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Abstract. The evolution of network services is closely connected to the
understanding and modeling of their corresponding traffic. The obtained con-
clusions are related to a wide range of applications, like the design of the transfer
lines’ capacity, the scalar taxing of customers, the security violations and the
spotting of errors and anomalies. Intrusion Detection Systems (IDS) monitor and
analyze the events in traffic, to locate indications for potential intrusion and
integrity violation attacks, resulting in the violation of trust and availability of
information resources. They act in a complimentary mode with the existing
security infrastructure, aiming in the early warning of the administrator, offering
him details that will let him reach proper decisions and correction actions. This
paper proposes a network-based online system, which uses minimum compu-
tational power to analyze only the basic characteristics of network flow, so as to
spot the existence and the type of a potential network anomaly. It is a Hybrid
Machine Learning Anomaly Detection System (HMLADS), which employs
classification performed by Evolving Spiking Neural Networks (eSNN), in order
to properly label a Potential Anomaly (PAN) in the net. On the other hand it uses
a Multi-Layer Feed Forward (MLFF) ANN to classify the exact type of the
intrusion.

Keywords: Security � Network intrusion and anomalies � Machine learning �
Evolving spiking neural networks � Multi-layer neural network

1 Introduction

An IDS [4] monitors network traffic for suspicious activity or anomalous behavior and
alerts the system or network administrator accordingly. There are network based
(NIDS) and host based (HIDS) intrusion detection systems. Some of them are looking
for specific signatures of known threats, whereas others are spotting anomalies by
comparing traffic patterns against a baseline. There are three basic approaches for
designing and building IDS, namely: the Statistical, the Knowledge based and the
Machine Learning one which has been employed in this research effort.

The concept of the Statistical-based systems (SBID) is simple: it determines
“normal” network activity and then all traffic that falls outside the scope of normal is
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flagged as anomalous (abnormal). These systems attempt to learn network traffic pat-
terns on a particular network. This process of traffic analysis continues as long as the
system is active, so, assuming network traffic patterns remain constant, the longer the
system is on the network, the more accurate it becomes. The Knowledge Based
Intrusion Detection systems (KBIDES) classify the data vectors based on a carefully
designed Rule Set or they use models obtained from past experience in a heuristic
mode. The Machine Learning Anomaly Detection (MLAD) approach automates the
analysis of the data vectors, and they result in the implementation of systems that have
the capacity to improve their performance as time passes.

Artificial Intelligence and data mining algorithms have been applied as intrusion
detection methods in finding new intrusion patterns [3, 11, 12, 17], such as clustering
(unsupervised learning) [7, 13, 21] or classification (supervised learning) [5, 14, 18,
26]. Also, a few hybrid techniques were proposed like Neural Networks with Genetic
Algorithms [23] or Radial Based Function Neural Networks with Multilayer Perceptron
[1, 16]. Besides, other very effective methods exist such as Sequential Detection [22],
State Space [15], Spectral Methods [27] and combinations of those.

This research effort aims in the development and application of an innovative
MLAD approach towards the trace of anomalies in the network. The methodology will
be using spiking (biologically inspired) Artificial Neural Networks (SANN). SANN are
modular connectionist-based systems that evolve their structure and functionality in a
continuous, self-organized, on-line, adaptive, interactive way from incoming infor-
mation. Also, it can learn both data and knowledge in a supervised and/or unsupervised
way. For the aforementioned reasons, many studies attempt to use SANN for practical
applications, some of them demonstrating very promising results in solving complex
real world problems [8, 19, 28].

The Hybrid Evolving Spiking Anomaly Detection Model (HESADM) that has been
developed and discussed herein is based in the “Thorpe” neural model [24] which
intensifies the importance of the spikes taking place in an earlier moment, whereas the
neural plasticity is used to monitor the learning algorithm by using one-pass learning.
In order to classify real-valued data sets, each data sample, is mapped into a sequence
of spikes using the Rank Order Population Encoding (ROPE) technique [2, 25]. The
topology of the developed eSNN is strictly feed-forward, organized in several layers
and weight modification occurs on the connections between the neurons of the existing
layers.

2 Rank Order Population Encoding

The ROPE method [2, 25] is an alternative to conventional rate coding scheme that
uses the order of firing neuron’s inputs to encode information which allows the map-
ping of vectors of real-valued elements into a sequence of spikes. Neurons organized
into neuronal maps which share the same synaptic weights. Whenever the synaptic
weight of a neuron is modified, the same modification is applied to the entire popu-
lation of neurons within the map. Inhibition is also present between each neuronal map.
If a neuron spikes, it inhibits all the neurons in the other maps with neighboring
positions. This prevents all the neurons from learning the same pattern. When
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propagating new information, neuronal activity is initially reset to zero. Then, as the
propagation goes on, neurons are progressively desensitize each time one of their
inputs fire, thus making neuronal responses dependent upon the relative order of firing
of the neuron’s afferents. More precisely, let A = {a1, a2, a3 … am-1, am} be the
ensemble of afferent neurons of neuron i and W = {w1,i, w2,i, w3,i … wm-1,i, wm,i} the
weights of the m corresponding connections; let mod 2 [0,1] be an arbitrary modu-
lation factor. The activation level of neuron i at time t is given by Eq. (1):

Activation i,tð Þ ¼
X
j2½1;m�

modorderðajÞwj; i ð1Þ

where order(aj) is the firing rank of neuron aj in the ensemble A. By convention, order
(aj) = +8 if a neuron aj is not fired at time t, sets the corresponding term in the above
sum to zero. This kind of desensitization function could correspond to a fast shunting
inhibition mechanism. Whenever a neuron reaches its threshold, it spikes and inhibits
neurons at equivalent positions in the other maps so that only one neuron will respond
at any particular location. Every spike also triggers a time based Hebbian-like learning
rule that adjusts the synaptic weights. Let te be the date of arrival of the Excitatory
PostSynaptic Potential (EPSP) at synapse of weight W and ta the date of discharge of
the postsynaptic neuron.

if te\ta then dW ¼ a 1�Wð Þe� Doj js

else dW ¼ �aWe� Doj js ð2Þ

Where Δo is the difference between the date of the EPSP and the date of the
neuronal discharge (expressed in term of order of arrival instead of time), a is a constant
that controls the amount of synaptic potentiation and depression [2].

ROPE technique with receptive fields allows the encoding of continuous values by
using a collection of neurons with overlapping sensitivity profiles [8, 28]. Each input
variable is encoded independently by a group of one-dimensional receptive fields
(Fig. 2). For a variable n, an interval Inmin; I

n
max

� �
is defined. The Gaussian receptive field

of neuron i is given by its center μi:

li ¼ Inmin þ
2i� 3
2

Inmax � Inmin

M� 2
ð3Þ

The width σ is given by Eq. (4):

r ¼ 1
b
Inmax � Inmin

M� 2
ð4Þ

where 1� b� 2 and the parameter β directly controls the width of each Gaussian
receptive field.

Figure 1 depicts an example encoding of a single variable. For the diagram (β = 2)
the input interval Inmin; I

n
max

� �
was set to [−1.5, 1.5] and M = 5 receptive fields were

used. For an input value v = 0.75 (thick straight line in left figure) the intersection
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points with each Gaussian is computed (triangles), which are in turn translated into
spike time delays (right figure).

3 One-Pass Learning

The aim of the one-pass learning method is to create a repository of trained output
neurons during the presentation of training samples. After presenting a certain input
sample to the network, the corresponding spike train is propagated through the SANN
which may result in the firing of certain output neurons. It is also possible that no
output neuron is activated and in this case the network remains silent and the classi-
fication result is undetermined. If one or more output neurons have emitted a spike, the
neuron with the shortest response time among all activated output neurons is deter-
mined. The label of this neuron represents the classification result for the presented
input sample. The procedure is described in detail in the following Algorithm 1 [8, 28].

For each training sample i with class label l 2 L a new output neuron is created and
fully connected to the previous layer of neurons resulting in a real-valued weight vector

wðiÞ with wðiÞj 2 R denoting the connection between the pre-synaptic neuron j and the

Fig. 1. Population encoding based on Gaussian receptive fields. Left Figure: Input Interval –
Right Figure: Neuron ID [28]
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created neuron i. In the next step, the input spikes are propagated through the network

and the value of weight wðiÞj is computed according to the order of spike transmission

through a synapse j: wðiÞj ¼ ðmlÞorder jð Þ; 8jjj pre-synaptic neuron of i.
Parameter ml is the modulation factor of the Thorpe neural model. Differently

labeled output neurons may have different modulation factors ml. Function order(j)
represents the rank of the spike emitted by neuron j. The firing threshold hðiÞ of the
created neuron I is defined as the fraction ci 2 R, 0\ci\1, of the maximal possible

potential uðiÞmax:

h ið Þ  clu ið Þ
max ð5Þ

uðiÞmax  
X

j
wðiÞj ðmlÞorder jð Þ ð6Þ

The fraction cl is a parameter of the model and for each class label 1 2 L a different
fraction can be specified. The weight vector of the trained neuron is then compared to
the weights corresponding to neurons already stored in the repository. Two neurons are
considered too “similar” If the minimal Euclidean distance between their weight
vectors is smaller than a specified similarity threshold sl (the eSNN object uses optimal
similarity threshold s = 0.6). All parameters modulation factor ml, similarity threshold
sl, PSP fraction cl, 1 2 L of ESNN which were included in this search space, are
optimized according to the Versatile Quantum-inspired Evolutionary Algorithm
(vQEA) [19]. In this case, both the firing thresholds and the weight vectors are merged
according to Eqs. 7 and 8:

wðkÞj  
wðiÞj þ NwðkÞj

1þ N
; 8j j j pre-synaptic neuron of i ð7Þ

h kð Þ  h ið Þ þ Nh kð Þ

1þ N
ð8Þ

It must be clarified that integer N denotes the number of samples previously used to
update neuron k. The merging is implemented as the (running) average of the

Fig. 2. The Evolving Spiking Neural Network (eSNN) architecture [28]
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connection weights, and the (running) average of the two firing thresholds. After the
merging, the trained neuron i is discarded and the next sample processed. If no other
neuron in the repository is similar to the trained neuron i, the neuron i is added to the
repository as a new output neuron.

Pattern recognition aims to classify data (patterns) based on either a priori
knowledge or on statistical information extracted from the patterns. The patterns to be
classified are usually groups of measurements or observations, defining points in an
appropriate multidimensional space. Methods like classification, regression and clus-
tering according to the type of learning procedure are used to generate the output value
based on template matching, statistical classification, syntactic or structural matching
and neural networks. The HESADM uses a two-layer feedforward neural network with
sigmoid function both in hidden and output layer, scaled conjugate gradient back-
propagation as the learning algorithm. The performance metric used is the Mean
Squared Error (MSE).

4 Description of the HESADM Methodology

The HESADM methodology uses eSNN classification approach and Multi-Layer Feed
Forward ANN in order to classify the exact type of the intrusion or anomaly in the
network with minimum computational power.

The general methodology is described in detail below:

Step 1: We choose to use the traffic oriented data, which is related to only 9 features.
We import the required classes that use the variable Population Encoding. This var-
iable controls the conversion of real-valued data samples into the corresponding time
spikes. The encoding is performed with 20 Gaussian receptive fields per variable
(Gaussian width parameter beta = 1.5). We also normalize the data to the interval
[−1, 1] and so we indicate the coverage of the Gaussians using i_min and i_max. For
the normalization processing the following function 9 was used:

x1norm ¼ 2 � x1 � xmin

xmax � xmin

� �
� 1; x 2 R ð9Þ

The data is classified in two classes namely: class 0 which contains the normal
results and class 1 which comprises of the abnormal ones (DoS, r2l, u2r and probe).
The eSNN object using modulation factor m = 0.9, firing threshold ratio c = 0.7 and
similarity threshold s = 0.6 in agreement with the vQEA algorithm [19, 28].

Step 2: We train the eSNN with 70 % of the dataset vectors (train_data) and we test
the eSNN with 30 % of the dataset vectors (test_data).

Step 3: If the result of the classification is normal, the eSNN classification process is
repeated but this time the relevant normal data vectors are used. These vectors are
comprised of 11 features [9]. If the result is normal then the process is terminated. If the
result of the classification is abnormal, a two-layer feedforward neural network is used
to perform pattern recognition of the attack type with all features of KDD dataset
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(41 inputs and 5 outputs). In the hidden layer 33 neurons are used, based on the
following empirical function 10 [6]:

2
3
� Inputs

� �
þ Outputs =

2
3
� 41

� �
þ 5 ¼ 33 ð10Þ

The outcome of the pattern recognition process is submitted in the form of an Alert
signal to the network administrator. A Graphical display of the complete HESADM
methodology can be seen in Fig. 3.

5 Data

The KDD Cup 1999 data set [20] was used to test the herein proposed approach. This
data set was created in the LincolnLab of MIT [20] and it is the most popular free data
set used in evaluation of IDS. It contains recordings of the total network flow of a local
network which was installed in the Lincoln Labs and it simulates the military network
of the USA air force. The method of events’ analysis includes a connection between a
source IP address and a destination IP, during which a sequence of TCP packages is
exchanged, by using a specific protocol and a strictly defined operation time. The KDD
Cup 1999 data includes 41 characteristics which are organized in the following 4 basic
categories: Content Features, Traffic Features, Time-based Traffic Features, Host-
based Traffic Features. Also the attacks are divided in four categories, namely: DoS,
r2l, u2r and probe.

Fig. 3. The Hybrid Evolving Spiking Anomaly Detection Model (HESADM) methodology
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6 Results

The analysis of the data set, the eSNN classifications and the pattern recognition was
performed on a dual boot laptop machine with an AMD Phenom X3 N830 at 2.1 GHz
CPU and 4 GB RAM.

In the first classification the data classified as normal or abnormal. The dataset
Traf_Red_Full.data has 145,738 records and the 70 % (102,016 rec.) used as train_data
and the 30 % (43,722 rec.) used as test_data. The results are shown below:

Classification Accuracy: 97.7 %.
No. of evolved neurons: Class 0/794 neurons - Class 1/809 neurons.
Elapsed time: 2068.23 s.

In order to perform comparison with different learning algorithms the Weka version
3.7 software was used (http://www.cs.waikato.ac.nz/ml/weka). Table 1 reports the
results obtained with 10 different classifiers (NaiveBayes, RBFNetwork, MLP, LibSVM,
k-NN, J48, RandomForest, LogisticRegression, BayesNet, AdaBoost) (Table 2).

In the second classification case, the relevant normal features comprising of 11
features were used. The data were classified as normal or abnormal. The dataset nor-
malFull.data has 145,738 records and the 70 % (102,016 rec.) used as train_data and
the 30 % (43,722 rec.) used as test_data. The results are shown below:

Classification Accuracy: 99.9 %.
No. of evolved neurons: Class 0/646 neurons - Class 1/136 neurons.
Elapsed time: 1345.25 s.

Table 1. The Training Accuracy reports the average accuracy computed over 10-fold cross-
validation. The testing accuracy refers to the percentage of data that were correctly detected by
each classifier in the Traf_Red_Full_Dataset.

Traf_Red_Full Dataset
Classifier Train Accuracy Test Accuracy

NaiveBayes 96.387 % 95.3981 %
RBFNetwork 94.9734 % 93.3281 %
MLP 97.9475 % 97.3743 %
LibSVM 98.9691 % 97.0335 %
k-NN 97.5435 % 97.4452 %
J48 97.619 % 97.4909 %
RandomForest 97.57 % 97.5046 %
LogisticRegression 97.8937 % 96.9008 %
BayesNet 97.9025 % 96.9237 %
AdaBoost 96.0311 % 95.947 %
eSNN 98.9 % 97.7 %
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We can consider the Testing Accuracy as an estimate of the generalization ability of
our classifiers. The best results on the testing dataset were obtained by using the eSNN
classifier.

A MLFF ANN was developed with 41 input neurons, corresponding to the 41 input
parameters of the KDD cup 1999 dataset, 33 neurons in the Hidden Layer and 5 in the
output one corresponding to the following output parameters: DoS, r2l, u2r, Probe,
normal. The KDD cup 1999 dataset was divided randomly in 70 % (102,016 rec.) the
train_data, 15 % (21,861 rec.) as test_data and the rest 15 % (21,861 records) as
validation_data. The training process finished in 11 min 54 s and 178 iterations were
performed. The performance of the classification is shown in the following matrices
and it supports the validity of the model:

ROC analysis: The ROC curve is a plot of the true positive rate (sensitivity) versus the
false positive rate (1 - specificity) as the threshold is varied. A perfect test would show
points in the upper-left corner, with 100 % sensitivity and 100 % specificity. For this
problem, the network performs very well (Fig. 4).

Performance analysis: Mean Squared Error gives the difference between observation
and simulation. The lower the better. In this case all curves converging to the same
point mean that network performs perfect (Fig. 5).

Training State: The Figure shows variation in gradient coefficient with respect to
number of epochs. Minimum the value is better will be training and testing of net-
works. From figure it can be seen that gradient value goes on decreasing with increase
in number of epochs (Fig. 6).

Error histogram: this shows how the error sizes are distributed. Typically most errors
are near zero, with very few errors far from that (Fig. 7).

Table 2. The Training Accuracy reports the average accuracy computed over 10-fold cross-
validation. The testing accuracy refers to the percentage of data that were correctly detected by
each classifier in the normalFull_Dataset.

normalFull Dataset
Classifier Train Accuracy Test Accuracy

NaiveBayes 99.5112 % 98.895 %
RBFNetwork 99.9351 % 99.4412 %
MLP 99.9818 % 99.8992 %
LibSVM 99.673 % 99.1088 %
k-NN 99.2554 % 98.9278 %
J48 99.7751 % 99.719 %
RandomForest 99.8463 % 98.9561 %
LogisticRegression 98.998 % 98.9855 %
BayesNet 98.9933 % 98.9718 %
AdaBoost 99.2784 % 98.9357 %
eSNN 99.999 % 99.9 %
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Fig. 5. Performance analysis

Fig. 4. ROC analysis

Fig. 6. Training State
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Confusion Matrix: The network outputs are very accurate, by the high numbers of
correct responses in the green squares and the low numbers of incorrect responses in
the red squares. The lower right blue squares illustrate the overall accuracies (Fig. 8).

7 Conclusion

In this paper we have proposed a Hybrid Evolving Spiking Anomaly Detection Model
which intended to classify the normal and attack patterns in a computer network. This
was based on an evolving Spiking Neural Network model and on MLFF ANN tech-
niques. An effort was done to use minimum computational power and resources. The
classification performance of eSNN and the accuracy of MLFF ANN were experi-
mentally explored based on KDD cup 1999 dataset. The topology of the eSNN model
consists of two layers. The first layer receives an input stimulus obtained from the
mapping of a real-valued data sample into spike trains using a rank order population

Fig. 7. Error histogram

Fig. 8. Confusion Matrix
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encoding based on Gaussian receptive fields. As a consequence of this transformation
input neurons emit spikes at pre-defined firing times, invoking the one pass learning
algorithm. The learning iteratively creates repositories of neurons, one repository for
each class. Finally, the output of the second neural layer determines the class label of
the presented input stimulus. The eSNN model was investigated in a number of sce-
narios and reported promising results. Moreover the MLFF ANN system is a pattern
recognition system which detects the attacks and classifies them with high accuracy and
adds a greater degree of integrity to the rest of security infrastructure of HESADM.

As a future direction, aiming to improve the efficiency of biologically realistic
neural networks for pattern recognition, it would be important to extend the eSNN
model with ROC analysis. In addition, the model needs to be evaluated further, with
respect to parameter optimization in consideration of minimum processing time.
Finally, other coding schemes could be explored and compared on the same security
task.
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