Chapter 5
A Bound in Terms of Fusion Systems

In this chapter we obtain more inequalities on the invariants of a block by using local
data. This time the fusion system of the block plays a role. The exposition appeared
in [114].

Brauer proved Olsson’s Conjecture for 2-blocks with dihedral defect groups
using a Galois action on the generalized decomposition numbers (see [41]). We
put his approach into an abstract framework. Let B be a p-block of a finite group G
with defect group D, and let (u, b,) be a subsection for B. Let pk be the order of u,
and let { := ¢« be a primitive p¥-th root of unity. Then there exist integral vectors

al = (a’ (1)) yem(p) € Z¥® such that

P(pPF)—1 '
di,= Y al (i (5.1)

i=0

(see Sect. 1.6).

Let ¢ be the Galois group of the cyclotomic field Q({) over Q. Then ¥ =~
Aut((u)) = (Z/p*Z)* and we will often identify these groups. We will also
interpret the elements of ¢ as integers in {1, ..., p¥} by a slight abuse of notation.
Then (u", b,) for y € ¢4 is also a (algebraically conjugate) subsection and

p(ph)—1
u u’ i
y(ds,) =diy = > af(0¢7.

i=0

Now the situation splits naturally into characteristic 2 and odd characteristic,
since the structure of the corresponding Galois groups differs significantly.
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48 5 A Bound in Terms of Fusion Systems
5.1 The Case p =2

Let p = 2, and let .# be the fusion system of B. Then by Lemma 1.34 we may
assume that (u) is fully .% -normalized and Cp (u) is a defect group of b,. As before,
(u) is also fully % -centralized and

Autz((u)) = Autp((u)) = Np({u))/ Cp (u).

We begin with a refinement of the orthogonality relations. For a subsection (u, b,,)
with IBr(b,) = {¢} we set a; := a! for all i. Moreover, if u,v € D are conjugate
in D, we write u ~p v.

Proposition 5.1 Let B be a 2-block of a finite group with defect group D and fusion
system F. Let (u,b,) be a B-subsection such that [(b,) = 1 and (u) # 1 is fully
F -normalized of order 2¥. Then

2INp () N Cp () /(u)]  ifwl ~p ul ~p uw¥27,
(ar.aj) = 1 ~2Np (@) N Col@)/ @] iful wp ul ~p W+,

0 otherwise

fori,j €4{0,...,2"" —1}. In particular, (ag, ag) = 2|Np((u))/{u)|.
Proof We set d" := (dy, : x € Irr(B)) and [Np({(u)) N Cp(u)/Cp(u)| = 2".
Then

2k=1—]

yE€Y =0 ye¥

fori =0,...,25' — 1. Hence,

(ahaj) — 22(l—k) Z (duy’dub')é_jé—i}/'

y.6€9

If w and u® are conjugate under Autz({(u)), we have (d*,d*) = 2¢ by
Theorem 1.14. If we regard Autz((u)) as a subgroup of ¢, this means y§~' €
Autz ({u)). Therefore,

(ai.a;) =22170FEN" N Uiy - p20kd N N Gy

Y€Y §eAutz ((u) seAutz ((u) y€¥

Observe that if [(u')| # [(u’)|, then (a;,a;) = 0. If u' is F-conjugate to u’,
then there is a § € Autz({u)) such that j§ —i = 0 (mod 2%). In this case there are
precisely 2" such elements and the corresponding sum contributes 2" +¥~! Similarly,
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if u' is F-conjugate to u/ 2", we get the contribution —2"T*~! in the sum. All
other summands vanish. This shows the result. O

Theorem 5.2 Let B be a 2-block of a finite group G with defect group D and fusion
system %, and let (u, b,) be a B-subsection such that (u) # 1 is fully . -normalized
and b, has Cartan matrix C, = (cy). Let 1Br(b,) = {¢1,...,¢ip,} such that
@1, ..., ¢m are stable under Np({u)) and ¢pu+1, ..., 010, are not. Then m > 1.
Suppose further that u is conjugate to u™> for some n € Z in D. Then

2|Np({u))/ Cp(u
ko(B) < INp({u))/ Cp(u)] Z dic 5.2)
()| < em
for every positive definite, integral quadratic form q(xy,...,Xy,) = leistm
giixix;j. In particular if [(b,) = 1, we get
ko(B) = 2|Np({u))/(u}|. (5.3)

Proof Let x € Trrg(B) and |(u)| = 2K for some k > 1. We write dy =

(dyys---.dy,), where l :=[(b,). Then
2k=1—1
dy, =y(d;,)= ) d; () (mod Rad O)
j=0

fory € 4. In particular dy,, = d¥, (mod Rad &). We write |Cp W)|C;1 = (¢).
Then it follows from Proposition 1.36 that

U — U = S (AU 2
0Fmy, = Z C’dewxd = Z Cii(dyy,)

1<i,j<l 1<i<l
k=11 0(25)—1
=Y G Z ai(0?= ) Z a’,(x) (mod Rad 0).
1<i<l 1<i<l

Now every ¢ € Np({u)) induces a permutation on IBr(b,). Let P; be the
corresponding permutation matrix. Then g also acts on the rows d;* := (dj,

x € Irr(B)) fori = 1,...,/, and it follows that C,P;, = P,C,. Hence, we also
have C; ' P, = P,C, ! forall g € Np((u)). If{(pml,...,qomz} (m<my <my <)

is an orbit under ND(( )), it follows that d )‘(‘(p = =dj, (mod Rad ) and
Cmymy, = . = Cmym,. Since the length of this orb1t is even, we get
2kl

D Gy ai(n) #0 (mod2).

1<i<m Jj=0
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In particular, m > 1. In case |{u)| = 2 this simplifies to

> Gah(x) # 0 (mod 2).

1<i<m

We show that this holds in general. Thus, let k > 2 andi € {1, ..., m}. Since (u, b,)
is conjugate to (u~>", b,) and ¢; is stable, we have

2k=1—] 2k=1—]

i j u u=S" i —5"j
> W =di, =di =} a0
j=0 j=0

Moreover, for every j € {0,...,2¥7! — 1} there is some j; € {0,...,9(2") — 1}
such that {™>"/ = £¢/1. In order to compare coefficients observe that

¢ =" = j =-5"j (mod2¥) => 1 = —5" (mod 2¢/ gcd(2¥, j))
— j =0.

Hence, the set {&¢/ : j = 1,...,2F=1 — 1} splits under the action of (—5" 4 2¥7Z)
into orbits of even length. This shows Z?kz_(;_l ai, (x) = al(x) (mod 2). Hence,

Y Gal(x) #0 (mod 2) (5.4)
1<i<m
for every x € Irro(B). In particular, thereis ani € {1, ..., m} such that a}(y) # 0.

This gives

ko(B)< > gyla.aj)

l<i<j<m

(see proof of Theorem 4.2).

Now let k again be arbitrary. Observe that a) = 21—k Zye@ y(d}!) fori €
{1,...,m}. By the orthogonality relations for generahzed decomposition numbers
we have " d“ ) = ¢; for y,8 € ¢ if u” and u® are conjugate under Np ((u)).

Otherwise we have (d,- .d ]” ) = 0. This implies

(a09 )_ 22(1 k) Z (d’uy,d]u ) — 2|ND((M;3(/ CD(M)lCij,

y.0€Y

and (5.2) follows. In case [ = 1 we have C = (|Cp(u)]), and (5.3) is also clear. O
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In the situation of Theorem 5.2 we have u € Z(Cg(u)). Hence, all Cartan
invariants c;; are divisible by |(u)|. This shows that the right hand side of (5.2) is
always an integer. It is also known that k¢(B) is divisible by 4 unless |D| < 2.

Observe that the subsection (u,b,) in Theorem 5.2 cannot be major unless
[{u)| < 2, since then u would be contained in Z(D).

If D is rational of nilpotency class (at most) 2, Gluck’s Conjecture would imply
m = [(b,) in Theorem 5.2. In this case it suffices to know the Cartan matrix C, only
up to basic sets. For, changing the basic set is essentially the same as taking another
quadratic form ¢ (see [172]). This must always hold in case /(b,) = 2. Here we get
the following simpler result.

Theorem 5.3 Let p = 2, and let (u,b,) be a B-subsection such that (u) is fully
F -normalized and u is conjugate to u=" for somen € Z in D. If [(b,) < 2, then

ko(B) = 2|Np((u))/(u})|.

Proof We use the notation of the proof of Theorem 5.2. We may assume that
| = 2 = m. Here we can use (5.4) in a stronger sense. Since |Cp (u)| occurs as
elementary divisor of C, exactly once, we see that the rank of %Cu (mod 2)

is 1. Hence, Ee‘i (é:)‘ C, (mod 2) has the form

((1) 8) (mod 2), (g (1)) (mod 2), or (i 1) (mod 2).

Now it is easy to see that we may change the basic set for b, such that
|Cp(u)|c11/ det C,, is even and as small as possible. Then we also have to replace
the rows d{' and dj by linear combinations of each other. This gives rows c?l.“ and
&; fori = 1,2and j = 0,...,9(2F) — 1. Observe that the contributions do not
depend on the basic set for C,. Moreover, ¢1; is odd and ¢, is even. Hence, (5.4)
takes the form

ag(x) # 0 (mod 2)

forall y € Irry(B). Since both ¢; and ¢, are stable under Np ({u)), we have y(c?l“) =
d} forall y € Autz({u)). Hence,

ko(B) < (a}.ah) = 'ND(WZ{ZS;)(uMcu

as above. It remains to show that ¢;; < |Cp(u)|. The reduction theory of quadratic
forms gives an equivalent matrix C, = (c;;) such that 0 < 2¢}, < min(c};, ¢3,) (see
Chap. 3). In case ¢}, = 0 we may assume c¢|; < c¢{, = |Cp(u)|, since |Cp (u)| is the



52 5 A Bound in Terms of Fusion Systems

largest elementary divisor of C,. Hence, let ¢{, > 0. Since the entries of C, and thus
also of C, are divisible by o := det C,,/|Cp(u)|, we even have ¢|, > «. It follows
that

C 2
3a% < 3(cly)” < ¢fychy — (c]y)” = detC, < %

and @ < |Cp(u)|/4. From Eq. (3.1) on page 28 we obtain

! J ! ! ! ! !
max(cyy,¢3) S ¢+ —Cp =S¢+ -

- ICp(w)|/a+3  |Cp(u)|+ 3a
=« 2 - 2

< ICp(u)].

Ifo! cil ora”! céz is even, the result follows from the minimality of ¢1;. Otherwise

we replace C,, by

1-1 c’ 1 0)_ ¢y +chy—2c¢p, ¢y — ¢y .
01) “\-11 Cly — Chy Chy

Then ¢i1 < ¢}, + ¢4, —2¢}, < |Cp(u)|. This finishes the proof. O

If in the situation of Theorem 5.2 we have m < [(b,), we really need to know
the “exact” Cartan matrix C, which is unknown in most cases. For p > 2 there are
not always stable characters in IBr(b,) (see Proposition (2E)(ii) and the example
following it in [154]).

Let us come back to our initial example. Let D be a (non-abelian) 2-group of
maximal class. Then there is an element x € D such that |D : (x)| = 2 and x is
conjugate to x> for some n € {0, |(x)|/8} under D. Since (x) < D, the subgroup
(x) is fully #-normalized, and b, has cyclic defect group Cp(x) = (x). Since,
e(by) = 1, we get [(by) = 1. Hence, Theorem 5.2 shows Olsson’s Conjecture
ko(B) <4 = |D : D’|. This was already proved in [41,212].

5.2 The Case p > 2

Now we turn to the case where B is a p-block of G for an odd prime p. We fix some
notation for this section. As before (i, b,) is a B-subsection such that |(u)| = p.
Moreover, ¢ € C is a primitive p-th root of unity. Since the situation is more
complicated for odd primes, we assume further that /(b,) = 1. We write IBr(b,) =
{¢u}. Then the generalized decomposition numbers d,, for y € Irr(B) form a
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column d (u). Let d be the defect of b,,. Since u € Z(Cg (u)), u is contained in every
defect group of b,. In particular, k < d. As in the case p = 2 we can write

e(pH-1
dw) = Y a'¢

i=0
with a € Z*®) (change of notation!). We define the following matrix
A= (a0 i =0.....0(p") — 1. x € Im(B)) € Z#7*®),

The proof of the main theorem of this section is an application of the next
proposition.
Proposition 5.4 For every positive definite, integral quadratic form

G(X1,. s Xp(phy) = Z qijXiX;
1<i<j=<e(pk)
we have
ko(B) = Z gij(ai_y.aj_,). (5.5)
1<i<j=e(p*)

If (u, by) is major, we can replace ko(B) by Y o, p* ki (B) in (5.5).

Proof By Lemma 1.37(i) every column a“(y) of A corresponding to a character y
of height 0 does not vanish. Hence, we have

koB)< Y q@'()= > > aiai_(0ai_,(0)

x€lrr(B) YE(B) 1<i<j<¢(pk)

= Z gij(a;i_y,aj_y).

1<i<j<p(pb)
If (u,b,) is major and y € Trr(B), then p~"@qa*(x) is a non-vanishing integral
column by Lemma 1.37(ii). In this case we have
o0
Y opki(B) < Y pPWq(pTM et ()= Y gylal_.aiy).
i=0 y€lre(B) 15i<j=e(ph)

The second claim follows. O

Notice that we have used only a weak version of Lemma 1.37 in the proof above.
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In order to find a suitable quadratic form it is often very useful to replace A by
UA for some integral matrix U € GL(g(p*), Q) (observe that the argument in the
proof of Proposition 5.4 remains correct).

However, we need a more explicit expression of the scalar products (a;', a}).
For this reason we introduce an auxiliary lemma about inverses of Vandermonde
matrices. Let 4 = {01, ...,0,,)}. For anintegeri € Z thereis i’ € {1,..., pk1
such that —i = i’ (mod p*¥~'). We will use this notation for the rest of the section.

k
(p") is

Lemma 5.5 The inverse of the Vandermonde matrix V = (O’i )/ _1)[}.:1 i

given by

k
V= p~™*(o; (ti—l))i(jl;)l’

where t; = ¢ — ¢’

Proof Fori,j €{0,...,¢(p") — 1} we have

o(p") o(p")
Yoo @) =Y o/ =,

=1 =1

Assume first thati = j. Then ¢/~ = 1 and j +i’ = i +i’ is divisible by p*~! but
not by p*. Hence, ¢/ + "isa primitive p-th root of unity. Since the second coefficient
of the p-th cyclotomic polynomial @,(X) = X7~ !+ XP2 4+ ...+ X + lis 1, we

get nglk) 01(¢/ 11"y = —pk=1_ This shows that

o(ph) o
D (1= = p(ph) + p*t = p.
=1

Now leti # j.Then j —i # 0 (mod p¥)and j + i’ # 0 (mod p¥). Moreover,
j—i = j+i (mod p¥7"), since i + i’ = 0 (mod p*~'). Assume first that
j —i # 0 (mod p*~'). Then ¢/~ is a primitive p*-th root of unity for some
s > 2. Since the second coefficient of the p*-th cyclotomic polynomial @,s(X) =
XP=0r ™ L xr=2r 7 4 X P 1 (see Lemma.10.1 in [204]) is 0, we have
Z;’Lplk) 01(¢77") = 0. The same holds for j +i’. Finally let j —i = 0 (mod p*~!).
Then we have (as in the first part of the proof)

o(p") o .
S o =gy = —p =0,
=1

This proves the claim. O
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Now let & := Autz({u)) < ¥¢. The next proposition shows that the scalar
products (a;', aj) only depend on p, k — d and </

Proposition 5.6 We have
Platay =red phli—jii|—[{red  phli+ 't}
+Hred  phli' =ty - {red : p*li'+ jTil.
(5.6)

Proof Let W := (d;;i”) ci = L...,0(p"), x € Irr(B)) be a part of the
generalized decomposition matrix. If V' is the Vandermonde matrix in Lemma 5.5,
we have VA = W and A = V~'W. This shows

k e | e —
((@'.a"_)*7) = Aa™ = v ww v T = v v

ij=1

k
Now let S := (Sy);f;pz)l, where
1 if 0,-0;1 € o,
0 otherwise.

Sjj =

Then the orthogonality relations (see proof of Theorem 5.2) imply WW' = p’s.
It follows that

o(p*) o(p*) o(p*)
PZk_d(a?’a?) = Z o1 (1) Z SimOm(t;) = Z Z o1(tit(7;))
=1 m=1 =1 ted
o(ph) o ' y
= Y @ = e — )
t€e/ =1
(ﬂ(]?k) . . N Y .
— Z Zo,l(é-]r—l_’_é-z —j‘l,'_g—l—jf_gl +j‘l,')‘ (5.7)
t€e/ =1

As in the proof of Lemma 5.5 we have

o(p") p(p*) if pF | jT—i,
Y a@ =10 if pt T —i,

=1 —pF=1 otherwise.
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This can be combined to

o(p")
Z Z o) =p red  pf|jr—il|—p T e PN jT -}l
ted =1

We get similar expressions for the other numbersi’— j't, —i —j’t and i’ + jt. Since
i+i'=j4j =0 (mod pF="),wehave jr—i =i'—jltr=—i—j't =i+t
(mod p*~1). Thus, the terms of the form p*~!|{...}| in (5.7) cancel out each other.
This proves the proposition. O

Since the group Aut({(u)) is cyclic, 7 is uniquely determined by its order. We
introduce a notation.

Definition 5.7 Let 7 be as in Proposition 5.6. Then we define I'(d, k, |.<7|) as the
minimum of the expressions

Z qij(ai_y,aj_)

1<i<j<¢(pk)

where g ranges over all positive definite, integral quadratic forms. By Proposi-
tion 5.4 we have ko(B) < I'(d,k,|</|), and Y 2, p*k;(B) < I'(d,k,|</|) if
(u, b,) is major.

We will calculate I'(d, k, |<7]) by induction on k. First we collect some easy
facts.

Lemma 5.8 Let 57 < (Z) p*7)* where we regard 7€ as a subset of {1, ..., p*}.
Then |{oc € # :0 =1 (mod p/)}| = ged(||, p*=7) for1 < j <k.

Proof The canonical epimorphism (Z/ p*7Z)* — (Z/ p/ Z)* has kernel %" of order
p¥=7 . Hence, |{oc € # : 0 =1 (mod p/)}| = | NH| = ged(|.5), pF=7),
since the p-subgroups of the cyclic group (Z/p*Z)* are totally ordered by
inclusion. O

Lemma 5.9 We have
(a§.af) = (1| +11,) p*™*

and

pk—d

— L _(a".a") € {0, £1,+2}
ged(|. |, j) /

fori+j > 0.1fa" # 0 for some i > 1, then (a*,a") = 2p?~* ged(| |, 1).
Moreover, (aj,a’;) = 0 whenever ged(i, Pk # ged(j, pFh).
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Proof Fori = j = Owehavei + j't = p*~'t # 0 (mod p¥) and i’ + jr =
p¥=1 #£ 0 (mod p¥) for all € 7. Moreover, by Lemma 5.8 there are precisely
||, elements T € < such thati’ — j't = p*~!(1 —7) = 0 (mod p*). The first
claim follows from Proposition 5.6.

Now leti +j > Oand t € « such thati = jr (mod p¥). Then we have
j # 0. Assume that also 7; € < satisfies i = jr; (mod p¥). Then j(t — ;) = 0
(mod p*)and t7'r; = 1 (mod p*/ ged(p¥, j)). Thus, Lemma 5.8 implies

{r e .o : pF|i— jr} €0, ged(|],. j)}-

The same argument also works for the other summands in (5.6), since
ged(|7 |, j) = ged(|e7|,, j'). This gives

P} ah) € {0, £ ged(|/ | . j). 2 ged(| | . j)}

wheneveri 4+ j > 0.

Suppose i > landi = it (mod p*) for some t € /. Then t = 1 (mod p)
andthus i = it — (i +i’)(t = 1) = —i't +i 4+ i’ (mod p*). Hence, i’ = i’z
(mod pX). This shows |[{t € & : p* | i —it}| = |{t € & : pF | i’ —i't}].
Moreover, we have |[{t € & : p* | i +i't}|=|{r e : pF it ' +i'}|=|{re
o : p*| i’ +it}|. This shows a* = 0 or (a¥,a") = 2p? ged(||,,i)/ p*.

Finally suppose that ged(i, p*=') # gcd(j, p¥~'). Theni # jr (mod p*~')
and thus p¥ } i — jt for all € &/. The same holds for the other terms in (5.6),
sincei +i’ = j 4+ j/ =0 (mod p*!). The last claim follows. O

Proposition 5.10 We have
rd.114) = (1< + (p—1/|))p*"".

Proof Since |#/| | p—1, we have |«/|, = 1. Hence, (a§, aj) = (|</|+ 1)p¢~" and
(af,a’) €10, +p?=1, +2p?=" fori + j > 0 by Lemma 5.9. First we determine
the indices i such that a = 0. For this we use Proposition 5.6. Observe that we
always have i’ = 1. In particular for all i, j we have p | i’ — j't fort = 1. It
follows that af = 0 if and only if —/ = v (mod p) for some 7 € /. We write
this condition in the form —i € 7. This gives exactly |<7| — 1 vanishing rows and
columns. Thus, all the scalar products (ay, a?) with —i € &7 or —j € ./ vanish.
Hence, assume that —i ¢ </ and —j ¢ . Then (af,a}) € {p?=1,2p?~1} for
i+ j >0.Incase (af,a}) = 2p?~" we have a; = a}. This happens exactly when
j #0andij~' € 7. Since —i ¢ o7, the coseti .o/ in ¥ does not contain —1. Hence,
there are precisely |.<7| choices for j such that ijj~! € 7.

Hence, we have shown that the rows a/ fori = 1,..., p — 2 splitinto |.o/| — 1
zero rows and (p — 1)/|.</| — 1 groups consisting of |.<7| equal rows each. If we
replace the matrix A by UA for a suitable matrix U € GL(p — 1,7Z), we get a new
matrix with exactly (p — 1)/|.</| non-vanishing rows (this is essentially the same as



58 5 A Bound in Terms of Fusion Systems

taking another (positive definite) quadratic form in (5.5), see [172]). After leaving
out the zero rows we geta (p — 1)/|/| x (p — 1)/|</| matrix

7| +1 1 ...1

aaT= it L2
: |

1 o102

Now we can apply the quadratic form g corresponding to the Dynkin diagram
A(p-1)/|=| in Eq. (5.5). This gives

r. 1,140 < (11 + (p = /1)) p* .

On the other hand, p'~“AAT is the square of the matrix

which has exactly |.</|+ (p—1)/|<7| columns. This shows that I"(d, 1, |./|) cannot
be smaller. O

The next proposition gives an induction step.

Proposition 5.11 If|</|, # 1, then

Proof Since |o/|, # 1, we have k > 2. Leti € {1,...,¢(p*) — 1} such that
ged(i, p) = 1. We will see that (a}', a?) = 0 and thus af = 0. By Lemma 5.9 and
Eq. (5.6) it suffices to show that there is some t € o7 such that p* | i’ +iz. We
can write this in the form —i ~!i’ € o7, since i represents an element of (Z/ p*7Z)*.
Now let —i’ = i 4+ ap*~! for some o € Z. Then —i~'i’ = 1 + i~ 'ap*~'is an
element of order p in ¢. Since ¢ has only one subgroup of order p, it follows that
—i7li'e d.

Hence, in order to apply Proposition 5.4 it remains to consider the indices
which are divisible by p. Let <7 be the image of the canonical map (Z/ p*Z)* —
(Z/ p*~'Z)* under «7. Then | .o/ | = |.</|/ p (cf. Lemma 5.8).If i and j are divisible
by p, we have

Heed :pfli+jril=p-Hred: p"" | (/p)+ (j/p)T}l.
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A similar equality holds for the other summands in (5.6). Here observe that (i / p)’ =
i’/ p, where the dash on the left refers to the case p*~!. Thus, the remaining matrix
is just the matrix in case p*~!. Hence, I'(d , k, |<7|) = I'(d,k—1,|</|) = I'(d , k—
1|/ p). 0

Now we are in a position to prove the main theorem of this section.

Theorem 5.12 Let B be a p-block of a finite group where p is an odd prime, and
let (u, b,) be a B-subsection such that [(b,) = 1 and b,, has defect d. Moreover, let
F be the fusion system of B, and let |Autg((u))| = p*r where p ¥ r and s > 0.
Then we have

()| +p° (=1
()] - r

If (in addition) (u, b,) is major; we can replace ko(B) by Y i, p* k;(B) in (5.8).

ko(B) < (5.8)

Proof As before let |(u)| = p*. We will prove by induction on k that

r(d.k, p'r) = w d
prr

By Proposition 5.10 we may assume k > 2. By Proposition 5.11 we can also
assume that s = 0. As before we consider the matrix A. Like in the proof of
Proposition 5.11 it is easy to see that the indices divisible by p form a block of
the matrix AAT which contributes I'(d,k —1,7)/p to I'(d, k, r). It remains to deal
with the matrix A := (a¥ : ged(i, p) = 1). By Lemma 5.9 the entries of p*—¢ AAT
liein {0, =1, £2}. Moreover, if gcd(i, p) = 1 we have (a}', a}') = 2p?=F (see proof
of Proposition 5.11).

With the notation of the proof of Proposition 5.6 we have VA = W . In particular
tkAAT =1k A =1k W = |9 : /| If we set A := (a}‘ 1 p | i), it also follows that
tk A|A] =tk Ay = @(p*=1)/r. Since the rows of A are orthogonal to the rows of
A; (see Lemma 5.9), we see that tk A = (¢(p¥) —@(p*=")/r = pF2(p —1)?/r.

Now we will find p*=2(p — 1)?/r linearly independent rows of A. For this
observe that &7 actson 2 :={i : | <i < p*7! ged(i,p) = 1} by i :=1-i
(mod p*=') for t € 7. Since p } r, every orbit has length r (see Lemma 5.8).
We choose a set of representatives A for these orbits. Then |A| = p*~2(p — 1)/r.
Finally fori € Aweset A; :={i +jp*~' 1 j =0,..., p—2}. We claim that the
rows a} withi € jea A; are linearly independent. We do this in two steps.

Step 1: (af'.a%) = Ofori,j € A,i # j.

We will show that all summands in (5.6) vanish. First assume that i = jrt
(mod p*) for some v € 7. Then of course we also have i = jr (mod p*~!)
which contradicts the choice of A. Exactly the same argument works for the other
summands. For the next step we fix some i € A.
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Step 2: a} for j € A; are linearly independent.

It suffices to show that the matrix A’ := p*~?(a¥ a");mea, is invertible. We
already know that the diagonal entries of A’ equal 2. Now write m = [ + jp*~!
for some j # 0. We consider the summands in (5.6). Assume that there is some
T € o such that | = mt = (I + jp*")r (mod p¥). Then we have t = 1
(mod p*~') which implies = 1. However, this contradicts j 7 0. On the other
hand we have I’ = m’t = I't (mod p*) for t = 1 € o/. Now assume — = m’'t
(mod p*). Then the argument above implies T = 1 and / +1’ = 0 (mod p¥) which
is false. Similarly the last summand in (5.6) equals 0. Thus, we have shown that
A" = (1 + 8im)i.mea, is invertible.

Therefore we have constructed a basis for the row space of A. Hence, there exists
an integral matrix U € GL(p*~%(p — 1)?, Q) such that the only non-zero rows of
UA are at fori € | jeaAj. Then we can leave out the zero rows and obtain

a matrix (still denoted by A) of dimension P*"2(p — 1)?/r. Moreover, the two
steps above show that pk_d/f/fT consists of p*~2(p — 1)/r blocks of the form
(1+6;)1<i,j<p—1. Thus, an application of the quadratic form g corresponding to the
Dynkin diagram 4 x—,_)2/, in Eq. (5.5) gives

Pk < F@Lk——Lr)+_pb4%7—l)pd::pk+:2—llﬂ'
4 pr pr

The minimality of I"(d, k, r) is not so clear as in the proof of Proposition 5.10,
since here we do not know if det U € {£1}. However, it suffices to give an example
where ko(B) = I'(d, k,r). By Proposition 5.6 we already know that I'(d, k,r) =
p?~*I(k,k,r). Hence, we may assume d = k. Let G = (u) x C, and B be the
principal block of G. Then it is easy to see that the hypothesis of the theorem is
satisfied. Moreover,

L =T k)

ko(B) = k(3) = 121

Hence, the proof is complete. O

We add some remarks. It is easy to see that the right hand side of (5.8) is always
an integer. Moreover, if o = ¥ (i.e.s =k —landr = p — 1) or &/ is a p-group
(i.e. r = 1), we get the same bound as in Theorem 4.12 and Proposition 4.7. In all
other cases Theorem 5.12 really improves Theorem 4.12 and Proposition 4.7. For
k > 2thecase s = Oand r = p — 1 gives the best bound for ko (B). If k tends to
infinity, I'(d, k, p — 1) goes to p? /(p — 1).

Regarding Olsson’s Conjecture, we have to say (in contrast to the case p = 2)
that Olsson’s Conjecture does not follow from Theorem 5.12 if it does not already
follow from Theorem 4.12, since the right hand side of (5.8) is always larger than

pd—l.
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In the proof we already saw that Inequality (5.8) is sharp for blocks with cyclic
defect groups. Perhaps it is possible that this can provide a more elementary proof
of Dade’s Theorem 8.6. For this it would be sufficient to bound /(B) from below,
since the difference k(B) — [(B) is locally determined.

As an application of Theorem 5.12 we give a concrete example. Let B be an
11-block with defect group D =~ C;; x Cy; and inertial index e(B) = 5 (for
smaller primes results by Usami and Puig give more complete information, e.g.
[227,270]). Assume that Autgz(D) acts diagonally (and thus fixed point freely)
on both factors C;;. Then we have [(b,) = 1 for all non-trivial subsections
(u,b,). Then Theorem 5.12 gives k(B) < 77 while Theorem 4.2 only implies
k(B) < 121. Also Theorem 1.39 is useless here. However, for the principal block
B of G = D x Autz (D) we have k(B) = 29.

As it was pointed out earlier, for odd primes p and /(,) > 1 there is not always
a stable character in IBr(b,) under N¢ ({u), b,), even for [(b,) = 2. However, the
situation is better if we consider the principal block.

Proposition 5.13 Let B be the principal p-block of G for an odd prime p, and
let (u, b,) be a B-subsection such that [(b,) = 2, and b, has defect d and Cartan
matrix C, = (cjj). Then we may choose a basic set for C, such that pleyr/ detC is
divisible by p. Moreover, let F be the fusion system of B and |Autgz({u))| = p°r,
where p t r and s > 0. Then we have

()| + p*(r* = 1)

B = T

C11.

Proof By Brauer’s Third Main Theorem, b, is the principal block of Cg (1) and so
IBr(b,) contains the trivial Brauer character. Hence, both characters of IBr(b,) are

stable under N¢ ({u)). As in the proof of Theorem 5.3, —£— del P Ton C, (mod p) hasrank 1.

Hence, we can choose a basic set for C,, such that p cn/ detC, and p c12/ detC,
are divisible by p. As in the proof of Theorem 5.3, the rows d! and a; become

d* and a' fori = 1,2and j = 0,...,¢(|(u)]) — 1. Write p?C" = (). For
x € Irrg(B) we have

O§ém’;x ECl]( ) (mod Rad 0).
In particular, &} (x) # 0 for some j € {0,...,(p*) — 1}. Now since

C11 if)/EJZ{,

i, y(diy) =
(di’.y(d})) 0 ity e @\ o,

the proof works as in case /(b,) = 1. O
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