
Chapter 5
A Bound in Terms of Fusion Systems

In this chapter we obtain more inequalities on the invariants of a block by using local
data. This time the fusion system of the block plays a role. The exposition appeared
in [114].

Brauer proved Olsson’s Conjecture for 2-blocks with dihedral defect groups
using a Galois action on the generalized decomposition numbers (see [41]). We
put his approach into an abstract framework. Let B be a p-block of a finite group G

with defect group D, and let .u; bu/ be a subsection for B . Let pk be the order of u,
and let � WD �pk be a primitive pk-th root of unity. Then there exist integral vectors
a

'
i WD .a

'
i .�//�2Irr.B/ 2 Z

k.B/ such that

d u
�' D

'.pk/�1X

iD0

a
'
i .�/�i (5.1)

(see Sect. 1.6).
Let G be the Galois group of the cyclotomic field Q.�/ over Q. Then G Š

Aut.hui/ Š .Z=pk
Z/� and we will often identify these groups. We will also

interpret the elements of G as integers in f1; : : : ; pkg by a slight abuse of notation.
Then .u� ; bu/ for � 2 G is also a (algebraically conjugate) subsection and

�.d u
�'/ D d u�

�' D
'.pk/�1X

iD0

a
'
i .�/�i� :

Now the situation splits naturally into characteristic 2 and odd characteristic,
since the structure of the corresponding Galois groups differs significantly.
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48 5 A Bound in Terms of Fusion Systems

5.1 The Case p D 2

Let p D 2, and let F be the fusion system of B . Then by Lemma 1.34 we may
assume that hui is fully F -normalized and CD.u/ is a defect group of bu. As before,
hui is also fully F -centralized and

AutF .hui/ D AutD.hui/ D ND.hui/= CD.u/:

We begin with a refinement of the orthogonality relations. For a subsection .u; bu/

with IBr.bu/ D f'g we set ai WD a
'
i for all i . Moreover, if u; v 2 D are conjugate

in D, we write u �D v.

Proposition 5.1 Let B be a 2-block of a finite group with defect group D and fusion
system F . Let .u; bu/ be a B-subsection such that l.bu/ D 1 and hui ¤ 1 is fully
F -normalized of order 2k. Then

.ai ; aj / D

8
ˆ̂<

ˆ̂:

2jND.hui/ \ CD.ui /=huij if uj �D ui œD uj C2k�1
;

�2jND.hui/ \ CD.ui /=huij if uj œD ui �D uj C2k�1
;

0 otherwise

for i; j 2 f0; : : : ; 2k�1 � 1g. In particular, .a0; a0/ D 2jND.hui/=huij.
Proof We set d u WD .d u

�' W � 2 Irr.B// and jND.hui/ \ CD.ui /= CD.u/j D 2r .
Then

1

2k�1

X

�2G
d u�

��i� D 1

2k�1

2k�1�1X

lD0

X

�2G
al �

.l�i /� D ai

for i D 0; : : : ; 2k�1 � 1. Hence,

.ai ; aj / D 22.1�k/
X

�;ı2G

�
d u�

; d uı �
�jı�i� :

If u� and uı are conjugate under AutF .hui/, we have
�
d u�

; d uı � D 2d by
Theorem 1.14. If we regard AutF .hui/ as a subgroup of G , this means �ı�1 2
AutF .hui/. Therefore,

.ai ; aj / D 22.1�k/Cd
X

�2G

X

ı2AutF .hui/
�.jı�i /� D 22.1�k/Cd

X

ı2AutF .hui/

X

�2G
�.jı�i /� :

Observe that if jhuiij ¤ jhuj ij, then .ai ; aj / D 0. If ui is F -conjugate to uj ,
then there is a ı 2 AutF .hui/ such that jı � i � 0 .mod 2k/. In this case there are
precisely 2r such elements and the corresponding sum contributes 2rCk�1. Similarly,
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if ui is F -conjugate to uj C2k�1
, we get the contribution �2rCk�1 in the sum. All

other summands vanish. This shows the result. ut
Theorem 5.2 Let B be a 2-block of a finite group G with defect group D and fusion
system F , and let .u; bu/ be a B-subsection such that hui ¤ 1 is fully F -normalized
and bu has Cartan matrix Cu D .cij/. Let IBr.bu/ D f'1; : : : ; 'l.bu/g such that
'1; : : : ; 'm are stable under ND.hui/ and 'mC1; : : : ; 'l.bu/ are not. Then m � 1.
Suppose further that u is conjugate to u�5n

for some n 2 Z in D. Then

k0.B/ � 2jND.hui/= CD.u/j
jhuij

X

1�i�j �m

qijcij (5.2)

for every positive definite, integral quadratic form q.x1; : : : ; xm/ D P
1�i�j �m

qijxi xj . In particular if l.bu/ D 1, we get

k0.B/ � 2jND.hui/=huij: (5.3)

Proof Let � 2 Irr0.B/ and jhuij D 2k for some k � 1. We write d u
� WD

.d u
�'1

; : : : ; d u
�'l

/, where l WD l.bu/. Then

d u
�'i

� �.d u
�'i

/ �
2k�1�1X

j D0

ai
j .�/ .mod RadO/

for � 2 G . In particular d u
�'i

� d u
�'i

.mod RadO/. We write jCD.u/jC �1
u D . Qcij/.

Then it follows from Proposition 1.36 that

0 6� mu
�� �

X

1�i;j �l

Qcijd
u
�'i

d u
�'j

�
X

1�i�l

Qcii.d
u
�'i

/2

�
X

1�i�l

Qcii

2k�1�1X

j D0

ai
j .�/2 �

X

1�i�l

Qcii

'.2k/�1X

j D0

ai
j .�/ .mod RadO/:

Now every g 2 ND.hui/ induces a permutation on IBr.bu/. Let Pg be the
corresponding permutation matrix. Then g also acts on the rows d u

i WD .d u
�'i

W
� 2 Irr.B// for i D 1; : : : ; l , and it follows that CuPg D PgCu. Hence, we also
have C �1

u Pg D PgC �1
u for all g 2 ND.hui/. If f'm1; : : : ; 'm2g (m < m1 < m2 � l)

is an orbit under ND.hui/, it follows that d u
�'m1

� : : : � d u
�'m2

.mod RadO/ and
Qcm1m1 D : : : D Qcm2m2 . Since the length of this orbit is even, we get

X

1�i�m

Qcii

2k�1�1X

j D0

ai
j .�/ 6� 0 .mod 2/:
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In particular, m � 1. In case jhuij D 2 this simplifies to

X

1�i�m

Qciia
i
0.�/ 6� 0 .mod 2/:

We show that this holds in general. Thus, let k � 2 and i 2 f1; : : : ; mg. Since .u; bu/

is conjugate to .u�5n
; bu/ and 'i is stable, we have

2k�1�1X

j D0

ai
j .�/�j D d u

�'i
D d u�5n

�'i
D

2k�1�1X

j D0

ai
j .�/��5nj :

Moreover, for every j 2 f0; : : : ; 2k�1 � 1g there is some j1 2 f0; : : : ; '.2k/ � 1g
such that ��5nj D ˙�j1 . In order to compare coefficients observe that

�j D ��5nj H) j � �5nj .mod 2k/ H) 1 � �5n .mod 2k= gcd.2k; j //

H) j D 0:

Hence, the set f˙�j W j D 1; : : : ; 2k�1 � 1g splits under the action of h�5n C 2k
Zi

into orbits of even length. This shows
P2k�1�1

j D0 ai
j .�/ � ai

0.�/ .mod 2/. Hence,

X

1�i�m

Qciia
i
0.�/ 6� 0 .mod 2/ (5.4)

for every � 2 Irr0.B/. In particular, there is an i 2 f1; : : : ; mg such that ai
0.�/ ¤ 0.

This gives

k0.B/ �
X

1�i�j �m

qij.a
i
0; a

j
0 /

(see proof of Theorem 4.2).
Now let k again be arbitrary. Observe that ai

0 D 21�k
P

�2G �.d u
i / for i 2

f1; : : : ; mg. By the orthogonality relations for generalized decomposition numbers
we have .d u�

i ; d uı

j / D cij for �; ı 2 G if u� and uı are conjugate under ND.hui/.
Otherwise we have .d u�

i ; d uı

j / D 0. This implies

.ai
0; a

j
0 / D 22.1�k/

X

�;ı2G
.d u�

i ; d uı

j / D 2jND.hui/= CD.u/j
2k

cij;

and (5.2) follows. In case l D 1 we have C D .jCD.u/j/, and (5.3) is also clear. ut
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In the situation of Theorem 5.2 we have u 2 Z.CG.u//. Hence, all Cartan
invariants cij are divisible by jhuij. This shows that the right hand side of (5.2) is
always an integer. It is also known that k0.B/ is divisible by 4 unless jDj � 2.

Observe that the subsection .u; bu/ in Theorem 5.2 cannot be major unless
jhuij � 2, since then u would be contained in Z.D/.

If D is rational of nilpotency class (at most) 2, Gluck’s Conjecture would imply
m D l.bu/ in Theorem 5.2. In this case it suffices to know the Cartan matrix Cu only
up to basic sets. For, changing the basic set is essentially the same as taking another
quadratic form q (see [172]). This must always hold in case l.bu/ D 2. Here we get
the following simpler result.

Theorem 5.3 Let p D 2, and let .u; bu/ be a B-subsection such that hui is fully
F -normalized and u is conjugate to u�5n

for some n 2 Z in D. If l.bu/ � 2, then

k0.B/ � 2jND.hui/=huij:

Proof We use the notation of the proof of Theorem 5.2. We may assume that
l D 2 D m. Here we can use (5.4) in a stronger sense. Since jCD.u/j occurs as
elementary divisor of Cu exactly once, we see that the rank of jCD.u/j

det Cu
Cu .mod 2/

is 1. Hence, jCD.u/j
det Cu

Cu .mod 2/ has the form

�
1 0

0 0

�
.mod 2/;

�
0 0

0 1

�
.mod 2/; or

�
1 1

1 1

�
.mod 2/:

Now it is easy to see that we may change the basic set for bu such that
jCD.u/jc11= det Cu is even and as small as possible. Then we also have to replace
the rows d u

1 and d u
2 by linear combinations of each other. This gives rows Od u

i and
Oai

j for i D 1; 2 and j D 0; : : : ; '.2k/ � 1. Observe that the contributions do not
depend on the basic set for Cu. Moreover, Qc11 is odd and Qc22 is even. Hence, (5.4)
takes the form

Oa1
0.�/ 6� 0 .mod 2/

for all � 2 Irr0.B/. Since both '1 and '2 are stable under ND.hui/, we have �. Od u
1 / D

Od u
1 for all � 2 AutF .hui/. Hence,

k0.B/ � . Oa1
0; Oa1

0/ D jND.hui/= CD.u/jc11

'.2k/

as above. It remains to show that c11 � jCD.u/j. The reduction theory of quadratic
forms gives an equivalent matrix C 0

u D .c0
ij/ such that 0 � 2c0

12 � min.c0
11; c0

22/ (see
Chap. 3). In case c0

12 D 0 we may assume c11 � c0
11 D jCD.u/j, since jCD.u/j is the
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largest elementary divisor of C 0
u. Hence, let c0

12 > 0. Since the entries of Cu and thus
also of C 0

u are divisible by ˛ WD det Cu=jCD.u/j, we even have c0
12 � ˛. It follows

that

3˛2 � 3.c0
12/

2 � c0
11c0

22 � .c0
12/2 D det C 0

u � jCD.u/j2
2

and ˛ � jCD.u/j=4. From Eq. (3.1) on page 28 we obtain

max.c0
11; c0

22/ � c0
11 C c0

22 � c0
12 � c0

11 C c0
22 � ˛

� ˛
jCD.u/j=˛ C 3

2
D jCD.u/j C 3˛

2
� jCD.u/j:

If ˛�1c0
11 or ˛�1c0

22 is even, the result follows from the minimality of c11. Otherwise
we replace C 0

u by

�
1 �1

0 1

�
C 0

u

�
1 0

�1 1

�
D

�
c0

11 C c0
22 � 2c0

12 c0
12 � c0

22

c0
12 � c0

22 c0
22

�
:

Then c11 � c0
11 C c0

22 � 2c0
12 � jCD.u/j. This finishes the proof. ut

If in the situation of Theorem 5.2 we have m < l.bu/, we really need to know
the “exact” Cartan matrix Cu which is unknown in most cases. For p > 2 there are
not always stable characters in IBr.bu/ (see Proposition (2E)(ii) and the example
following it in [154]).

Let us come back to our initial example. Let D be a (non-abelian) 2-group of
maximal class. Then there is an element x 2 D such that jD W hxij D 2 and x is
conjugate to x�5n

for some n 2 f0; jhxij=8g under D. Since hxi E D, the subgroup
hxi is fully F -normalized, and bx has cyclic defect group CD.x/ D hxi. Since,
e.bx/ D 1, we get l.bx/ D 1. Hence, Theorem 5.2 shows Olsson’s Conjecture
k0.B/ � 4 D jD W D0j. This was already proved in [41, 212].

5.2 The Case p > 2

Now we turn to the case where B is a p-block of G for an odd prime p. We fix some
notation for this section. As before .u; bu/ is a B-subsection such that jhuij D pk .
Moreover, � 2 C is a primitive pk-th root of unity. Since the situation is more
complicated for odd primes, we assume further that l.bu/ D 1. We write IBr.bu/ D
f'ug. Then the generalized decomposition numbers d u

�'u
for � 2 Irr.B/ form a
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column d.u/. Let d be the defect of bu. Since u 2 Z.CG.u//, u is contained in every
defect group of bu. In particular, k � d . As in the case p D 2 we can write

d.u/ D
'.pk/�1X

iD0

au
i �i

with au
i 2 Z

k.B/ (change of notation!). We define the following matrix

A WD �
au

i .�/ W i D 0; : : : ; '.pk/ � 1; � 2 Irr.B/
� 2 Z

'.pk /�k.B/:

The proof of the main theorem of this section is an application of the next
proposition.

Proposition 5.4 For every positive definite, integral quadratic form

q.x1; : : : ; x'.pk // D
X

1�i�j �'.pk/

qijxi xj

we have

k0.B/ �
X

1�i�j �'.pk/

qij.a
u
i�1; au

j �1/: (5.5)

If .u; bu/ is major, we can replace k0.B/ by
P1

iD0 p2i ki .B/ in (5.5).

Proof By Lemma 1.37(i) every column au.�/ of A corresponding to a character �

of height 0 does not vanish. Hence, we have

k0.B/ �
X

�2Irr.B/

q.au.�// D
X

�2Irr.B/

X

1�i�j �'.pk/

qija
u
i�1.�/au

j �1.�/

D
X

1�i�j �'.pk/

qij.a
u
i�1; au

j �1/:

If .u; bu/ is major and � 2 Irr.B/, then p�h.�/au.�/ is a non-vanishing integral
column by Lemma 1.37(ii). In this case we have

1X

iD0

p2i ki .B/ �
X

�2Irr.B/

p2h.�/q.p�h.�/au.�// D
X

1�i�j �'.pk/

qij.a
u
i�1; au

j �1/:

The second claim follows. ut
Notice that we have used only a weak version of Lemma 1.37 in the proof above.
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In order to find a suitable quadratic form it is often very useful to replace A by
UA for some integral matrix U 2 GL.'.pk/;Q/ (observe that the argument in the
proof of Proposition 5.4 remains correct).

However, we need a more explicit expression of the scalar products .au
i ; au

j /.
For this reason we introduce an auxiliary lemma about inverses of Vandermonde
matrices. Let G D f�1; : : : ; �'.pk /g. For an integer i 2 Z there is i 0 2 f1; : : : ; pk�1g
such that �i � i 0 .mod pk�1/. We will use this notation for the rest of the section.

Lemma 5.5 The inverse of the Vandermonde matrix V WD �
�i .�/j �1

�'.pk/

i;j D1
is

given by

V �1 D p�k
�
�j .ti�1/

�'.pk/

i;j D1
;

where ti D ��i � �i 0

.

Proof For i; j 2 f0; : : : ; '.pk/ � 1g we have

'.pk/X

lD1

�l .ti /�l .�/j D
'.pk/X

lD1

�l .�
j �i � �j Ci 0

/:

Assume first that i D j . Then �j �i D 1 and j C i 0 D i C i 0 is divisible by pk�1 but
not by pk . Hence, �j Ci 0

is a primitive p-th root of unity. Since the second coefficient
of the p-th cyclotomic polynomial ˚p.X/ D Xp�1 C Xp�2 C : : : C X C 1 is 1, we

get
P'.pk/

lD1 �l .�
j Ci 0

/ D �pk�1. This shows that

'.pk/X

lD1

�l .1 � �iCi 0

/ D '.pk/ C pk�1 D pk:

Now let i ¤ j . Then j � i 6� 0 .mod pk/ and j C i 0 6� 0 .mod pk/. Moreover,
j � i � j C i 0 .mod pk�1/, since i C i 0 � 0 .mod pk�1/. Assume first that
j � i 6� 0 .mod pk�1/. Then �j �i is a primitive ps-th root of unity for some
s � 2. Since the second coefficient of the ps-th cyclotomic polynomial ˚ps .X/ D
X.p�1/ps�1 CX.p�2/ps�1 C: : :CXps�1 C1 (see Lemma I.10.1 in [204]) is 0, we haveP'.pk/

lD1 �l .�
j �i / D 0. The same holds for j C i 0. Finally let j � i � 0 .mod pk�1/.

Then we have (as in the first part of the proof)

'.pk/X

lD1

�l .�
j �i � �j Ci 0

/ D �pk�1 C pk�1 D 0:

This proves the claim. ut
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Now let A WD AutF .hui/ � G . The next proposition shows that the scalar
products .au

i ; au
j / only depend on p, k � d and A .

Proposition 5.6 We have

pk�d .au
i ; au

j / D jf� 2 A W pk j i � j�gj � jf� 2 A W pk j i C j 0�gj
C jf� 2 A W pk j i 0 � j 0�gj � jf� 2 A W pk j i 0 C j�gj:

(5.6)

Proof Let W WD �
d

�i .u/
�'u W i D 1; : : : ; '.pk/; � 2 Irr.B/

�
be a part of the

generalized decomposition matrix. If V is the Vandermonde matrix in Lemma 5.5,
we have VA D W and A D V �1W . This shows

�
.au

i�1; au
j �1/

�'.pk/

i;j D1
D AAT D V �1WWTV �T D V �1W W

T
V

�T
:

Now let S WD .sij/
'.pk/
i;j D1, where

sij WD
(

1 if �i �
�1
j 2 A ;

0 otherwise.

Then the orthogonality relations (see proof of Theorem 5.2) imply W W
T D pd S .

It follows that

p2k�d .au
i ; au

j / D
'.pk/X

lD1

�l .ti /

'.pk/X

mD1

slm�m.tj / D
'.pk/X

lD1

X

�2A
�l.ti �.tj //

D
X

�2A

'.pk/X

lD1

�l ..�
�i � �i 0

/�.�j � ��j 0

//

D
X

�2A

'.pk/X

lD1

�l .�
j��i C �i 0�j 0� � ��i�j 0� � �i 0Cj� /: (5.7)

As in the proof of Lemma 5.5 we have

'.pk/X

lD1

�l .�
j��i / D

8
ˆ̂<

ˆ̂:

'.pk/ if pk j j� � i;

0 if pk�1 − j� � i;

�pk�1 otherwise:
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This can be combined to

X

�2A

'.pk/X

lD1

�l .�
j��i / D pkjf� 2 A W pk j j� � igj � pk�1jf� 2 A W pk�1 j j� � igj:

We get similar expressions for the other numbers i 0�j 0� , �i�j 0� and i 0Cj� . Since
i C i 0 � j Cj 0 � 0 .mod pk�1/, we have j� � i � i 0 �j 0� � �i �j 0� � i 0 Cj�

.mod pk�1/. Thus, the terms of the form pk�1jf: : :gj in (5.7) cancel out each other.
This proves the proposition. ut

Since the group Aut.hui/ is cyclic, A is uniquely determined by its order. We
introduce a notation.

Definition 5.7 Let A be as in Proposition 5.6. Then we define � .d; k; jA j/ as the
minimum of the expressions

X

1�i�j �'.pk/

qij.a
u
i�1; au

j �1/

where q ranges over all positive definite, integral quadratic forms. By Proposi-
tion 5.4 we have k0.B/ � � .d; k; jA j/, and

P1
iD0 p2i ki .B/ � � .d; k; jA j/ if

.u; bu/ is major.

We will calculate � .d; k; jA j/ by induction on k. First we collect some easy
facts.

Lemma 5.8 Let H � .Z=pk
Z/� where we regard H as a subset of f1; : : : ; pkg.

Then jf� 2 H W � � 1 .mod pj /gj D gcd.jH j; pk�j / for 1 � j � k.

Proof The canonical epimorphism .Z=pk
Z/� ! .Z=pj

Z/� has kernel K of order
pk�j . Hence, jf� 2 H W � � 1 .mod pj /gj D jH \ K j D gcd.jH j; pk�j /,
since the p-subgroups of the cyclic group .Z=pk

Z/� are totally ordered by
inclusion. ut
Lemma 5.9 We have

.au
0; au

0/ D �jA j C jA jp
�
pd�k

and

pk�d

gcd.jA jp; j /
.au

i ; au
j / 2 f0; ˙1; ˙2g

for i C j > 0. If au
i ¤ 0 for some i � 1, then .au

i ; au
i / D 2pd�k gcd.jA jp; i/.

Moreover, .au
i ; au

j / D 0 whenever gcd.i; pk�1/ ¤ gcd.j; pk�1/.
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Proof For i D j D 0 we have i C j 0� D pk�1� 6� 0 .mod pk/ and i 0 C j� D
pk�1 6� 0 .mod pk/ for all � 2 A . Moreover, by Lemma 5.8 there are precisely
jA jp elements � 2 A such that i 0 � j 0� D pk�1.1 � �/ � 0 .mod pk/. The first
claim follows from Proposition 5.6.

Now let i C j > 0 and � 2 A such that i � j� .mod pk/. Then we have
j ¤ 0. Assume that also �1 2 A satisfies i � j�1 .mod pk/. Then j.� � �1/ � 0

.mod pk/ and ��1�1 � 1 .mod pk= gcd.pk; j //. Thus, Lemma 5.8 implies

jf� 2 A W pk j i � j�gj 2 f0; gcd.jA jp; j /g:

The same argument also works for the other summands in (5.6), since
gcd.jA jp; j / D gcd.jA jp; j 0/. This gives

pk�d .au
i ; au

j / 2 f0; ˙ gcd.jA jp; j /; ˙2 gcd.jA jp; j /g

whenever i C j > 0.
Suppose i � 1 and i � i� .mod pk/ for some � 2 A . Then � � 1 .mod p/

and thus i � i� � .i C i 0/.� � 1/ � �i 0� C i C i 0 .mod pk/. Hence, i 0 � i 0�
.mod pk/. This shows jf� 2 A W pk j i � i�gj D jf� 2 A W pk j i 0 � i 0�gj.
Moreover, we have jf� 2 A W pk j i C i 0�gj D jf� 2 A W pk j i��1 C i 0gj D jf� 2
A W pk j i 0 C i�gj. This shows au

i D 0 or .au
i ; au

i / D 2pd gcd.jA jp; i/=pk .
Finally suppose that gcd.i; pk�1/ ¤ gcd.j; pk�1/. Then i 6� j� .mod pk�1/

and thus pk − i � j� for all � 2 A . The same holds for the other terms in (5.6),
since i C i 0 � j C j 0 � 0 .mod pk�1/. The last claim follows. ut
Proposition 5.10 We have

� .d; 1; jA j/ D �jA j C .p � 1/=jA j�pd�1:

Proof Since jA j j p �1, we have jA jp D 1. Hence, .au
0; au

0/ D .jA jC1/pd�1 and
.au

i ; au
j / 2 f0; ˙pd�1; ˙2pd�1g for i C j > 0 by Lemma 5.9. First we determine

the indices i such that au
i D 0. For this we use Proposition 5.6. Observe that we

always have i 0 D 1. In particular for all i; j we have p j i 0 � j 0� for � D 1. It
follows that au

i D 0 if and only if �i � � .mod p/ for some � 2 A . We write
this condition in the form �i 2 A . This gives exactly jA j � 1 vanishing rows and
columns. Thus, all the scalar products .au

i ; au
j / with �i 2 A or �j 2 A vanish.

Hence, assume that �i … A and �j … A . Then .au
i ; au

j / 2 fpd�1; 2pd�1g for

i C j > 0. In case .au
i ; au

j / D 2pd�1 we have au
i D au

j . This happens exactly when

j ¤ 0 and ij�1 2 A . Since �i … A , the coset iA in G does not contain �1. Hence,
there are precisely jA j choices for j such that ij�1 2 A .

Hence, we have shown that the rows au
i for i D 1; : : : ; p � 2 split into jA j � 1

zero rows and .p � 1/=jA j � 1 groups consisting of jA j equal rows each. If we
replace the matrix A by UA for a suitable matrix U 2 GL.p � 1;Z/, we get a new
matrix with exactly .p � 1/=jA j non-vanishing rows (this is essentially the same as
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taking another (positive definite) quadratic form in (5.5), see [172]). After leaving
out the zero rows we get a .p � 1/=jA j � .p � 1/=jA j matrix

AAT D pd�1

0

BBBB@

jA j C 1 1 : : : 1

1 2
: : :

:::
:::

: : :
: : : 1

1 : : : 1 2

1

CCCCA
:

Now we can apply the quadratic form q corresponding to the Dynkin diagram
A.p�1/=jA j in Eq. (5.5). This gives

� .d; 1; jA j/ � �jA j C .p � 1/=jA j�pd�1:

On the other hand, p1�d AAT is the square of the matrix

0
BBB@

1 � � � 1

1 1
:::

: : :

1 1

1
CCCA

which has exactly jA jC.p�1/=jA j columns. This shows that � .d; 1; jA j/ cannot
be smaller. ut

The next proposition gives an induction step.

Proposition 5.11 If jA jp ¤ 1, then

� .d; k; jA j/ D � .d; k � 1; jA j=p/:

Proof Since jA jp ¤ 1, we have k � 2. Let i 2 f1; : : : ; '.pk/ � 1g such that
gcd.i; p/ D 1. We will see that .au

i ; au
i / D 0 and thus au

i D 0. By Lemma 5.9 and
Eq. (5.6) it suffices to show that there is some � 2 A such that pk j i 0 C i� . We
can write this in the form �i�1i 0 2 A , since i represents an element of .Z=pk

Z/�.
Now let �i 0 D i C ˛pk�1 for some ˛ 2 Z. Then �i�1i 0 D 1 C i�1˛pk�1 is an
element of order p in G . Since G has only one subgroup of order p, it follows that
�i�1i 0 2 A .

Hence, in order to apply Proposition 5.4 it remains to consider the indices
which are divisible by p. Let A be the image of the canonical map .Z=pk

Z/� !
.Z=pk�1

Z/� under A . Then jA j D jA j=p (cf. Lemma 5.8). If i and j are divisible
by p, we have

jf� 2 A W pk j i C j�gj D p � jf� 2 A W pk�1 j .i=p/ C .j=p/�gj:
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A similar equality holds for the other summands in (5.6). Here observe that .i=p/0 D
i 0=p, where the dash on the left refers to the case pk�1. Thus, the remaining matrix
is just the matrix in case pk�1. Hence, � .d; k; jA j/ D � .d; k�1; jA j/ D � .d; k�
1; jA j=p/. ut

Now we are in a position to prove the main theorem of this section.

Theorem 5.12 Let B be a p-block of a finite group where p is an odd prime, and
let .u; bu/ be a B-subsection such that l.bu/ D 1 and bu has defect d . Moreover, let
F be the fusion system of B , and let jAutF .hui/j D psr where p − r and s � 0.
Then we have

k0.B/ � jhuij C ps.r2 � 1/

jhuij � r
pd : (5.8)

If (in addition) .u; bu/ is major, we can replace k0.B/ by
P1

iD0 p2i ki .B/ in (5.8).

Proof As before let jhuij D pk . We will prove by induction on k that

� .d; k; psr/ D pk C ps.r2 � 1/

pkr
pd :

By Proposition 5.10 we may assume k � 2. By Proposition 5.11 we can also
assume that s D 0. As before we consider the matrix A. Like in the proof of
Proposition 5.11 it is easy to see that the indices divisible by p form a block of
the matrix AAT which contributes � .d; k � 1; r/=p to � .d; k; r/. It remains to deal
with the matrix QA WD �

au
i W gcd.i; p/ D 1

�
. By Lemma 5.9 the entries of pk�d QA QAT

lie in f0; ˙1; ˙2g. Moreover, if gcd.i; p/ D 1 we have .au
i ; au

i / D 2pd�k (see proof
of Proposition 5.11).

With the notation of the proof of Proposition 5.6 we have VA D W . In particular
rk AAT D rk A D rk W D jG W A j. If we set A1 WD �

au
i W p j i

�
, it also follows that

rk A1A
T
1 D rk A1 D '.pk�1/=r . Since the rows of QA are orthogonal to the rows of

A1 (see Lemma 5.9), we see that rk QA D .'.pk/ � '.pk�1//=r D pk�2.p � 1/2=r .
Now we will find pk�2.p � 1/2=r linearly independent rows of QA. For this

observe that A acts on ˝ WD fi W 1 � i � pk�1; gcd.i; p/ D 1g by � i WD � � i

.mod pk�1/ for � 2 A . Since p − r , every orbit has length r (see Lemma 5.8).
We choose a set of representatives � for these orbits. Then j�j D pk�2.p � 1/=r .
Finally for i 2 � we set �i WD fi C jpk�1 W j D 0; : : : ; p � 2g. We claim that the
rows au

i with i 2 S
j 2� �j are linearly independent. We do this in two steps.

Step 1: .au
i ; au

j / D 0 for i; j 2 �, i ¤ j .

We will show that all summands in (5.6) vanish. First assume that i � j�

.mod pk/ for some � 2 A . Then of course we also have i � j� .mod pk�1/

which contradicts the choice of �. Exactly the same argument works for the other
summands. For the next step we fix some i 2 �.
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Step 2: au
j for j 2 �i are linearly independent.

It suffices to show that the matrix A0 WD pk�d .au
l ; au

m/l;m2�i is invertible. We
already know that the diagonal entries of A0 equal 2. Now write m D l C jpk�1

for some j ¤ 0. We consider the summands in (5.6). Assume that there is some
� 2 A such that l � m� � .l C jpk�1/� .mod pk/. Then we have � � 1

.mod pk�1/ which implies � D 1. However, this contradicts j ¤ 0. On the other
hand we have l 0 � m0� � l 0� .mod pk/ for � D 1 2 A . Now assume �l � m0�
.mod pk/. Then the argument above implies � D 1 and l C l 0 � 0 .mod pk/ which
is false. Similarly the last summand in (5.6) equals 0. Thus, we have shown that
A0 D .1 C ılm/l;m2�i is invertible.

Therefore we have constructed a basis for the row space of QA. Hence, there exists
an integral matrix U 2 GL.pk�2.p � 1/2;Q/ such that the only non-zero rows of
U QA are au

i for i 2 S
j 2� �j . Then we can leave out the zero rows and obtain

a matrix (still denoted by QA) of dimension pk�2.p � 1/2=r . Moreover, the two
steps above show that pk�d QA QAT consists of pk�2.p � 1/=r blocks of the form
.1Cıij/1�i;j �p�1. Thus, an application of the quadratic form q corresponding to the
Dynkin diagram Apk�2.p�1/2=r in Eq. (5.5) gives

� .d; k; r/ � � .d; k � 1; r/

p
C pk�1.p � 1/

pkr
pd D pk C r2 � 1

pkr
pd :

The minimality of � .d; k; r/ is not so clear as in the proof of Proposition 5.10,
since here we do not know if det U 2 f˙1g. However, it suffices to give an example
where k0.B/ D � .d; k; r/. By Proposition 5.6 we already know that � .d; k; r/ D
pd�k� .k; k; r/. Hence, we may assume d D k. Let G D hui Ì Cr and B be the
principal block of G. Then it is easy to see that the hypothesis of the theorem is
satisfied. Moreover,

k0.B/ D k.B/ D jDj � 1

r
C r D � .d; k; r/:

Hence, the proof is complete. ut
We add some remarks. It is easy to see that the right hand side of (5.8) is always

an integer. Moreover, if A D G (i.e. s D k � 1 and r D p � 1) or A is a p-group
(i.e. r D 1), we get the same bound as in Theorem 4.12 and Proposition 4.7. In all
other cases Theorem 5.12 really improves Theorem 4.12 and Proposition 4.7. For
k � 2 the case s D 0 and r D p � 1 gives the best bound for k0.B/. If k tends to
infinity, � .d; k; p � 1/ goes to pd =.p � 1/.

Regarding Olsson’s Conjecture, we have to say (in contrast to the case p D 2)
that Olsson’s Conjecture does not follow from Theorem 5.12 if it does not already
follow from Theorem 4.12, since the right hand side of (5.8) is always larger than
pd�1.
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In the proof we already saw that Inequality (5.8) is sharp for blocks with cyclic
defect groups. Perhaps it is possible that this can provide a more elementary proof
of Dade’s Theorem 8.6. For this it would be sufficient to bound l.B/ from below,
since the difference k.B/ � l.B/ is locally determined.

As an application of Theorem 5.12 we give a concrete example. Let B be an
11-block with defect group D Š C11 � C11 and inertial index e.B/ D 5 (for
smaller primes results by Usami and Puig give more complete information, e.g.
[227, 270]). Assume that AutF .D/ acts diagonally (and thus fixed point freely)
on both factors C11. Then we have l.bu/ D 1 for all non-trivial subsections
.u; bu/. Then Theorem 5.12 gives k.B/ � 77 while Theorem 4.2 only implies
k.B/ � 121. Also Theorem 1.39 is useless here. However, for the principal block
B of G D D Ì AutF .D/ we have k.B/ D 29.

As it was pointed out earlier, for odd primes p and l.bu/ > 1 there is not always
a stable character in IBr.bu/ under NG.hui; bu/, even for l.bu/ D 2. However, the
situation is better if we consider the principal block.

Proposition 5.13 Let B be the principal p-block of G for an odd prime p, and
let .u; bu/ be a B-subsection such that l.bu/ D 2, and bu has defect d and Cartan
matrix Cu D .cij/. Then we may choose a basic set for Cu such that pd c11= det Cu is
divisible by p. Moreover, let F be the fusion system of B and jAutF .hui/j D psr ,
where p − r and s � 0. Then we have

k0.B/ � jhuij C ps.r2 � 1/

jhuij � r
c11:

Proof By Brauer’s Third Main Theorem, bu is the principal block of CG.u/ and so
IBr.bu/ contains the trivial Brauer character. Hence, both characters of IBr.bu/ are

stable under NG.hui/. As in the proof of Theorem 5.3, pd

det Cu
Cu .mod p/ has rank 1.

Hence, we can choose a basic set for Cu such that pd c11= det Cu and pd c12= det Cu

are divisible by p. As in the proof of Theorem 5.3, the rows d u
i and ai

j become
Od u
i and Oai

j for i D 1; 2 and j D 0; : : : ; '.jhuij/ � 1. Write pd C �1
u D . Qcij/. For

� 2 Irr0.B/ we have

0 6� mu
�� � Qc11

� Od u
�'1

�2
.mod RadO/:

In particular, Oa1
j .�/ ¤ 0 for some j 2 f0; : : : ; '.pk/ � 1g. Now since

. Od u
1 ; �. Od u

1 // D
(

c11 if � 2 A ;

0 if � 2 G n A ;

the proof works as in case l.bu/ D 1. ut
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