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Abstract. Given an image stack that captures a static scene with
different focus settings, variational depth–from–defocus methods aim at
jointly estimating the underlying depth map and the sharp image. We
show how one can improve existing approaches by incorporating impor-
tant physical properties. Most formulations are based on an image for-
mation model (forward operator) that explains the varying amount of
blur depending on the depth. We present a novel forward operator: It
approximates the thin–lens camera model from physics better than pre-
vious ones used for this task, since it preserves the maximum–minimum
principle w.r.t. the unknown image intensities. This operator is embed-
ded in a variational model that is minimised with a multiplicative variant
of the Euler–Lagrange formalism. This offers two advantages: Firstly, it
guarantees that the solution remains in the physically plausible positive
range. Secondly, it allows a stable gradient descent evolution without the
need to adapt the relaxation parameter. Experiments with synthetic and
real–world images demonstrate that our model is highly robust under dif-
ferent initialisations. Last but not least, the experiments show that the
physical constraints are essential for obtaining more accurate solutions,
especially in the presence of strong depth changes.

1 Introduction

The Depth–from–Defocus Problem. Only points with a certain distance to
the lens are imaged completely sharp. This distance depends on the focal set-
tings and is described by the focal plane. Points with a larger or smaller distance
appear blurred, where the amount of blur increases with the object’s offset to
the focal plane. The range in which points are imaged acceptably sharp is the
depth–of–field of the camera. In particular macro photography and microscope
imaging suffer from a very limited depth–of–field. In these applications, a com-
mon remedy is to capture several images by varying the focal settings. Then
each of these images differs in the regions that are projected sharply. Given
such an image stack, the depth–from–defocus problem consists of inferring the
underlying topography (depth map) as well as the sharp image as it would
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have been recorded by a pinhole camera. Essentially this corresponds to invert-
ing the imaging process. This inverse problem is ill–posed and much harder
to solve than the forward problem that models the image formation. To deal
with this ill–posedness, regularisation is required. Variational formulations offer
an elegant approach for this task. In our paper we present a novel variational
framework that incorporates important physical properties.

Existing Approaches and Related Work. Instead of inverting the physical
imaging process, there are approaches that estimate depth using in–focus infor-
mation. They apply a local sharpness criterion, and the depth is assumed to
correspond to the slice of the focal stack where the local sharpness achieves its
maximum. The variance method (VM) [24] for example uses the local variance
as a sharpness criterion.

To our knowledge, the first method that estimates depth using defocus infor-
mation goes back to Pentland [19]. He estimates the amount of blurriness of
image features or patches and uses this to infer the local depth. While this semi-
nal work requires a completely sharp image as reference, Subbarao [23] describes
a possibility to avoid this restriction. Namboodiri and Chaudhuri [16] assume a
constant depth and then use the fact that Gaussian blurring can be expressed by
linear diffusion. The extension to the more general case, i.e. allowing variations
in the depth profile, is treated in many subsequent work [11,17,18,27]. Here
the depth–of–field effect is described by means of an isotropic diffusion process
with spatially variant diffusivity as it would occur in an inhomogeneous medium.
Extensions to anisotropic diffusion processes also exist [9,13]. The depth–from–
defocus problem can alternatively be addressed with Markov random fields [3,7].
In the latter work, Bhasin and Chaudhuri consider a scenario restricted to only
two different focal planes. They investigate how the point spread function (PSF)
has to be iteratively corrected in order to represent the energy distribution at
depth discontinuities. Also blind deconvolution approaches such as the one by
Chan and Wong [6] can be understood as related work in a broader sense.

Most related to our work are the approaches that jointly estimate the sharp
image and the depth by minimising a suitable energy. In [10,14] this problem
is stated as the minimisation of Csiszár’s information divergence between the
recorded focal stack and an appropriate model assumption. While the first app-
roach assumes a locally equifocal surface such that the PSF is shift–invariant,
the latter one embeds a shift–variant PSF in the imaging model. When regarding
a shift–variant PSF as a 4-D function and a shift–invariant as a 2-D one, Aguet
et al. [1] propose a compromise between both: They use a shift–invariant 3-D
function defined as a family of 2-D Gaussians with varying standard deviation
as a PSF. Compared to a 4-D function, this reduces the complexity by incorpo-
rating knowledge about how the PSF adapts depending on depth. However, the
proposed formulation does not preserve an important physical property, namely
the maximum–minimum principle w.r.t. the image intensities. This causes prob-
lems, especially at locations where depth changes occur.
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Contributions. To address the aforementioned problems, we propose a novel
physically motivated forward operator that preserves the maximum–minimum
principle w.r.t. the image intensities. This forward operator is derived as an
approximation of the thin lens camera model. Given a sharp image and depth
information, the thin lens camera model is the established physically based cam-
era model used in computer graphics for generating photorealistic depth–of–field
effects. We show how to invert this forward operator within a variational for-
mulation that allows to jointly obtain the unknown depth and intensity values
given a focal stack. As it is our goal to preserve important physical proper-
ties, we also have to ensure that our solution contains only positive intensity
and depth values. To achieve this we employ the multiplicative Euler–Lagrange
formalism. Besides enabling us to restrict our solution to physically plausible
values, this formalism offers an additional benefit: It allows us to derive an effi-
cient semi–implicit scheme for finding the sought depth and intensity values.
This semi–implicit scheme does not require any adaptation of the relaxation
parameter.

Organisation of the Paper. In Sect. 2, we discuss image formation models
and derive our novel forward operator. Section 3 then explains the variational
formulation that effectively allows to invert our forward operator. Experiments
show the benefits of our novel model in Sect. 4. We conclude our paper in Sect. 5.

2 Image Formation Models

Let us first obtain a better understanding of forward operators, i.e. image forma-
tion models that allow to generate a focal stack given a sharp image and depth
information. To this end, we start by briefly discussing the thin lens camera
model.

2.1 Image Formation with a Thin Lens

The thin lens imaging model is illustrated in Fig. 1. It uses a thin circular lens
with focal length f . This lens is placed in the optical centre �0 at a distance v

Fig. 1. Thin lens camera model
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to the image plane Ω2 ⊂ R
2. Lens and image plane are parallel. The thin lens

equation [4]
1
fp

=
1
f

− 1
v

(1)

characterises the imaging process. It involves a virtual focal plane that is parallel
to the lens at distance fp. A point x̄ within this plane is sharply focused to a
single point x on the image plane. For each image point x the corresponding
x̄ can be obtained by intersecting the ray from x through the optical centre �0
with the focal plane.

Generally, the lens focusses a bundle of rays into a single point x. This bundle
can be described using x̄ and all points on the lens. Following [20], we define the
thin lens operator :

FL[t, d](x) :=
1

|A|
∫

A
t
(
Td

(
�, x̄

))
d� , (2)

where |A| is the area of the lens and d : Ω2 → R
+ denotes the topography. The

function Td computes the first intersection point of a ray through � and x̄ with
the topography d and t maps these intersection points to intensity values.

A direct simulation of geometric optics is possible with raytracing methods
[8]. However, this is computationally very expensive because a large amount
of blur requires processing a huge number of rays per pixel. Therefore, instead
of directly considering the thin lens camera model, researchers are interested
in finding approximations as alternatives for the simulation of photorealistic
depth–of–field effects [2,5,21]. Similarly, we are also interested in finding a good
approximation of the thin lens operator, however, with the additional require-
ment that it well fits into a variational framework. To this end, let us first rewrite
the thin lens camera model with a spatially variant convolution.

2.2 Spatially Variant Convolution

Given a topography d, the thin lens camera model can be expressed with a
spatially variant point spread function (PSF) Hd : Ω2 × Ω2 → R

+
0 :

FH[u, d](x) :=
∫

Ω2

Hd(x,y) u(y) dy , (3)

where u corresponds to the image as it would be captured with a pinhole camera,
and x describes the location within the 2-D image plane. From (2) it is straight-
forward to see that the thin lens camera model fulfils a maximum–minimum
principle w.r.t. t. Accordingly, Hd has to preserve this w.r.t. the intensity values
of the sharp image, i.e. ∫

Ω2

Hd(x,y) dy = 1 ∀x ∈ Ω2 . (4)

This guarantees that each intensity value of the resulting image lies between the
minimum and maximum intensity value of the sharp image. Equation (3) can be
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understood as a weighted average of the sharp image intensities. To obtain the
weights of the PSF, raytracing techniques may be used. However, this is similar
to computing the thin lens camera model directly. Thus, let us investigate a
different more efficient way to approximate the weights of the PSF.

2.3 Approximation of the PSF

In the thin lens model, a point on the surface spreads its intensity to a circle
of confusion on the image plane [23]. For the moment, let us assume that the
surface is equifocal (d = constant), i.e. aligned parallel to the lens. Then Eq. (3)
can be expressed in terms of a convolution with a spatially invariant kernel
hd : Ω2 ⊂ R

2 → R
+
0 instead of a spatially variant one Hd. This comes down

to reducing the PSF from a 4-D to a 2-D function. More precisely, in case of a
circular lens, the kernel corresponds to a pillbox function and its radius is related
to the constant topography. However, in practise it can be a better choice to use
a Gaussian PSF instead of a pillbox when taking into account the wave character
of light [19]. The standard deviation of the Gaussian replaces the radius of the
pillbox. In the general case of non–constant topographies, the standard deviation
changes with the depth of each surface point. Following this idea, Aguet et al.
[1] express the imaging process as

FU[u, d](x, z) :=
∫

Ω2

h(x − y, z − d(y)) u(y) dy , (5)

where z represents a given focal plane and h : Ω3 ⊂ R
3 → R

+
0 . Therewith, they

lift hd from a 2-D function to a 3-D one, composed of 2-D PSFs varying in their
standard deviation, along the third dimension.

2.4 Our Modification

The formulation above is problematic if partial occlusions occur, which is expected
to happen due to depth changes. The forward operator then effectively performs
spatially variant 2-D convolutions with unnormalised kernels. This results in a
violation of the maximum–minimum principle w.r.t to the images intensities. To
avoid this, we propose to replace (5) by the novel forward operator

FN[u, d](x, z) :=
FU[u, d](x, z)∫

Ω2
h(x − x′, z − d(x′)) dx′ . (6)

The normalisation function guarantees the maximum–minimum principle, and
thus handles regions where partial occlusions appear in a more appropriate way.
While this normalisation may look like a small modification at first glance, it can
have a large impact on the quality of the result: Fig. 2 depicts the behaviour of
the different forward operators. We see that in regions where depth changes are
present, partial occlusions appear. Applying an unnormalised forward operator
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Fig. 2. (a) Left box: Our 3-D synthetic test model. Right box: Results of different
forward operators (from left to right) with changing focal planes (from top to bottom).
(b) Left column: Unnormalised forward operator of [1]. (c) Centre column: Our
normalised forward operator (6). (d) Right column: Thin lens camera model (2).

results in bright overshoots followed by dark shadows (Fig. 2(b)). These local vio-
lations of the maximum–minimum principle lead to wrong model assumptions,
which produce results that are not photorealistic. On the other hand, compar-
ing Fig. 2(c, d) shows that our normalised approach comes very close to the
physically well–founded thin lens camera model which allows to create realistic
depth–of–field effects.

3 Variational Formulation

So far we have discussed image formation models, i.e. operators that can create
stacks of blurred images if we know the sharp image and the depth. In this
section we are interested in inverting this process, i.e. given an image stack, we
wish to jointly estimate the depth map and the sharp image.

3.1 Variational Model

Let uR : Ω3 → R
+ be the stack of recorded 2-D images that vary in their focal

plane. The sought, sharp image u : Ω2 → R
+ in combination with the depth

map d : Ω2 → R
+ can then be estimated as a minimiser of the energy

E(u, d) = M(u, d) + α S(|∇d|). (7)

The data term M enforces the similarity between the recorded stack and the
forward operator applied to the unknown sharp image u and depth d. To penalise
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deviations from the model assumptions we choose a quadratic cost function
which is optimal for Gaussian distributed noise:

M(u, d) =
∫

Ω3

(
uR − FN[u, d]︸ ︷︷ ︸

=:e[u,d]

)2

dx dz . (8)

Exactly like FU, our forward operator FN from (6) is linear in u but nonlinear
in d, and the data term is convex in u but nonconvex in d. Especially in homo-
geneous regions, a minimiser of the data term alone is non–unique. To avoid
such ambiguities, we add a regularisation term S that penalises large gradient
magnitudes in the depth field:

S(|∇d|) =
∫

Ω2

Ψ(|∇d|2) dx , (9)

where Ψ : R → R
+ is a positive increasing function imposing (piecewise) smooth-

ness. For the results in Sect. 4, we employ the Whittaker–Tikhonov penaliser
Ψ(s2) = s2 which corresponds to homogeneous diffusion [25,29]. Other regu-
larisers such as total variation (TV) [22] are also appropriate. The amount of
smoothness can be steered by the regularisation parameter α > 0.

3.2 Minimisation

Euler-Lagrange Equations. A minimiser (u, d) of the energy (7) must neces-
sarily fulfill the Euler–Lagrange equations

δE

δu
= 0 and

δE

δd
= 0 (10)

and its corresponding natural boundary conditions. The established approach
to find the functional derivatives δE

δu and δE
δd is given by applying the classical

(additive) Euler–Lagrange formalism [12]. To obtain the functional derivative
δE
δu , one uses the definition

〈 δE
δu , v〉 = δvE , where 〈·, ·〉 denotes the standard inner product, and

δvE :=
∂

∂ε
E(u + εv, d)|ε=0 (11)

acts like a “directional derivative” in the direction of a function v. Then we
obtain

δE

δu
(x) = −2

(
e ∗ h∗

)
(x, d(x)) (12)

with E from Eq. (7). Here we have introduced the abbreviation e := N−1 · e,
where e is related to the data term (8) and N corresponds to the normalisation
function, i.e. the denominator in (6). The operator ∗ expresses a 3-D convolution,
and h∗(x) := h(−x). Analogously applying the same formalism w.r.t. the depth
d allows to compute the functional derivative
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δE

δd
(x) = 2

((
e ∗ h∗

z

)
(x, d(x)) · u −

((
e · FN[u, d]

) ∗ h∗
z

)
(x, d(x))

− α · div
(
Ψ ′(|∇d|2) ∇d

))
. (13)

Enforcing Positivity. Since negative intensities as well as negative depth val-
ues are not physically plausible, we would like to modify our approach in such a
way that both quantities are strictly constrained to be positive. The multiplica-
tive Euler–Lagrange formalism offers an interesting and efficient way to achieve
this [28]. Here, a multiplicative perturbation is used instead of an additive one.
Thus, we consider

δ∗
vE :=

∂

∂ε
E(u + εu · v, d)|ε=0 (14)

for minimisation w.r.t. u, and an analog expression for d. This gives the following
functional derivatives:

δ∗E
δu

= u · δE

δu
and

δ∗E
δd

= d · δE

δd
. (15)

There are two different ways to understand why the multiplicative Euler–Lagrange
formalism restricts the solution to positive values [28]: The first explanation inter-
prets the multiplicative Euler–Lagrange formalism via the reparametrisations u =
exp(w) and d = exp(z). Moving unwanted values to infinite distance is the second
explanation. To this end, one can show that the multiplicative functional gradients
δ∗E
δu and δ∗E

δd occur within the additive formalism when one replaces the Euclidean
metric du by a hyperbolic one, i.e. du/u.

3.3 Discretisation and Implementation

The multiplicative approach presented above does not only guarantee the pos-
itivity of our solution, it also enables us to introduce an efficient semi–implicit
iteration scheme. To this end, we consider a gradient descent scheme with the
multiplicative gradient δ∗E

δu from Eq. (15):

uk+1 − uk

τ
= 2 uk+1

(
ek ∗ h∗

)
(x, d) , (16)

where τ is the relaxation parameter, and the upper index denotes the iteration
level. For the multiplicative gradient descent w.r.t. the depth map d, we use the
semi-implicit approach

dk+1 − dk

τ
= −2

((
ek ∗ h∗

z

)
(x, dk) u −

((
ek · FN[u, dk]

)
∗ h∗

z

)
(x, dk)

)
· dk+1

+ 2α · div
(
Ψ ′(|∇dk|2) ∇dk+1

)
· dk . (17)

This semi–implicit scheme is less sensitive sensitive w.r.t. the relaxation para-
meter such that it can remain fixed during the iterations. Therefore, we can
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refrain from backtracking line–search or complicated methods such as Brent’s
algorithm that combines the bisection method, the secant method and inverse
quadratic interpolation. Such methods are required when using the standard
additive Euler–Lagrange formalism for this problem and are avoided by our
approach.

Since we deal with digital images, we replace continuous functions by their
discrete counterparts and derivatives by finite differences. The 3-D convolution
is implemented in the Fourier domain, using the Fast Fourier Transform and
the convolution theorem. While Eq. (16) can be solved directly, Eq. (17) requires
to solve a nonsymmetric linear system of equations. We solve the latter one
iteratively with a Jacobi algorithm. We use an alternating minimisation scheme
[15] as it is commonly used e.g. in blind deconvolution problems [6]: Keeping
the solution for one sub–problem fixed (e.g. recovering the sharp image u), the
other problem (e.g. the estimation of the depth) is solved with a fixed num-
ber of gradient descent steps. After that, roles are exchanged. To account for
the nonconvexity, we apply a coarse–to–fine strategy where the solution of the
downsampled problem serves as initialisation on the next finer one.

4 Experiments

Synthetic Data. In our first experiment, we generated a stack of images with
varying focal planes. This is achieved by rendering the 3-D model from Fig. 2(a)
with the thin lens camera model (lens diameter D = 2.69 cm, distance to image
plane v = 35 mm). In total we have rendered 20 images where the distance of the
focal plane to the lens changed in equidistant steps from fp = 3 cm to fp = 7 cm.
Figure 2(d) shows 3 different slices of this rendered focal stack.

In Fig. 3, we compare the results of different approaches to estimate the topo-
graphy. For the variance method two undesired hills in front of and behind the
hemisphere arise (Fig. 3(a)). Using the forward operator FU leads to a violation

Table 1. Quantitative comparison. Error measurement of the estimated topography
and the sharp image to its ground–truth. We consider the mean squared error (MSE)
as well as the structural similarity (SSIM) [26]. We compare the variance method (VM)
with and without Gaussian post–smoothing with variance σ, the operator FU, and our
max–min–preserving imaging model FN. The latter two are either initialised with a
constant depth or an estimation of the VM.

Method VM FU Ours

σ = 0 σ = 4 Constant VM Constant VM

Depth MSE 2.83 1.10 21.66 2.26 0.77 0.58

SSIM 0.98 0.93 0.94 0.99 1.00 1.00

Image MSE 48.33 46.38 124.52 52.17 49.09 45.17

SSIM 0.87 0.87 0.67 0.87 0.90 0.92
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Fig. 3. Visual comparison. Left box: In reading order (a) Variance Method (VM) with
Gaussian post–smoothing (patch-size = 6, σ = 4.0). (b) LU ignoring normalisation,
initialised with constant depth (α = 45). (c) Dito initialised with VM. (d) Ours LN

initialised with constant depth (α = 150). (e) Dito with VM initialisation. (f) Ground–
truth of the topography. Right box: (g) Top: Estimated sharp image. (h) Bottom:
Ground–truth of the sharp image.

of the model assumptions at large depth changes (Fig. 3(b,c)). It implicitly intro-
duces a regularisation that erroneously prefers only smooth changes of depth.
While Fig. 3(b) has been initialised with a constant depth map, Fig. 3(c) has been
initialised with the result of the variance method. Apparently the initialisation
strongly affects the outcome. Due to wrong assumptions at depth changes, it is
not possible to converge to a reasonable solution with a constant initialisation.
In contrast to that, the reconstructions with our normalised forward operator
FN shown in the Fig. 3(d, e) do not suffer from this effect. Our approach is less
sensitive to the initialisation, yielding similar error values and reconstructions
in both cases. In fact, our model entails a physically plausible behaviour also at
depth changes. We obtain reconstructions that match the ground truth in a bet-
ter way, concerning both the depth and the sharp image; cf. Table 1. Figure 3(g)
also shows the estimated sharp image with our approach. It closely resembles
the ground truth.

Real–World Data. In our second experiment, we test our approach on a real
world focal stack showing a house fly eye (see Fig. 4(a)). We employ a coarse–
to–fine strategy with the variance method as initialisation on the coarsest grid.
To demonstrate the performance of our approach on this real word data set, we
present the reconstructed sharp image along with the estimated depth profile
(Fig. 4(b)). For the illustration of the depth profile a grey value coding is used:
The brighter the grey value the larger the distance of the object to the lens. In our
result, fine structures are clearly visible in the sharp image and the depth profile.
This can be seen in Fig. 4(b) when considering the small hair, for example.

In our third experiment, we use an image stack consisting of 22 frames that
depict a coffee bean. Figure 5(a) shows 3 different slices of this focal stack. In
this experiment we employ a coarse–to–fine strategy again but this time with
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Fig. 4. House fly eye (provided by the Biomedical Imaging Group EPFL, Lausanne,
Switzerland). (a) Left box: 3 out of 21 images of a focal stack of a house fly eye. (b)
Right box: Estimated sharp image and topography for α = 25.

Fig. 5. Coffee bean (provided by the Computer Graphics Group, MPI for Informatics,
Saarbrücken, Germany). (a) Left box: 3 out of 22 images of the focal stack of a coffee
bean. (b) Right box: Reconstructed sharp image along with the estimated depth
(α = 160).

a constant depth value as initialisation on the coarsest grid. Even with such a
crude initialisation, accurate results are possible.

5 Conclusions

We have shown the benefits of introducing two physical constraints into vari-
ational depth–from–defocus models: a maximum–minimum principle w.r.t. the
unknown sharp image, and the positivity of the sought image intensities and the
depth values. Our resulting model offers clear advantages especially in the pres-
ence of strong depth variations. Moreover, we advocate to replace the traditional
Euler–Lagrange formalism by a multiplicative variant, whenever positivity is to
be preserved. It is our hope that both physically refined modelling and multi-
plicative calculi will receive more popularity in future computer vision models.
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