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Abstract. Block ciphers use Substitution boxes (S-boxes) to create con-
fusion into the cryptosystems. For resisting the known attacks on these
cryptosystems, the following criteria for functions are mandatory: low
differential uniformity, high nonlinearity and not low algebraic degree.
Bijectivity is also necessary if the cipher is a Substitution-Permutation
Network, and balancedness makes a Feistel cipher lighter. It is well-
known that almost perfect nonlinear (APN) functions have the lowest dif-
ferential uniformity 2 (the values of differential uniformity being always
even) and the existence of APN bijections over Fan for even n > 8
is a big open problem. In real practical applications, differentially 4-
uniform bijections can be used as S-boxes when the dimension is even.
For example, the AES uses a differentially 4-uniform bijection over Fys.
In this paper, we first propose a method for constructing a large family
of differentially 4-uniform bijections in even dimensions. This method
can generate at least (2"7% — [2(n—D/2=1) _ 1) 22" such bijections
having maximum algebraic degree n — 1. Furthermore, we exhibit a sub-
class of functions having high nonlinearity and being CCZ-inequivalent
to all known differentially 4-uniform power bijections and to quadratic
functions.

Keywords: Block cipher - Substitution box - Differential uniformity -
CCZ-equivalence - Nonlinearity

1 Introduction and Preliminaries

In Shannon’s terms [12], the generally accepted design principles for conventional
ciphers are confusion and diffusion. These two design principles are very general
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and informal. In practice, every block cipher uses Substitution boxes (S-boxes)
to create confusion and uses some well chosen linear transformations (related to
codes of large minimum distance) to bring diffusion into the cryptosystem. If
the cipher is a Substitution-Permutation Network as in the AES, then we need
the S-boxes to be bijections (to ensure invertibility).

Given two integers n and m, any S-box with n input bits and m output bits,
which is often called an (n,m)-function or a vectorial Boolean function if the
values n and m are omitted, can be viewed as a function G from the vectorial
space FJ to the vectorial space F5'. Particularly, G is called a Boolean function
when m = 1. We denote by B,, the set of Boolean functions of n variables. The
basic representation of any Boolean function f € B, is by its truth table, i.e.,

f: [f(ovov"' 70)7f(1707"' 70)7"' 7f(0717"' 71)7f(1717"' al)]'

We say that a Boolean function f € B, is balanced if its truth table contains
an equal number of ones and zeros, that is, if its Hamming weight equals 27!,
where the Hamming weight of f, denoted by wt(f), is the number of nonzero
values in its truth table. Given two Boolean functions f and g on n variables, the
Hamming distance between f and g is defined as dp(f,g) = |{z € Fy| f(z) #
g(@)}].

Let G be an (n, m)-function, the Boolean functions ¢y (z),- - , gm(x) defined
by G(z) = (91(x),- - , gm(x)) are called the coordinate functions of G. Further,
the Boolean functions, which are the linear combinations, with non all-zero coef-
ficients of the coordinate functions of G, are called component functions of G.
The component functions of G can be expressed as a - G where a € Fy**. If
we identify every element of Fy* with an element of finite field Faom, then the
component functions of G can be expressed as tr](aG), where o € F3. and

n—1 .
tri(z) = . 2% is the trace function from Fa. to Fy. To resist the known
i=0

attacks on each model of block cipher (and hopefully, to resist future attacks),
the S-boxes used in ciphers should satisfy various design criteria simultaneously.
The design criteria on S-boxes result in necessary properties of the component
functions and of the vectorial function itself.

Let x = (z1,22, - ,2,) and a = (a1,a9, - ,a,) both belong to F} and
let = - a be any inner product, for instance the usual one, defined as =z - a =
Tioy @ Taas @ -+ - D Tpay,, then the Walsh transform of G at (a,b) € Fy*™* x Fj
is defined as

Wg(a7b) = Z (_1)a‘G(I)+b~x.

z€FY

Usually, we call extended Walsh spectrum of G the multi-set of their absolute
values. To resist linear cryptanalysis [10], S-boxes used in cryptosystems should
have high nonlinearity. The nonlinearity nl(G) of an (n, m)-function G is the
minimum Hamming distance between all the component functions of G and all
affine functions on n variables. According to the definition of Walsh transform,
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we have
nl(G) =2""1 — 1 max  |Wg(a,b)|
2 (a,b)eFyp= xFy
1
=on-l_ - a Wa(a, B)).
2 (a,B)gIngjfx]an We(a. )]

It is well-known that the nonlinearity nl(G) is upper-bounded by 2"~ — 2"
when n = m and the best known value of nl(G) is 2"~ — 23 when n = m is
even.

Any (n,m)-function G can be represented in univariate form:

2" —1

G(x) = Z a;xt, a; € Fon.
i=0

The algebraic degree, denoted by deg(G), equals the maximal 2-weight of the
exponent ¢ such that a; # 0, where the 2-weight of a given integer i is the number
of ones in its binary expansion. It is known that the maximum algebraic degree
of bijective functions in dimension n is n — 1. Functions used as S-boxes should
have high (or at least not low) algebraic degree to withstand the higher order
differential attack [7] which is described by Knudsen when the degree is 2 but a
degree 3 seems still insufficient and a degree at least 4 is safer.

The differential attack introduced by Biham and Shamir [1] is a powerful
cryptanalytic method for attacking block ciphers. For measuring the ability of
a given function to resist the differential attack [1], Nyberg [11] introduced a
concept which is called differential d-uniformity:

Definition 1. An (n,m)-function G is called differentially §-uniform if, for
every nonzero a € FY and every b € FY', the equation G(z) + G(z +a) = b
has at most § solutions.

For every a € F3* and every b € FJ*, if we denote by dg(a,b) the size of the set
{z € F}|G(x) + G(z + a) = b}, then we can see that § equals the maximum
value of ¢ (a, b). The multi-set [a(a,b) |a € F5*,b € FJ'] is called the differential
spectrum of G. The smaller 9§ is, the better is the contribution of G to a resistance
to differential attack. When m = n, the smallest possible value of ¢ is 2 (since if ©
is a solution of equation G(x) 4+ G(x +a) = b then x 4 a is also a solution, hence
the values of § are even); the functions achieving this value are called almost
perfect nonlinear (APN) functions. APN functions have the lowest differential
uniformity. Up to now, there is only one sporadic example of APN bijection for
n = 6, found in [3] and it is a big open problem to know whether there exist
APN bijections over Fon for even n > 8. So, for resisting differential attacks in
even dimension, we need to choose differentially 4-uniform bijections as S-boxes
(differential 4-uniformity is not optimal but it can withstand differential attacks
in an efficient way; for example, the AES uses a differentially 4-uniform bijection
with 8 input bits). For the convenience of the readers, we give in Sect.2 a brief



New Construction of Differentially 4-Uniform Bijections 25

description of known APN bijections and differentially 4-uniform bijections in
even dimensions.

These notions are preserved by extended affine equivalence (in brief, EA
equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence): two
(n,n)-functions G and H are called affine equivalent if one is equal to the other,
composed on the left and on the right by affine permutations; they are called EA-
equivalent if one is affine equivalent to the other, added with an affine function;
they are called CCZ-equivalent if their graphs {(z,y) € F§ x F2 |y = G(z)} and
{(z,y) € F§ x F§ |y = H(z)} are affine equivalent, that is, if there exists an
affine automorphism L = (Ly, Ly) of F§ x F% such that y = G(z) & La(z,y) =
H(Li(x,y)) (where L1 and Lo are two affine functions from Fy x F% to FY). It
is well-known that EA equivalence implies CCZ-equivalence, but the converse
is false. Both EA and CCZ-equivalence preserve the differential spectrum and
extended Walsh spectrum. But CCZ-equivalence does not respect the algebraic
degree, while EA equivalence does.

Ideally, the dimension n of bijections used in cryptosystems should be a power
of 2 for an efficient implementation in both hardware and software since it allows
decomposing optimally the computation of the output in Fan into computations
in subfields. This is also more convenient for the design of the whole cipher, for
instance the number of input bits of the AES is 8. In practice, S-boxes used in
cryptosystems should satisfy a tradeoff between security and efficient implemen-
tation simultaneously. Therefore, it is very interesting to construct bijections
with good cryptographic properties in even dimensions. In the present paper,
we construct a family of differentially 4-uniform bijections of even dimensions
n > 6 by concatenating two (n — 1, n)-functions. For every even n > 6, this fam-
ily includes at least (2"’3 —|2(=D/2=1 ) 1) 92! bijections, all of algebraic
degree n—1. We also mathematically prove that, for any even n > 8, bijections in
this family are CCZ-inequivalent to the Gold functions, the Kasami functions,
the functions discussed in [2] and to quadratic functions. Further, we show a
subclass of the family which has nonlinearity at least 271 —2|2(*+1)/2] — 4 and
is CCZ-inequivalent to all known differentially 4-uniform power bijections and
to quadratic functions.

The paper is organized in the following way: Sect.2 summarizes the known
differentially 4-uniform bijections in even dimensions. A family of differentially
4-uniform bijections is presented in Sect. 3, and its algebraic degree, Walsh spec-
trum and CCZ-equivalence with known functions is studied. In Sect. 4, we give
a subclass of differentially 4-uniform bijections with good cryptographic proper-
ties. Finally, Sect.5 concludes the paper.

2 The Known Bijections with Low Differential Uniformity
in Even Dimensions

Up to now, only a few classes of bijections with very low differential uniformity
in even dimensions have been found, some of them are listed in [4,14]. We sum-
marize them here for the convenience of the reader. It is clear that the functions



26 C. Carlet et al.

27 and 22'? are affine equivalent for every i, so we only list one value of d for
each cyclotomic coset of 2 mod 2™ — 1. Besides, we also omit d~! when d is co-
prime with 2™ —1 since arbitrary bijection is CCZ-equivalent to its compositional
inverse.

— There is only one example of APN bijection on 6 variables, which is found by
J. Dillon in [3], and the problem whether there exist APN bijections over Fan
for even n > 8 is still open. This example is CCZ-equivalent to a quadratic
function (which may represent a risk with respect to the higher order differen-
tial attack) and its expression is complex (this leads to inefficient implemen-
tation in both hardware and software).

— The inverse function z2" =2 is differentially 4-uniform when n is even (and is
APN when n is odd) [11]; it is used as the S-box of the AES with n = 8.
It has best known nonlinearity 2"~ — 2%/2 and maximum algebraic degree
n — 1. But the inverse function satisfies the bilinear relation z?y = x where
y = 22" 2, which is the core of the algebraic attacks and so may represent a
thread. _

— The Gold functions 22 ** such that ged(i,n) = 2 are differentially 4-uniform.
Functions in this class are bijective when ged (2! +1,2" — 1) = 1, but they are
quadratic and can not be used as S-boxes.

— The Kasami functions #2°'~2'+! such that n is divisible by 2 but not by 4 and
ged(i,n) = 2 are differentially 4-uniform. Functions in this class have best
known nonlinearity 271 — 27/2 (in fact, they have same Walsh spectrum as
the Gold functions and we do not know whether this can represent a weakness)
and are bijective when ged (2% — 2¢ + 1,2" — 1) = 1. This class of functions
never reaches the maximum algebraic degree n — 1. Note that 2% — 2 +1 =
2231.1I11 and 2¢ + 1 is co-prime with 2" — 1 when n is divisible by 2 but not
by 4 and ged(i,m) = 2. This means that the Kasami functions have the form
F(z) = Q1(Qy "' (z)) where Q; and Qy are quadratic permutations, which
has some similarity with a function CCZ-equivalent to a quadratic function.
Maybe this could be used in an extended higher order differential attack.

gn/24+n/4+1

— The function x is differentially 4-uniform [2] and has best known
nonlinearity 271 — 2"/2 as well. This class of functions is bijective if n is
divisible by 4 but not by 8. It has algebraic degree 3 which is too low.

— In [8], the authors modified the method introduced in [4], initially designed
for constructing differentially 4-uniform bijections in odd dimensions, to con-
struct differentially 4-uniform bijections in even dimensions.They obtained
three classes of differentially 4-uniform bijections with best known nonlinear-
ity 2"~1 —27/2 and algebraic degree (n+2)/2. Those functions are interesting
but the authors did not discuss whether they are CCZ-equivalent to power
functions and quadratic functions.

— Recently, a construction has been introduced in [14] to build differentially
4-uniform bijections in even dimensions by adding some special Boolean func-
tions to the inverse function. Based on it, the authors have discovered two
infinite classes of differentially 4-uniform bijections. The first class of func-
tions is of the form x2" =2 + tr}(2%(x + 1)2"~2), which has optimal algebraic
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degree n—1 and the nonlinearity is no less than 2"~1 —27/2+1 _2 The second
one is of the form 22" =2 + 77 (2" =24 4 (22" -2 - 1)9), where d = 3(2¢ + 1),
2 <t <mn/2—1. The latter has algebraic degree n — 1 as well and the nonlin-
earity is at least 27~2 —2%/2=1 _ 1. The authors didn’t mathematically prove
whether their functions are CCZ-inequivalent to the inverse function (but we
can easily check, with the help of computer, that those two classes of func-
tions are CCZ-inequivalent to the inverse function for even n = 6,8,10,12).
These two classes of functions are interesting and they are worthy of a further
investigation.

We can see from above that except for the inverse function (which has how-
ever a potential weakness), the Kasami functions (whose algebraic degree is
enough to resist the higher order differential attack but which is not maximum,
whose Walsh spectrum is the same as that of the Gold function and which
seems related with quadratic functions - in a way which could not be used yet
to design attacks, though), the functions proposed in [8] (which have not been
proven CCZ-inequivalent to power functions) and the functions constructed in
[14] (which have not been proven CCZ-inequivalent to the inverse function),
there is no known bijection with low differential uniformity, which can be used
as S-box. Hence, finding more bijections with all the desired features is very
interesting from theoretical and practical viewpoints.

3 A Family of Differentially 4-Uniform Bijections

For any finite field Fa» we define 0~ = 0 by convention (we shall always use this
convention in the sequel). Any finite field Fa» can be viewed as an n-dimensional
vector space over Fy; each of its elements can be identified with a binary vector of
length n, the element 0 € Fa. is identified with the all-zero vector. From now on,
any given element x = (21, ,Zp_1,%,) € Fy can be identified with (2/,z,,) €
Fyn—1 x Fy, where 2’ € Fyn1 is identified with the vector (w1, ,2,_1) € F5 1.

Construction 1. Let n > 6 be an even number. For any element ¢ € Fon—1 \

{0,1} such that tr7'(c) = tr7"'(1/c) = 1, we define an (n,n)-function F as
follows:

_ J @/, f(2"), if 2, =0
F(xy, -, Tp_1,Ty) = { (/. F(x'[c) +1),if ap =1

where &' € Fon—1 is identified with (x1,--- ,2n_1) € Fy~ ' and f is an arbitrary
Boolean function defined on Fon-1.

3.1 Bijectivity

Theorem 1. The function F' defined in Construction 1 is bijective.
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Proof. We first prove that F' is an injection. For any two elements x,y € Fg, if
Tn = Yn and x # y, then we can easily see that F'(x) # F(y) since 1/2’,¢/y’ are
two bijections on Fyn-1. If z,, = y,+1, then without loss of generality, we assume
that @, = 0 and y, = 1. We can see that F(z) = F(y) leads to 1/2' = ¢/y’
which is equivalent to ' = ca’. Note that the last bit of F(x) is f(z') and the
last bit of F(y) equals f(y'/c) +1 = f(ca'/c)+ 1 = f(2') + 1, which does not
equal f(2’). So F is an injection. Therefore, F' is bijective. O

3.2 Differential 4-Uniformity

In this subsection, we will prove that F' is differentially 4-uniform. For doing this,
we first need a few preliminary results. The following lemma is well known.

Lemma 1. [9]. Let n be a positive integer. For any (a,b) € F5. X Fan let us
define the polynomial p(x) = az® + bx + ¢ € Fan[x], then the equation u(x) =0
has 2 solutions if and only if tr?(b=2ac) = 0.

The proof of the differential 4-uniformity of our functions will be based on
the following lemma.

Lemma 2. Let n be an even integer and ¢ € Fyn-1\ {0,1} such that tr7 ' (c) =
tr=1(1/c) = 1, let us consider the following four equations defined on Fan-1:

/2" +1/(x' +d') =0 (1)
c/r' +c/(' +ad)=V (2)

where (a’,0') € F},_, x Fan-1, and

/2" +¢/(a' +d') =V (3)
e/t +1/(x' +ad') =1V (4)

where (a',b") € Fon—1 X Fon—1. Then the following statements hold:
(1) Fora't! # 1, (1) has two solutions on Fon—1 if b/ # 0 and tr?~(1/(a’b)) = 0

and has no solution otherwise. For o't = 1, (1) has two distinct solutions
0,a’.

(2) For a't/ # c, (2) has two solutions on Fon—1 if ' # 0 and tr} ' (c/(a’b)) = 0
and has no solution otherwise. For a'b' = ¢, (2) has two distinct solutions
0,a .

(3) For any x( € Fon-1, x{, is a solution of (3) if and only if x{,+a’ is a solution
of (4). Furthermore:
~ ford'¥' #0,1,¢, both of (3) and (4) have two solutions if tr}~"(a't' /(a’b/'+

¢+ 1)) =0 and have no solution otherwise;

— for o't/ =1, (3) has unique solution o’ and (4) has unique solution 0;
— for @'t = ¢, (3) has unique solution 0 and (4) has unique solution a’;
- for a’t/ =0, both (3) and (4) have unique solution.
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Proof. Our proof mainly relies on Lemma 1.

(1) If @’V # 1, which is equivalent to saying that both 0 and o’ are not solutions
of (1), then (1) is equivalent to 'z’> + a/b'a’ + o’ = 0. By Lemma 1, this
new equation has two solutions if &' # 0 and tr7?'(1/(a’t’)) = 0. Note
that (1) has no solution if ¥’ = 0 since @’ # 0. Therefore, for a’'t’ # 1, (1)
has two solutions if ¥’ # 0 and tr?*(1/(a’t’)) = 0 and has no solution
otherwise. If a’b’ = 1 then tr}~*(1/(a’b’)) = tr} (1) = 1 and therefore
Va'? + a/b'a’ + a’ = 0 has no solution. This implies that (1) has only two
solutions 0, a’ when a’'b’ = 1.

(2) If @’V # ¢, which is equivalent to saying that both 0 and a’ are not solutions
of (2), then (2) is equivalent to Va'?+a'b'x’+ca’ = 0, which, by Lemma 1, has
two solutions if b # 0 and tr}~'(c/(a’b')) = 0 and has no solution otherwise
since (2) has no solution for b = 0. If @'t/ = ¢ then tr7 (c/(a'V))) =
tr"1(1) = 1, which implies that b'z'> + a’b'z’ + ca’ = 0 has no solution.
Thus, (2) has only two solutions 0, a’ for a’d’ = c.

(3) We can directly check that, for any z{, € Fan-1, if x{, is a solution of (3) then

x) + a’ is a solution of (4) and the converse is true.
If a’d’ # 1, ¢ in (3), which is equivalent to saying that both 0 and a’ are not
solutions of (3), then (3) is equivalent to bz’ + (a'b/ + ¢+ 1)a’ +d’ = 0.
Note that a’b/ # 0 gives b’ # 0. Hence, for a'b’ # 0,1,¢, b'a’> + (b + ¢ +
)2’ + a’ = 0 has two solutions if tr}~*(a'd'/(a’¥ + ¢+ 1)?) = 0 and has no
solution if tr7~*(a't’ /(a’b' 4+ ¢ + 1)?) = 1 by Lemma 1. Note that a'd’ = 1
implies that tr?~ ! (a’b /(a'V +c+1)2) = tr771(1/c) = 1 and @'V’ = ¢ leads to
tr Y (a'b /(' +c+1)?) = tr7 ! (c) = 1. Hence, (3) has unique solution a’ if
@'’ = 1 and has unique solution 0 if a’t’ = ¢. If a’b/ = 0, we can easily check
that (3) has unique solution for & #a' =0,d #b =0 and ¢/ =¥ =0,
respectively. Then the statement for (4) is direct.

Now we are ready to prove our main theorem.

Theorem 2. For any even n > 6, the bijection F defined in Construction 1 is
differentially 4-uniform.

Proof. Let us check that
F)+Fx+a)=b (5)

has at most 4 solutions for every fixed (a,b) € F4* xF%. Let us write z = (2, z,,),
a=(a,a,)and b= (V/,b,). Then Eq. (5) is equivalent to

F(2' 2,) + F(@' +d 2n +an) = (¥, by), (6)

s If a,, = 0 and o’ # 0 then the solutions of Eq. (6) are constituted by (z’,0)
such that

12" +1/(a" +a') =V, f(2') + f(a’ +a') =Dy (7)
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and by (z',1) such that

c/a’ +c/(a' +d) =V, f(a')e)+ f((a' +d)/c) = by. (8)
If a,, = 1 then the solutions of Eq. (6) are constituted by (z’,0) such that
1a' +c/(a' +d) =V, fa')+ f((z' +d')/c) = by + 1 (9)
and by (z',1) such that
e/’ +1/(x' +ad) =V, f(')c) + f((2' +a')) = b, + 1. (10)

For a, = 0 and @’ # 0, by (1) and (2) of Lemma 2, we can see that the
sum of the numbers of solutions of Egs. (7) and (8) is at most 4. Similarly, for
an =1, it follows from (3) of Lemma 2 that the sum of the numbers of solutions
of Egs. (9) and (10) is at most 4. This completes the proof. O

Remark 1. Given an integer n, let us define T'(n) as the number of ¢ € Fan such
that tr](c) = ¢r(1/c) = 1. Then there are T'(n)—1 elements ¢ € Fan \{0, 1} such
that tri"(c) = tr?(1/c) = 1 when n is odd, since tr{(0) = 0 and ¢ (1) = 1. Let
Ku(a) =3 cr,n (—1)tri (/e+az) " where a € F5., be the so-called Kloosterman
sums on Fan. Note that K, (1) = >° cp, . (—1)triEl/e) = on — owt(tr(z) +
tri(1/z)) = 2" = 2wt(tr(z)) — 2wt(tri(1/z)) + 4T(n) = —2" + 4T(n). We
have T'(n) = 2" 2 + K,,(1)/4, which is at least 2"~2 — |2"/2~1| according to
Lemma 3 (see below). Hence, for any even n > 6, Construction 1 can generate
(T(n—1)—1)-22""" > (273 — [200=1/2=1] _1). 22" differentially 4-uniform
bijections.

In fact, our method for constructing differentially 4-uniform bijections on n
variables can be viewed as concatenating the value-tables of two almost bent
bijections on n — 1 variables and completing each value by concatenating it with
the value of a Boolean function. Some work to find new infinite classes of APN or
differentially 4-uniform functions (not bijective) has been done by concatenation
method [5,6], but the concatenation was on two functions in n variables whose
outputs have length n/2.

3.3 Algebraic Degree
We shall now show the algebraic degree of F.

Theorem 3. For every even n > 6, F with any Boolean function f € B,,_1 has
algebraic degree n — 1.

Proof. Tt is obvious that F' has algebraic degree at most n—1 since F' is bijective.
So we only need to prove that F has algebraic degree at least n — 1. Let ag €
Fsn» be an element which is identified with (a’,0) such that a’ # 0. Then the
component function ag - F is identified with tr~'(a'F(2',2,)). This implies
that ag - F(2/,2,) = (1 + a,)tr? 1 (a'/2') + xptr} Y ad'c/2') = zutr? ((a' +
a'c)/z') + tri~'(a'/z'). Note that a’ + a’c # 0 since a’ # 0 and ¢ # 1. So
we have the component function ag - F' has algebraic degree n — 1 thanks to

tr "1 ((a’ + a’c)/x’) has degree n — 2. Therefore, F has algebraic degree n —1. 0
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3.4 Walsh Transform

Theorem 4. Let n > 6 be an integer and f € B,,_1 be the function defined in
Construction 1. For any (a,b) € Fy* x FY, we have

Wk (aa b) =
S (T S (L)), i g, = 0,0, =0
' €Fyn—1 ' €Fyn—1
(71)tr1’_1(a'/x'+b'x/) _ Z (71)tr?_1(a'c/z'+b'm')’ if a, =0,b, =1
fI,'/G]FQn71 $/€F2n71
Z (_1)1&7{‘_1(a'/w'+b’$/)+f(:v’) _ Z (_]_)tr?_l(a'c/z'er'ac')+f(ac'/c)7
' €Fyn—1 ' €Fyn—1

t n—1/ 7 "1y 2! ’ t n—1/ 7 ’ bl/f /an :ll,bn - 0
S (1)@ @) S (L) e/ e ) o),

' €Fyn—1 2/ €Fyn—_1

if a, =1,b, =1

where a is identified with (a’,a,) and b is identified with (V',by,), where o', b’ €
Foyno1.

Proof. Note that the linear function (b1, ,bp—1,bp) (1, ,Zn_1,Z,) can be
identified with tr}~'(b'2’) + b,x, and the component function a - F, denoted by
9a(T1, "+ ,Tp_1,Zn), can be identified with g,(z’, 2, ), where g, (z’, z,,) is defined
as go (@', 2n) = tr Y (d' /2! )+ an f(2!) if £, = 0 and g, (2, x,,) = tr7 (a'c/2’) +
an(f(z'/c) + 1) if 2, = 1. Therefore, we have

We(a,b) = ) (—1)»Ftbe

z€Fy
—= (=)t (@/a)tanf @)+t T B'a) b
(2,27, )E€F 1 x{0}
+ Z (_1)1:7{“1(a/c/z’)+an(f(z’/c)+1)+tr;l*1(b’z’)+bnxn
(@', 27 ) EFyn_1 x{1}
_ Z (71)tr1’_1(a'/w'er'a:')Jranf(z')

2/ €Fyn—1
+ Z (_1)trf_l(a'c/:v'+ /a:/)Jranf(z'/c)ern«Fan’
' €Fyn_1
Then our assertion follows from above equality. a

Remark 2. By Theorem 4, we can see that the nonlinearity of F' can take value
0 if the Boolean function f used in Construction 1 is an affine function.

3.5 CCZ-inequivalence

In this subsection, we will prove that, for any even n > 8, F is CCZ-inequivalent
to the Gold functions, the Kasami functions, the functions discussed in [2] and
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to quadratic functions. With the help of computer, we checked that for even n
ranging from 8 to 16, F' is CCZ-inequivalent to the inverse function.

Here and subsequently, I denotes the inverse function. We need the nonlin-
earities of component functions of I.

Lemma 3 [13]. For any positive integer n and arbitrary a € F5,., the Walsh
spectrum of tr?*(ax™') defined on Fan can take any value divisible by 4 in the
range [—2"/2F1 4 1,27/241 1],

We now study the CCZ-inequivalence of F.

Theorem 5. For every even n > 8, F' is CCZ-inequivalent to the Gold func-
tions, the Kasami functions, the functions discussed in [2] and quadratic func-
tions.

Proof. Note that the extended Walsh spectrum is a CCZ-invariant parameter.
It is well known that, for even n, the elements of the extended Walsh spectra
of the Gold functions, the Kasami functions and the functions discussed in [2]
belong to the set {0,+£2"%/2 £27/2+1} and that the elements of the extended
Walsh spectrum of quadratic functions can be divisible by 27/2 (indeed, the
component functions of any quadratic function have algebraic degree at most
2. We know that the nonlinearity of any affine function is equal to 0 and the
Walsh spectrum of any quadratic Boolean function is +2"/2 or 0, +2"/2%! where
1 > 1). Hence, for proving F' is CCZ-inequivalent to those functions, we only need
to prove that F' has different extended Walsh spectrum compared to theirs.
Let us take @’ = 1 in Theorem 4. Then there must be an element b € Fon—1

such that Zz,e]%nﬂ(—1)”?71(1/9/“’65) = 4, according to Lemma 3. Define

A= ZI,GF27H1 (_1)”‘?71(0/%"*‘569"/)_ It follows from Theorem 4 that 4 + v and
4 — v belong to the extended Walsh spectra of F. We can see that, for even
n > 8,44~ and 4 — v can not be divisible by 2"/2 simultaneously. This is the
desired conclusion. O

Theorem 6. Letn > 8 be an even integer. Define fs € B, onwvariablesxy,- - ,xy,
as fs = (14xp,) f1+ 2 f2, where f1, fo € B,—1 are defined as f1 = tr{“l(l/x) and
fo = tr7 " (c/x) where ¢ € Fyn-1 \ {0,1} is such that tr} ' (c) = tr7*(1/c) = 1.
Ifnl(fs) < 271 — 2%/2 then F with any f € B,_1 is CCZ-inequivalent to the
inverse function and therefore F' is CCZ-inequivalent to all known differentially
4-uniform power functions and to quadratic functions.

Proof. Letustakea’ =1 € Fyn—1 and a,, = 0 in the function g, (1, -+ , Zn—1,2n)
which is defined in the proof of Theorem 4. Then we can see that g, (1, -+, Tp_1,
x,) is equal to f3 and so f3 is a component function of F. If ni(fs) < 2"~1 —27/2
then we have nl(F) < 2"~' — 2"/2 and therefore F is CCZ-inequivalent to the
inverse function since the nonlinearity is a CCZ-invariant parameter and nl(I) =
2n=1 _ 91/2 The rest of proof follows from Theorem 5. a
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Remark 3. By computer investigation, we checked that nl(f3) < 2"~ — on/2
(but the nonlinearity of f3 is very close to 2"~ —2"/2 and we will show below a
class of highly nonlinear bijections by choosing a special Boolean function f in
Construction 1) for even n ranging from 8 to 16, where f3 is defined in Theorem
6. This implies that F is CCZ-inequivalent to all known differentially 4-uniform
power functions and to quadratic functions when 8 < n < 16.

4 A Class of Differentially 4-Uniform Bijections with
Good Cryptographic Properties

Hereinafter, for any even integer n > 6, we define F; as the function F with
f(') =tr?71(1/(z' +1)). By Theorems 1 and 2, we can see that F} is a differ-
entially 4-uniform bijection. It follows from Theorem 3 that F} has maximum
algebraic degree n — 1. In what follows, we will prove that the function F
has high nonlinearity and is CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions.

We first give a lower bound on the nonlinearity of F;. For doing this, we need
the following lemma.

Lemma 4 [14]. Let n be a positive integer such that n > 4, then we have
Y aer,, (—1)UE @atbe et @) T < 919n/241 | 4 4 for any (a,b) € Fan X Fan.
Note that 22(x +1)"! =2+ 1+ (z+1)~!. Then Lemma 4 is equivalent to:

71)tr{"(ax+bm_1+(m+1)_1) | <

Corollary 1. For any n > 4, we have |}, p . ( <

212"/24 | + 4 for any (a,b) € Fan x Fan.
We are now ready to give a lower bound on the nonlinearity of Fj.
Theorem 7. For any even n > 6, we have nl(Fy) > 271 —2[2(n+1)/2| _ 4,

Proof. For any (a,b) € F3* x FZ, we identify a with (a’,a,) and b with (V',by,).
By Lemma 4, we have

WF(CL, b) =
Z (_1)tr{1’71(a'/m'+b/x/) + Z (_1)t7’;"71(a/(;/ibl+b’1}’)’ if ap = O’ bn =0
' €Fyn—1 2/ €Fyn—1
3 (71)tr;’_l(a'/:v'+b'x/) - % (71)tr?_1(a’c/z'+b’m'), if a, =0,b, =1
fE/G]Fanl I/GFQn—l
(_1)tr?71(a'/w’+1/(w/+1)+b/m/>
' €Fyn—1
B (_Utrf*l(a’/x’+1/(x’+1)+b/ca:/)7 if a, =1,b, =0
' €Fyn_1
Z (71)157’?71 (a'c/z'+1/(z'+l)+b'az/)
2/ €Fyn—1
+ Z (_:l)trf_l(a//w/Jr1/(3:/Jr1)+b'ca:')7 if a, =1,b, =1
z'€Fyn—1
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Table 1. The exact values of nl(F1) on small number of variables

n 6 |8 |10 12

on—1 _ gn/2 24/112 480 1984

nl(Fy) 20194 |436,438,440,442/1888,1892,1894,1896,1898,1900,1902
Our lower bound|6 |80 [418 1864

By Lemma 3 and Corollary 1, we have

2|2(n+1)/2] if a, =0,b, € Fy

< ) n » UYn .

‘WF(a,bN = {4L2(n+1)/2J +8, if an:]-abn €T,

This implies that nl(Fy) > 27~ —2|2(0+1)/2| — 4, 0

With the help of computer, we get the exact values of nl(Fy) for even numbers
of variables ranging from 6 to 12, which are given in the following table.

4.1 CCZ-inequivalence

We shall now show that Fj is CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions.
To prove our main result, we need the following lemma.

Lemma 5. Let n > 7 be an integer. For any v € F5. and B;,; € Fon where
1 <1 <3, we have

| Z (71)tr}(mj‘_7}’1+£7%2+£7%3+ﬂ/1)‘ < 3L2%+1J +6.
x€Fon

Proof. Define S = {(z,y) € Fan x Fan |y® +y = ;55 + 355 + 255 + o)
Then we have

S (—)ri TS0 5 - on, (11)
z€Fyn

since tr{(z) = 0 if and only if there exists an element y € Fon such that z =
y? +y, and y — 3% + y is a 2-to-1 mapping. Let us consider the function field
K = Fan(z,y) with defining equation

aq a2 a3

+ + + yx. 12
r+p1 T+ Pr x+ B3 7 (12)

vty =
Then we can deduce that the genus g of K is equal to

1, if By = P2 =03
g=42, i1 =0 #Pzor B #Pa=Pz0r B =0F3#02 . (13)
3, if By # Bo # B3 # B
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Denote by N the number of the places with degree one of K/Fsn. Then by Serre
bound, we have

[N = (2" +1)] < g[272F1). (14)

In what follows, we compute the points at infinity of (12). We first con-
sider the case that ay,as, a3 are pairwise distinct. The homogeneous equation
of Equation (12) is equal to

Y Y 0412 OégZ OégZ X

Gt 2 =XrpztX1mz X027 (15)

If we multiply both sides of Eq. (15) by Z?2, we get

a1 2 asZ as”Z
X+ pZ X+ﬁzz X + (52

Multiply both sides of Eq. (16) by (X + £12)(X + $2Z)(X + $3Z) and then let
Z =0, we have X?Y? = 0. Hence, there are two points at infinity satisfying the
Eq. (15), which are (0:1:0) and (1:0:0). We now compute the multiplicity
of roots of (0:1:0) and (1:0: 0), respectively. Let us first consider (0: 1 : 0),
ie., Y =1. We can use

Y24YZ =] 122 +9XZ. (16)

1, 1 a1z oz a3z x
- g - 17
(z) +z a:—&—ﬂlz—’_a:—l—&z—'_x—l—ﬁgz—'_’yz (17)

to calculate the multiplicity of root. It should be note that (0 : 1 : 0) is corre-
sponding to (0,0). Multiply Eq. (17) by 22, we get
a1 Qa2 as
+ +
r+ iz x4z T+ P32

1+ 123 = 2 + yz2.

Multiply this new equation by (x + (12)(z + B22)(x + f52), we have
(z + B1z)(z + B22)(z + B32) + R(z, z) = 0,

where R(z, z) is a polynomial such that its every monomial has algebraic degree
at least 3. This gives (0 : 1 : 0) is a root of multiplicity 3. For the point (1:0: 0),
i.e. X =1, we can use

Yy a1z [0y Qs3z

1
AV = 18
(z) +z 1+,Blz+1+522+1+ﬂ3z+72 (18)

to calculate the multiplicity of root. Similar with Eq.(17), Eq.(18) can be
deduced as
a7y Q2 as ] 3 _

2+ (Y2 +yz) + + + 2% =
7 ( Y ) [1+ﬂ12 1+522 1+ﬂ32’

Multiply this new equation by (1 + 812)(1 + f22)(1 + S52). Two cases can then
occur, according to the values of ~.
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e Fory # 0, we have vz + Ry(y,2) = 0, where R;(y, z) is such that its every
monomial has algebraic degree at least 1. This implies that (1: 0 : 0) is a root
of multiplicity 1.

e For v = 0, we can deduce that (y? + yz) + Ra(y,2) = 0 where Ry(y, 2) is
such that its every monomial has algebraic degree at least 2, which implies
(1:0:0) is a root of multiplicity 2.

Therefore, Eq. (12) has at most five points at infinity in the case that a;, a9, as
are pairwise distinct. Then

N> S —5. (19)

Similarly, we can deduce that Eq.(12) has at most four points at infinity if
a1, Qg, g are not pairwise distinct. So we have

N>S8—4. (20)
Equations (11), (14), (19) and (20) combined give our statement. O
We are ready now to state and prove the main result of this subsection.

Theorem 8. For any even n > 8, Fy is CCZ-inequivalent to all known differ-
entially 4-uniform power functions and to quadratic functions.

Proof. By Theorem 5, we can see that F} is CCZ-inequivalent to the Gold func-
tions, the Kasami functions, the functions discussed in [2] and to quadratic
functions. So, for proving our statement, we only need to prove that F; is CCZ-
inequivalent to the inverse function. It is well-known that the number of pairs
(a,b) € F5* x F% such that I(x) + I(z + a) = b has 4 solutions is 2" — 1. Recall
that the differential spectrum is a CCZ-invariant parameter. So we only need to
prove that the number of pairs (a,b) € F5* x F§ such that Fy(x)+ Fi(x+a) =b
has 4 solutions is at least 2".

We identify a with (a’,a,) and b with (V',b,,). Let us first give a sufficient
condition for the sum of the numbers of distinct solutions (9) and (10) to equal
4. For every o’ € F;,_, and for every fixed zg € Fon-1 \ {0,a’,a’/(c + 1)}, if we
assume that xg is a solution of 1/z’ + ¢/(z’ + a’) = b’ which is equivalent to

' + (d'V +c+ 12’ +ad =0 (21)

thanks to ¢ # 0,a, then we have b'x¢% + (a’b’ + ¢ + 1)zg + @’ = 0 and hence
b = (a' + (c+ 1)z0)/(x0* + a’zo) which is nonzero since x¢ # a’/(c + 1),0,a’.
Further, we can deduce that the other solution of (21) is x; = zg+a’+(c+1) /0 =
ca’z/((c +1)(cwo + 20 + @) + @’ /(c+ 1). For ensuring g # 1, a’ + (¢ +1)/b
should not be equal to 0, which is equivalent to saying that zy should not be
a solution of equation (a’ + (¢ + 1)2’)/(z'> + a’z') = (¢ + 1)/a’. This implies
that z¢ # d/(c + 1)2%2. Hence, for every o’ € F;,_,, then for every fixed zy €
Fon—1 \ {0,d’,d’(c + 1)2"°,d’/(c + 1)}, equation 1/2' + ¢/(z/ + /) = b with
b = (a'+(c+1)z0)/(x0%+a’z0) has two distinct solutions g, z1. Further, by (3)
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of Lemma 2, zg+a’, 21 +a’ are two distinct solutions of ¢/2'+1/(2'+a’) = b'. We
can see that z1+a’ # xg since (¢+1)/b # 0. This gives that xg, 21, xo+a’, 21 +d’
are four distinct elements. Therefore, for every o’ € F},_, and for every fixed
g € Fon-1 \ {0,d',d'(c + )27 d /(e + 1)}, (9) and (10) have four pairwise
distinet solutions if f(z') + f((z' + a')/c) = f(2'/c) + f((z' + a’)), in which
b = (a/+(c+1)x0)/(z0?+a'x0) and b, = f(2')+ f((2'+a’)/c), and therefore (6)
has four distinct solutions. For every a’ € F,_,, let us define T,y = {x € Fan-1\
{0,0/,a'(c+ 1" ' [(c+ D} (@) + f (@' +d) [e)+ (' [e) + f (&' +a)) = O}.
Note that (21) has at most two solutions when a’, b’ are fixed. Thus, for every
a' € Fj,_., there are at least T,/ /2 distinct pairs (a,b) = ((a’,1), (V/,b,)) such
that (6) has four distinct solutions.

We now show that the number of pairs (a,b) € F5* x F such that Fy(z) +
Fi(z + a) = b has 4 solutions is not less than 2". We replace f(z') in T, by
tri =1 (1/(2'+1)), then T, becomes T, = {xg € Fyn-1\{0, d’, a(c+1)2" 7 d /(c+
DHery (1/(zo+1) +1/((wo +a') /e +1) +1/(z1 +1) +1/((z1 +a’) /c+1)) = O}
Recall that 1 = 29+ a' + (¢ +1)/b = ca'2/((c+ D(cwo+zo+0a))+d/(c+1).
Then for every a’ € Fon \ {0,1+ ¢, (c+1)2" "}, we have

’2

c ca
n—2 7 2 72 2
Ta’ _ {10 c FQn—l \{0,0.’,(1’(64» 1)2 ,a//(ch 1)}‘”,?—1( (a’4+c+1) n (a’“+c+1)

1 a’+c
zo + a’+c+1 xo + a/Z:C-:ll
a'2
P G S ca’” + a” ) =0}
X = .
w0+ ettt 0T e T T (@ et D@2 Fct1) | (@ e+ (et 1)

c+1
Therefore, the number of pairs (a,b) € Fy* x F§ such that Fy(z) + Fi(z+a) =b
has 4 solutions is greater than (2"~ —3)T,/ /2, which is not less than 2" —1 since
T >2""2- 2|2 "I+ — 7 for every a’ € Fan \ {0,1+¢, (c+1)2" "} according
to Lemma 5. This completes the proof. a

Remark 4. By computer investigation, we checked that the extended Walsh spec-
trum of F} for even numbers of variables ranging from 6 to 12 are different from
those of all the known differentially 4-uniform bijections listed in Sect.2. This
implies that functions F; are CCZ-inequivalent to all known differentially 4-
uniform bijections in the dimensions ranging over even integers from 6 to 12.

5 Conclusion

In this paper, we first presented a construction of differentially 4-uniform bijec-
tions on Fan, where n > 6 is even. For any even n > 6, this construction can
generate at least (2”_3 — L2("_1)/2_1j — 1) Lo2n ! bijections having algebraic
degree n — 1. In addition, we exhibited a subclass of these bijections which have
high nonlinearity and are CCZ-inequivalent to all known differentially 4-uniform
power bijections and to quadratic functions. The research of finding more sub-
classes with high nonlinearity from our construction is very interesting and is
worthy of a further investigation.
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