
Chapter 1
Transactions on the Logical Database

The database as seen by an application programmer is called the logical database. In
most cases the logical database is a relational database, so that application programs
operate on tuples in relations through an SQL interface. A transaction is a sequence
of read and update actions on the logical database, performed on the database upon
a sequence of requests from an application. The action sequence constituting a
transaction is atomic in the sense that either the effects of all the actions are recorded
permanently in the database (in which case the transaction is committed) or none are
(in which case the transaction is aborted and rolled back).

Integrity constraints specified by the database designer on the logical database
determine which database states (i.e., database contents) are legal. Each transaction
should be programmed in such a way that it retains the integrity of an initially
integral logical database. Upon requests from applications, the actions included in a
transaction are performed one by one on the database by the database server whose
responsibility is to ensure that the logical database as well as the underlying physical
database retain integrity under many concurrently executing transactions.

In this chapter we present the basic concepts related to transactions on a relational
database. We model a transaction as an action sequence consisting of a forward-
rolling phase possibly followed by a backward-rolling phase of undo actions,
where the forward-rolling phase can also contain partial rollbacks. For ease of
treatment, we define a primitive transaction model called the key-range transaction
model, which we shall use throughout this book when discussing different issues of
transaction processing.

1.1 Transaction Server

The database server of a typical relational database management system functions as
a transaction server, also called a query server (or a function server). Such a server
offers an interface through which client application processes can send requests to
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Fig. 1.1 Typical two-tier transaction server

execute database actions (queries and updates) on the database stored at the server.
The server processes the requests coming from the clients and returns the results
to the clients. The requests are specified by SQL queries and update statements
embedded in an application program or by a special database programming interface
consisting of a collection of procedures and functions for communicating between
an application program and the database server. Java Database Connectivity (JDBC)
and Open Database Connectivity (ODBC) are examples of such interfaces.

The mode of operation of a transaction server is called transaction shipping
or query shipping (or function shipping): a transaction (or a query or a function)
is “shipped” from a client to the server, to be executed on the data stored at the
server. Figure 1.1 shows a typical two-tier organization of many client machines
connected to a database machine. The two “tiers” are the client tier and the database
tier. For scalability, a large system with thousands of clients may be organized with
additional tiers between the client and database tiers, such that a machine at a lower
tier services only requests from a subset of machines at the next higher tier.

There are one or more server processes running at the server. Such a process
is usually multi-threaded, that is, has several subprocesses or threads running
concurrently in the same virtual address space. A typical server process services
a number of clients, so that for each client application process there is a dedicated
server-process thread.

A connection between a client application process and a server-process thread
is created by the embedded SQL statement connect to s, where s is an identifier
(network address) of the server. The statement creates a new server-process thread
to service the application process or assigns an existing idle thread for the purpose.

1.2 Logical Database

A database application programmer sees the database as a logical database,
a collection of data items defined and manipulated by the data definition and
manipulation language offered by the database management system. In most cases
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the logical database conforms to the relational data model extended with features
from the object data model, with SQL as the data definition and manipulation
language.

The logical databases that we consider in this book are assumed to be purely
relational, if not explicitly stated otherwise. Thus, the logical database is a collection
of relations or tables, which are multisets of tuples or rows. A multiset or bag is
an unordered set where the same element can occur multiple times. All tuples of
a relation conform to the same schema, that is, are of the same type. A relation
schema r.Z/ consists of the name r of the relation and the names and types Z

of its attributes, along with possible integrity constraints defined on the relation
(uniqueness of keys, referential integrity, etc.).

The operations of the relational model take relations as arguments and return a
relation as a result. For example, the SQL statement

delete from r where A D a

means the same as the assignment

r  r n �ADa.r/,

where “n” denotes the relational difference operation and “�” denotes the relational
selection operation, that is, �ADa.r/ D ft 2 r j t ŒA� D ag.

However, for the purpose of transaction management, this view of operations is
too coarse grained. For one thing, as we will see shortly, we have to see a database
transaction as a sequence of actions where each update action can be rolled back,
that is, undone, if so desired. This requirement imposes a strong restriction on the
complexity of actions: any single update action must be simple enough so that its
undo action (inverse action) is easily defined and implemented. For another thing,
modern database management requires that as much concurrency as possible be
allowed among transactions active at the same time. This means that the granularity
of data items used to synchronize transaction execution should be as small as
possible. For example, we must allow several transactions to update a relation
simultaneously, as long as the updates affect different tuples.

The usual solution (and the solution we adopt here) is to view the actions on the
logical database as tuple-wise actions, so that each action always reads or updates
(inserts or deletes) a single tuple only. Accordingly, in our view, the above delete
statement is regarded as a sequence of tuple-wise actions:

delete t1 from r ; delete t2 from r ; : : : I delete tn from r ,

where ft1; t2; : : : ; tng is the bag of tuples with A D a. For the deletion of a single
tuple t , it is easy to define its undo action: it is the insertion of the same tuple.

Thus, for the purpose of transaction management, we assume that the collection
of logical database actions consists of tuple-wise actions such as the following:

1. Reading a tuple t of relation r . The SQL query select � from r where C generates
a sequence of such read actions, one for each tuple satisfying the selection
condition C .
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2. Inserting a new tuple t into relation r . Such an insert action is generated by the
SQL statement insert into r values .t/.

3. Deleting a tuple t from relation r . The SQL statement delete from r where C

generates a sequence of such delete actions, one for each tuple satisfying the
selection condition C .

4. Updating the value of an attribute A of a tuple t in relation r . The SQL statement
update r set A D e where C generates a sequence of such update actions (if e

is a constant) or a sequence of pairs of a read action followed by an update action
(if e contains attributes whose values thus are read in computing the value of e),
one for each tuple satisfying condition C .

5. Creating a new relation r.Z/ in the database. The input to the action is a relation
schema, and the action is possible when there is no relation named r already in
the database. The action creates a new, empty relation on which other actions
can subsequently be performed. This action is generated by the SQL statement
create table r.Z/, where Z is the SQL definition of the attributes and integrity
constraints of the schema.

6. Deleting an empty relation r from the database. After this action, the only action
that can be applied to r is action (5). The SQL statement drop table r generates
a sequence of tuple-deletion actions (3), one for each tuple in r , followed by the
deletion of r .

Logical database actions also include certain transaction-control actions needed
for managing transactions: beginning a new transaction, committing a transaction,
aborting a transaction (i.e., starting rollback), and completing a rollback. The exact
set of logical actions used in this book is fixed later, when the transaction model (the
key-range model) is defined.

1.3 Integrity of the Logical Database

As is customary with treatments of relational database management, we may use
the terms “database” and “relation” with two meanings: on the one hand, a logical
database (resp. a relation) may mean a database value (resp. relation value), that
is, some fixed contents of the database (resp. relation) as a bag of tuples, and on
the other hand, it may mean a database variable (resp. relation variable), that is,
a variable that can take a database (resp. relation) as its value. The context should
make it clear which of the two meanings is assumed. Sometimes, when we wish to
emphasize the distinction between the two meanings, we may talk about database
states when referring to database values.

For each logical database and for each of its relations, considered with the latter
meaning (as a variable), there is a set of associated integrity constraints, which
have been specified at the time of creating the database or relation (with the SQL

create table statement) or added afterwards (with the SQL alter table statement).
An integrity constraint may be internal to a single relation such as a key constraint
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(primary key, unique) or it may span over two relations such as a referential
integrity constraint (foreign key).

Integrity constraints restrict the values that the database and relation variables are
allowed to take. A logical database (i.e., its state) is integral or consistent if it fulfills
the integrity constraints specified for the database.

An attempt to perform an update action that violates an integrity constraint
specified by SQL on the database either returns with an error indication, or triggers
a sequence of corrective actions so as to make the violated constraint to hold
again if such corrective actions have been specified. In addition to constraints
that can be specified by SQL create table and alter table statements, the logical
database usually satisfies some application-specific constraints. Applications using
the database must check for these and keep them satisfied.

As a running example of a relation, we use

r.X; V /;

where X and V are sequences of attributes. The underlining of X means that we
have specified a key constraint on the relation: a relation that satisfies this constraint
cannot contain two distinct tuples t and u with t ŒX� D uŒX�. The attribute sequence
X is called the primary key, or key for short, of the relation.

1.4 Transactions

When a database application process is running, it generates a sequence of requests
to perform SQL queries and update operations on the database stored at the
server. The server-process thread allocated to service the application process parses,
optimizes, and executes the queries and update statements in the order in which they
arrive from the application. From the view of the logical database, the execution of
a query or an update statement is a sequence of tuple-wise actions on the relations
in the database.

The sequence of SQL requests coming from the application process is divided
into subsequences by issuing occasionally an SQL commit or rollback request. The
sequence of tuple-wise actions on the logical database resulting from one such
subsequence of requests, that is, one that extends from the action immediately
following a commit/rollback request (or from the first action of the application)
to the next commit/rollback request, is called a transaction.

A transaction is an action sequence that the database application programmer
wants to see as forming an atomic (i.e., indivisible) unit of work: either (1) all
changes to the logical database produced by the transaction are done or (2) none
of the changes appear in the logical database. Requirement (1) must hold in the case
of a committed transaction, obtained by terminating the transaction with a commit
request, while requirement (2) must hold in the case of an aborted transaction,
obtained by terminating the transaction with a rollback request. Requirement (2)
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is also the only option in the case in which the database management system is
unable to commit a transaction due to a process failure or a system crash occurring
before or during servicing a commit request.

Example 1.1 Assume that in the relation r.X; V /, V is a single numeric-valued
attribute. The following fragment of an application program written in embedded
SQL generates a transaction that doubles the V value of all tuples in r :

exec sql update r set V = 2 � V ;
exec sql select sum(V ) into :new_sum from r ;
exec sql commit.

The application process sends to the server three requests, one by one, waiting for
one request to be serviced before sending the next:

1. A request to execute the update statement
2. A request to execute the select query
3. A request to commit the transaction

Assuming that the contents of relation r are initially the set of tuples
f.x1; v1/; : : : ; .xn; vn/g, request 1 results in performing the following action
sequence at the server, where B denotes the action of beginning a new transaction,
RŒx; v� the action of reading tuple .x; v/, and W Œx; u; v� the action of changing tuple
.x; u/ to .x; v/:

BRŒx1; v1�W Œx1; v1; 2v1�RŒx2; v2�W Œx2; v2; 2v2� : : : RŒxn; vn�W Œxn; vn; 2vn�:

Because the semantics of the update statement does not specify the order in which
r’s tuples are processed, the system selects the most efficient order, probably the
order in which the tuples are physically stored in r’s file. After performing the
update, the server returns to the application an indication of successful completion.
Then request 2 is sent, resulting in the following action sequence:

RŒx1; 2v1�RŒx2; 2v2� : : : RŒxn; 2vn�:

The computed sum is returned to the application, which assigns it to the program
variable new_sum. Finally, request 3 is sent, resulting in the action

C ,

denoting the commit of the transaction, assuming that no failures occur. ut
In addition to atomicity, durability is required for all committed transactions.

This means that the changes produced by a committed transaction need to actually
happen and stay in effect in the logical database, even in the presence of process fail-
ures and system failures occurring after the transaction has successfully committed.
The only way to undo updates produced by a committed transaction is to program
a new transaction (or several new transactions) for effectively compensating for the
updates.

In the above example, if the “commit the transaction” action is finished success-
fully, so that the transaction actually commits, all of the updates in the V attribute of



1.5 Transaction States 7

r’s tuples need to stay in effect. If, however, the transaction does not commit (e.g.,
because of a system failure), then all of the V attributes have to retain their original
values, so that none of them must be multiplied by two. To accomplish this, the
database management system must be able to undo any updates that have already
been done before the abort of the transaction.

1.5 Transaction States

Formally, we define a transaction as a pair .T; ˛/, where T is the identifier and
˛ is the state of the transaction. The transaction identifier is a serial number or
timestamp that uniquely identifies a transaction over a long period of time when
the database system has been in use. More specifically, as will be evident later,
transaction identifiers have to be unique over the set of transactions that either are
currently active (i.e., have not yet committed or rolled back) or have committed or
rolled back but still have traces (i.e., log records) retained in the available log files.

The transaction state, ˛, is the sequence of actions performed for the transaction
thus far. Each action in ˛ includes the values for the input arguments with which the
action was performed on the logical database and the values of the output arguments
returned. For example, the transaction state

BRŒx1; v1�W Œx1; v1; 2v1�

represents the result of performing the first three actions of the transaction given
in Example 1.1. The arguments x1 and v1 are constants; RŒx1; v1� represents a read
action that, when given input x1, retrieved from the database the tuple .x1; v1/l; and
W Œx1; v1; 2v1� represents an update action that, when given input x1, returned the
value v1 of the tuple with key x1 and replaced the value in the tuple by the value 2v1.

We use the symbol T (or subscripted, Ti ) to denote both the transaction identifier
and the transaction .T; ˛/ as a whole; accordingly, we may say that transaction T

is at state ˛. Also, when the state of the transaction is the interesting part, we may
even talk about “transaction ˛.”

We distinguish between four different types of transaction states: (1) forward-
rolling, (2) committed, (3) backward-rolling, and (4) rolled back. Every transaction
starts as a forward-rolling transaction; in general, the state of such a transaction is
an action sequence of the form

B˛; (1.1)

where B is the begin-transaction action and ˛ is a sequence of read actions and
normal (forward-rolling) update actions. The action sequence ˛ forms the forward-
rolling phase of the transaction.

The begin-transaction action can be thought of as an action that is needed to
introduce a new transaction into the system, including the generation of a new
transaction identifier. We assume that with database interfaces such as (embedded)



8 1 Transactions on the Logical Database

SQL that have no explicit request for starting a transaction, the first read or update
action triggers the begin-transaction action as the first action of the transaction.

A forward-rolling transaction can be continued with read and update actions until
a commit or an abort action is performed. The state of a committed transaction is an
action sequence of the form

B˛C; (1.2)

where B and ˛ are as in a forward-rolling transaction and C is the commit-
transaction action, the result of a successfully processed commit request. A
committed transaction cannot be continued with any more actions.

The state of a backward-rolling transaction is an action sequence of the form

B˛ˇAˇ�1; (1.3)

where B˛ˇ is the state of a forward-rolling transaction, A is the abort-transaction
action, and ˇ�1 is a sequence of undo actions for the suffix ˇ of the forward-rolling
action sequence ˛ˇ. The action sequence ˇ�1 forms the backward-rolling phase of
the transaction. Such a transaction has rolled back the forward-rolling update actions
in ˇ; the update actions in ˛ are still to be undone.

The abort action can be seen as marking the start of the service of an SQL

rollback request or the start of the rollback of a transaction aborted due to an outside
event such as a system failure. The service of the rollback request also includes
performing the backward-rolling phase of the transaction back to the undo action
for the first forward-rolling update action, after which it marks the transactions as
rolled back.

The undo sequence for a forward-rolling action sequence ˇ, denoted ˇ�1 or
undo.ˇ/, consists of undo actions for the sequence of update actions o1o2 : : : on

contained in ˇ, in reverse order:

undo.ˇ/ D ˇ�1 D o�1
n o�1

n�1 : : : o�1
1 D undo.on/undo.on�1/ : : : undo.o1/:

The undo action or inverse action for an update action o is defined separately for
each action:

1. undo(insert tuple t into r) D delete t from r .
2. undo(delete tuple t from r) D insert t into r .
3. undo(change the value of attribute A in tuple t of r from u to v) D restore the

value of attribute A in tuple t of r to u.
4. undo(create relation r.Z/ in the database)D drop empty relation r.Z/ from the

database.
5. undo(drop empty relation r.Z/ from the database)D create relation r.Z/ in the

database.

Unlike a forward-rolling transaction, a backward-rolling transaction cannot be
continued arbitrarily. The next action to be performed is always uniquely defined:
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the undo action for the last forward-rolling update action still undone is the one to
be performed next. Thus, any backward-rolling transaction will eventually enter in a
state in which all its forward-rolling updates have been undone; then the transaction
is recorded to have rolled back.

The state of a rolled back transaction is an action sequence of the form

B˛A˛�1C; (1.4)

where B˛A˛�1 is the state of a backward-rolling transaction and the C action marks
the transaction as being rolled back. Thus, a rolled back transaction has, as a result
of its backward-rolling phase ˛�1, rolled back all of its forward-rolling updates.

The definition of a rolled back transaction implies that such a transaction has
no permanent effect on the state of the logical database: whatever updates it does
in its forward-rolling phase are all undone in the backward-rolling phase. As will
be seen later, the physical database that stores the logical database, however, is not
necessarily restored into its original state by the undo actions. Note, for example,
that undoing a tuple deletion need not bring the tuple back to its original data page
but may insert it to some other page allocated to the same relation.

We use the same action name, C , to mark the end of both committed and rolled
back transactions. This is because from the point of view of transaction processing,
the same procedure is performed in both cases, only the result indication to be
returned to the application being different.

A committed or rolled back transaction is said to be terminated. A terminated
transaction cannot be further advanced with any action. A forward-rolling or
backward-rolling transaction is active. A backward-rolling or rolled back transac-
tion is aborted.

Example 1.2 Let us change the embedded SQL fragment of Example 1.1 so that
instead of committing the transaction, it is aborted and rolled back:

exec sql update r set V = 2 � V ;
exec sql select sum(V ) into :new_sum from r ;
exec sql rollback.

The following action sequence is generated:

BRŒx1; v1�W Œx1; v1; 2v1�RŒx2; v2�W Œx2; v2; 2v2� : : : RŒxn; vn�W Œxn; vn; 2vn�

RŒx1; 2v1�RŒx2; 2v2� : : : RŒxn; 2vn�

AW�1Œxn; vn; 2vn� : : : W �1Œx2; v2; 2v2�W
�1Œx1; v1; 2v1�C:

Here an undo action W �1Œxi ; vi ; 2vi � restores the previous V value vi of the tuple
with key xi .

Should instead a system failure occur during performing the update statement,
the following transaction is generated, assuming that the update on tuple .xi ; vi /

is the last that is found recorded (in the log saved on disk) at the time the system
recovers from the failure:

BRŒx1; v1�W Œx1; v1; 2v1�RŒx2; v2�W Œx2; v2; 2v2� : : : RŒxi ; vi �W Œxi ; vi ; 2vi �

AW�1Œxi ; vi ; 2vi � : : : W �1Œx2; v2; 2v2�W
�1Œx1; v1; 2v1�C:
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We conclude that in both cases, the logical database is restored to the state in which
it was before the transaction started.

We leave as an exercise to figure out what should be done if a system failure
occurs during performing the rollback statement. ut

1.6 ACID Properties of Transactions

The implementor of a database application must take care that each committed
transaction T produced by the application process is logically consistent: when run
alone without outside disturbances or failures on a logically consistent database, T

keeps the database consistent.
Naturally, it has to be possible to program the transactions without taking care

of the physical structure of the database, other concurrent transactions, or system
failures. The function of the database management system is to ensure that both
logical and physical consistencies are preserved when there are multiple logically
consistent transactions running at the same time and system failures can occur.

A rolled back transaction is always trivially logically consistent, regardless of
what it does in its forward-rolling phase and what the integrity constraints of the
database are: in any case, the backward-rolling phase undoes any updates done in
the forward-rolling phase.

A forward-rolling (and thus uncommitted) transaction does not need to be
logically consistent. In some cases it may be difficult or even impossible to retain
a referential integrity constraint in effect between two update actions; in such cases
it is meaningful to require integrity checking to be enforced only at transaction
commit.

In general, transactions are required to satisfy four named properties, called the
ACID properties, of which we have already defined the following three:

1. Atomicity: all the updates performed by a committed transaction appear in the
database, and all the updates performed by an aborted transaction are rolled back.

2. Consistency: committed transactions retain the consistency of an initially consis-
tent logical database.

3. Durability: all the updates performed by a committed transaction remain perma-
nently in the database.

The fourth ACID property is:

4. Isolation: each transaction has—more or less—the impression that it is running
alone, without any other transactions interfering. More specifically, isolation
means restricting how early updates by a transaction become visible to other
transactions and how early values read by a transaction can be overwritten by
other transactions. When transactions are run in full isolation, an update by a
transaction becomes visible to, or a value read by a transaction is overwritten by,
another transaction only when the first transaction has committed; then it seems
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that all the transactions are executed serially, one transaction at a time, although
in reality some transactions are running concurrently.

Two of the above properties, namely, atomicity and durability, are maintained
solely by the database management system, according to the transaction boundaries,
that is, the placement of the commit or rollback statements, as designated by the
application programmer. The other two properties are maintained partly by the
application programmer and partly by the database management system.

For consistency, the application programmer must ensure that each of her
committed transactions, when run alone in a failure-free environment on a consistent
logical database, retains the consistency of the database, while the system must
ensure that the consistency of the logical database is also preserved in the presence
of multiple concurrently running transactions, to the extent possible under the
isolation levels set for the transactions. If all the updating transactions are set to run
at the highest isolation level (i.e., serializable), the system is expected to provide
full preservation of the consistency of the logical database.

For isolation, the application programmer must ensure that each of her trans-
actions is designated to run at an isolation level high enough so that database
consistency is preserved to a sufficient extent, while the system must ensure that
the designated isolation level indeed is achieved in the presence of concurrent
transactions.

Example 1.3 Assuming the primary keys in r.X; V / are integers, the following
embedded SQL program fragment reads the maximum key x from r and inserts
into r a new tuple with key x C 1:

exec sql select max(X ) into :x from r ;
exec sql insert into r values.:xC 1; v0/;
exec sql commit.

When run alone without interference from other transactions and in the absence of
failures, the program fragment generates a committed transaction of the form

B : : : RŒx; v� : : : I Œx C 1; v0�C ,

where the action RŒx; v� retrieves the tuple .x; v/ with the maximum key x from r

and the action I ŒxC 1; v0� inserts the tuple .xC 1; v0/. (To determine the maximum
key x, also some other read actions may be needed.)

The above transaction is obviously logically consistent: when run alone, it
retains the consistency of an initially consistent logical database. The designer of
the transaction (the application programmer) is allowed to assume that no other
transaction can change the maximum key between the executions of the read action
RŒx; v� and the insert action I Œx C 1; v0�.

A violation of the primary-key constraint would occur if some other transaction
inserted a tuple with key x C 1. This other transaction could, for example, be
generated from another instance of the same application, and both transactions may
read the same maximum key x and hence try to insert a tuple with the key x C 1.
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It is the responsibility of the application programmer to designate the transaction
to be run at a level of isolation that disallows the occurrence of such a violation
of database integrity, while the concurrency-control mechanism of the database
management system has to ensure that such an isolation level is indeed achieved.

The system has also to ensure that if the transaction indeed commits, the insertion
of the new tuple is recorded permanently in the database and that otherwise if the
transaction after all does not commit, the transaction is aborted and rolled back,
undoing the insertion (if needed). ut

Allowing transactions to be run at an isolation level lower than full isolation
usually means more efficient transaction processing, because of the increased
concurrency between transactions. However, with lower than full isolation, the
execution of transactions may not correspond to any of their serial executions, being
thus incorrect with respect to the usual notion of correctness. In many cases this
is acceptable (see Sects. 5.5 and 9.5). Additionally, however, as shown in Chap. 5,
if a transaction is run at a low isolation level, it may not be possible for the
system to maintain logical consistency. For example, it would be highly risky to
run the transaction of Example 1.3 at any isolation level lower than full isolation
(serializable).

The program steps between two transaction boundaries in a database application
program can be viewed as a mapping from a vector of input values to a vector
of output values, where the input values are relations, constants, and values of
program variables given as input to database actions, and the output values are
results returned by those actions. The output values include both relations updated
in update actions and the values returned by read actions.

It is in line with the above definition of the ACID property “C” and the
responsibility laid on the programmer in this respect to regard such a mapping
as correctly programmed so that an input vector is correctly mapped to an output
vector when the program is run alone on a consistent logical database in the absence
of failures. Again, serial executions are guaranteed to retain correctness, while
correctness may be lost in nonserial executions.

Example 1.4 Assuming the V values in r.X; V / are numeric, the following
embedded SQL program fragment generates a transaction, T1, that scans the relation
r and computes the sum of the V values of all tuples in r :

exec sql select sum(V ) into :s from r ;
exec sql commit.

The mapping defined by this program fragment maps the set of V values retrieved
from r to the sum stored into the program variable s.

Another transaction, T2, generated from the following program fragment is run
concurrently with T1:

exec sql insert into r values .x; u/;
exec sql insert into r values .y; v/;
exec sql commit.
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The mapping defined by this program fragment maps the constants x, u, y, v and
the current r to the relation obtained from r by inserting the tuples .x; u/ and .y; v/.

In serial execution, the sum computed by T1 includes both of the values u and v
if T2 is executed first and includes neither of them otherwise. Both executions must
be regarded as correct.

However, if T1 is run at an isolation level lower than full isolation (serializable),
the sum computed by T1 may include only one of the values u and v. For example,
if x < y and T1 scans r in ascending key order, it may happen that T2 inserts .x; u/

after T1 has already scanned a key greater than x, but inserts .y; v/ and commits
before T1 has scanned the greatest key less than y. In this case v is included in the
sum, but u is not.

This phenomenon, called the phantom phenomenon, is possible if T1 is run at an
isolation level that permits an isolation anomaly called “unrepeatable read.” It is up
to the application programmer to decide whether or not that is acceptable. ut

The ACID properties stated above only pertain to the logical database. The
database management system is solely responsible for maintaining physical con-
sistency, that is, integrity of the underlying physical database, regardless of whether
or not logical consistency is maintained. This means, for instance, that a B-tree
index structure for a relation is maintained in a consistent and balanced state even in
the presence of logically inconsistent transactions and process failures and system
crashes.

1.7 The Read-Write Model

In order to study transaction management in more detail, we need to define a
database and transaction model that specifies the actions that are used in transac-
tions. For the sake of simplicity, we assume that our logical database consists of
only one relation with the scheme r.X; V /. The tuples of the relation are pairs
.x; v/, where x is the unique key of the record and v is the value of the tuple (i.e., the
values of the other attributes in the tuple). Transactions always operate on r’s tuples
using the key x.

In the simplest transaction model, called the read-write model, a transaction
on the database r can contain, besides the begin-transaction action B , the abort-
transaction action A, and the commit-transaction (or complete-rollback) action C ,
the following two types of forward-rolling database actions:

1. Read actions of the form

RŒx; v� (1.5)

for reading the tuple .x; v/ with key x. The key x is an input parameter for the
action. The action fetches the unique tuple .x; v/ with key x from r . If the tuple
is not found, the action fails. A shorthand notation for the action is RŒx�.
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2. Write actions of the form

W Œx; u; v� (1.6)

for updating the value of the tuple with key x. The key x and the new value v are
input parameters, and the old value u is an output parameter. The action replaces
the value of the tuple with key x in the relation; the former value u will be
replaced by v. If the tuple does not exist, the action fails. Shorthand notations
are W Œx; v� and W Œx�.

Example 1.5 The action sequence

BRŒx; u�RŒy; v�W Œz; w; uC v�

is a forward-rolling transaction that reads the values u and v of the tuples with keys x

and y. Then, in the tuple with key z, the transaction replaces the previous value w by
the sum uC v. When augmented with the commit action C , this sequence becomes
a committed transaction:

BRŒx; u�RŒy; v�W Œz; w; uC v�C .

ut
In the backward-rolling phase of an aborted transaction or in a partial rollback to

a savepoint, the undo actions of the forward-rolling write actions are performed in
reverse order.

3. For the write action W Œx; u; v�, the undo-write action

W �1Œx; u; v� D undo-WŒx; u; v� (1.7)

restores the value u, that is, its effect on the logical database is that of W Œx; v; u�.

Example 1.6 The action sequence

BRŒx; u�RŒy; v�W Œz; w; uC v�AW�1Œz; w; uC v�

is a backward-rolling aborted transaction, which has undone its only write action.
When augmented with the action C , this sequence becomes a rolled-back aborted
transaction:

BRŒx; u�RŒy; v�W Œz; w; uC v�AW�1Œz; w; uC v�C .

ut
Insertions and deletions of tuples cannot be represented in the read-write model.

When transaction management based on the read-write model is examined in the
literature, the targets of the actions are not tuples but abstract uninterpreted “data
items,” which are not precisely defined. If the sets of tuples of the logical database,
for instance, the relations of a relational database, are selected as the data items,
it is possible to model insertions and deletions of records by write actions on the
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set (relation). Similarly, if the pages of the physical database where the tuples are
stored are selected as data items, insertions and deletions of tuples can be modeled
as write actions on a page. In both cases, transaction management is rather coarse
grained: the log must record changes to a whole relation or page, and the unit of
synchronization for managing concurrency (the lockable unit) is a whole relation or
page.

In modern database management systems, individual tuples are used in log
records and in locking (as the most fine-grained units). In this case, when a
transaction T1 has updated a page and is still active, another transaction T2 can
update the same page. It is also allowed that, due to a structure modification (such
as a page split in a B-tree) caused by T2, the tuple that T1 updated on page p will be
moved to another page p0 while T1 is still active.

1.8 The Key-Range Model

In the transaction model used throughout this book and termed the key-range model,
read actions return the least key in a given key range, and the update actions are
insertions and deletions of tuples with a given key.

The set of key values for the tuples is assumed to be totally ordered. The ordering
is denoted � and its inverse relation �; the respective irreflexive ordering relations
are referred to in the familiar way as < and >. The least possible key value is �1,
and the largest is1; we assume that these do not appear in any tuple in the actual
database.

The key-range model is sufficient to model the most important principles
that are used in physiological log-based recovery and tuple-level concurrency
control (key-range locking of a unique key). The model can also be used to
describe, in a natural manner, isolation anomalies (see Sect. 5.3) coming from
concurrent key-range reads and insertions and deletions of individual tuples (for
instance, the phantom phenomenon; see Sects. 1.6 and 5.3 and Example 1.9
below).

In the key-range model, a transaction on the database r can contain, besides
the begin-transaction action B , the abort-transaction action A and the commit-
transaction (or complete-rollback) action C , the following four types of forward-
rolling database actions:

1. Read-first actions of the form

RŒx;�z; v� (1.8)

for reading the tuple .x; v/ with the first key value x that satisfies the condition
x � z. The key value z is an input parameter, and the key x and the value v
are output parameters. The action fetches the tuple .x; v/ whose key is the least
key satisfying x � z and .x; v/ 2 r . If no such tuple exists, .1; 0/ is returned.
Shorthand notations for this action are RŒx;�z�, RŒx; v�, or RŒx�.
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2. Read-next actions of the form

RŒx; >z; v� (1.9)

for reading the tuple .x; v/ with the key value x next to z. The key z, �1 � z <

1, is an input parameter, and the key x and the value v are output parameters.
The action fetches the tuple .x; v/ whose key is the least key satisfying x > z
and .x; v/ 2 r . If no such tuple exists, .1; 0/ is returned. Shorthand notations
for this action are RŒx; >z�, RŒx; v�, or RŒx�.

3. Insert actions of the form

I Œx; v� (1.10)

for inserting the tuple .x; v/ into r . Input parameters are the key x and the value v.
The action inserts the tuple .x; v/ into relation r . If r already contains a tuple with
key x, the action fails. A shorthand notation is I Œx�.

4. Delete actions of the form

DŒx; v� (1.11)

for deleting the tuple .x; v/ with key x from r . The key x is an input parameter,
and the value v is an output parameter. The action deletes the tuple .x; v/ with
key x from relation r . If the tuple is not found, the action fails. A shorthand
notation is DŒx�.

For an insert or delete action oŒx�, we define the undo action o�1Œx� or undo-oŒx�

as follows:

5. The undo-insert action

I �1Œx; v� D undo-IŒx; v� (1.12)

undoes the action I Œx; v� by deleting the tuple .x; v/ from r .
6. The undo-delete action

D�1Œx; v� D undo-DŒx; v� (1.13)

undoes the action DŒx; v� by inserting the tuple .x; v/ into r .

Example 1.7 The forward-rolling transaction

BRŒx1;�x0; v1�RŒx2; >x1; v2�RŒx3; >x2; v3�DŒx; v�I Œx; v1 C v2 C v3�

reads three tuples with consecutive keys and replaces the value in the tuple with
key x by the sum of the values in the three tuples. This transaction is rolled back
by first performing the abort action A and then undoing the two updates and finally
completing the rollback:
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BRŒx1;�x0; v1�RŒx2; >x1; v2�RŒx3; >x2; v3�DŒx; v�I Œx; v1 C v2 C v3�

AI �1Œx; v1 C v2 C v3�D
�1Œx; v�C .

The original value v of the tuple with key x is thus restored. ut
Let r be the logical database (a relation) and oŒ Nx� an action, o 2

fB; R; W; I; D; C; Ag and Nx a sequence of constant arguments. We define when
the action oŒ Nx� can be run on r and what is the database (relation) r 0 produced by
the action—this is denoted .r; r 0/ ˆ oŒ Nx�.

1. .r; r/ ˆ o, when o 2 fB; C; Ag.
2. .r; r/ ˆ RŒx; �z; v�, if .x; v/ 2 r and x is the least key in r that satisfies x � z.

Here � is the operator� or >.
3. .r; r/ ˆ RŒ1; �z; 0�, if r contains no tuple with key x satisfying x � z.
4. .r; r 0/ ˆ W Œx; u; v�, if r 0 D .r n f.x; u/g/[ f.x; v/g.
5. .r; r 0/ ˆ I Œx; v�, if the key x does not appear in r and r 0 D r [ f.x; v/g.
6. .r; r 0/ ˆ DŒx; v�, if .x; v/ 2 r and r 0 D r n f.x; v/g.
7. .r; r 0/ ˆ W �1Œx; u; v�, if .r 0; r/ ˆ W Œx; u; v�.
8. .r; r 0/ ˆ I �1Œx; v�, if .r 0; r/ ˆ I Œx; v�.
9. .r; r 0/ ˆ D�1Œx; v�, if .r 0; r/ ˆ DŒx; v�.

To simulate an exact-match read action, we may write RŒx;� x; v�. By (2),
.r; r/ ˆ RŒx;� x; v�, if .x; v/ 2 r .

The action sequence ˛ can be run on database r and produces the database r 0,
denoted .r; r 0/ ˆ ˛, if either (1) ˛ D � and r 0 D r or (2) ˛ is of the form ˇo, where
the action sequence ˇ can be run on r and produces a database r 00 and action o can
be run on r 00 and produces r 0.

Example 1.8 The transaction of Example 1.7 can be run on every database that
contains the tuples .x1; v1/, .x2; v2/, .x3; v3/, and .x; v/ with x0 � x1 < x2 <

x3 but no other tuples with keys in the range Œx0; x3�. The forward-rolling portion
of the transaction produces a database where the tuple .x; v/ has been changed to
.x; v1Cv2Cv3/ and the entire rolled back transaction restores the original database.

ut
Example 1.9 The transactions of Example 1.4 can be modeled in the key-range
model as follows:

T1 D BRŒx1;>�1; v1�RŒx2;>x1; v2� : : : RŒxn;>xn�1; vn�RŒ1;>xn; 0�C ,
T2 D BI Œx; u�I Œy; v�C ,

where f.x1; v1/; : : : ; .xn; vn/g is the set of tuples in the relation r.X; V / and x and
y are keys not found in r . The phantom phenomenon occurs if

xi < x < xiC1 < y D xj

for some i and j , and the actions are executed in the following order (from left to
right):

T1 W BRŒx1; v1� : : : RŒxj �1; vj �1� RŒxj ; vj � : : : RŒ1; 0�C

T2 W BI Œx; u�I Œy; v�C
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Thus, the first tuple, .x; u/, inserted by T2 is not among the tuples read by T1, while
the second tuple, .y; v/ D .xj ; vj /, is.

We also note that the phantom phenomenon is not prevented by the simple
locking protocol in which transactions obtain commit-duration shared locks (read
locks) on the keys of tuples read and commit-duration exclusive locks (write locks)
on the keys of tuples inserted, deleted, or updated. ut

1.9 Savepoints and Partial Rollbacks

The transaction model of SQL allows for partial rollbacks of transactions: a subse-
quence of the update actions performed by a forward-rolling transaction is rolled
back without aborting and rolling back the entire transaction. After performing a
partial rollback, the transaction remains in the forward-rolling phase and can thus
perform any new forward-rolling actions.

The actions to be rolled back in a partial rollback constitute a sequence of actions
from the latest update action by the transaction back to preset savepoint. Savepoints
are set in the application program using the SQL statement

set savepoint P

where P is a unique name for the savepoint. The SQL statement

rollback to savepoint P

executes a partial rollback to savepoint P : all forward-rolling update actions
performed by the transaction after setting P that are not yet undone are undone.

Example 1.10 Partial rollbacks can be nested (Fig. 1.2).

insert into r values .x1; v1/;
set savepoint P1;
insert into r values .x2; v2/;
set savepoint P2;
insert into r values .x3; v3/;
rollback to savepoint P2;
insert into r values .x4; v4/;
rollback to savepoint P1;
insert into r values .x5; v5/;
commit.

The statement rollback to savepoint P2 deletes from relation r the inserted tuple
.x3; v3/. The statement rollback to savepoint P1 deletes from r the inserted tuples
.x4; v4/ and .x2; v2/. At the end of the transaction, an initially empty relation r

contains only the tuples .x1; v1/ and .x5; v5/. ut
We now add partial rollbacks to our transaction model. For that purpose, we

define the following actions:
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B
I [x1, v1]
S[P1]

I [x2, v2]
S[P2]

I [x3, v3]
A[P2]

I−1[x3, v3]
C[P2]
I [x4, v4]

A[P1]
I−1[x4, v4]
I−1[x2, v2]

C[P1]
I [x5, v5]

C

≡

B
I [x1, v1]
S[P1]

I [x2, v2]
I [x4, v4]

A[P1]
I−1[x4, v4]
I−1[x2, v2]

C[P1]
I [x5, v5]

C

≡
B

I [x1, v1]
I [x5, v5]

C

Fig. 1.2 Nested partial rollbacks. Action SŒP � sets savepoint P , and partial rollback to P is begun
by action AŒP � and completed by action CŒP �. Rolled-back segments of the transaction are shown
indented. Because of the rollbacks, the overall effect on the logical database is the same as that of
the transaction BI Œx1; v1�I Œx5; v5�C

7. SŒP �: set savepoint P .
8. AŒP �: begin partial rollback to savepoint P .
9. C ŒP �: complete the partial rollback to savepoint P .

Now in the forward-rolling phase B˛ of a transaction, string ˛ may contain set-
savepoint actions SŒP �, completed rollbacks SŒP � : : : AŒP � : : : C ŒP �, and maybe
one initialized but not yet completed partial rollback SŒP � : : : AŒP � : : :. Formally,
the forward-rolling phase of a transaction can now be of any of the following three
forms:

(a) A sequence ˛ of actions R, I , D, W , and S

(b) An action sequence of form ˛SŒP �ˇAŒP �ˇ�1C ŒP �� , where ˛, ˇ, and � are of
form (a) or (b)

(c) An action sequence of form ˛SŒP �ˇıAŒP �ı�1 , where ˛, ˇ, and ı are of form
(a) or (b)

In case (b) the subsequence SŒP �ˇAŒP �ˇ�1C ŒP � represents a completed partial
rollback to savepoint P . In case (c) the subsequence SŒP �ˇıAŒP �ı�1 indicates that
the transaction is rolling back to savepoint P .

The undo sequence for ˛, denoted ˛�1 or undo.˛/, is now defined depending on
its form: For a sequence ˛ of form (a), the undo sequence ˛�1 is defined as before.
For a sequence of form (b), the undo sequence is ��1˛�1. For a sequence of form
(c), the undo sequence is ˇ�1C ŒP �˛�1.

Savepoints and partial rollbacks constitute an important database programming
paradigm: transactions can be programmed freely to update the database imme-
diately even if some subsequent event forces the update to be rolled back and
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another avenue to be followed so as to complete the transaction. In fact, with partial
rollbacks, every transaction can be programmed to terminate with a commit request
and never with a rollback request (i.e., total rollback). The effect of a total rollback
can be achieved by setting a savepoint before the first update and then, at the end,
by performing a partial rollback to that savepoint and committing the transaction.

1.10 Multiple Granularity

We may extend our key-range transaction model by adding multiple granularity, so
that tuples can be grouped into relations. The relations of the database constitute a
set that is totally ordered according to their identifiers. We denote this set by

f.r1; R1/; : : : ; .rni ; Rni /g,
where ri is an identifier that uniquely identifies a relation in the database and Ri is
the relation schema (= Xi Vi ). Tuple .x; v/ in relation r is then uniquely identified
by the pair .r; x/.

The tuple-wise forward-rolling actions in the transaction model are now:

1. RŒr; x;� z; v�: reading of the first tuple .x; v/ with x � z from relation r .
2. RŒr; x; > z; v�: reading of tuple .x; v/ next to z from relation r .
3. W Œr; x; u; v�: update of tuple .x; u/ in relation r .
4. I Œr; x; v�: insertion of tuple .x; v/ into relation r .
5. DŒr; x; v�: deletion of tuple .x; v/ from relation r .

New actions include:

(a) RŒr 0; � r; R0�: browsing the schema R0 of relation r 0.
(b) I Œr; R�: creation of a new relation r.R/ into the database, corresponding to the

SQL statement create table r.R/.
(c) DŒr; R�: deletion of an empty relation r from the database, corresponding to the

SQL statement drop table r for an empty relation r .

Additional levels could be added to the granule hierarchy by grouping relations
into databases (for different owners); new actions would then include ones corre-
sponding to the SQL statements create database and destroy database.

Problems

1.1 The personnel database of an enterprise contains, among others, the relations
created by the following SQL statements:

create table employee(empnr integer not null,
name varchar(40) not null, address varchar(80) not null,
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job varchar(20), salary integer, deptnr integer not null,
constraint pk primary key (empnr),
constraint dfk foreign key (deptnr) references department);

create table department(deptnr integer not null,
name varchar(20) not null, managernr integer,

constraint pk primary key (deptnr),
constraint efk foreign key (managernr) references employee).

Consider the transaction on the database produced by the SQL program fragment:

exec sql select max(empnr) into :e from employee;
exec sql select max(deptnr) into :d from department;
exec sql insert into department values (:d C 1, ‘Research’, :e);
exec sql insert into employee values (:e C 1, ‘Jones, Mary’,

‘Sisselenkuja 2, Helsinki’, ’research director’, 3500, :d C 1);
exec sql update department set managernrD :e C 1

where deptnr D :d C 1;
exec sql insert into employee values (:e C 2, ‘Smith, John’,

‘Rouvienpolku 11, Helsinki’, ’researcher’, 2500, :d C 1);
exec sql commit.

(a) Give the string of tuple-wise actions (readings and insertions of single tuples)
that constitutes the transaction. We assume that the tuples of the relations
employee and department reside in the data pages in an arbitrary order and that
there exist no index to the relations.

(b) Repeat (a) in the case in which there exists an ordered (B-tree or ISAM) index
to the relation employee on attribute empnr and an ordered index to the relation
department on attribute deptnr.

(c) Are the transactions created in (a) and (b) logically consistent? That is, do they
preserve the integrity constraints of the database?

1.2 The following SQL program fragments operate on relation r.X; V /. Describe
the transaction produced by the program fragments (1) in the read-write model of
transactions and (2) in the key-range model of transactions.

(a) update r set V D V C 1 where X D x;
update r set V D V C 1 where X D y; commit.

(b) update r set V D V C 1 where X D x;
update r set V D V C 1 where X D y; rollback.

1.3 Explain the meaning of the transaction

BI Œr; x1; v1�SŒP1�I Œr; x2; v2�SŒP2�I Œr; x3; v3�AŒP2�

I �1Œr; x3; v3�C ŒP2�I Œr; x4; v4�AŒP1�

I �1Œr; x4; v4�I
�1Œr; x2; v2�C ŒP1�I Œr; x5; v5�A

I �1Œr; x5; v5�I
�1Œr; x1; v1�C .

Give SQL statements to generate this transaction.
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1.4 A banking database contains the relations

account(number, balance),
holder(card number, account number),
card(number, holder name, holder address, crypted password),
transaction(site, date time, type, amount, account number, card number),

where the relation transaction stores information about every completed or
attempted withdrawal and deposit and about every balance lookup.

Give an embedded SQL program for a transaction for a withdrawal of s euros
using card c with password p, where the withdrawal is allowed only if no overdraft
will occur. The transaction also shows the balance that remains in the account after
completing the withdrawal. We assume that the program includes the following
statement:

exec sql whenever sqlerror goto L,

where L is a program address to which the program control is transferred whenever
an error status is returned by the execution of some SQL statement.

1.5 Consider extending the read-write transaction model with an action C Œx�,
which declares the updates on x as committed. This action can appear in the
forward-rolling phase of the transaction, and it has the effect that even if the
transaction eventually aborts and rolls back, the updates on x done before C Œx�

will not be undone. Accordingly, complete the transaction

BRŒx; u�W Œx; u; u0�RŒy; v�W Œy; v; v0�
C Œx�RŒz; w�W Œz; w; w0�W Œy; v0; v00�
C Œy�W Œx; u0; u00�A

to a rolled back transaction. Consider situations in which this feature might be
useful.

1.6 Our key-range transaction model assumes that the tuples .x; v/ are only
referenced via the unique primary keys x. Extend the model to include relations
r.X; Y; V /, where tuples .x; y; v/ can be referenced by either the primary key x or
by the (non-unique) secondary key y.

1.7 We extend our key-range transaction model by a cursor mechanism that
works as follows. When a transaction starts, it allocates a main-memory array
(the cursor), private to the transaction, to store the tuples returned by all the read
actions performed by the transaction, in the order of the actions. Each read action
RŒx; v� appends the tuple .x; v/ to the next available entry in the cursor. In a more
general setting, we would have several cursors, with special actions to open and
close a cursor.

Now if the transaction performs a partial rollback to a savepoint, the contents of
the cursor should be restored to the state that existed at the time the savepoint was
set. Obviously, to that effect, we should define an undo action, R�1Œx�, for a read
action RŒx�. Elaborate this extension of our transaction model.
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called the page model) used in the textbook by Weikum and Vossen [2002].
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