
Chapter 2
Kernel-Based Adaptive Image Retrieval
Methods

Abstract This chapter presents machine learning methods for adaptive image
retrieval. In a retrieval session, a nonlinear kernel is applied to measure image
relevancy. Various new learning procedures are covered and applied specifically
for adaptive image retrieval applications. These include the adaptive radial basis
function (RBF) network, short term learning with the gradient-decent method,
and the fuzzy RBF network. These methods constitute the likelihood estimation
corresponding to visual content in a short-term relevance feedback (STRF). The
STRF component can be further incorporated in a fusion module with contextual
information in long-term relevance feedback (LTRF) using the Bayesian framework.
This substantially increases retrieval accuracy.

2.1 Introduction

Adaptation of the traditional similarity function plays a vital role in enhancing the
capability of image retrieval and broadening the domain of applications for machine
learning. In particular, it is often necessary to adapt the traditional Euclidean inner-
product to the more flexible and nonlinear inner products characterized by relevance
feedback parameters. The new inner products lead to a new similarity metric. As a
result, the image retrieval has to be necessarily conducted in a new space that is
adaptively re-defined in accordance with different user preferences. This implies a
greater flexibility for image retrieval. The topics addressed in this chapter are as
follows:

Section 2.2 will look into the linear kernel that is implemented through the query
adaptation method, metric adaptation method, and a combination of these methods.
In a linear-based adaptive retrieval system, the similarity score of a pair of vectors
may be represented by their inner product or Mahalanobis inner product.

Depending on the data cluster structure, either linear or nonlinear inner products
may be used to characterize the similarity metric between two vectors. The linear
metric would be adequate if the data distribution is relatively simple. To handle more
complex data distributions, it is often necessary to adopt nonlinear inner products
prescribed by nonlinear kernel functions, e.g., the Gaussian radial basis function
(RBF). Section 2.3 introduce a single-class RBF method for adaptive retrieval.
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To cope with the small size of training sample sets and convergence speed, new
learning methods are required for the construction of the RBF network, instead of
the direct application of traditional learning procedures. Section 2.4 introduces an
adaptive RBF network to exploit the local context defied by query sessions, and aids
in improving retrieval accuracy. This section follows by the optimization of network
parameters by the gradient-descent-based learning procedure, then introducing
fuzzy RBF network which offers a soft-decision choice to the users.

Section 2.5 establishes the fusion of content and context information, by the
application of Bayesian theory. The content component is gathered from a short-
term relevance feedback (STRF), which is the estimation of the likelihood of a
specific query model. The context information is obtained by a long-term relevance
feedback (LTRF), representing a user history or the a priori information.

2.2 Kernel Methods in Adaptive Image Retrieval

2.2.1 Adaptive Retrieval Framework

The most important part in the adaptive process is the analysis of the role of the
user in perceiving image similarity according to preferred image selections. This is
implemented by a mapping function, fq : RP → R, which is given by:

yq = fq(x) (2.1)

where x = [x1, . . . ,xP]
t is called a feature vector in a P-dimensional Euclidean space

R
P, corresponding to an image in the database. The main procedure is to obtain

the mapping function fq (for the query class q) from a small set of training images,
T = {(x1, l1) ,(x2, l2) , . . . ,(xN , lN)}, where the class label li can be in binary or
non-binary form. In the binary form, the training samples contains a set of positive
samples, X + and a set of negative samples, X −:

T = X +∪X − (2.2)

X + =
{

x′i|li = 1
}
, i = 1, . . . ,Np (2.3)

X − =
{

x′′ j|l j = 0
}
, j = 1, . . . ,Nn (2.4)

where Np and Nn are the numbers of positive and negative samples, respectively.
The adaptive process for constructing the mapping function for retrieval is

summarized in Table 2.1.
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Table 2.1 Summary of the adaptive retrieval algorithm

Input: Query vector = xq

Set of vectors to be searched in the database = xn,n = 1, · · · ,T
Output: The final retrieval set, containing k-relevant samples = Sk (xq)

Computation:

d (xq,xn) =

[
P

∑
i

∣∣xqi − xni
∣∣2

] 1
2

,n = 1,2, . . . ,T,

Sk (xq) =
{

x|d (xq, x)≤ d (xq,xk)
}

where Sk (xq) is the set of nearest neighbors, and xk is the k-th nearest neighbor
of xq.

Repeat: Obtain training sample: {xi}N
i=1 ← Sk(xq)

User selects class label: li
Calculate model parameters of the mapping function fq

Calculate fq(xn), for n = 1,2, . . . ,T , and obtain

Sk (xq) =
{

x| fq (x)≥ fq (xk)
}

Until: User is satisfied with the retrieval result.

2.2.2 Query Adaptation Method

Among the early attempts to conduct adaptive retrieval, Rui et al. [11, 12] imple-
mented the query modification strategy, and the mapping function takes the form of
the following linear function:

fq (x) =
x ·xq̂

‖x‖ ∥∥xq̂
∥
∥ (2.5)

∝ K
(
x,xq̂

)
(2.6)

where K is the linear kernel function:

K
(
x,xq̂

)≡ 〈
x,xq̂

〉 ≡ x ·xq̂ (2.7)

and x · xq̂ denotes the Euclidean inner product, xq̂ =
[
xq̂1, . . . ,xq̂P

]t
is the modified

query vector, and ‖·‖ is the Euclidean norm. The linear kernel function represents
the similarity metric for a pair of vectors, x and xq̂. The two vectors, x and xq̂
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are called orthogonal if
〈
x,xq̂

〉
= 0 in which case we write x ⊥ xq̂, i.e. they are

geometrically perpendicular. Given two vectors, the smaller the magnitude of their
inner-product, the less similar they are.

The modified query vector xq̂ discussed in Eq. (2.7), is obtained by the training
samples as:

xq̂ = αxq +β

(
∑Np

i=1 x′i
Np

)

− ε

(
∑Nn

i=1 x′′i
Nn

)

(2.8)

where xq =
[
xq1, . . . ,xqP

]t
denotes the original query vector, and (α, β , ε) are

suitable parameters [13]. The new query is obtained by adjusting the positive and
negative terms of the original query. When adding the positive terms to the query,
the modified query is close to the mean of the positive samples (i.e., xq̂

∼= x̄′), and the
inner product

〈
x′,xq̂

〉 ∼= 1. On the other hand, subtracting the negative terms from
the query will make the modified query more dissimilar to the negative samples.

The query modification method has been widely used for information retrieval
[13, 107] and image retrieval systems [14, 103]. However, one disadvantage of this
model is the requirement of an indexing structure to follow term-weighting model,
as in text retrieval for greater effectiveness. The models assume that the query index
terms are sparse and are usually of a binary vector representation. However, as
compared to text indexing, image feature vectors are mostly real vectors. Thus, a
large number of terms can be applied for characterization of images in order to
overcome this problem [103]. This also increases computational complexity.

2.2.3 Metric Adaptation Method

The Euclidean inner-product may be extended as the Mahalanobis inner product

K (x,xq) =
〈
x,xq

〉
M = xtMxq (2.9)

with a weight matrix M. The Euclidean inner product is a special case of the
Mahalanobis inner product with M = I. In this case, we assume that all the
features are equally weighted in their importance, and there exists no inter-
feature dependence. However, when the features are mutually independent, but not
isotropic, the Mahalanobis matrix takes the following form

M = Diag{wi} , i = 1, · · · ,P (2.10)

where the weights {wi, i= 1, · · · ,P} reflect the importance of the respective features.
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The Mahalonobis inner product leads to the following Mahalonobis distance
between x and xq, which is associated as the mapping function as in [17,19–24,103],

fq (x) =
∥
∥x−xq

∥
∥

M ≡
√

(x−xq)
tM(x−xq) (2.11)

=

(
P

∑
i=1

wi(xi − xqi)
2

) 1
2

(2.12)

≡
(

P

∑
i=1

h(di)

) 1
2

(2.13)

where xq =
[
xq1, . . . ,xqP

]t
is the feature vector of the query image, and h(di)

denotes a transfer function of distance di = |xi−xqi|. The weight parameters {wi, i=
1, · · · ,P} are called relevance weights, and ∑i wi = 1. The weight parameters can be
calculated by the standard deviation criterion [17, 20, 21] or a probabilistic feature
relevance method [16].

Different types of distance function have also been exploited. These include the
selection of Minkowski distance metrics according to a minimum distance within
the positive class [23], the selection of metrics based on reinforcement learning [22]
and on the interdependencies between feature elements [25].

2.2.4 Query and Metric Adaptive Method

In order to reduce time for convergence, the adaptive systems have been designed
to combine the query reformulation model with the adaptive similarity function
[26–30]. Apart from Eq. (2.8), the query modification model can be obtained by a
linear discrimination analysis [30], and a probabilistic distribution analysis methods
applied to the training samples [28].

The optimum solutions for query model and similarity function can be obtained
by the optimal learning relevance feedback (OPT-RF) method [26]. The optimum
solution for a query model, obtained by Lagrange multiplier, is given by the
weighted average of the training samples:

xt
q̂ =

vtX

∑N
i=1 vi

(2.14)

where xq̂ =
[
xq̂1, . . . ,xq̂P

]t
denotes the new query, v = [v1,v2, . . . ,vN ]

t , vi is the
degree of relevance for the i-th training sample given by the user, X is the training
sample matrix, obtained by stacking the N training vectors into a matrix, i.e.,
X = [x1 . . .xN ]

t . The optimum solution for the weight matrix M is obtained by:



22 2 Kernel-Based Adaptive Image Retrieval Methods

M =

{
(det(C))

1
K C−1 if det(C) �= 0

Diag
{

1
C11

, 1
C22

, . . . , 1
CPP

}
Otherwise

(2.15)

where C denotes the weight covariance matrix, given by:

Crs =
∑N

i=1 vi
(
xir − xq̂r

)(
xis − xq̂s

)

∑N
i=1 vi

, r,s = 1, . . . ,P (2.16)

Based on Eq. (2.15), the weight matrix is switched between a full matrix and a
diagonal matrix. This overcomes possible singularities when the number of training
samples, N, is smaller than the dimensionality of the feature space, P.

Table 2.2 gives a summary of the OPT-RF method, where the relevance feedback
process is conducted after the initial search.

Table 2.2 Summary of the optimal learning relevance feedback algorithm

Input: Query vector = xq

Set of vectors to be searched in the database = xn,n = 1, . . . ,T
The training samples = {xi}N

i=1

Output: The final retrieval set, containing k-relevant samples = Sk
(
xq̂
)

Repeat: User provides relevance scores of training samples, v1,v2, . . . ,vN

Calculate new query: xt
q̂ =

vt X
∑N

i=1 vi

Calculate weight parameter:

M =

⎧
⎨

⎩
(det(C))

1
K C−1 if det(C) �= 0

Diag
{

1
C11

, 1
C22

, . . . , 1
CPP

}
Otherwise

Calculate fq̂ (xn) =
((

xn −xq̂
)tM

(
xn −xq̂

)) 1
2
, for n = 1,2, . . . ,T , and obtain

Sk
(
xq̂
)
=
{

x| fq̂ (x)≤ fq̂ (xk)
}

where Sk
(
xq̂
)

is the set of nearest neighbors and xk is the k-th nearest neighbor
of xq̂.

{xi}N
i=1 ← Sk

(
xq̂
)

Until: User is satisfied with the retrieval result.
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2.2.5 Nonlinear Model-Based Adaptive Method

The methods outlined above are referred to as linear-based learning and this restricts
the mapping function to quadratic form, which cannot cope with a complex decision
boundary. For example, the one-dimensional distance mapping function h(di) in
Eq. (2.13) may take the following form:

h(di) = wid
2
i (2.17)

where di = |xi − xqi|. This function has a small degree of nonlinear behaviour, i.e.,

∂ fq (x)
∂di

= 2widi (2.18)

where wi is fixed to a numerical constant for the respective feature dimension.
To simulate human perception, a radial basis function (RBF) network [31, 45]

is employed in this chapter. The input–output mapping function, f (x), is employed
on the basis of a method called regularization [32]. In the context of a mapping
problem, the idea of regularization is based on the a priori assumption about the
form of the solution (i.e., the input–output mapping function f (x)). In its most
common solution, the input–output mapping function is smooth, in the sense that
similar inputs correspond to similar outputs. In particular, the solution function
that satisfies this regularization problem is given by the expansion of the radial basis
function [33]. In this case, a new inner product is expressed as a nonlinear kernel
function K (x,z) :

〈x,z〉 = K (x,z) (2.19)

The Gaussian-shaped redial basis function is utilized:

K (x,z) = exp

(

−‖x− z‖2

2σ 2

)

(2.20)

where z denotes the center of the function and σ denotes its width. The activity of
function K (x,z) is to perform a Gaussian transformation of the distance ‖x− z‖ ,
which describes the degree of similarity between the input x and center of the
function. Under Gaussian distribution, this function reflects the likelihood that a
vector x may be mistaken to be another vector z.

To estimate the input–output mapping function f (x), the Gaussian RBF is
expanded through both its center and width, yielding different RBFs which are then
formed as an RBF network. Its expansion is implemented via a learning process,
where the expanded RBFs can modify weighting, to capture user perception.



24 2 Kernel-Based Adaptive Image Retrieval Methods

2.3 Single-Class Radial Basis Function Based
Relevance Feedback

Whist in the later sections in this chapter, the P-dimensional RBF function is
explored, in this section, a one-dimensional Gaussian-shaped RBF applied for the
distance function h(di) in Eq. (2.13), i.e.,

fq (x) =
P

∑
i=1

G(xi,zi) (2.21)

=
P

∑
i=1

exp

(

− (xi − zi)
2

2σ2
i

)

(2.22)

where z = [z1,z2, . . .zP]
t is the center of the RBF, σ = [σ1,σ2, . . . ,σP]

t is the
tuning parameter in the form of RBF width. Each RBF unit implements a Gaussian
transformation which constructs a local approximation to a nonlinear input–output
mapping. The magnitude of fq (x) represents the similarity between the input vector
x and the center z, where the highest similarity is attained when x = z.

Each RBF function is characterized by two adjustable parameters, the tuning
parameters and the adjustable center:

{σ i,zi}P
i=1 (2.23)

This results in a set of P basis functions,

{Gi (σ i,zi)}P
i=1 (2.24)

The parameters are estimated and updated via learning algorithms. For a given
query class, some pictorial features exhibit greater importance or relevance than
others in the proximity evaluation [16, 30]. Thus, the expanded set of tuning
parameters, σ = [σ1,σ2, . . . ,σP]

t controlled the weighting process according to
the relevance of individual features. If the i-th feature is highly relevant, the value
of σ i should be small to allow greater sensitivity to any change of the distance
di = |xi − zi|. In contrast, a large value of σ i is assigned to the non-relevant features.
Thus, the magnitude of the corresponding function Gi is approximately equal to
unity regardless of the distance di.

2.3.1 Center Selection

The selection of query location is done by a modified version of the learning
quantization (LVQ) method [31]. In the LVQ process, the initial vectors (in a
codebook), referred to as Voronoi vectors, are modified in such a way that all
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points partitioned in the same Voronoi cells have the minimum (overall) encoding
distortion. The movement of the Voronoi vectors is based on the class labels
provided in a training set, so as to improve the accuracy of classification. Let{

z j
}J

j=1 denote the set of Voronoi vectors. Also, let {xi}N
i=1 denote the set of training

samples. First, for the input vector xi[t] at iteration index t, the class index c(xi) of
the best-matching Voronoi vector zc is identified by:

c = argmin
j

{∥∥xi − z j
∥
∥} (2.25)

The Voronoi vector zc is modified by the reinforced learning rule if the class indexes
of zc and xi are in agreement,

zc[t +1] = zc[t]+α[t]( xi [t]− zc [t]) (2.26)

Otherwise, the modification is obtained by the anti-reinforced learning rule:

zc [t +1] = zc [t]−α[t]( xi [t]− zc [t]) (2.27)

where α[t] is the leaning constant, which decreases monotonically with the number
of iterations. All other Voronoi vectors remain unchanged, except the best-matching
Voronoi vector.

In the adaptive image retrieval process, we have the training samples with two-
class labels, {xi, li}N

i=1, li ∈ {0,1}, associated with the query vector, xq. This training
set represents the set of points closest to the query, according to the distance
calculation in the previous search operation. Consequently, each data point can be
regarded as the vector that is closest to the Voronoi vector. Therefore, following the
LVQ algorithm, it is observed that all points in this training set are used to modify
only the best-matching Voronoi vector, that is, zc ≡ xq.

Center shifting model 1: The first model approximates the Voronoi vector (after the
convergence) by the position that is close to the data points that are in the positive
class (li = 1), and away from those points that are in the negative class (li = 0):

znew
c = zold

c +αR

(
x̄′ − zold

c

)
−αN

(
x̄′′ − zold

c

)
(2.28)

x̄′ = ∑Np
i=1 x′i
Np

(2.29)

x̄′′ = ∑Nn
i=1 x′′i
Nn

(2.30)

where zold
c is the previous RBF center, x′i, i = 1, . . .Np are the positive samples,

x′′i , i = 1, . . .Nn are the negative samples, αR and αN are suitable positive constants.
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Center shifting model 2: We may reduce the procedural parameters and provide a
direct movement of the RBF center towards the positive class. Equation (2.28) is
reduced to:

znew
c = x̄′ −αN

(
x̄′′ − zold

c

)
(2.31)

Since the positive class indicates the user’s preferred images, the presentation
of x̄′ for the new RBF center will give a reasonable representation of the desired
images. In particular, the mean value, x̄′ = 1

Np
× ∑Np

i=1 x′i, is a statistical measure
providing a good representation of the i-th feature component since this is the value
which minimizes the average distance 1

Np
× ∑Np

i=1 (x
′
i − x̄′).

2.3.2 Width Selection

The RBFs are adjusted in accordance with different user preferences and different
types of images. Through the proximity evaluation, differential biases are assigned
to each feature, while features with higher relevance degrees are emphasized, and
those with lower degrees are de-emphasized. To estimate the relevance of individual
features, the training vectors associated with the set of positive images are used to
form an Np ×P feature matrix R,

R =
[
x̄′1 . . . x̄

′
m . . . x̄′Np

]t
(2.32)

=
[
x′mi

]
, m = 1, . . . ,Np, i = 1, . . . ,P (2.33)

where x′mi is the i-th component of the m-th feature vector x̄′m, P is the total number
of features, and Np is the number of positive samples. As the previous discussion,
the tuning parameter σ i should reflect the relevance of individual features. It was
demonstrated, in [16,34], that given a particular numerical value zi for a component
of the query vector, the length of the interval which complexly encloses zi and a
pre-determined number L of the set of values x′mi in the positive set which falls
into its vicinity, is a good indication of the relevancy of the feature. In other
words, the relevancy of the i-th feature is related to the density of x′mi around zi,
which is inversely proportional to the length of the interval. A large density usually
indicates high relevancy for a particular feature, while a low density implies that
the corresponding feature is not critical to the similarity characterization. Setting
L = Np, the set of turning parameters is thus estimated as follows:
RBF width model 1:

σ = [σ1, . . . ,σ i, . . .σP]
t (2.34)

σ i = η ·max
m

(
∣
∣x′mi − zi

∣
∣) (2.35)

The factor η guarantees a reasonably large output G(xi,zi) for the RBF unit, which
indicates the degree of similarity, e.g., η = 3.
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RBF width model 2: The feature relevancy is also related to sample variance in the
positive set {x′mi}Np

m=1, and thus, the RBF width can also be obtained by

σ i = exp((β )Stdi) (2.36)

Stdi =

(
1

Np −1

Np

∑
m=1

(
x′mi − x̄′

)2

) 1
2

(2.37)

where Stdi is the standard deviation of the members in set {x′mi}Np
m=1 which is

inversely proportional to their density (Gaussian distribution), and β is a positive
constant. The parameter β can be chosen to maximize or minimize the influence
of Stdi on the RBF width. For example, when β is large, a change in Stdi will
be exponentially reflected in the RBF width σ i.

Both models provide a small value of σ i if the i-th feature is highly relevant. This
allows higher sensitivity to any change in the distance di = |xi − zi| . In contrast, a
high value of σ i is assigned to the non-relevant feature, so that the corresponding
vector component can be disregarded when determining the similarity. Table 2.3
summarizes the RBF-based relevance feedback algorithm using RBF center model
1 and RBF width model 1.

2.3.3 Experimental Result

This section reports the experimental results [35, 329] of the nonlinear RBF
approach in comparison with linear-based adaptive retrieval methods. Table 2.4
describes the database and feature extraction methods used in the experiment.
The Laplacian mixture model (LMM) demonstrated in [35] is applied to the texture
images for feature characterization. Table 2.5 summarizes the learning procedure
of all methods of comparison, which comprise of the RBF method, the query
adaption method (QAM), and the metric adaption method (MAM). Table 2.6
summarizes the retrieval results in terms of average precision. The initial precision
of 76.7 %, averaged over all queries, was obtained. The precision was significantly
improved by updating weighting functions. During relevance feedback, most of
the performance enhancement was achieved after the first iterations. A slight
improvement was achieved after the second iteration. A significant improvement
in the retrieval efficiency was observed by employing a nonlinear RBF method.
The final results, after learning, show that RBF-1 gave the best performance with
88.12 % correct retrievals, followed by RBF-2 (87.37 %), and MAM (80.74 %) at a
distant third. The QAM is also given for benchmarking purposes.

Figure 2.1 illustrates retrieval examples with and without learning similarity.
It shows some of the difficult patterns analyzed, which clearly illustrates the
superiority of the RBF method.
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Table 2.3 Summary of the single-RBF based relevance feedback algorithm

Input: Query vector = xq

The training samples= {xi}N
i=1

Output: The final retrieval set, containing k-relevant samples = Sk(xq)

Initialization: RBF center zc ≡ xq

Repeat: User labels training samples, i.e., li, i = 1, . . . ,N, li ∈ {0,1}
Calculate RBF center: znew

c = zold
c +αR

(
x̄′ − zold

c

)−αN
(
x̄′′ − zold

c

)

Calculate RBF widths:

σ i = η max
m

∣∣x′mi − zi
∣∣ , i = 1, . . . ,P

Calculate fq (xn) = ∑P
i=1 G(xni,zi), for n = 1,2, . . . ,T , and obtain

Sk (xq) =
{

x| fq (x)≥ fq (xk)
}

where Sk (xq) is the set of nearest neighbors and xk is the k-th nearest neighbor
of xq.

{xi}N
i=1 ← Sk (xq)

Until: User is satisfied with the retrieval result.

Table 2.4 Database and feature extraction methods

Item Description

Brodatz texture
database

The database contains 1,856 texture images divided into 116 classes. Every
class has 16 images

Laplacian
mixture model
(LMM) [35]

The images are decomposed to three levels using Daubechies wavelet filters
(db4). The wavelet coefficients in each of high-frequency subbands are
modeled as a mixture of two Laplacians. The parameters of the model are
used as the features. The feature set composes of (1) the mean and standard
deviation of the wavelet coefficients in the approximation subbands and
(2) the variances of the two Laplacians in each of the nine high-frequency
subbands. This results in 20-dimensional feature vector

In the second experiment, the adaptive retrieval methods are applied in photo-
graph collection. Table 2.7 gives details of the database and the multiple types of
visual descriptors, including color, texture, and shape. Table 2.8 gives details of the
methods being compared. The average precision rates and CPU times required are
summarized in Table 2.9. Evidently, the nonlinear RBF method exhibits significant
retrieval effectiveness, while offering more flexibility than MAM and OPT-RF.
With the large, heterogeneous image collection, an initial result obtained by the
non-adaptive method had less than 50 % precision. With the application of the
RBF learning method, the performance could be improved to greater than 90 %
precision. Due to limitations in the degree of adaptability, MAM provides the
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Table 2.5 Comparison of adaptive retrieval methods

Method Learning algorithm

RBF-1 RBF center model 1 (αR = 1.2, αN = 0.08)
RBF width model 1 (η = 12)

RBF-2 RBF center model 2 (αR = 1.2)
BRF width model 1 (η = 12)

QAM [12, 14, 18, 36,
51, 103]

Query modification in Eq. (2.8), Cosine similarity metric in Eq. (2.6)
(α = 1, β = 4, γ = 0.8)

MAM [17, 20, 21] City-block distance is used for similarity metric. The feature weighting
is obtained by the standard deviation criterion

Table 2.6 Average
precision (%)

Method Iter. 0 Iter. 1 Iter. 2 Iter. 3

MAM 76.70 80.43 80.71 80.74

RBF-1 76.70 85.02 86.90 88.12

RBF-2 76.70 85.32 86.80 87.37

QAM 67.10 75.12 76.42 76.95

lowest performance gains and converges at about 62 % precision. It is observed
that the learning capability of RBF is more robust than that of OPT-RF, not only
in retrieval capability, but also learning speed. As presented in Table 2.9, results
after one round of the RBF method are similar to results after three rounds of the
OPT-RF method. This quick learning is highly desirable, since the user workload
can be minimized. This robustness follows from imposing nonlinear discriminant
capability in combination with positive and negative learning strategies.

Typical retrieval sessions are shown in Fig. 2.2, for the Yacht query. Figure 2.2a
show the 16 best-matches images before applying any feedback, with query image
display in the top-left corner. It was observed that some retrieved images were
similar to the query image in terms of color composition. In this set, three retrieved
images were marked as relevant subjects to the ground truth classes. Figure 2.2b
shows the improvement in retrieval after three rounds of using the RBF learning
method. This is superior to the results obtained by MAM (cf. Fig. 2.2c) and OPT-
RF (cf. Fig. 2.2d). This query may be regarded as a “hard” query, which requires
a high degree of nonlinear discrimination analysis. There are some quires that
are relatively easier to retrieve, which are shown in Fig.2.3. Those queries have
prominent features, such as a shape in the Rose query, and a combination of texture
and color in the Polo query. In each case, it is observed that the MAM and OPT-
RF methods show better performance than in the previous results. In these cases,
however, the retrieval results obtained by RBF approached 100 % precision.



30 2 Kernel-Based Adaptive Image Retrieval Methods

Fig. 2.1 Top 16 retrievals obtained by retrieving textures D625, D669, and D1700 from the
Brodatz database, using RBF-1. Images on the left, (a), (c), and (e) show results before learning,
and images on the right, (b), (d), and (f), show results after learning

2.4 Multi-Class Radial Basis Function Method

In image retrieval, particularly in general image collections, the relevancy of images
to a specific query is most appropriately characterized by a multi-class modeling
approach. For example, when a user has a query for a plane, she or he may
wish to have any image containing planes. The semantics of a plane is usually
described by a variety of models, which are correlated, but each of which has its
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Table 2.7 Database and feature extraction methods

Item Description

Corel database
[73]

The database contains 40,000 real-life images divided into 400 classes.
Every class has 100 images

Color histogram
[38] and color
moments

The first descriptor is a 48-bin color histogram in HSV color space.
The second descriptor is a nine-dimensional vector, conducted from the
mean, standard deviation, and skew of the three RGB-color channels

Gabor wavelet
descriptor [91]

The 48-dimensional descriptor contains the mean and standard devia-
tions of the Gabor wavelet coefficients from the filtering in four scales
and six orientations

Fourier
descriptor [37]

The nine-dimensional descriptor contains the Fast Fourier transform
coefficients (at low frequency) of the edge information of an input image

Table 2.8 Comparison of adaptive retrieval methods

Method Learning algorithm

RBF RBF center model 2, RBF width model 2

OPT-RF [26] Optimum query adaptation model Eq. (2.14), optimum weighting metric
Eq. (2.15), Mahalanobis distance Eq. (2.11) as similarity function

MAM [17,20,21] Mahalanobis distance Eq. (2.11) as similarity function, weight parameters
Eq. (2.10) are obtained by the standard deviation criterion

Table 2.9 Average precision rate (%) obtained by retrieving 35 queries selected
from different categories, using the Corel database (columns 2–5)

Method Iter. 0 Iter. 1 Iter. 2 Iter. 3 CPU time (Sec./Iter.)

RBF 44.82 79.82 88.75 91.76 2.34

MAM 44.82 60.18 61.61 61.96 1.26

OPT-RF 44.82 72.14 79.64 80.84 1.27

Non-adaptive method 44.82 – – – 0.90
Average CPU time obtained by retrieving a single query, not including the time to
display the retrieved images, measured from a 1.8 GHz Pentium IV processor and
a MATLAB implementation

own local characteristics. The difficulty in characterizing image relevancy, then,
is identifying the local context associated with each of the sub-classes within
the class plane. Human beings utilize multiple types of modeling information to
acquire and develop their understanding about image similarity. To obtain more
accurate, robust, and natural characterizations, a computer must generate a fuller
definition of what humans regard as significant features. Through user feedback,
computers do acquire knowledge of novel features which are significant but have not
been explicitly specified in the training data. This implicit information constitutes
subclasses within the query, permitting better generalization. In this case, a mixture
of Gaussian models is used, via the RBF network, to represent multiple types of
model information for the recognition and presentation of images by machines.
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Fig. 2.2 Top 16 retrieved images obtained by the Yacht query, using the Corel Database, (a) before
RF learning, (b) after RF learning with the RBF method, (c) MAM, and (d) OPT-RF

Previously, Sect. 2.3 introduced a nonlinear input–output mapping function based
on a single-RBF model. As discussed by most other works [15–17], this has been
concerned with global modeling, in which a query image is described by one
model, which is then associated with only a particular location in the input space.
Furthermore, the similarity function is based on a single metric. This combination
gives rise to a single model function f (x), which cannot fully exploit the local data
information. This section introduces a mixture of Gaussian models for adaptive
retrieval that enables the learning system to take advantage of the information from
multiple sub-classes. The learning system utilizes a highly local characterization of
image relevancy in the form of a superposition of different local models, as ∑i fi (x),
to obtain the input–output mapping function.

The learning methods for constructing the RBF network include the adaptive
RBF method [61], gradient-descent method [40], and fuzzy RBF method [39].
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Fig. 2.3 Retrieval results of POLO and ROSE queries, obtained by (a, b) non-adaptive retrieval
method, (c, d) RBF, (e, f) MAM, and (g, h) OPT-RF
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2.4.1 Local Model Network

The basic assumption underlying the use of learning systems is that the behavior of
the system can be described in terms of the training set {xi,yi}N

i=1. It is therefore
assumed that the system to be described by a model whose observable output yi, at
the time of step i, in response to an input vector xi, is defined by:

yi = f (xi)+ ε i, i = 1,2, . . . ,N (2.38)

where ε i is a sample drawn from a white noise process of zero mean and variance
σ2. The modeling problem is to estimate the underlying function of the model,
f (xi), from observation data, having already used the existing a priori information
to structure and parameterize the model. Let f̂ (x,z) be the estimate of f (x) for
some values of the P-dimensional parameter vector z. The model f̂ (x,z) can be
estimated in a number of ways. A Local Model Network (LMN), is adopted to
achieve this purpose [41]. Figure 2.4 shows the network architecture. This type of
network approximates the model function f̂ (x,z) according to:

f̂ (x) =
Nm

∑
i=1

λ i f̂i (x,zi) (2.39)

=
Nm

∑
i=1

λ iKi(x,zi) =
Nm

∑
i=1

λ i exp

(

−‖x− zi‖ 2

2σ2
i

)

(2.40)

where x = [x1, . . . , xP]
t and z = [z1, . . . , zP]

t are the input vector and the RBF
center, respectively. In addition, λ i, i = 1, . . . ,Nm are the weight, and K(x,z) is a
nonlinearity of hidden nodes.

Fig. 2.4 RBF network architecture
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The advantage of this network’s use in the current application is that it finds the
input-to-output map using local approximators; consequently, the underlying basis
function responds only to a small region of the input space where the function is

centered, e.g., a Gaussian response, Ki = exp
(
− d2

2

)
, where:

d (x,zi,σ i) =

√
(x− z)tσ−2

i (x− zi) (2.41)

This allows local evaluation for image similarity matching.
The parameters to learn for the LMN are the set of linear weight λ i, the center zi,

and the width σ i for each local approximator Ki, i= 1, . . . ,Nm. The linear weights are
usually estimated by the least-squared (LS) method [43]. When using the Gaussian
function as the nonlinearity of hidden nodes, it has been observed that the same
width of σ i is sufficient for the RBF network to obtain universal approximation
[42]. However, more recent theoretical investigations and practical results indicate
that the choice of center zi is most significant in the performance of the RBF network
[44]. As we shall see, this suggestion plays a central role in overcoming the variation
in the performance of the network in the adaptive retrieval application.

2.4.2 Learning Methods for the RBF Network

Various learning strategies have been proposed to structure and parameterize the
RBF network [41, 43–45]. This section will consider two of these beside the new
learning strategy for adaptive image retrieval. For a given training set {xi,yi}N

i=1, the
initial approaches [41], constructed the RBF network by associating all available
training samples to the hidden units, using one-to-one correspondence. A radial-
basis function centered at zi is defined as:

K (x, zi) = exp

(
−‖x− zi‖ 2

2σ2
i

)
, i = 1, . . . ,Nm (2.42)

where

{zi}Nm
i=1 = {xi}N

i=1, Nm = N (2.43)

This solution may be expensive, in terms of computational complexity, when N is
large. Thus, we may arbitrarily choose some data points as centers [43]. This gives
an approximation to the original RBF network, while providing a more suitable
basis for practical applications. In this case, the approximated solution is expanded
on a finite basis:

f̂ (x) =
Nm

∑
i=1

λ iK (x, zi) (2.44)
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where

{zi}Nm
i=1 ⊂ {xi}N

i=1, Nm < N (2.45)

The linear weights λ i, i = 1, . . . ,Nm are determined by minimizing the following
cost function, ξ ( f ):

ξ
(

f̂
)
=

N

∑
i=1

(

yi −
Nm

∑
j=1

λ jK (xi, z j)

)2

+ γ
∥
∥D f̂

∥
∥2

(2.46)

where γ is the regularization parameter, and D is a differential operator. Based on
the pseudoinverse method [43], the minimization of Eq. (2.46) with respect to the
weight vector λ = [λ 1, . . . ,λ Nm ]

t , yields:

λ = G+y (2.47)

=
(
GtG

)−1y (2.48)

where

y = [y1,y2, . . . ,yN ]
t (2.49)

The matrix G ∈MN×Nm is defined as:

G =
{

Ki j
}

(2.50)

Ki j = exp

(

−
∥
∥xi − z j

∥
∥ 2

2σ2
j

)

, i = 1, . . . ,N; j = 1, . . . ,Nm (2.51)

where xi is the i-th training sample.
Table 2.10 summarizes the RBF network learning with randomly selected

centers, applied to image retrieval. The main problem with this method is that it
cannot guarantee desired performance, because it may not satisfy the requirement
that the centers should suitably sample the input domain. To overcome this problem,
the orthogonal least squares (OLS) learning algorithm [44] is designed to select a
suitable set of centers so that adequate RBF networks can be obtained. The OLS
algorithm chooses centers one by one from the training data; that is, at each iteration
the vector that results in the largest reduction in network errors is used to create
the center. When the sum-squared error of the network computed is higher than a
specified level, the next center is added to the network. The iteration process stops
when the error falls beneath an error goal, or when the maximum number of centers
is reached. This provides a simple and efficient means for fitting RBF networks.
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Table 2.10 Summary of the RBF network learning with randomly selected centers,
applied to image retrieval

Input: The training samples = {xi}N
i=1 for a given query xq

Output: The final retrieval set, containing k-relevant samples = Sk

Initialization: Number of RBF centers = Nm

Setting RBF width to a positive constant, σ i ≤ 1, i = 1, . . . ,Nm

Repeat: User provides class label li, i = 1, · · · ,N, li ∈ {0,1}
Select RBF center {zi}NM

i=1 ⊂ {xi}N
i=1

Calculate weights λ = [λ 1, . . . ,λ Nm ]
t :

λ =
(
Gt G

)−1y

where
G =

{
Ki j
}

Ki j = exp

(

−
∥
∥xi − z j

∥
∥2

2σ2
j

)

, i = 1, . . . ,N; j = 1, . . . ,Nm

y = [y1, . . . ,yi, . . . ,yN ]
t , yi ← li

For n = 1,2, . . . ,T , calculate f̂ (xn) = ∑Nm
i=1 λ iK(xn,zi)

Obtain k-nearest neighbor:

Sk(xq) =
{

x| f̂ (x)≥ f̂ (xk)
}

where Sk is the set of top k ranked samples.

{xi}N
i=1 ← Sk(xq)

Until: User is satisfied with the retrieval result.

2.4.3 Adaptive Radial-Basis Function Network

Problems in adaptive image retrieval are considered as a special case for function
approximation. The characteristics of learning are quite different. First, the training
data size for image retrieval is very small compared to the general approximation
strategy. Second, the training samples available for image retrieval are highly
correlated, i.e., each sample is selected from a specific area of the input space and
is near to the next, in the Euclidean sense. When the training samples are highly
correlated, the choice of centers is the most important factor. The BRF network
will be ill-conditioned, owing to the near-linear dependency caused by some centers
being too close together [44].

In order to circumvent the environmental restrictions in image retrieval, an
adaptive learning strategy for the RBF network is introduced and referred to as
adaptive RBF network (ARBFN). This is a special network for learning in image
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retrieval where there is a small set of samples with a high level of correlation
between the samples. This new strategy is based on the following points:

• The learning method formulates and solves the local approximator K(x,z) from
available positive samples.

• In order to obtain a dynamic weighting scheme, the Euclidean norm in ‖x− z‖
is replaced with the weighted Euclidean, ‖x− z‖M .

• In order to take advantage of negative samples to improve the decision boundary,
a method of shifting centers is obtained, instead of employing linear weights.

The learning strategy for the ARBFN consists of two parts. First, the local
approximators K(x,z) are constructed using positive samples. Second, in order to
improve the decision boundary, negative samples are used for shifting the centers,
based on anti-reinforced learning [331].

2.4.3.1 Construction of Local Approximators

Given the set of positive samples, X + = {x′i}Np
i=1, each positive sample is assigned

to the local approximator K(x,zi), so that the shape of each relevant cluster can be
described by:

K(x,zi) = exp

(
−‖x− zi‖2

2σ 2
i

)
, (2.52)

zi = x′i, ∀i ∈ {1, . . . ,Nm} , Nm = Np (2.53)

σ i = δ ·min
(∥∥zi − z j

∥
∥), ∀ j ∈ {1,2, . . . ,Np}, i �= j (2.54)

where δ = 0.5 is an overlapping factor.
Here, only the positive samples are assigned as the centers of the RBF functions.

Hence, the estimated model function f (x) is given by:

f̂ (x) =
Nm

∑
i=1

λ iK(x,zi) (2.55)

λ i = 1, ∀i ∈ {1, . . . ,Nm} (2.56)

The linear weights are set to constant, indicating that all the centers (or the
positive samples) are taken into consideration. However, the degree of importance of
K(x,zi) is indicated by the natural responses of the Gaussian-shaped RBF functions
and their superposition. For instance, if centers za and zb are highly correlated (i.e.,
za ≈ zb), the magnitude of f̂ (x) will be biased for any input vector x located near
za or zb, i.e., f̂ (x)≈ 2K(x,za)≈ 2K(x,zb).
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2.4.3.2 Integrating Elliptic Basis Function

The basic RBF version of the ARBFN discussed in Eq. (2.52) is based on the
assumption that the feature space is uniformly weighted in all directions. However,
image feature variables tend to exhibit different degrees of importance which
heavily depend on the nature of the query and the relevant images defined [16].
This leads to the adoption of an elliptic basis function (EBF):

‖x− zi‖M = (x− zi)
tM(x− zi) (2.57)

where

M = Diag[α1, . . . ,α j, . . . ,αP] (2.58)

So, the parameter α j, j = 1, . . . ,P represents the relevance weights which are

derived from the variance of the positive samples in {x′i}Np
i=1, x′i ∈ R

P as follows:

α j =

{
1, ζ p = 0
1

ζ j
, Otherwise (2.59)

where

ζ j =

(
1

Np −1

Np

∑
i=1

(x′i j − x̄′j)
2

) 1
2

(2.60)

x̄′j =
1

Np

Np

∑
i=1

x′i j (2.61)

The matrix M is a symmetrical MP×P, whose diagonal elements α j assign a
specific weight to each input coordinate, determining the degree of the relevance of
the features. The weight α j is inversely proportional to ζ j, the standard deviation of

the j-th feature component of the positive samples, {x′i j}Np
i=1. If a particular feature

is relevant, then all positive samples should have a very similar value to this feature,
i.e., the sample variance in the positive set is small [17].

2.4.3.3 Shifting RBF Centers

The possibility of moving the expansion centers is useful for improving the
representativeness of the centers. Recall that, in a given training set, both positive
and negative samples are presented, which are ranked results from the previous
search operation. For all negative samples in this set, the similarity scores from the
previous search indicate that their clusters are close to the positive samples retrieved.
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Here, the use of negative samples becomes essential, as the RBF centers should be
moved slightly away from these clusters. Shifting the centers reduces the similarity
scores for those negative samples, and thus more favorable similarity scores can be
obtained for any positive samples that are in the same neighborhood area, in the next
round of retrieval.

Recall that the set of negative samples is denoted by X − = {x′′i }Nn
i=1, and Nn is

the number of these samples. At the n-th iteration, let the input vector x′′ (randomly
selected from the negative set) be the closest point to zi∗ , such that:

i∗ = argmin
i

(
∥
∥x′′ − zi

∥
∥

M), i ∈ {1, . . . ,Nm} (2.62)

Then, the center zi∗ is modified by the anti-reinforce learning rule:

zi∗ (n+1) = zi∗ (n)−η(n)[x′′ − zi∗ (n)] (2.63)

where η is a learning constant which decreases monotonically with the number of
iteration, and 0 < η < 1. The algorithm is repeated by selecting a new sample from
the set of input samples, {x′′i }Nn

i=1, and stops after a maximum number of iterations
is reached.

Table 2.11 summarizes the learning procedure of the ABRF network for image
retrieval. This includes learning steps explained in Sects. 2.4.3.1–2.4.3.3.

2.4.4 Gradient-Descent Procedure

Apart from the ARBFN model, the procedural parameters for RBF can be obtained
by a gradient-descent procedure [39,40]. This procedure is employed to optimize all
three parameters, zi, σ i, and λ i for each RBF unit. Here, all training samples (both
positive and negative) are assigned to the RBF centers, and the linear weights are
used to control the output of each RBF unit. Thus, the mapping function becomes:

f̂ (x) =
N

∑
i=1

λ iK(x,zi) =
N

∑
i=1

λ i exp

(

−‖x− zi‖2
M

2σ 2
i

)

(2.64)

where {zi}N
i=1 = X + ∪X −. During relevance feedback learning, the network

attempts to minimize the following error function:

ξ
(

f̂
)
=

1
2

N

∑
j=1

e2
j =

1
2

N

∑
j=1

(

y j −
N

∑
i=1

λ iK(x j,zi)

)2

(2.65)

where e j is the error signal for the training sample x j, and y j represents the desired
output of the j-th training sample. The network parameters can be obtained by the
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Table 2.11 Summary of the learning algorithm of the ARBF network for adaptive
retrieval

Input: The training samples = {xi}N
i=1 for a given query xq

Output: The final retrieval set, containing k-relevant samples = Sk(xq)

Initialization: Setting smoothing parameter δ = 0.5

Maximum number of iterations = Nmax

Setting anti-reinforce learning parameter η
Repeat: User provides labels for training vectors, li, i = 1, · · ·N, li ∈ {0,1}

Construct X + and X −

Assigning RBF center zi ← x′i, ∀i ∈ {1, . . . ,Np}
Obtain weight matrix M
For n = 1 : Nmax, adjust RBF centers

1. Randomly select the input vector x′′ from X −

2. Select winning node zi∗ , such that:

i∗ = argmin
i

(
∥∥x′′ − zi

∥∥
M), i ∈ {1, . . . ,Nm}

3. Update

zi∗ (n+1)← zi∗ (n)−η(n)[x′′ − zi∗ (n)]

End for-loop

For i = 1,2, . . . ,Np, calculate RBF width

σ i = δ min
∥
∥zi − z j

∥
∥ , ∀ j ∈ {1,2, . . . ,Np}, i �= j

For j = 1,2, . . . ,T , calculate f̂ (x j) = ∑Nm
i=1 exp

(
−‖x j−zi‖2

M
2σ2

i

)

Obtain k-nearest neighbor:

Sk(xq) =
{

x| f̂ (x)≥ f̂ (xk)
}

where Sk(xq) is the set of top k ranked samples.

{xi}N
i=1 ← Sk(xq)

Until: User is satisfied with the retrieval result.
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gradient-descent method to minimize the cost function, i.e.,

{zi, σ i,λ i}N
i=1 = argmin(ξ ) (2.66)

The learning procedure starts with the initialization of the linear weights:

λ i =

{
1, if zi is conducted from positive sample
−0.5, if zi is conducted from negative sample

(2.67)

and the RBF widths:

σ i = δ min
(∥∥zi − z j

∥
∥

M

)
, j ∈ {1,2, . . . ,N} i �= j (2.68)

Based on the gradient-descent method, the parameters for the i-th RBF unit are
updated in the iterative process, as follows:

1. For t = 1,2, . . . ,Nmax:
2. Update

λ i (t +1)← λ i (t)−η1
∂ξ (t)
∂λ i(t)

(2.69)

where ∂ξ (t)
∂λ i(t)

=−∑N
j=1 e j(t)K(x j,zi)

3. Update

zi (t +1)← z(t)−η2
∂ξ (t)
∂zi(t)

(2.70)

where ∂ξ (t)
∂zi(t)

=−λ i(t)∑N
j=1 e j (t)K(x j,zi)

M(x j−zi(t))
σ2

i (t)

4. Update

σ2
i (t +1)← σ2

i (t)−η3
∂ξ (t)
∂σ i(t)

(2.71)

where ∂ξ (t)
∂σ i(t)

=−λ i(t)∑N
j=1 e j (t)K(x j,zi)

(x j−zi(t))
t
M(x j−zi(t))

σ2
i (t)

5. Return

where Nmax is the maximum iteration count, and η1, η2, and η3 are the step sizes.
The adjustment of the RBF models proceeds along many relevance feedback ses-

sions. The training samples are gathered from the first to the last retrieval sessions,
and only selective samples are used to retrain the network. In each feedback session,
newly retrieved samples which have not been found in the previous retrieval are
inserted into the existing RBF network. In the next iteration, the updating procedure
is performed on the newly inserted RBF units, thus improving training speed.
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2.4.5 Fuzzy RBF Network with Soft Constraint

The error function ξ
(

f̂
)
defined in Eq. (2.65) is based on the binary labeling or

hard-decision. The desired network output y j is equal to 1 for positive samples,
and zero for negative samples. For a soft-decision, a third option, “fuzzy” is used
to characterize a vague description of the retrieved (image) samples [39]. Thus,
in a retrieval session, users have three choices for relevance feedback: relevant,
irrelevant, and fuzzy. The error function is then calculated by:

ξ
(

f̂
)
=

1
2

N

∑
j=1

(

y j −
N

∑
i=1

λ iK(x j,zi)

)2

(2.72)

y j =

⎧
⎨

⎩

1, x j is relevant
0, x j is irrelevant
P(X +|x j) , x j is fuzzy

(2.73)

where P(X +|x j) is the probability that a fuzzy sample x j belongs to the relevant
class X +. This represents the degree of relevancy for the corresponding fuzzy
sample. The learning problem is the problem in estimating the desired output
y j = P(X +|x j) of the fuzzy sample x j by the a posteriori probability estimator.
Let x j be defined by feature vector that is concatenated from M sub-vector, i.e.,
x j ≡ [v j1, . . . ,v ji, . . . ,v jM], where v ji is a di-dimensional feature sub-vector such as a
color histogram, a set of wavelet moments or others. To deal with the uncertainly, the
probability estimator takes into account the multiple features, by using the following
estimation principle:

P
(
X +|x j

)
=

1
M

M

∑
i=1

P
(
X +|v ji

)
(2.74)

where P(X +|v ji) is the a posteriori probability for the i-th feature vector v ji of the
fuzzy sample x j. the Bayesian theory is applied to P(X +|v ji),

P
(
X +|v ji

)
=

P(v ji|X +)P(X +)

P(v ji|X +)P(X +)+P(v ji|X −)P(X −)
(2.75)

where P(X +)and P(X −) are, respectively, the prior probabilities of the pos-
itive and negative classes, which can be estimated from the feedback samples;
P(v ji|X +) and P(v ji|X −) are the class conditional probability density functions
of v ji for the positive and negative classes, respectively. Assuming the Gaussian
distribution, the probability density function for the positive class is given by:

P
(
v ji|X +

)
=

1

(2π)
di
2 |∑ ′

i|
1
2

exp [−1
2

(
v ji −μ ′

i

)t∑ ′ −1
i (v ji −μ ′

i)] (2.76)
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where μ ′
i is the di-component mean vector and ∑ ′

i is the di-by-di covariance matrix
for the i-th feature vector, and |∑ ′

i| and ∑ ′ −1
i are its determinant and inverse,

respectively. These variables can be estimated using the positive training vectors
in the positive class X +,

μ ′
i =

1
Np

Np

∑
j=1

v′ ji (2.77)

∑ ′
i =

1
(Np −1)

Np

∑
j=1

(
v′ ji −μ i

)(
v′ ji −μ i

)t
(2.78)

where v′ ji is the i-th sub-vector of j-th positive sample, and Np is the number
of positive samples. For simplicity we abbreviate Eq. (2.76) as P(v ji|X +) ∼
N(μ ′

i, ∑ ′
i). Similarly, the probability density function for the negative class is

given by: P(v ji|X −) ∼ N(μ ′′
i, ∑ ′′

i ) where μ ′′
i is the mean vector and ∑ ′′

i is the
covariance matrix for the i-th feature vector, which can be estimated using the
negative training vectors in the negative class X −.

After the desired output y j of the fuzzy sample is estimated, the gradient-descent
procedure of Eqs. (2.69)–(2.71) are applied to construct the learning parameters of
the RBF network.

2.4.6 Experimental Result

The Corel database was used in the experiments reported in Sect. 2.3.3. All 40,000
images in the database were used, each of which was characterized by a multi-
feature representation (explained in Table 2.7). This section begins by implementing
the RBF network using the ARBFN leaning method and comparing its performance
with two other learning strategies. This is followed by examining the ARBFN and
the single-class learning methods discussed in Sects. 2.2–2.3.

The first objective is to verify that the ARBFN is able to meet the demands of
adaptive retrieval applications; in particular, where there is a small set of training
samples with a high level of correlation between the samples. A learning session
with this condition may be observed in Fig.2.3d, where the top sixteen retrieved
images are returned to the user who provides relevance feedback. It is seen that
at later iterations the learning system can improve the result sets, which means
that the more times the interactive retrieval is implemented, the higher the level
of correlation retrieved images.

The ARBFN method was compared with two learning strategies that have been
successfully used in other situations to construct the RBF network. Table 2.12
summarizes the methods being compared. The first learning method, the orthogonal
least square (OLS) learning procedure described in [44], was used to identify
a RBF network model. In the second learning method [43], each vector in a
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Table 2.12 Comparison of RBF learning methods

Method Learning algorithm

ARBFN Table 2.11, RBF centers: using positive samples in X + = {x′i}Np
i=1; RBF width:

Eq. (2.54)

EDLS [43] The weight and bias of the second layers were calculated by the least squares
criterion; RBF centers: using all samples in {x′i}Np

i=1 ∪{x′′i }Nn
i=1; RBF width: σ =

0.8 for all RBF units

OLS [44] RBF centers: selecting from {x′i}Np
i=1 ∪ {x′′i }Nn

i=1 using the orthogonal least
square method. The RBF center selection starts zero centers, and new centers
were iteratively picked in the subsequent selection procedure. Each time, the
network’s mean square error was checked and compared to the pre-defined
tolerance set at 0.0001; RBF width: σ = 0.8 for all RBF units

Table 2.13 Average precision rate (%) as a
function of iteration, P̄r(Iter.), obtained by
retrieving 35 queries, using Corel dataset

Method Iter. 0 Iter. 1 Iter. 2 Iter. 3

ARBFN 44.82 80.72 90.36 92.50

EDLS 44.82 50.18 43.39 43.04

OLS 44.82 66.07 73.21 76.61

retrieved set was associated with the RBF centers [Eq. (2.43)], using a one-to-one
correspondence. This is named as EDLS (exact design network using the least
squares criterion). For both methods, the final RBF network model can be written as:

f̂ (x j) = λ 0 +
Nm

∑
i=1

λ i exp

(

−‖x− zi‖2

2σ 2
i

)

(2.79)

where Nm = 16 for the EDLS method, and Nm ≤ 16 for the OLS learning method,
since the size of retrieved samples is set to 16 at each feedback iteration.

The query image set used here is identical to the experiments reported in
Sect. 2.3.3. Precision (Pr) was recorded after each query iteration. Table 2.13
summarizes the average precision results, P̄r(Iter.), as a function of iteration, taken
over the 35 test queries. It can be seen from the results that the ARBFN significantly
improved the retrieval accuracy (up to 92 % precision). The first iteration showed
an improvement of 35.9 %. The ARBFN outperformed the OLS (76.61 %) and the
EDLS. This result confirms that the ARBFN learning strategy offers a better solution
for the construction of an RBF network for adaptive image retrieval, compared to
the two standard learning strategies.

Both the OLS and the EDLS strategies usually perform well under the opposite
condition, where the training samples are sufficiently large [46], and where the
data samples may not correlate closely to each other. In this experiment, it
was observed that the EDLS achieved improvement after the first iteration (i.e.,
P̄r (Iter.= 1) = 50.2%), because the retrieved data at Iter. = 0 usually has a low
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degree of correlation. Its performance, however, was reduced after two iterations as
the retrieved samples became correlated more strongly. This suggests that the EDLS
may not be suitable for constructing the RBF network under this learning condition.
Using the same RBF widths, the OLS learning strategy was more stable and much
better than the EDLS.

It was observed that the RBF centers critically influenced the performance
of the RBF classifier, and that the RBF classifier constructed by matching all
retrieved samples exactly to the RBF centers degraded the retrieval performance.
The OLS algorithm was fairly successful at resolving this problem, by choosing the
subset of the retrieved samples for the RBF centers. However, the OLS provided
a less adequate RBF network, compared to the ARBFN. In ARBFN learning,
each available positive sample was considered as important. Also, the centers were
shifted by negative samples with the weighted norm parameters being updated
during adaptive cycles. The ARBFN also managed well with the small set of
samples encountered. The ARBFN is thus the most adequate model for the current
application.

The retrieval performance of the ARBFN was next compared to the single-
class model discussed in Sects. 2.2–2.3, using a new query set, which contained
59 images randomly selected from different categories. The methods compared
include ARBFN, single-RBF, OPT-RF, and MAM. Two criteria were employed for
performance measures: precision Pr measured from the top Nc images, where Nc

was set to 10, 16, 25, and 50; and second, a precision versus recall graph. However,
the relevance feedback was done only on the top 16 retrieved images.

Table 2.14 summarizes the precision results averaged over all queries, measured
from the top 10, 16, 25, and 50 retrieved images. It can be seen that the learning
methods provided a significant improvement in each of the first three iterations. The
ARBFN achieved the best precision results in all conditions, compared to the other
methods discussed. At Nc = 10, ARBFN reached a near-perfect precision of 100 %
after three iterations. This means that all the top ten retrieved images were relevant.
The results also show that, at Nc = 16, more than 14 relevant images were presented
in the top 16 ranking set. The most important precision results are perhaps those
after the first iteration, since users would likely provide only one round of relevance
feedback. It was observed that the ARBFN provided a better improvement than the
other methods for this requirement.

Figure 2.5a–c illustrates the average precision versus recall figures after one, two,
and three iterations, respectively. The behavior of the system without learning and
the strong improvements with adaptive learning can easily be seen. In all cases, the
precision at 100 % recall drops close to 0. This fact indicates that it was not possible
to retrieve all the relevant images in the database, which had been pre-classified by
the Corel Professionals. It is observed from Fig. 2.5a that the ARBFN was superior
to the single-RBF at the higher recall levels, while both provided similar precision
at the lower recall levels. Also, the ARBFN achieved better improvements than
the single-RBF by up to 8.6 %, 7.3 % and 6.5 %, at one, two and three iterations,
respectively.
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Table 2.14 Average
precisions, P̄r, compared at
four settings of top matches
(Nc), obtained by retrieving
59 queries, using the Corel
Database

Average precision (%), P̄r(Nc)

Nc Method t = 0 t = 1 t = 2 t = 3

10 ARBFN 55.93 +32.03 +42.03 +43.56

Single-RBF 55.93 +27.97 +39.15 +42.03

MAM 55.93 +17.12 +19.32 +19.66

OPT-RF 55.93 +24.07 +30.51 +32.37

16 ARBFN 47.67 +30.83 +39.30 +41.21

Single-RBF 47.67 +26.48 +34.64 +38.45

MAM 47.67 +13.88 +16.00 +16.21

OPT-RF 47.67 +20.97 +23.83 +25.00

25 ARBFN 39.93 +26.44 +30.44 +31.19

Single-RBF 39.93 +21.36 +26.58 +28.14

MAM 39.93 +11.46 +12.47 +12.07

OPT-RF 39.93 +17.02 +19.73 +20.00

50 ARBFN 30.03 +19.08 +20.58 +20.75

Single-RBF 30.03 +15.29 +17.76 +18.44

MAM 30.03 +8.24 +8.31 +8.17

OPT-RF 30.03 +11.86 +12.17 +12.51
Interactive results are quoted relative to the P̄r observed with
the initial retrieval

2.5 Bayesian Method for Fusion of Content and Context
in Adaptive Retrieval

Adaptive retrieval method can be implemented to integrate visual content and
contextual information through relevance feedback [47,48]. Contextual information
refers to the statistical correlation across multiple images. In this section, a Bayesian
framework is developed for fusion of content and context components. Specifically,
the visual content analysis is associated with the likelihood evaluation, whereas the
contextual information is represented by the a priori probability, learned through a
maximum entropy algorithm.

2.5.1 Fusion of Content and Context

Let C represent the set of class labels and C= {1,2, . . . ,C}, where C is the number of
classes. The class label of a particular image in a database is denoted c, where c ∈ C.
Based on the maximum a posteriori probability (MAP) criterion which minimizes
the classification error, the true class label is estimated with:

ĉ = argmax
c∈C

P(c|x,I) (2.80)
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Fig. 2.5 Average precision versus recall figures, obtained by retrieving 59 queries, using the Corel
database. Figures on the right are the zoom versions of the figures on the left. Note that, in each
case, results obtained by the non-adaptive retrieval method are fixed, and used as a benchmark for
other adaptive retrieval methods. (a) Results after first RF. (b) Results after second RF. (c) Results
after third RF

where ĉ is the estimate of c, I is the background information, which exists with a
well-formulated problem. In the context of the subsequent description, it represents
a set of indexes of query images. Therefore, I can be defined as I = {Ii|i =
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1,2, . . . , |I|}, where |I| is the number of query images, Ii ∈ C, i = 1,2, . . . , |I|. Using
Bayes’ theorem, the a posteriori probability can be written as

P(c|x,I) ∝ p(x|c,I)P(c|I) , (2.81)

with the equality replaced by the proportionality due to the unimportance of
the probability density function (PDF) of an observation, i.e. p(x|I), when the
theorem is employed to solve a classification problem. Based on the meaning of the
background information I, we can assume the conditional independence between the
observation x and I given the class label of the observation, i.e. x ⊥ I|c. Therefore,
the a posteriori probability in Eq. (2.81) can be calculated through

P(c|x,I) ∝ p(x|c)P(c|I) (2.82)

The first term on the right-hand side of Eq. (2.82) is the PDF of the feature
vector of the class c, which is considered as the content model characterizing the
visual properties of that class. The second term is essentially a distribution of one
class or candidate image, say c, conditional on a set of other classes or query
images, collectively represented by I. This is exactly the contextual information
that characterizes the statistical relation between different classes or images. It will
be shown that such contextual information can be learned from past user feedback
for image retrieval. According to Eq. (2.82), the content and contextual information
are integrated through the decision-level fusion in a multiplicative fashion.

The Bayesian framework is applied to tackle the semantic gap of image retrieval
by integrating short-term relevance feedback (STRF) and long-term relevance
feedback (LTRF). STRF refers to the user interaction during a retrieval session
consisting of a number of feedback iterations, such as query shifting and feature re-
weighting. On the other hand, LTRF is the estimation of a user history model from
past retrieval results approved by previous users. LTRF plays a key role in refining
the degree of relevance of the candidate images in a database to a query. The STRF
and LTRF play the roles of refining the likelihood and the a priori information,
respectively, and the images are ranked according to the a posteriori probability.
By exploiting past retrieval results, it can be considered as a retrieval system with
memory, which incrementally learns the high level knowledge provided by users.

The underlying rationale of applying the Bayesian framework to image retrieval
can be illustrated using Fig. 2.6, of which the gist is to boost the retrieval per-
formance using some information extracted from the retrieval history. The two
types of similarity measure are complementary to each other. Specifically, the
similarity measure by the content-based component illustrated by the low-level
feature space in Fig. 2.6a suffers from the semantic gap which can be alleviated
using the contextual information. The links between relevant images in Fig. 2.6b
are estimated by utilizing the co-occurrence of relevant images in the past retrieval
results. At the same time, the contextual information can only be acquired by
learning from the knowledge accumulated through the content-based component.
The retrieval system, illustrated in Fig. 2.7, seamlessly integrates the content-based
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Fig. 2.6 The similarity measure in the content and context domains. (a) Semantic gap exists in the
content domain. (b) There might not be sufficient data to extract accurate contextual information

Fig. 2.7 Block diagram of
the integration of STRF and
LTRF in an adaptive retrieval
system. The solid and dashed
directed lines indicate the
information flow and the
user-controlled components,
respectively
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and the context-based methods into a mathematically justifiable framework. In the
beginning, there is no available retrieval history from which to learn the context
model but the system can still work using the content-based component and incre-
mentally accumulate the retrieval results. When past retrieval results are available,
the context component of the system performs LTRF by extracting information
from the data gradually, which can be considered as a knowledge accumulation
process. When a user presents a query, the content component of the system learns
the user’s information needs from the query through similarity measures and STRF.
If the context component has been trained by the time a user queries the database,



2.5 Bayesian Method for Fusion of Content and Context in Adaptive Retrieval 51

the system is capable of integrating the useful information predicted using the
context component and that learned using the content component. The a posteriori
probability evaluated by the system is used to rank the images in the database.

2.5.2 Content-Based Likelihood Evaluation
in Short-Term Learning

The visual content model of a certain semantic class, e.g. c, is the parametric form
of the distribution of the visual features of that class. The parameters of the model
are adapted to a given set of training data of class c through a supervised learning
procedure. A visual content model plays the role of evaluating the likelihood of a
visual feature with respect to a certain class. The support vector machine (SVM)
is selected as the key component of the content model to evaluate the likelihood.
L1 norm is also employed in addition to SVM for calculating the likelihood using
the content model. At the same time, it should be noted that the formulation of the
Bayesian framework requires that the output of the visual content model comply
with the definition of a PDF. To this end, the exponential function is employed, i.e.
h(s) = exp(s) , s ∈ R, to convert the discriminant function of SVM into a PDF. The
selection of the above exponential function is based on the following consideration.
First, it is monotonically increasing, resulting in the preservation of the physical
interpretation of the algebraic distance between a sample and the decision boundary.
Second, it is positive. Since the total integral of a function must be equal to
unity, appropriate normalization is necessary. Finally, representing the discriminant
function of SVM corresponding to the c-th class as fc(x) and substituting it for the
variable s in the exponential function followed by normalization, we obtain

p(x|c) = 1
A

exp( fc (x)) (2.83)

where A =
∫

exp( fc (x))dx.

2.5.2.1 Using the Nearest Neighbor (NN) Method

The nearest neighbor (NN) method returns the top K images on the list, which
is ranked based on the similarity measure between the feature of the query and
that of each of the candidate images, where K � C. The L1-norm is used as the
distance function for the NN method. In adaptive retrieval, the query is refined using
the method of query point movement [i.e., Eq. (2.8)]. To calculate the likelihood,
the exponential function in Eq. (2.83) converts the L1-Norm into a similarity
function, i.e.

p(xq|c) = 1
A

exp( fc (xq)) =
1
A

exp
(− ∣∣xq −xc

∣
∣) (2.84)
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where A =
∫

exp(− ∣∣xq −xc
∣
∣), is the normalization constant, xq denotes the feature

vector of a query, and xc denotes a candidate image. When the likelihood is
calculated using the L1 norm, the corresponding negative distance function should
be substituted into the exponential function because the similarity is a decreasing
function of the distance between features.

2.5.2.2 Using the Support Vector Machine Active Learning
(SVMAL) Method

SVM is a powerful tool for pattern recognition because it maximizes the minimum
distance between the decision hyperplane and the training samples so as to minimize
the generalization error. Given training samples {(xi,yi)}N

i=1, where xi ∈ R
P, yi ∈

{−1,1} is the ground-truth label of xi, the optimal hyperplane can be represented
as f (x) = ∑N

i=1 α iyiK (xi,x) + b where K (xi,x) is the kernel function, α i is the
Lagrangian multiplier, and b is the bias. Due to the sparse sample problem of
the relevance feedback leaning, the active learning method was introduced into
the learning process, whereby the most informative images are shown to request
user-provided labeling, resulting in the support vector machine active learning
(SVMAL)-CBIR [49]. Since the output of an SVM with respect to a sample is
the oriented distance from the sample to the hyperplane, the value could be either
positive or negative. Therefore, the exponential function is employed again to
convert the value of the discriminant function. When selecting radial basis functions
as the kernel, we obtain

p(xq|c) = 1
A

exp( fc (xq)) =
1
A

exp

(
N

∑
i=1

α iyiK (xi,xq)+b

)

(2.85)

where A =
∫

exp(∑N
i=1 α iyiK (xi,xq)+b) is the normalization constant.

2.5.3 Context Model in Long-Term Learning

This part aims at calculating the P(c|I) in Eq. (2.82), which is the contextual
information about c inferred based on the I. Without I, the probability mass of c
is uniformly distributed over the class ensemble C without I. Due to the statistical
dependence across different classes, however, the distribution of c conditional on I
will deviate from the uniform distribution once I is available. As a result, the classes
that are more strongly correlated with I have higher probabilities than the others
do. Since the problem is essentially the estimation of a conditional probability mass
function (PMF), a typical train of thought leads to the conventional approach that
calculates the conditional probability through P(c|I) = P(c,I)/P(I), for which we
need a set of training samples belonging to the Cartesian product of |I| + 1 C’s.



2.5 Bayesian Method for Fusion of Content and Context in Adaptive Retrieval 53

Regardless of the approach to estimating P(c,I) and P(I), there are two problems
with above estimation of P(c|I). First, the background information I may include
different numbers of indexes, which requires separate estimations of the model for
different sizes of I. Second, when collecting training data, we cannot guarantee
enough or even available samples for a certain configuration of c and I, where the
configuration refers to a particular instantiation of the number of random variables
of c∪ I and their values.

To deal with the estimation of the context model efficiently, the P(c|I) is
approximated using a distribution of a set of binary random variables estimated
based on the maximum entropy (ME) principle. In this approach, an image is
represented using a C-dimensional vector of binary random variables, denoted
Y = (Y1,Y2, . . . ,YC)

t , where the value of each variable Yc is defined by

Yc =

{
1 if the c-th image is relevant to a query
0 otherwise

(2.86)

Instead of being from the Cartesian product of |I|+1 C’s, the data utilized by the
context modeling procedure belong to the set of vertices of a C-dimensional hyper-
cube. Given a set of N training samples, denoted Y1,Y2, . . . ,YN , we can estimate the

P(Y) and then calculate the conditional probability P
(

Yc|YI1 ,YI2 , . . . ,YI|I|

)
, which is

represented as P(Yc|YI) in what follows. To approximate the P(c|I) in Eq. (2.82),
the following formula is utilized

P(c|I) = P(Yc|YI)

∑C
v=1 P(Yv|YI)

(2.87)

As the size of the concept ensemble, i.e. C, grows, the computational intensity
of the calculation of P(Yc|YI) increases exponentially. Therefore, it would be more
efficient if we can directly estimate P(Yc|YI) based on a set of training samples.
To this end, the ME approach demonstrated in [50] is employed, which estimates
a conditional distribution by maximizing its Rényi entropy. Essentially, the ME
principle states that the optimal model should only respect a certain set of statistics
induced from a given training set and otherwise be as uniform as possible. The
ME approach searches for the conditional distribution P(Yc|YI), with the maximum
entropy, among all the distributions which are consistent with a set of statistics
extracted from the training samples. Therefore, it can be considered as constrained
optimization, which is formulated as

max
P(Yc|YI)∈[0,1]

− ∑
yc,yI

P̂(YI = yI)P(Yc = yc|YI = yI)
2, (2.88)
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subject to:

∑yI
P̂(YI = yI)P(Yc = yc|YI = yI) fk

P̂( fk)
= P̂( fc| f k) ,k ∈ {0}∪ I, (2.89)

where c ∈ C and c �∈ I because P(Yc = 1|YI = 1) ≡ 1 for c ∈ I. In addition, P̂(·)
represents the empirical probabilities directly estimated from the training samples,
fc = Yc and fk = Yk when k �= 0 and fk = 1 otherwise. Using a matrix-based
representation, solving the above optimization leads to the result that

P = M×N−1 × f (2.90)

where

P =
[
P(Ya1|YI) ,P(Ya2|YI) , . . . ,P

(
Ya|C/I|YI

)]t
(2.91)

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P̂( fa1| f0) P̂( fa1| fI1) · · · P̂
(

fa1| fI|I|

)

P̂( fa2| f0) P̂( fa2| fI1) · · · P̂
(

fa2| fI|I|

)

...
...

. . .
...

P̂
(

fa|C/I| f0
)

P̂
(

fa|C/I| fI1

) · · · P̂
(

fa|C/I| fI|I|

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.92)

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

P̂( fI1 | f0) 1 · · · P̂
(

fI1 | fI|I|

)

...
...

. . .
...

P̂
(

fI|I| f0

)
P̂
(

fI|I| fI1

)
· · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.93)

f =
[

f0, f1, . . . , fI |I|
]t

(2.94)

and |C/I|= {a1,a2, . . . ,a|C/I|}.

2.5.4 Experimental Result

In the experiment, four methods summarized in Table 2.15 were compared. A total
of 200 classes of images was selected from the COREL image collection, with 50
images in each class. The resulting 10,000 images and the vendor-defined categories
were used as the database and the ground truth for evaluating the performance. From
the database, 10 queries are selected from each of the 200 classes, resulting in 2,000
queries being selected, each of which is composed of two different images. Under
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Table 2.15 Comparison of learning methods

Method Learning criterion STRF LTRF

NN-CBIR Adaptive image retrieval method, using nearest neighbor (NN)
criterion, where L1-norm is employed as the distance function and
Eq. (2.8) is employed for a query modification

� ×

SVMAL-
CBIR

Adaptive image retrieval method using support vector machine
active learning (SVMAL)

� ×

NN-CLBIR Collaborative Bayesian Image Retrieval (CLBIR), using Eq. (2.84)
for estimation of p(xq|c) and Eq. (2.87) for estimation of P(c|I)

� �

SVMAL-
CLBIR

Collaborative Bayesian Image Retrieval (CLBIR), using Eq. (2.85)
for estimation of p(xq|c) and Eq. (2.87) for estimation of P(c|I)

� �

the query-by-example retrieval paradigm, the average of the features of the two
images is used as the feature of an exemplar image.

To facilitate the subsequent elaboration, the query subsets which consist of
the first five queries, the sixth through the eighth, and the ninth and the tenth
in each class, are denoted TA, TB,1, and TB,2, where |TA| = 1,000, |TB,1| = 400,
and |TB,2| = 600. Such a query set selection guarantees that the system trained
using the LTRF will be tested based on previously unseen samples. TA was used
when there is no accumulated high-level knowledge, i.e. before LTRF happens.
In such a case, only STRF is involved, and the “nearest neighbor collaborative
Bayesian image retrieval” (NN-CLBIR) and the “support vector machine active
learning collaborative Bayesian image retrieval” (SVMAL-CLBIR) are essentially
the same as the NN-CBIR and SVMAL-CBIR because the a priori distribution
of the candidate images is uniform. After the initial LTRF, the CLBIR systems
are expected to present better performance in general thanks to the accumulated
knowledge, while the STRF still improves the results with respect to each specific
query. TB,1 ∪ TB,2, comprising 1,000 images, was used to verify the improvement
after the initial LTRF. During the operation of the CLBIR systems, the new retrieval
results after the initial LTRF are gradually accumulated, and a second LTRF can
be carried out upon a certain point. The retrieval results corresponding to TB,1 were
used to perform an incremental update of the system, i.e. the second LTRF, after
which the performance was evaluated using TB,2.

To capture various visual properties of the images, three types of low-level
descriptors are selected, including global color histogram in Hue-Saturation-Value
(HSV) space, color layout in YCbCr space [92], as well as Gabor wavelet [91].

Shown in Fig. 2.8a is the comparison between NN-CBIR and NN-CLBIR in
terms of the average precision P̄r as a function of the number of iterations of
STRF. The precision is given by Pr = NC/NR, where NC and NR are the numbers
of relevant images and retrieved images, respectively. The precision is measured
in the top NR = 48 in this case. Using the query set TB,1, the improvement due to
LTRF based on past retrieval results with respect to the query set TA is obvious, and
the effect of STRF can also be observed. After the second LTRF, the performance
of NN-CLBIR using query set TB,2 is further enhanced due to more accumulated
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Fig. 2.8 (a) Comparison between the performance of NN-CBIR and NN-CLBIR in terms of the
average precision versus the number of relevance feedback iterations; (b) comparison between
the performance of NN-CBIR and NN-CLBIR in terms of the precision versus recall after the
first retrieval iteration; (c) comparison between the performance of SVMAL-CBIR and SVMAL-
CLBIR in terms of the average precision versus the number of relevance feedback iterations;
(d) comparison between the performance of SVMAL-CBIR and SVMAL-CBIR in terms of the
precision versus recall after the first retrieval iteration

knowledge through the LTRF. Based on the same query set, the performance of
NN-CBIR remains unchanged. To test the performance in terms of ranking ability,
the precision-versus-recall curve (PRC) is employed. The recall is defined as R =
NC/NG, where NG is the number of images in the same classes as that of the query.
The precision is averaged over all queries at each different recall value. The PRC
after the initial retrieval is shown in Fig. 2.8b. Higher precision values at a certain
recall indicates more relevant images being ranked ahead of irrelevant ones, i.e. to
reach the recall value, a smaller set of retrieved images has to be processed. Based
on this fact, the advantage of the integration of user history as high-level knowledge
with the content analysis can be demonstrated based on the comparison in Fig. 2.8b.
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Fig. 2.9 Retrieval results for the subjective evaluation of the performance improvement resulting
from extended user history; (a) based on the user history model trained using 2,000 past retrieval
results; (b) based on the user history model trained using 3,200 past retrieval results
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The comparison shown in Fig. 2.8c, d is for the same purpose of performance
evaluation as that described above, and the difference lies with the approach to
the content analysis for the likelihood computation, which is based on the output
of the SVM employed for the active learning-based STRF. In this case, NR = 20
was adopted for the evaluation of precision as a function of the number of STRF
iterations, and NC = 50 for the evaluation of PRC. Since the initial retrieval is just
random ranking, the precision was evaluated starting from the first STRF iteration.
Still, we can observe the improvement resulting from the integration through the
Bayesian framework.

An interface with the NN-CLBIR enabled has been implemented to demonstrate
the effectiveness of the system in terms of performance improvement by the
accumulation of user history. Illustrated in Fig. 2.9a, b are the top 20 images
retrieved using NN-CLBIR. Shown in the figure on the left is the result obtained
using a system whose a priori knowledge was extracted from 1,000 user data, while
on the right, the result is based on the a priori knowledge learned from 1,400 user
data. The query is selected from the semantic class of the theme soldier, and the last
four images do not belong to this class in Fig. 2.9a. Nonetheless, all of the top 20
images are relevant to the query.

2.6 Summary

The kernel approach makes use of a nonlinear kernel-induced inner product, instead
of the traditional Euclidean inner product, to measure the similarity metrics of two
vectors. In a relevance feedback session, the nonlinear kernel approach implements
the nonlinear mapping function to analyze the role of the users in perceiving image
similarity. This results in a high performance machine that can cope with the
small size of the training sample set and the convergence speed. The new learning
algorithms for the nonlinear kernel-based RF can be categorized into two groups.
The first group includes the single-class RBF, the adaptive RBF, the gradient-
descent-based learning, where hard constraints are used to force a clear separation
on the RF samples. Then, in the second group, soft constraints are used to allow
more support vectors to be included in the so-called fuzzy RBF formulations. Much
of the chapter is meant to build the theoretical footing for the machine learning
models in the subsequent chapters.

In addition, the nonlinear-kernel approach in a STRF is extended to a Bayesian
fusion model. The STRF represents a content component that can be incorporated
with a context component in a LTRF, through a Bayesian framework. This can
be considered as a retrieval system with a memory, which can incrementally
accumulate high-level semantic knowledge, assisting in bridging the semantic gap
in future retrieval performed by prospective users.
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