Chapter 2
Discrete Spaces: Graphs, Lattices,
and Digital Spaces

Abstract The best way to describe discrete objects is to use graphs. A graph consists
of vertices and edges. The vertex usually represents a part of an object, an whole
object, or the location of an object; the edge represents a relationship between two
vertices. A graph can be defined as G = (V, E) where V is a set of vertices and E
is a set of edges, each of which links two vertices. For a certain geometric object,
e.g. a rectangle, one can draw four points on the corners and link them using four
edges. The drawback of using edges is that the edge is not a geometric line and it
usually does not carry a distance. A geometric space also requires a measurement of
distance (the length between two points), called a metric. Therefore, people prefer
to use specialized graphs such as triangulated graphs and grid graphs, to represent
an object in discrete space. In this chapter, we introduce the discrete spaces made
by graphs, lattices, and grid points. We briefly review some of the basic concepts
related to discrete objects and discrete spaces.

Keywords Graph - Lattice - Space - Digital space - Discrete space - Algorithms

2.1 Objects in Discrete Spaces

Objects are things that are visible or tangible. An object usually has a form that is
relatively stable. Geometry is the study of objects and their properties in space. Due
to the fact that computers can only take a discrete or finite number of objects, discrete
geometry has become more important in recent years.

There are always two ways to view an object: (1) A contiguous interpolation of
discrete points to from a continuous object, (2) A discretizing or sampling of a contin-
uous object to get its discrete representation. In this chapter, we assume that our space
is discrete. In the next chapter, we discuss spaces and objects that are continuous.

The recent motivation behind studies in discrete geometry is due to the need
of computer graphics and computer vision. There are a great deal of applications,
especially in medical imaging, that require a high level of math including topology
in a digital format. Images are stored in digital spaces, discrete spaces, and even with
finite topologies.

The simplest way to describe a discrete object is to use graphs. A graph consists of
vertices and edges. The vertex usually represents a part of an object, a whole object,

© Springer International Publishing Switzerland 2014 17
L. M. Chen, Digital and Discrete Geometry, DOI 10.1007/978-3-319-12099-7_2

18 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

or the location of an object; the edge represents a relationship between two vertices.
For instance, a rectangle can be represented by drawing four points on the corners
and linking them using four edges.

In this chapter, we start with an introduction of an undirected graph G = (V, E),
where V denotes the set of vertices and E denotes the edges between the vertices.
Then we introduce the lattice that has geometrically regular assigned locations for
each vertex. The edge in lattices is typically assumed. Note, the lattice we deal with
here differs from an algebraic lattice, which has a partial order assigned on each
vertex.

Then, we focus on the grid space that is the simplest lattice, similar to arrays in
computers. This grid space is called digital spaces.

Another popular discrete space is called the triangulated space in two-dimensional
spaces (2D). This space contains only triangles as 2D elements. In mathematics, a
triangle is called a two-dimensional simplex (2-simplex), while a point is called a
0-simplex and a line-segment is called 1-simplex.

In undirected graphs, we can view that vertices are O-simplices, and edges are
1-simplices. However, to describe 2-simplices, one needs special structures to define
it. On the other hand, edges in a graph cannot just be viewed as line-segments because
edges in graphs can have more general meanings.

2.2 Graphs and Simple Graphs

A graph G consists of two sets V and E, where V is the set of vertices and E is the
set of pairs of vertices called edges. An edge is said to be incident to the vertices if
it joins [2, 11, 16]. In this book, assume that G = (V, E) is an undirected graph,
which means that if (a, b) € E then (b,a) € E, or (a,b) = (b,a). a, b are also called
ends, endpoints, or end vertices of edge (a, b). It is possible for a vertex in a graph
to not belong to any edge. V and E are usually finite, and the order of a graph is
| V|, which is the number of vertices. The size of a graph is linear to max{|V|, |E|},
meaning that it requires this much memory to store the graph.

The degree of a vertex is the number of edges that incident with (or link to) it.
A loop is an edge that links to the same vertex. In such a case, the degree would
be counted twice. Figure 2.1 shows two examples of graphs. Figure 2.1a shows a
directed graph, where the edge has an arrow. Figure 2.1b shows an undirected graph.

2.2.1 Basic Concepts of Graphs

Graph G = (V, E) is called a simple graph if every pair of vertices has at most one
edge that is incident to these two vertices and there is no loop (a,a) € E for any
a € V. See Fig. 2.2.

If (p,q)isin E, then p is said to be adjacent to g. Let po, p1, ..., pu—1, pnben+1
vertices in V. If (p;_1, p;) isin E for all i = 1,...,n, then {pg, p1, ..., Pn_1, Pn} 1S

2.2 Graphs and Simple Graphs 19

a b

Fig. 2.1 Example of graphs: a A directed graph, and b An undirected graph

Fig. 2.2 Paths: A path

{A,C,D, B,C, E}; A simple
path {A, B, D, F'}; and A loop
at F

called a path. If pg, p1, ..., pn—1, pn are distinct vertices, the path is called a simple
path.

A simple path {pg, p1, ..., Pn—1, Pn} is closed if (pg, p,) is an edge in E. A closed
path is also called a cycle. Two vertices p and g are connected if there is a path
{po, P1,---s Pn—1, Pu} Where py = p and p, = ¢. G is called connected if every pair
of vertices in G is connected. In this book, it is always assumed that G is connected
(unless otherwise specified).

Let S be a set. If S’ is a subset of S, then their relationship is denoted by §’ C S.
If S is not a subset of §’, then S’ is called a proper-subset of S, denoted by S” C S.

Suppose G’ = (V', E’) is a graph where V' € V and E’ € E for graph G =
(V,E). Then, G’ = (V', E’) is called a subgraph of G.

If E’ consists of all edges in G whose joining vertices are in V’, then the sub-
graph G’ = (V’, E') is called a partial-graph of G and their relationship is denoted by
G’ < G.If V'isaproper-subset of V, then the relationship is denoted by G’ < G. Itis
noted that for a certain subset V' of V, the partial-graph G’ with vertices V' is uniquely
defined. ! A path is a subgraph. For example in Fig. 2.2, {A, B, D, C, E} is a path.
Let V' ={A,B,D,C,E}and E’' = {(A, B),(B,D),(D,C),(C,E)}. G' = (V',E)
is a subgraph, but it is not a partial graph because it does not include the edge (D, E).
So, G" = (V’, E' U{(D, E)}) is a partial graph.

"'In [6], we made an error in revising the meanings of the two concepts: Subgraphs and Partial
graphs.

20 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

2.2.2 Special Graphs

In this subsection, we present some examples of special graphs that may be used
later in this book. The detailed description for these concepts can also be found in
[2, 11].

Complete Graph In a complete graph, each pair of vertices is joined by an edge. A
triangle is a complete graph with three vertices. A complete graph with five vertices
contains 10 edges. See Fig. 2.3a. A complete graph with n vertices is denoted as K,,.

Bipartite Graph In a bipartite graph, the vertices can be divided into two sets, X
and Y, so that every edge has one vertex in each of the two sets, i.e. no edge is
inside set X (or Y) alone. See Fig. 2.3b. A Bipartite graph with n vertices in X and
m vertices in Y is denoted as K, ,,.

Weighted Graph In a weighted graph, each edge can be assigned a weight. The
weights are usually real numbers that could indicate distance if the vertices are cities.
See Fig. 2.3c.

Planar Graph A planar graph is a graph that can be drawn in a plane with no
crossing edges. A graph with crossing edges may or may not be a planar (plane-able)
graph. In the following subsection, we present a theorem related to planar graphs.
See Fig. 2.3d.

Tree A tree is a connected graph with no cycles. A forest is a graph with no cycles.
See Fig. 2.3e.

2.3 Basic Topics and Results in Graph Theory

Graph theory was established by Euler, who solved the well-known —Seven Bridges
of Konigsberg problem in his time. See Fig. 2.4a. In this map, Euler was asked to
draw a path where each bridge would be traveled just once. Euler found that it was
impossible, since he represented this problem as a 4 vertices and 7 edges graph,
Fig. 2.4b. When one passes a vertex, he must go through two edges, one in and one
out. That is to say, if such a path exists, each vertex must contain even number of
edges. This property became the first theorem in graph theory.

Two of the most famous problems in graph theory are the Four Color Problem and
the Traveling Salesman Problem. The former deals with a well-known “rule” in map
printing. Only four colors are needed in a map, a planar graph, in which all adjacent
points are colored by different colors. It is believed that this problem was solved
positively by a computer program. However, even now, no one is able to verify the
correctness of the computer program [2].

As for the Traveling Salesman Problem, its goal is to find the shortest path (for n
cities) when a salesperson only travels to each city once. The path finding procedure
exists but any of these solutions require extremely long computation time to complete

2.3 Basic Topics and Results in Graph Theory 21

d e

Fig. 2.3 Some special graphs: a A complete graph K3, K4, Ks, b A bipartite graph K33, ¢ A
weighted graph, d A planar graph K4, and e A tree

the job. Today, no one knows if there is an efficient algorithm to solve this problem.
It is related to the P =?N P problem [8].

2.3.1 Graph Representation, Searching Graph,
and Graph Coloring

To solve a complex problem in graphs, for example the graph contains hundreds or
even thousands of vertices, we must rely on computers. But how do we represent a
certain graph in the computer? There are two ways to do this: the adjacency matrix
and the adjacency list.

22 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

A

a b

Fig. 2.4 Seven Bridges of Konigsberg: a An original map, and b The equivalent representation in
graphs

In the adjacency matrix, we assume Graph G has n vertices. Ann x n {0, 1} matrix
M = {m;;}is used to hold the information of adjacency: m;; = 1if and only if vertex
i and j are adjacent. This is the simplest way, but if there are not many edges in G,
then there needs to be a large amount of storage space to represent matrix M. For
instance, if n = 100, we need 10,000 memory units to represent M.

Another way that could save storage space is called the adjacency list. For vertex
vin G, we just attach all adjacent points of v to v. So each link becomes a linked list
that is lead by v.

Vi = Uit —> Ujp -+ —> Ujg

v; represents the ith vertex. The length of each list is not the same, so we can save a
lot of space. However, the process of calculating may become a little more difficult.
To find whether a graph G is connected, we need to search the graph. The best
way is called the depth-first search or breadth-first search technique. In mathematics
and computer science, if one needs a procedure to solve a problem, the procedure
is called an algorithm. An algorithm usually contains several steps of instructions
that solves a problem. The basic idea of the depth first search algorithm is to find the
set of connected vertices until no more vertices can be found. Then, we go back to
each vertex we visited to see if there are any other ways to go. We continue, where
possible, until there are no possible ways left. This procedure requires a special data
structure to hold the vertices we visited. We discuss this further in Chaps. 4-6.
Graph coloring assigns different colors to adjacent vertices. It usually tries to
assign the minimum number of colors. The most famous problem is called the four
color problem for planar graphs, as we have mentioned before. This problem was
believed to be solved in 1975 with the help of computer programs. Since some errors
were found and fixed in the program, some mathematicians are still looking for pure,

2.3 Basic Topics and Results in Graph Theory 23

Fig. 2.5 Find a minimum
spanning tree T

mathematical proofs. However, a famous theorem states: Five colors are enough for
a planar graph [11].

2.3.2 The Minimum Spanning Tree

Given a connected graph G = (V, E), a spanning tree is a subgraph of G, which is
a tree and contains all the vertices of G. This special tree is called a spanning tree
since it spans every vertex.

A graph may have several different spanning trees. If G is a weighted graph, a
minimum spanning tree (MST) is the one that has the minimum total weight. The
simplest method for finding a MST is called Kruskal’s Algorithm. Its principles are
as follows (Fig. 2.5):

Algorithm 2.1: Kruskal’s Algorithm. Find a minimum spanning tree 7' for graph G.

Step 1 Sort the edges based on the weights of the edges from smallest to largest.

Step2 Set initial tree T to be empty.

Step3 Select an edge from the sorted edge list and add it to T if such an added
edge does not generate a cycle.

Step4 T would be the minimal spanning tree if |V | — 1 edges are added to T'.

The proof of Algorithm 2.1 can be found in [§].

2.3.3 The Shortest Path*

Finding the shortest path for each pair of vertices in a graph is one of the most
common problems in the real world. A method of finding the shortest paths from a
single source vertex to all of the other vertices in a weighted directed graph is called
the Bellman—Ford algorithm.

Let G = (V,E) and |V| = n. We use W(e)=W(u,v) to represent the weight on
an edge e = (&, v). The principle of the algorithm is to reach a vertex v using k edges
from the source vertex S and maintain the shortest path using at most k£ edges. In

24 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

Fig. 2.6 Bellman-Ford Algorithm for finding the shortest paths: a Original graph, b Move to the
direct neighbors and no change in relaxation, ¢ Move to the next neighbors, and d Value changed
in relaxation

other words, from S, if we use one edge, we can only get to the neighboring cities.
If we use two edges, we can get to the neighboring cities of the neighboring cities.
Then, we update the shortest distance on all vertices we can reach on the path with
at most two edges. Continuing this idea, we can reach all vertices by using at most
n — 1 edges and we can finish our task.

In the detailed algorithm, we always mark or record the distance from the source
to every other vertex at the vertex. It is obvious that we always mark the smallest
value (the shortest one, by using k edges). When we have used (n — 1) edges, we
would have the solution.

Algorithm 2.2 : (The Bellman—Ford Algorithm) Find the shortest paths from a
vertex S to all vertices in graph G (Fig. 2.6).

Step 1 Mark all vertices other than S as co, where d(v) is the distance from S to v
and d(S) = 0.

Step 2 For each vertex, follow an iterative procedure called relaxation: for each
v where u is adjacent to v, check if d(v) > d(u) + W(u,v). If so, then
d(v) = d(u) + W(u,v). Repeat Step 2 for (n — 1) times.

Another algorithm is called Dijkstra’s algorithm. Dijkstra’s algorithm runs faster
than the Bellman—Ford algorithm, but Dijkstra’s algorithm is unable to deal with
graphs that have some negative weight edges. The Bellman—Ford algorithm is also
easier to understand. It checks all possible links n — 1 times. During each iteration,
we get the shortest path passing through k edges. Until we pass n — 1 edges, we nat-
urally get the shortest path from S. The idea behind this algorithm is called dynamic
programming, which means dynamically using the results already calculated.

2.4 Lattice Graphs, Triangulated Space, and Grid Space 25

a b c

Fig. 2.7 Lattice graphs: a Squares, b Parallelograms, and ¢ Triangles

2.3.4 Graph Homomorphism and Graph Isomorphism*

Homomorphism and isomorphism are related to functions between to two graphs. A
graph homomorphic mapping is a function from the vertex set of G to the vertex set
of G’ so that if (a, b) is an edge of G, then (f(a), f(b)) is an edge of G'. If such a
mapping exists, we say that G, G’ are homomorphic.

If f is a 1-to-1 mapping (bijection), then f is called isomorphic. Homomorphism
is called an edge-preserving mapping whereas isomorphism is an edge-preserving
bijection.

Graph homomorphism has some applications to graph coloring problems. How-
ever, graph isomorphism mainly describes two graphs having “the same structure.”

When the preserving edge can be allowed to shrink into a vertex, the func-
tion/mapping is called immersion and embedding. Graph immersion is an important
concept to discrete surface reconstruction in this book. See Chap. 11.

A famous unsolved problem in computer science states: Given two graphs with
the same number of vertices, is there a polynomial time algorithm to decide if these
two graphs are isomorphic? This problem is called the graph isomorphism problem
[1,5].

2.4 Lattice Graphs, Triangulated Space, and Grid Space

To view a general graph as a discrete space is sometime too general. There are much
more specific graphs that are better for the purpose of defining discrete spaces. These
are called lattice graphs. A lattice graph is a simple graph with a distance measurement
(called metric) of a geometric object. Lattice graphs are regular graphs, meaning that
each edge has the same weight or represents the same distance in Euclidean space
as in other spaces.

For instance, in regular triangles, each edge has the same length as in hexagons
and parallelograms. (See Fig. 2.7) A more general 2D shape is called a polygon,
which is formed by multiple edges as a closed boundary. In Chap. 5, we show more
examples of these shapes.

26 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

A metric used to measure distances is dependent on geometric objects. For in-
stance, the metrics on the plane and the sphere are different. The weight of an edge
usually means the length of the shortest path between the two lattice points. In other
words, the edge is usually the minimum distance curve in the space, called the
geodesic curves between two adjacent lattice points. In computer graphics, we call
lattices the meshes. Therefore, meshes on surfaces are good examples of lattices.

Two of the most popular lattice graphs are the triangulated space and the grid
space. See Fig. 2.7b and c. Since the triangle is the simplest shape containing 2D
information. It is called a 2D simplex. Adding another point in a new dimension,
we will have a 3D simplex that contains four end points. Any geometric shape can
be partitioned using simplexes in general. So mathematicians treat the simplex as
the most significant discretization unit. However, this is difficult to represent in
computers since the computer memory or disk storage are arranged as arrays, which
is similar to grid spaces.

A grid space is a special lattice in which each point is at the integer coordinate
location in Euclidean space and the edges are usually parallel to the coordinate lines.
In other words, a grid graph is a graph whose vertices correspond to the points with
integer coordinates. For instance, in a 2D plane, x-coordinates are in the range 1,...,n,
and y-coordinates are in the range 1,...,n. A grid space is similar to a TV screen or a
mathematical 2D array.

The grid space is also called the grid-cell space, which is the main topic of concern
in this book—digital space. However, digital space has more inner-meanings than
a grid graph, and we discuss it in further details in the following sections of this
chapter.

In summary, we can usually view a lattice as a graph embedded in Euclidean
space. Lattices only contain points and edges, where edges are usually straight lines.
Examples, including meshes for computer graphics, are very popular. The lattice
graph differs from the algebraic lattice, which is defined on a partially ordered set
where any two elements have a supremum and infimum in the algebraic lattice [15].

2.5 Basic Concepts of Digital Spaces

Digital space has two definitions. First, in the narrow sense, a digital space is a
discrete space in which each point can be defined as an integer vector, i.e. each
component of the vector is an integer. Second, in the general sense, the space is a
digitized space or discretely sampled space that is saved in digital form. In this book,
we usually reference the first definition of grid space when discussing digital space.

2.5.1 2D and 3D Digital Spaces

Let us consider a two-dimensional digital space X,. It contains all integer points of
a Euclidean plane, E;. A point P (x, y) in X, has two horizontal (x, y & 1) and two

2 Springer
http://www.springer.com/978-3-319-12098-0

Digital and Discrete Geometry

Theory and Algorithms

Chen, L.

2014, XV, 322 p. 130 illus. in color., Hardcover
ISEM: 978-3-319-12098-0

	Part I Basic Geometry
	Chapter 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces
	2.1 Objects in Discrete Spaces
	2.2 Graphs and Simple Graphs
	2.2.1 Basic Concepts of Graphs
	2.2.2 Special Graphs

	2.3 Basic Topics and Results in Graph Theory
	2.3.1 Graph Representation, Searching Graph, and Graph Coloring
	2.3.2 The Minimum Spanning Tree
	2.3.3 The Shortest Path*
	2.3.4 Graph Homomorphism and Graph Isomorphism*

	2.4 Lattice Graphs, Triangulated Space, and Grid Space
	2.5 Basic Concepts of Digital Spaces
	2.5.1 2D and 3D Digital Spaces

