi ∈

√
E : q∞ for all i ∈ I, we have

Sol(S) = Sol({ p = 0 | p ∈
√

E : q∞ }∪{q 
= 0}).

A reformulation of the statement of the previous lemma is:

Sol(S) = Sol({ p = 0 | p ∈
√

E : q∞ }).

Now an elementary observation shows that the claim holds. ��
A central result of this subsection is the corollary to the next proposition. The

proof of the corollary uses the following lemma.

Lemma 2.2.64. Let S and S′ be systems as in Lemma 2.2.62 satisfying Sol(S′) 
= /0,
Sol(S)∩Sol(S′) = /0, and Sol(S)⊆ Sol(S′). Then we have Sol(S) 
= Sol(S′).

Proof. It follows from Sol(S)∩Sol(S′) = /0 and

Sol(S)⊆ Sol(S′) = Sol(S′) � (Sol(S′)−Sol(S′))

that Sol(S) is a subset of Sol(S′)−Sol(S′). By Corollary 2.2.63, Sol(S′)−Sol(S′) is
closed. Since it is a proper subset of Sol(S′), the claim follows. ��
Proposition 2.2.65. Suppose that p1, . . . , ps ∈ R generate a prime (algebraic or
differential) ideal of R and that

V := Sol({ p1 = 0, . . . , ps = 0})

is the union of finitely many non-empty sets V1, . . . , Vk of the form Vi = Sol(Si) for
(not necessarily simple) systems Si of equations and inequations over R. Then we
have V =Vi for some i ∈ {1, . . . ,k}.

Proof. By the Nullstellensatz and since p1, . . . , ps generate a radical ideal, we have

〈 p1, . . . , ps 〉= IR(V ) = IR(V1)∩ . . .∩IR(Vk).

Each vanishing ideal IR(Vj) has a representation as intersection of finitely many
prime ideals, all of which clearly contain IR(V ). The uniqueness of the mini-
mal representation of a radical ideal in such a form implies that the prime ideal
〈 p1, . . . , ps 〉 occurs in the minimal representation of at least one IR(Vi), and we
have IR(V ) = IR(Vi). It follows that V =Vi. ��
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Corollary 2.2.66. Suppose that p1, . . . , ps ∈ R generate a prime ideal of R and let
S1, . . . , Sk be a Thomas decomposition of V := Sol({ p1 = 0, . . . , ps = 0}). Then
there exists a unique i ∈ {1, . . . ,k} such that Sol(Si) =V . Moreover, the prime ideal
IR(Sol(Si)) = 〈 p1, . . . , ps 〉 is a proper subset of IR(Sol(S j)) for every j 
= i.

Proof. The existence of i follows from Proposition 2.2.65 applied to Vj := Sol(S j),
j = 1, . . . , k. On the other hand, let j ∈ {1, . . . ,k}, j 
= i. Then we have Sol(Si) 
= /0,
Sol(S j) 
= /0, and Sol(Si)∩Sol(S j) = /0. By Lemma 2.2.64, equality of Sol(Si) and
Sol(S j) is impossible. This proves the uniqueness.

We have IR(Sol(S j)) = IR(Sol(S j)) for all j ∈ {1, . . . ,k} and furthermore
IR(Sol(Si)) = IR(V ). Since V is the union of Sol(S1), . . . , Sol(Sk), we have

IR(Sol(Si)) = IR(Sol(S1))∩ . . .∩IR(Sol(Sk)).

Therefore, IR(Sol(Si)) is properly contained in each IR(Sol(S j)), j 
= i. ��
Definition 2.2.67. Let S1, . . . , Sk be a Thomas decomposition of a system of equa-
tions whose left hand sides generate a prime (algebraic or differential) ideal of R.
The simple system Si in Corollary 2.2.66 is called the generic simple system of the
given Thomas decomposition14.

Example 2.2.68. A Thomas decomposition of the Steiner quartic surface defined by

x2 y2 + x2 z2 + y2 z2 − xyz = 0 (2.47)

is constructed in Example 2.2.35, p. 84. This surface is an irreducible variety, i.e.,
the ideal of�[x,y,z] generated by the left hand side of (2.47) is prime. The generic
simple system of the Thomas decomposition in Example 2.2.35 is system (2.41)
because it is the only one whose solution set has Zariski closure of dimension two.

The generic simple system of a Thomas decomposition can be determined if the
pairwise inclusion relations among the radical ideals IR(Sol(Si)) = 〈S=i 〉 : q∞

i can
be checked effectively, where qi is the product of the initials (and separants in the
differential case) of all elements of S=i . Corollary 2.2.71 below solves this problem.

As before, we deal at the same time with algebraic and differential systems S,
implying that pseudo-reductions modulo S= are understood to be pseudo-reductions
modulo the elements of S= in the algebraic case and pseudo-reductions modulo the
elements of S= and their derivatives in the differential case.

Proposition 2.2.69. Let S1 and S2 be simple systems over R. For i = 1, 2, we define
Ii := 〈S=i 〉 : q∞

i , where qi is the product of the initials (and separants in the differ-
ential case) of all elements of S=i . If I1 is a prime ideal and if we have I1 ⊆ I2 and
ld(I1) = ld(I2), then the equality I1 = I2 holds.

14 The notion of generic simple system should not be confused with the notion of general compo-
nent of an irreducible differential polynomial p (cf. [Kol73, Sect. IV.6] or [Rit50, p. 167]), which
is a certain prime differential ideal not containing the separant of p.
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Proof. First of all, we have the equality I1 : q∞
2 = I1. In fact, if qk

2 · p ∈ I1 for some
k > 0 and p ∈ R− I1, then we have q2 ∈ I1 because I1 is a prime ideal; thus, q2
vanishes on Sol(I1) and hence on Sol(I2), which is a contradiction to the fact that
q2 
∈ IR(Sol(S2)) because S2 is a simple system.

In order to prove the proposition, we show that the pseudo-remainder of every
p2 ∈ S=2 modulo the equations in S1 (and, in the differential case, their consequences
obtained by applying admissible derivations) is zero. Then it follows 〈S=2 〉 ⊆ I1 (by
Thm. 2.2.57 b)) and I2 = 〈S=2 〉 : q∞

2 ⊆ I1 : q∞
2 = I1.

Let us assume that the pseudo-remainder modulo S=1 of some element of S=2 is
non-zero, and let p2 ∈ S=2 be such an element with minimal possible ld(p2).

The hypothesis ld(I1) = ld(I2) implies that there exists (an admissible derivative
of) an element of S=1 with the same leader as p2. Let us denote this algebraic pseudo-
divisor by p1 and the variable ld(p1) = ld(p2) by x. In case degx(p1) ≤ degx(p2)
algebraic pseudo-division of p2 modulo p1 is possible resulting in an element of I2
which is either zero or has leader smaller than x or has leader x and smaller degree
in x than p1. The first two cases are contradictions to the choice of p2. Hence, it is
sufficient to consider the case degx(p1)> degx(p2).

The pseudo-remainder of p1 modulo S=2 is zero because I1 ⊆ I2. Let q be the
product of the initials of (the admissible derivatives of) the elements of S=2 which are
involved in the pseudo-reduction of p1 modulo S=2 . Then we have q∈K or ld(q)< x.
There exist k ∈�≥0, c∈R, and r ∈ I2 with ld(r)< x such that qk · p1 = c · p2+r. Now
degx(p1) > degx(p2) implies ld(c) = x. By the choice of p2, the pseudo-remainder
modulo S=1 of (every admissible derivative of) every element of S=2 with leader
smaller than x is zero. Therefore, we have qk · p1 − r = c · p2 ∈ I1. The assump-
tion p2 
∈ I1 and the fact that I1 is prime imply c ∈ I1. But the pseudo-remainder of c
modulo S=1 is non-zero due to degx(c)< degx(p1), which is a contradiction. ��
Remark 2.2.70. In the differential case the pseudo-divisor p1 in the proof of the
previous proposition is actually not a proper derivative of an element of S=1 because
every partial derivative of a differential polynomial has degree one in its leader.

Corollary 2.2.71. Let S1, . . . , Sk be a Thomas decomposition of a system of equa-
tions whose left hand sides generate a prime ideal of R. Set inclusion defines a
partial order on L := { ld(I1), . . . , ld(Ik)}, where Ii := 〈S=i 〉 : q∞

i and qi is defined
to be the product of the initials (and separants in the differential case) of all ele-
ments of S=i , i = 1, . . . , k. Then L has a unique least element ld(Ii). It determines the
generic simple system Si among S1, . . . , Sk.

Proof. Let i ∈ {1, . . . ,k} be such that Si is the generic simple system of the given
Thomas decomposition. By Corollary 2.2.66, Ii is a proper subset of I j for every
j 
= i. Hence, we have ld(Ii)⊆ ld(I j) for every j 
= i. By Proposition 2.2.69, each of
these inclusions is strict. ��

In the differential case, each set ld(I j) is infinite. An effective method which
determines the generic simple system of a Thomas decomposition of a prime differ-
ential ideal will be given in Proposition 2.2.82.

We draw another important conclusion from Lemma 2.2.62.
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Proposition 2.2.72. Let a (not necessarily simple) system be given by

S = { pi = 0, q j 
= 0 | i ∈ I, j ∈ J }, pi, q j ∈ R,

where I and J are index sets and J is finite. Define E := 〈 pi | i ∈ I 〉 and q := ∏ j∈J q j.
Moreover, let S1, . . . , Sk be a Thomas decomposition of S, and for i= 1, . . . , k, define
E(i) := 〈S=i 〉 and the product q(i) of the initials (and separants in the differential
case) of all elements of S=i . Then we have√

E : q∞ = (E(1) : (q(1))∞)∩ . . .∩ (E(k) : (q(k))∞).

Proof. The Thomas decomposition defines a partition Sol(S1) � . . . � Sol(Sk) of
Sol(S). As a consequence of the Nullstellensatz and Propositions 2.2.7 and 2.2.50,
we have IR(Sol(Si)) =E(i) : (q(i))∞ for all i= 1, . . . , k. Now, Lemma 2.2.62 implies√

E : q∞ = IR(Sol(S)) = IR(Sol(S1) � . . . � Sol(Sk))

= IR(Sol(S1))∩ . . .∩IR(Sol(Sk))

= (E(1) : (q(1))∞)∩ . . .∩ (E(k) : (q(k))∞).

��
Membership to a radical (algebraic or differential) ideal can therefore be decided

by computing the pseudo-remainder modulo every simple system in a Thomas de-
composition.

Corollary 2.2.73. Let p1, . . . , ps ∈ R and let S1, . . . , Sk be a Thomas decomposition
of { p1 = 0, . . . , ps = 0} (with respect to any total ordering of the indeterminates
or any ranking on R). For r ∈ R let ri be the pseudo-remainder of r modulo (the
equations of) Si, i = 1, . . . , k. Then we have

r ∈
√

〈 p1, . . . , ps 〉 ⇐⇒ ri = 0 for all i = 1, . . . ,k.

Proof. The claim follows from Theorem 2.2.57 b) and Proposition 2.2.72. ��
Finally, the disjointness of the solution sets of the simple systems in a Thomas

decomposition implies a statement about the corresponding prime ideals which is
more general than the one given in Corollary 2.2.66.

Proposition 2.2.74. Let S1 and S2 be two different simple systems in a Thomas de-
composition. Moreover, for i= 1, 2, let IR(Sol(Si)) = Pi,1∩ . . .∩Pi,ri be the minimal
representation of the vanishing ideal as intersection of prime (differential) ideals. If
a prime (differential) ideal P of R satisfies

IR(Sol(S1))⊆ P and IR(Sol(S2))⊆ P,

then some Pi, j is properly contained in P. In particular, the sets of prime ideals
{P1,1, . . . ,P1,r1} and {P2,1, . . . ,P2,r2} are disjoint.



110 2 Formal Methods for PDE Systems

By the hypothesis of the proposition, we have V ⊆ Sol(Si) for i= 1, 2. According
to the definition of a Thomas decomposition, Sol(S1) and Sol(S2) are disjoint. Using
the notation Ci := Sol(Si)−Sol(Si), i = 1, 2, we therefore have

V ⊆ Sol(S1)∩Sol(S2)⊆C1 ∪C2

and
(V ∩C1)∪ (V ∩C2) =V.

Now, V ∩C1 and V ∩C2 are closed sets by Corollary 2.2.63 and because V is closed.
Since the vanishing ideal of the closed set V is a prime ideal, we conclude that we
have V ∩C1 =V or V ∩C2 =V . Hence, there exists i ∈ {1,2} such that

V ⊆Ci = Sol(Si)−Sol(Si).

Since Ci and Vi, j are closed, Ci ∩Vi, j is closed. Moreover, Ci ∩Vi, j is a proper subset
of Vi, j, because otherwise Vi, j ∩ Sol(Si) 
= /0 implies Ci ∩ Sol(Si) 
= /0, which is a
contradiction. Now Pi,1 ∩ . . .∩Pi,ri ⊆ P implies that there exists j ∈ {1, . . . ,ri} such
that Pi, j ⊆ P, because Pi,k and P are prime. Then V ⊆Ci∩Vi, j �Vi, j implies Pi, j � P.
The last claim of the proposition follows from the minimality of the representation
of IR(Sol(Si)), i = 1, 2. ��

2.2.4 Comparison and Complexity

Some comments about the relationship of simple systems in the sense of Thomas
and other types of triangular sets and about the complexity of computing a Thomas
decomposition are given in this subsection.

Remark 2.2.75. Conditions a) and b) of Definition 2.2.4, p. 61, of a simple alge-
braic system imply that the set S= of equations of such a system S is a consistent
triangular set, i.e., a triangular set admitting solutions (cf. Rem. 2.2.5). The radical
ideal generated by S= is a characterizable ideal, as membership to it can be decided
effectively by applying pseudo-reductions (cf. [Hub03a, Hub03b]). Moreover, the
set S= of equations of a simple system is a regular chain (cf. [ALMM99]).

In addition to these properties, the solution sets of the simple systems in a
Thomas decomposition are pairwise disjoint. In practice, achieving this requirement
often is at the cost of a more involved computation. However, this strong geometric
property may be used both in theory (cf., e.g., the previous subsection) and for con-
crete applications (e.g., for counting solutions; cf. [Ple09a] for the case of algebraic
systems).

Proof. Let us define V := Sol({ p = 0 | p ∈ P}) and Vi, j := Sol({ p = 0 | p ∈ Pi, j }),
i ∈ {1,2}, j ∈ {1, . . . ,ri}. First of all, we have Vi, j ∩ Sol(Si) 6= /0 for each j. Oth-
erwise, Sol({ p = 0 | p ∈

⋂
k 6= j Pi,k }) would be a closed set containing Sol(Si) and

contained in Sol(Si), and Pi, j would be redundant in Pi,1∩ . . .∩Pi,ri .
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Recall that the Nullstellensatz for analytic functions (cf. Thm. A.3.24, p. 258)
states that a differential polynomial q which vanishes on all analytic solutions of
a system { p1 = 0, . . . , ps = 0} of polynomial partial differential equations is an
element of the radical differential ideal I generated by p1, . . . , ps. Now by Corol-
lary 2.2.73, based on Theorem 2.2.57 b), p. 100, membership to I can be decided
using a Thomas decomposition. In order to rate the complexity of this membership
problem, we would like to know estimates for the degrees and differential orders of
differential polynomials occurring in a representation of q as element of I.

Let us assume that an upper bound is known for the maximum number of dif-
ferentiations which need to be applied to any of the pi such that some power of q
is in the algebraic ideal generated by the pi and their derivatives of bounded order
(in a polynomial ring with finitely many indeterminates). Then the (constructive)
membership problem reduces to an effective version of Hilbert’s Nullstellensatz. A
well-known result in this direction can be stated as follows (cf. [Bro87]).

Theorem 2.2.76. Let p1, . . . , ps be non-zero elements of a commutative polynomial
algebra over � in r indeterminates, d the maximum degree of p1, . . . , ps, and let
μ := min{r,s}. If q is in the radical ideal generated by p1, . . . , ps, then there exist
e ∈� and elements c1, . . . , cs of the same polynomial algebra such that

qe =
s

∑
i=1

ci pi, e≤ (μ+1)(r+2)(d+1)μ+1, deg(c j)≤ (μ+1)(r+2)(d+1)μ+2

for all j = 1, . . . , s such that c j 
= 0.

An upper bound for the number of differentiations necessary for the above reduc-
tion was obtained in [GKOS09]. We may assume that p1, . . . , ps, q are non-zero.

Theorem 2.2.77. Let d be the maximum of the degrees of p1, . . . , ps, q, and let h be
the maximum of the differential orders (of jet variables in any differential indeter-
minate) of the same polynomials. If q is an element of the radical differential ideal
generated by p1, . . . , ps, then some power of q is a linear combination of p1, . . . , ps
and their derivatives up to order at most

A(n+8,max{m,h,d}),

where A is the Ackermann function recursively defined by

A(0,m) = m+1, A(n+1,0) = A(n,1), A(n+1,m+1) = A(n,A(n+1,m)).

This bound, of course, allows an extreme growth of the polynomials involved in
a computation of a Thomas decomposition. However, on the other hand, it applies to
every other differential elimination method of this kind, e.g., the Rosenfeld-Gröbner
algorithm, and no smaller bound is known up to now for the general case of partial
differential equations.

For systems of ordinary differential equations, Seidenberg’s elimination method
(cf. [Sei56]) was improved by D. Grigoryev in [Gri89], where upper bounds for the
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time complexity, the differential orders, the degrees, and the bit sizes of the resulting
differential polynomials are given in terms of the corresponding data for the input.

In [DJS14] the statement of Theorem 2.2.77 was improved for the case of ordi-
nary differential equations with constant coefficients in a field of characteristic zero.
An upper bound L for the order of derivatives is given by (mhd) raised to the power
2c(mh)3

for some universal constant c > 0, and the exponent of q may be bounded by
dm(h+L+1), where h is the maximum of 2 and the differential orders as above.

2.2.5 Hilbert Series for Simple Differential Systems

In this subsection we define the generalized Hilbert series for simple differential
systems. It allows, in particular, to determine effectively the generic simple system
in a Thomas decomposition of a prime differential ideal, which is our main applica-
tion in Sect. 3.3. More benefits of the generalized Hilbert series (e.g., as indicated
by the corresponding notion in the case of linear differential polynomials, cf. Sub-
sect. 2.1.5) will be studied in the future.

We mention that alternative notions capturing in some sense the dimension of
the solution set of a system of polynomial differential equations were developed
by, e.g., E. R. Kolchin (cf. [Kol64]), J. Johnson (cf. [Joh69a]), A. Levin (cf., e.g.,
[Lev10]), and recently by M. Lange-Hegermann (cf. [LH14]).

Let Ω be an open and connected subset of �n with coordinates z1, . . . , zn and K
the differential field of meromorphic functions on Ω . We denote by R the differential
polynomial ring K{u1, . . . ,um} in the differential indeterminates u1, . . . , um with
commuting derivations ∂1, . . . , ∂n extending partial differentiation with respect to
z1, . . . , zn on K. We define

Mon(Δ)u := {∂ Jui | 1 ≤ i ≤ m, J ∈ (�≥0)
n }

and fix a ranking > on R.

Definition 2.2.78. For any subset M of Mon(Δ)u the generalized Hilbert series of
M is defined by

HM(∂1, . . . ,∂n) := ∑
∂ Jui∈M

∂ Jui ∈
m⊕

i=1

�[[∂1, . . . ,∂n]]ui,

where for simplicity the differential indeterminates u1, . . . , um are used here also as
generators of a free �[[∂1, . . . ,∂n]]-module of rank m. For i = 1, . . . , m, we define
HM,i(∂1, . . . ,∂n) by

HM(∂1, . . . ,∂n) =
m

∑
i=1

HM,i(∂1, . . . ,∂n)ui,

and we identify HM(∂1, . . . ,∂n) with HM,1(∂1, . . . ,∂n) in case m = 1.
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Remark 2.2.79. Let S be a simple differential system with set of equations

{ p1 = 0, . . . , ps = 0}

and corresponding sets of admissible derivations μ1, . . . , μs ⊆ Δ (cf. Def. 2.2.48).
We define q to be the product of all init(pi) and all sep(pi), i = 1, . . . , s. The sim-
ple differential system provides a Janet decomposition of the multiple-closed set
[ ld(p1), . . . , ld(ps) ], which defines a partition of M := ld(〈 p1, . . . , ps 〉 : q∞) by The-
orem 2.2.57 b):

M =
s⊎

i=1

Mon(μi) ld(pi).

Accordingly, the generalized Hilbert series of M is obtained from the simple system
S as

HM(∂1, . . . ,∂n) =
s

∑
i=1

(
∏

d∈μi

1
1−d

)
ld(pi).

The simple differential system S defines a partition of Mon(Δ)u into the set M of jet
variables which occur as leaders of equations that are consequences of S and the set
Mon(Δ)u−M of remaining jet variables. We call the elements of M the principal
jet variables and the elements of Mon(Δ)u−M the parametric jet variables of the
simple differential system S.

In a similar manner, a Janet decomposition of M := Mon(Δ)u−M with cones
Cj = Mon(ν j)θ j ui j , j = 1, . . . , k, allows to write the generalized Hilbert series of
M in the form

HM(∂1, . . . ,∂n) =
k

∑
j=1

(
∏

d∈ν j

1
1−d

)
θ j ui j ,

which enumerates the parametric jet variables of S via expansion of the (formal)
geometric series.

Definition 2.2.80. Let S be a simple differential system and M := ld(〈S= 〉 : q∞),
where q is the product of the initials and separants of all elements of the set S= and
M := Mon(Δ)u−M. Then the Hilbert series counting the principal jet variables or
the parametric jet variables of S is the formal power series in λ with non-negative
integer coefficients defined by

HS(λ ) :=
m

∑
i=1

HM,i(λ , . . . ,λ ), HS(λ ) :=
m

∑
i=1

HM,i(λ , . . . ,λ ), respectively.

Remark 2.2.81. In the same way as a Janet basis for a system of linear partial dif-
ferential equations allows to determine all (formal) power series solutions for the
system (cf. Rem. 2.1.67, p. 50), a simple differential system is a formally integrable
system of PDEs. Whereas in the linear case the Taylor coefficients corresponding
to the principal derivatives are uniquely determined by any choice of values for
the Taylor coefficients corresponding to the parametric derivatives, the equations of
a simple differential system allow a finite number of values for the Taylor coeffi-
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cients that are associated with the principal jet variables. If a principal jet variable
is the leader of an equation of the simple system, then its degree in that equation
coincides with this number because the left hand side is a square-free polynomial.
Taylor coefficients for proper derivatives of such leaders are uniquely determined
due to quasi-linearity (cf. Rem. 2.2.36).

By part c) of Theorem 2.2.57, p. 100, values for all Taylor coefficients corre-
sponding to the parametric jet variables can be chosen independently. Any choice
yields finitely many (formal) power series solutions of the simple system.

The following proposition describes a method which determines the generic sim-
ple system in a Thomas decomposition of a system of differential equations whose
left hand sides generate a prime differential ideal (cf. Def. 2.2.67).

Proposition 2.2.82. Suppose that p1, . . . , ps ∈ R generate a prime differential ideal
and let S1, . . . , Sk be a Thomas decomposition of the system { p1 = 0, . . . , ps = 0}.
For i= 1, . . . , k, let HSi (and HSi

) be the Hilbert series counting the principal jet vari-
ables (the parametric jet variables, respectively) of Si. Comparing the sequences of
Taylor coefficients lexicographically, the unique index i ∈ {1, . . . ,k} for which HSi

(or HSi
) is the least (the greatest, respectively) among these Hilbert series deter-

mines the generic simple system Si of this Thomas decomposition.

Proof. For every j ∈�≥0, the coefficient of λ j in the Taylor expansion of HSi equals
the number of elements of ld(〈S=i 〉 : q∞

i ) which are jet variables of differentiation
order j, where qi is the product of the initials and separants of all elements of S=i .
Obviously, the set inclusions referred to in Corollary 2.2.71 can be checked by com-
paring the sequences of these coefficients lexicographically. ��
Example 2.2.83. Let R = K{u} be the differential polynomial ring in one differen-
tial indeterminate u with commuting derivations ∂w, ∂x, ∂y, ∂z over a differential
field K of characteristic zero (with derivations ∂v|K , v ∈ {w,x,y,z}). We choose
the degree-reverse lexicographical ranking > on R which extends the ordering
∂w u > ∂x u > ∂y u > ∂z u (cf. Ex. A.3.3, p. 250).

Let us consider the differential system given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uw,y = uw,z = ux,y = ux,z = 0,

∣∣∣∣∣∣
u uw uy
ux uw,x 0
uz 0 uy,z

∣∣∣∣∣∣= 0,

∣∣∣∣ uw uw,x
uw,w uw,w,x

∣∣∣∣= ∣∣∣∣ ux ux,x
uw,x uw,x,x

∣∣∣∣= ∣∣∣∣ uy uy,z
uy,y uy,y,z

∣∣∣∣= ∣∣∣∣ uz uz,z
uy,z uy,z,z

∣∣∣∣= 0.

(2.48)

For reasons that will become clear in Sect. 3.3, the differential ideal of R which
is generated by the left hand sides of these equations is prime. (In fact, the left
hand sides of the equations in (2.48) generate the prime differential ideal of K{u}
consisting of all differential polynomials in u which vanish under substitution of
f1(w) · f2(x)+ f3(y) · f4(z) for u, where f1, . . . , f4 are analytic functions.)
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Using the Maple package DifferentialThomas (cf. Subsect. 2.2.6), we ob-
tain a Thomas decomposition of (2.48) consisting of simple systems S1, . . . , S8.
Their Hilbert series counting the parametric jet variables are

HS1
(λ ) = 1+4λ +5λ 2 +

4λ 3

1−λ
,

HS2
(λ ) = HS3

(λ ) = 1+3λ +4λ 2 +
3λ 3

1−λ
,

HS4
(λ ) = HS5

(λ ) = HS6
(λ ) = HS7

(λ ) = HS8
(λ ) = 1+2λ +

2λ 2

1−λ
.

Proposition 2.2.82 implies that S1 is the generic simple system of the Thomas de-
composition. This system is the following one:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uuy,z −uy uz)uw,x −uw ux uy,z = 0, {∂w, ∂x , ∂y , ∂z },
uw,y = 0, {∂w, ∗ , ∂y , ∂z },
uw,z = 0, {∂w, ∗ , ∗ , ∂z },
ux,y = 0, { ∗ , ∂x , ∂y , ∂z },
ux,z = 0, { ∗ , ∂x , ∗ , ∂z },

uy uy,y,z −uy,y uy,z = 0, { ∗ , ∗ , ∂y , ∂z },
uz uy,z,z −uy,z uz,z = 0, { ∗ , ∗ , ∗ , ∂z },

u 
= 0,

uy 
= 0,

uz 
= 0,

uuy,z −uy uz 
= 0.

(2.49)

For illustrative purposes we also give the generalized Hilbert series for S1. We de-
note by E the differential ideal of R which is generated by the left hand sides of the
equations in (2.49) and we define q := uy uz (uuy,z − u uy z). Then the generalized
Hilbert series HM(∂w,∂x,∂y,∂z) of M := ld(E : q∞) is determined along the lines of
Remark 2.2.79:

∂w ∂x u
(1−∂w)(1−∂x)(1−∂y)(1−∂z)

+
∂w ∂y u

(1−∂w)(1−∂y)(1−∂z)
+

∂w ∂z u
(1−∂w)(1−∂z)

+
∂x ∂y u

(1−∂x)(1−∂y)(1−∂z)
+

∂x ∂z u
(1−∂x)(1−∂z)

+
∂ 2

y ∂z u
(1−∂y)(1−∂z)

+
∂y ∂ 2

z u
1−∂z

.

A Janet decomposition of the complement M of M in Mon({∂w,∂x,∂y,∂z})u yields
the generalized Hilbert series of M:
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1
1−∂z

+∂y +
∂x

1−∂x
+

∂w

1−∂w
+∂y ∂z +

∂ 2
y

1−∂y
. (2.50)

u(w,x,y,z) = f1(w) · f2(x)+ f3(y) · f4(z),

is hindered, e.g., because the Taylor coefficients of f1, . . . , f4 of order zero add up
to the Taylor coefficient of u of order zero. (Note also that (2.49) admits further
solutions, e.g., certain analytic functions of the form f1(w)+ f2(x)+ f3(y)+ f4(z).)

2.2.6 Implementations

This subsection is devoted to implementations of Thomas’ algorithm and also refers
to related packages.

Thomas’ algorithm has been implemented in the packages AlgebraicThomas
and DifferentialThomas for the computer algebra system Maple by T. Bächler
and M. Lange-Hegermann, respectively, at Lehrstuhl B für Mathematik, RWTH
Aachen [BLH] (with the help of V. P. Gerdt and the author of this monograph). As
important efficiency issues have been ignored in the above presentation of Thomas’
algorithm, the implementation of these packages is not along the lines of the al-
gorithms in the previous subsections. For instance, the packages avoid to apply
pseudo-reduction to the same pair of polynomials repeatedly (which occurs in dif-
ferent branches of the splittings of systems). In the algebraic case, handling of the
square-free part of a polynomial, being often a very expensive part of the compu-
tation, may be postponed. The growth of polynomials during the computation of a
Thomas decomposition is especially severe in the differential case due to the prod-
uct rule of differentiation. Strategies which counteract this growth and heuristics for
choosing the equation or inequation to be treated next are needed for an efficient
implementation. Factorization of polynomials (whenever possible) leads to further
splittings, but the gain in simplification is usually significant. The remarks in the
beginning of Subsect. 2.1.6 concerning Janet division also apply to the differential
version of Thomas’ algorithm. For more details, we refer to [BGL+10, BGL+12].

The package AlgebraicThomas computes Thomas decompositions of alge-
braic systems. It includes procedures which determine counting polynomials of
quasi-affine or quasi-projective varieties as defined in [Ple09a]. Set-theoretic con-

Expansion of this geometric series enumerates the parametric jet variables of S1.
The representation (2.50) of the generalized Hilbert series as a rational function
indicates that (the essential part of) the set of analytic solutions of (2.49) can be
parametrized by four arbitrary analytic functions f1(w), f2(x), f3(y), f4(z). The
conditions f ′3 
= 0, f ′4 
= 0, which are implied by the inequations uy 
= 0, uz 
= 0 in S1,
are not reflected by the generalized Hilbert series (2.50). A direct comparison of the
set of parametric jet variables (enumerated in (2.50)) with the Taylor coefficients of
f1, . . . , f4, which may be chosen arbitrarily to define a solution of (2.49) of the form
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structions can be applied to solution sets, e.g., forming complements and inter-
sections. Moreover, comprehensive Thomas decompositions can be computed, i.e.,
Thomas decompositions of parametric systems such that specialization of parame-
ters respects the structure of the Thomas decomposition.

The package DifferentialThomas implements Thomas’ algorithm for dif-
ferential systems. The field of coefficients for the differential polynomial ring can
be any differential field supported by Maple, and the ranking may be chosen from
a list of standard rankings or may be specified in terms of a matrix as discussed in
Remark 3.1.39, p. 142. Building on the concept of Janet division (cf. Rem. 2.2.42
and Rem. 2.2.47), the package provides combinatorial data given by the constructed
Janet decomposition, such as, e.g., Hilbert series. Moreover, it includes procedures
that solve differential systems in terms of (truncated) power series or via the built-in
solvers of Maple.

A very useful feature is the possibility to stop the computation of a Thomas
decomposition as soon as a given number of simple systems have been constructed
by the program and to output these simple systems. Options given to the program
determine whether special branches or the generic branch of the splittings of systems
should be preferred. The computation of the Thomas decomposition may then be
continued, starting from the point where the previous computation stopped. This
feature is used in applications presented in Subsect. 3.3.5.

The Maple package epsilon (by Dongming Wang) [Wan04] is a collection of
several implementations of triangular decomposition methods. In particular, compu-
tation of Thomas decompositions of algebraic systems is possible using epsilon.

The packages RegularChains (by F. Lemaire, M. Moreno Maza, and Y. Xie)
[LMMX05] and DifferentialAlgebra (by F. Boulier and E. S. Cheb-Terrab),
formerly diffalg (by F. Boulier and E. Hubert, cf. also [Hub00]), are part of the
standard Maple library. The latter one is now based on the BLAD libraries (written
by F. Boulier in the programming language C) [Bou]. These packages compute de-
compositions of algebraic varieties and systems of polynomial ordinary and partial
differential equations, respectively. In the former case, the decomposition is con-
structed in terms of regular chains [ALMM99], in the latter case the Rosenfeld-
Gröbner algorithm [BLOP09] is applied, which computes finitely many character-
izable ideals [Hub03a, Hub03b] whose intersection equals the radical differential
ideal generated by the input. In both cases, the decomposition of the solution set is
not a disjoint one, in general, but can be made disjoint in principle.

For a further comparison of these packages including timings for benchmark
examples, we refer to [BGL+12, Sect. 4].
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