
Chapter 8
A Model-based Software Development Kit for
the SensorCloud Platform

Lars Hermerschmidt, Antonio Navarro Perez, and Bernhard Rumpe

Abstract The development of software for the cloud is complicated by a tight en-

tanglement of business logic and complex non-functional requirements. In search

of a solution, we argue for the application of model-based software engineering to

a particular class of cloud software, namely interactive cloud software systems. In

particular, we outline an architecture-driven, model-based method that facilitates an

agile, top-down development approach. At its core it employs a software architec-

ture model that is augmented with additional aspect-specific models. These models

serve as concise, formal, first-class specification documents and, thus, as foundation

for tool-supported analysis and synthesis, in particular, code generation. We hypoth-

esize that many crucial cloud-specific non-functional requirements can be satisfac-

tory addressed on the architecture level such that their realization in the system can

be synthesized by tools with small impact on the business logic.

8.1 Introduction

The number of software-driven embedded devices has been growing for decades.

Such devices perceive and affect the real world, serve a multitude of diverse pur-

poses, and are found in many public, industrial, and domestic places. They control

vehicles, traffic infrastructure, factory machines, power plants, and energy grids.

They measure electricity, temperatures, fill levels, global positioning, velocities, and

operating conditions, or capture visual and audio information.

Enabled by the ongoing pervasiveness and sinking costs of internet connectiv-

ity, more and more embedded devices are no longer locally isolated but globally

accessible and globally interconnected. Information and control shift from the in-

dividual device to the internet. Integrated, large-scale distributed systems emerge

Lars Hermerschmidt · Antonio Navarro Perez · Bernhard Rumpe
Department of Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: \{hermerschmidt,perez,rumpe\}@se-rwth.de

� Springer International Publishing Switzerland 2014
H. Krcmar et al. (eds.), Trusted Cloud Computing,
DOI 10.1007/978-3-319-12718-7_8

125

126 L Hermerschmidt

as a consequence. Their intimate relation to the real world and their network- and

software-driven logic has led to the common label of cyber-physical systems. [17]

The software that drives those systems is of a interactive/reactive character: it

reacts to impulses from its environment (e.g. sensor input or user interaction) with

commands that control physical parts of the system (e.g. actors or monitoring sys-

tems). The software is also time-sensitive: its reactions have to happen within a

given time window.

New use cases explore the potentials of cyber-physical systems, for instance,

smart grids, smart traffic and smart homes. [13, 12, 11] The development of systems

that implement these use cases, however, is complicated by their inherent complex-

ity and subsequent development costs. Engineers of such systems must integrate

system components and aspects on a technological level (e.g. devices, network-

ing, protocols, infrastructure resources, software architecture), on an economic level

(e.g. supported business models, integration with legacy systems and processes, cus-

tomer and installation support), and from the perspective of legislators (e.g. privacy

and customer autonomy). As a consequence of this tight integration of concerns,

only big companies with big budgets can successfully implement such systems and

bring them to product-ready matureness.

The SensorCloud project develops a large scale, cloud-based platform for ser-

vices based around internet-connected sensor and actor devices. [1] The platform’s

technological purpose is to provide a generalized and easy-to-use infrastructure for

sensor- and actor driven cloud services. Its economic purpose is to modularize and

industrialize the development and provision of such services. Multiple different

stakeholders can contribute different parts of the service stack, for instance, sen-

sor/actor hardware, domain-specific data sets, domain-specific services, and client

software.

From a software engineering perspective, the success of such a platform is largely

influenced by the efficiency of development of software for the platform. In the con-

text of the SensorCloud, third-parties develop cloud services that leverage sensors,

sensor data, and actors in order to provide functionality for end customers. How-

ever, the development of cloud services is complicated by a tight entanglement of

business logic and complex non-functional requirements.

In this paper, we describe the concepts and modeling languages at the core of

a model-based SDK for developing cloud-based software in general and Sensor-

Cloud services in particular. This SDK is based on the clArc toolkit. It is particu-

larly aligned to the domain of cloud-based cyber-physical systems and understands

them more generally as interactive cloud software systems. At its core, this toolkit

core employs a software architecture model as well as accompanying aspect-specific

secondary models. These models serve as concise, formal, first-class specification

documents and, thus, as foundation for tool-supported analysis and synthesis, in

particular, code generation.

Chapter 8.2 describes the clArc toolkit underlying the SDK. Chapters 3 and 4 de-

scribe the architecture style and modeling language at the core of the toolkit. Chap-

ters 5 and 6 describe additional modeling languages for deployment and testing.

et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 127

Chapter 7 briefly outlines the tooling for processing and executing these modeling

languages.

8.2 Model-based Engineering of Cloud Software

clArc (for cloud architecture) is a model-based, architecture-centric toolkit for de-

veloping interactive cloud software systems. It is based on the language workbench

MontiCore [14, 15, 6] and the architecture description language MontiArc [10, 9].

The toolkit

1. defines a software architecture style for distributed, concurrent, scalable and

robust cloud software that permanently interacts with a heterogeneous environ-

ment of physical things, services and users,

2. provides textual, executable domain-specific modeling languages for specifying

and implementing software systems according to that architecture style

3. provides a framework for implementing individual code generators that syn-

thesize an executable runtime framework for cloud software based on models

written with these DSLs and targeted towards individual cloud infrastructures

and platforms.

These three components are part of a methodology that seeks to make the devel-

opment of interactive cloud software systems more reliable and efficient. It does so

by (a) providing an appropriate level of abstraction for the specification of the soft-

ware system and (b) by providing means to map the software’s specification to an

executable implementation without methodological discontinuities between design

and implementation activities.

8.2.1 Interactive Cloud Software Systems

The software architecture style [25] of clArc describes architectures as cloud-based

[3], interactive [24, 5, 18] software systems. Such systems are characterized by per-

manent interaction (a) on a system level between the software and its environment

and (b) on the software level between the internal parts from which the software is

composed. Interacting parts (software components) and their interactions (messages

passed between components) are both first-level elements of the architecture style.

The emphasis on interaction is a result of essential requirements imposed on those

systems:

• Reactiveness: the software responds to events and requests from its environment

within a given time window.

• Statefulness: the software continuously and indefinitely tracks and updates a

conversational state between itself and its environment.

128

• Concurrency: the software interacts with many interaction partners in parallel

and must, hence, be inherently concurrent.
• Distribution: the software is composed from distributed parts that are deployed

on runtime nodes, communicate asynchronously, may replicate dynamically,

support failure awareness and can be recovered from failures.

• Scalability: the software can adapt to changing work loads by increasing or

decreasing the number of its parts and by consuming or releasing necessary

computing resources.

These requirements are usually tightly entangled with each other and with the

software’s actual business functions. As a result, they hinder the software engineer in

focusing on the software’s business functionality that he actually wants to analyze,

realize, test, extend, or modify.

The central idea behind the clArc toolkit is to address these requirements on

an appropriate level of abstraction given by a description of the system’s software
architecture according to the architecture style of interactive systems.

8.2.2 Executable Modeling Languages

Modeling [20, 21, 4, 8] can be employed in the engineering of software systems

to describe system aspects explicitly and formally. Domain-specific modeling lan-

guages are a tool to efficiently write concise models.

Appropriate high-level structure, distribution and interaction are the key factors

when reasoning about requirements and overall system design. The explicit descrip-

tion of system aspects through models makes them visible, substantiated and docu-

mented in a coherent notation. Conversely, they remain implicit and invisible on the

lower levels of system implementation.

However, software developers too often respond to models with skepticism. [7]

In many projects, models are still created only at the beginning of the development

process and thereafter abandoned. The software is subsequently developed detached

from its models. Changes in requirements or design are only incorporated in the

software’s source code, but not in its models. As a consequence, the models play no

essential part in the software’s construction. Developers, thus, perceive models as

causing additional work without essential contribution to the final product. Models

are seen as documentation, at best.

The disconnect between models and product is grounded in process discontinu-

ities caused by a lack of automated transitions between descriptions in models and

the final product: models have to be manually transformed into an implementation

and manually synchronized with a changing implementation.

The clArc toolkit incorporates the expressive power of models into the develop-

ment process of cloud software and focuses on the elimination of process discon-

tinuities. Models in clArc are automatically linked to a respective implementation

and, thus, executable. A set of valid clArc models, therefore, can be compiled into

an implementation through a code generator.

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 129

Fig. 8.1: Code Generation

More precisely, the system aspects described by models are realized in the form

of a generated framework. This framework provides interfaces for handwritten code
that implements the systems business logic. In this way, the business logic is cleanly

separated from system aspects described by models. Models and code are both

first-class artifacts that are integrated via well-defined interfaces. Contrasting other

model-based methods, the generated code is treated the same way compiled ma-

chine code is treated in traditional programming: it is neither modified manually

nor inspected.

Code generators are highly specific to the technological infrastructure the cloud

software targets. Consequently, the clArc toolkit does not provide concrete code

generators, but (a) a framework to efficiently develop individual code generators for

specific cloud infrastructures and (b) a library of pre-developed standard libraries to

be reused in concrete code generators.

8.3 Modeling Languages

The clArc toolkit employs several textual modeling languages.

The Cloud Architecture Description Language (clADL) is the central modeling

language of clArc. Its models define logical software architectures that implement

an architecture style targeting the domain of distributed, concurrent, scalable, and

130

robust cloud software. All other languages integrate with each other by referencing

clADL models.

The Target Description Language (TDL) describes physical infrastructure ar-
chitectures on which software is executed. The Mapping Description Language
(MDL) relates clADL and TDL models to each other by defining deployments of

software architectures onto infrastructure architectures. In combination, these mod-

els describe the overall system architecture that comprises the software architecture

and infrastructure architecture.

In combination, the clADL, TDL and MDL can be used to configure a code gen-

erator to generate code according to a specific system architecture given by models

of those languages. The generated part of the software architecture’s implementa-

tion is then custom generated according to the the deployment given by TDL and

MDL models.

The Architecture Scenario Description Language defines exemplary interaction

patterns in a particular software architecture. Models of this language can be used to

specify test cases. The Test Suite Definition Language configures test setups of such

scenarios. Both languages are used for model-based testing of software architecture

implementations.

8.3.1 Architecture Style

The architecture style of clArc uses components as the elemental building block of

software architectures. Components in clArc are modules with well-defined import

and export interfaces. They are executed in their own discrete thread of control and

interact with each other through asynchronous message passing (with FIFO buffers

at the receiver’s end) over statically defined message channels. They encapsulate

their state and do not share it with their environment by any other means except

explicit message passing.

Fig. 8.2: A component receiving incoming messages from the channel IC and send-

ing outgoing messages to the channel IC

Components are arranged in a decomposition hierarchy of components. In this

hierarchy, leaf nodes represent the atomic building blocks of business logic while

inner nodes compose, manage and supervise their immediate child components.

Failures are propageted bottom-up through the hierarchy until they are handled or

escalate at the root component.

This architecture style has several beneficial implications.

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 131

Fig. 8.3: A hierarchy of component runtime instances

• The execution semantics of the software do not depend on the actual physical

distribution of components. Interactions are always and completely described

by discrete, passed messages and always asynchronous in nature. Hence, com-

ponents can be regarded as distributed by default.

• Component executions are self-contained. Every component has its own thread

of control. Blocking operations or component failures do not influence other

components directly. Failure recovery can be implemented within the local

scope of the failed component.

• Components encapsulate a state and are, hence, in combination capable of rep-

resenting the overall state of a continuously running system.

• Components do not need to have direct knowledge about the receivers their

sent messages. They only need to know the message channels they are con-

nected to. Channels, in turn, are implemented by a communication middleware

that is independent from individual components. This middleware can deliver

messages dynamically to different runtime instances of replicating receivers us-

ing different communication patterns (e.g. message queues) and technologies

(e.g. different protocols and message formats). In this way, the middleware can

implement several load balancing and scaling strategies and integrate heteroge-

neous infrastructures.

• Component implementations are technology-agnostic as their execution and in-

teraction semantics are defined homogeneously and independent from concrete

target technologies. Such components are easier to port between different in-

frastructures and easier to test and simulate.

This architecture style bears much resemblance to actor-based systems [2] but

differs in some aspects. First, components may have not just one but many buffers

for incoming messages. Second, these buffers are strictly typed. Third, communica-

tion channels are statically defined by the software architecture model and cannot

be altered at runtime. Fourth, components do not control the instantiation of other

components. Instead, the software architecture is statically defined by a given archi-

tecture model and automatically instantiated by the generated framework according

to that model. Only the number of replicating runtime instances is dynamic.

132

8.4 Architecture Modeling

At the center of our language family is the cloud architecture description language

(clADL). This language follows the components and connectors paradigm. It de-

scribes the structure of a software system in terms of system parts (components)

and their mutual relationships (interfaces and connectors). [19] The clADL is de-

rived from MontiArc, an architecture description language for distributed, interac-

tive systems. [10] As MontiArc, the clADL is based on the semantics defined by

the FOCUS method. [5] More precisely, our ADL is an extension of MontiArc that

adds cloud software specific syntax and semantics.

The clADL describes cloud software architectures in terms of interacting com-
ponents. A component is a distinct system part that implements a certain func-

tion. Components communicate with other components by exchanging messages
as atomic units of information. Messages are exchanged via explicit connectors be-

tween components. Thereby, components and connections describe a network that

represents the system architecture. In this network, components act autonomously

and exchange messages asynchronously without an subordinately imposed control

flow. This semantics applies to a logical point of view and does not enforce a par-

ticular technical realization.

Figure 8.4 shows the architecture of a simple cloud service in a graphical repre-

sentation.

Fig. 8.4: The software architecture of a simple cloud service.

This service is modeled as a decomposed component named SensorChannel. It

receives streams of sensor data represented by messages of type Update and ac-

knowledges them by responding with Ack messages. The component is internally de-

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 133

composed into four subcomponents. The UpdateHandler receives all incoming Update

messages from its SensorChannel parent component, interacts with the Authenticator

and the UpdateValidator to analyze the update, sends valid updates to the UpdateStore

and finally sends an acknowledgement to the SensorChannel’s respective outgoing

port. The Authenticator checks whether the received Update has valid credentials.

The UpdateValidator checks the received data for its validity. The UpdateStore uses a

service port to write the update to a database provided by the service’s underlying

platform.

A component is syntactically defined by its name and its interface. Its inter-

face is defined as a set of ports. Ports are the end points of connections between

components and can either (as incoming ports) send or (as outgoing ports) receive

messages. A component may be decomposed into further subcomponents and is,

moreover, denoted as their parent component. Hence, components can again be un-

derstood as systems on their own. In fact, the system as a whole can be described

as one single root composed component. Accordingly, we call components that are

not decomposed into further subcomponents atomic components.

The semantics of a component defined by its externally observable (black box)

behavior that is given by the relation between the sequence of received messages

and the sequence of sent messages. The behavior of atomic components is given

by a behavioral specification. It may be described in various ways, for instance, in

declarative logic or functional/imperative programming languages. That specifica-

tion includes the notion of an internal component state that changes depending on

the sequence of incoming messages and implies the sequence of outgoing messages.

The behavioral specification of composed components is inductively given by the

aggregated behavioral specifications of its subcomponents and the topology of their

connections.

Messages are syntactically defined by a name and a type that determines the kind

of that specifies the kind of information they carry. Accordingly, ports reference a

message type that determines the kind of messages they can communicate. Message

types come with different internal syntactical structures that denote the basic struc-

ture of their carried information. They may be primitive types (e.g. a number or a

string) or complex types that are composed of primitive types in a certain syntactic

structure. Message types can be defined through external languages, for instance,

Java and UML/P class diagrams. [22]

Connections syntactically connect exactly one outgoing port with one incom-

ing port. Thus, connections haven an implicit direction in which messages can be

communicated.

8.4.1 Replication

Subcomponents can be modeled as replicating components. Usually, the declaration

of a component within the context of a parent component semantically implies the

fixed existence of a single runtime instance of that component in the context of its

134

parent component. In contrast, the declaration of a replicating component implies a

variable number of multiple instances. This notion allows us to describe quantitative

system scalability in terms of dynamic replication of system parts. That means, the

number of instances of replicating components may increase or decrease dependent

on specific circumstances. Thereby, the system dynamically adapts to increasing or

decreasing load demands.

By implication, replicating components may be dynamically created and de-

stroyed. To represent this, every replicating component maintains a lifecycle state

that corresponds to a lifecycle model. Basically, a components lifecycle determines

if the component is idle and therefore a candidate for destruction or if it is busy and

therefore protected from destruction.

8.4.2 Contexts

The semantics of channels where the receiver is a replicating component proto-

type are not in itself fully specified. The model does not define the mechanism that

selects the replicating component’s concrete runtime instance as the receiver of a

given message. The semantics of channels only define the constraint that individual

messages are only received by one receiver.

However, in many cases the concrete receiver of a message matters. A common

real-world example are web systems that handle multiple user sessions. Runtime

component states might be associated to such user sessions. Hence, interactions

between such components should happen between those instances that have a state

associated to that user session.

Contexts are a mechanism to resolve the ambiguities of receiver selection in such

scenarios. A context is a type for context tokens and is declared in the scope of a

component type. Context tokens are markers that can be assigned to components

and messages.

Context tokens are assigned to messages that are sent through context gates of the

respective context. Context gates can be defined on connectors and ports. Context

gates can open a context by assigning a new token of that context to the message

passing the gate. Furthermore, they can close a context by removing all tokens of

that context from the message passing the gate. In addition, every outgoing port of

a composite component implicitly closes all contexts defined in that component on

messages passing this port.

The tokens assigned to messages that pass context gates serve as an identifier sim-

ilar to session IDs in web systems. When messages with context tokens are received

by a component, this component is also implicitly associated with these tokens.

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 135

8.4.3 Service Interfaces

Components may declare service ports. In contrast to other ports, service ports are

not endpoints of message channels but represent service interfaces that provide op-
erations that can be called on other software or by other software. Service ports can

be required by a component (e.g. to call operations on the runtime infrastructure the

component is being executed) or provided by a component, hence allowing other

software running in the same runtime to call operations on the component.

8.5 Infrastructure and Deployment Modeling

Models of the clADL describe logical software architectures. They omit the details

of its technical realization and physical distribution, that is, its complete system
architecture. For a complete description of the actual system, additional information

is necessary, in particular, information about the technical infrastructure it will run

on (e.g. a Java EE Application Server), its technical configuration (e.g. the URL

it will be bound to) and the concrete mapping of our software architecture onto

this infrastructure. Alltogether, this information constitutes the deployment of an

architecture implementation.

A deployment is described by infrastructure models and mapping models. In-

frastructure models describe the technical infrastructure on which an archtecture

implementation will run. For instance, an infrastructure can consist of application

servers, and databases. Mapping models relate components in the software architec-

ture to elements of the infrastructure architecture. For instance, a mapping model

could specify that selected ports are accessible via a RESTful interface.

8.5.1 Target Description Language

The Target Description Language describes physical infrastructure architectures
onto which software can be deployed for execution.

Targets are the essential building blocks of infrastructure architectures. Every tar-

get represents a discrete part of an infrastructure. Targets are called targets because

components of the software architecture can be targeted at them for deployment.

Targets are defined by target types. Target types are defined in individual target

models which in combination form the overall infrastructure architecture model.

Target types can extend other target types. Thereby, they inherit all the structural and

semantic properties of the other target type and enter a topological “is a” relationship

with it.

The language defines a fixed set of target kinds.

136

• Locations represent physical locations (e.g. certain data centers or regions with

particular legislations).

• Resources represent physical resources of information technology like compu-

tation and storage (e.g. hardware servers, virtual servers, storage systems).

• Runtimes represent containers for the execution of software (e.g. virtual ma-

chines, application servers, database management systems).

• Artifacts represent software documents or archives containing software docu-

ments (e.g. Java Archives, Web Archives, compiled binaries).

• Modules represent grouped software modules with shared properties (e.g. soft-

ware parts executed in the same security sandbox).

• Endpoints represent resources for communication (e.g. web services, message

queues).

Targets can contain subtargets which are target prototypes of a particular target

type. Possible containments are constraint, for instance, a location can contain re-

sources but a resource cannot contain locations. Subtargets can be declared as repli-

cating subtargets and thus allow for multiple runtime instances of that subtarget.

Figure 8.5 shows an example of a hierarchy of nested target prototypes. In this

example, a resource Server contains two other resources VM_A and VM_B (i.e. Vir-

tual Machine). VM_A contains a runtime ApplicationServer which contains an artifact

WebArchive which, again, contains two modules Logic and UserManagement. VM_B con-

tains a runtime MySQLServer which contains an endpoint MySQLAccess. The Server is

contained in an implicit location of the general target type Location.

Fig. 8.5: An example for a hierarchy of targets

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 137

Target types may declare target properties. Target properties are variables that

are assigned to string values in target prototypes. They can, for instance, describe

TCP port numbers of services or identify the operating system of a server. Properties

can be assigned to values in subtarget declarations.

8.5.2 Mapping Description Language

The Mapping Description Language defines deployments of a software architecture

onto an infrastructure architecture.

Mappings are collections of concrete mappings between components and tar-

gets. Hence, a mapping relates a model of a logical software architecture defined

by clADL models to a model of a physical infrastructure model defined by TDL

models. Mapping declarations map a referenced component as well as all otherwise

unmapped subcomponents of the hierarchy it defines to the referenced target.

Fig. 8.6: A mapping model with two mappings

Figure 8.6 shows an example of a software architecture with a component A be-

ing decomposed into subcomponents B and C put next to an infrastructure archi-

tecture consisting of a runtime ApplicationServer, two artifacts BeanArtifact and

WebArtifact and an endpoint JerseyServlet.

8.6 Model-based Testing

The Architecture Scenario Description Language describes exemplary interaction

scenarios in concrete software architectures. The Architecture Test Suite Definition
Language defines test setups of software architectures and corresponding scenarios.

A scenario describes a valid, chronologically arranged, partially ordered set of

interactions in a software architecture. Interactions are described as messages passed

138

between component prototypes. Scenario descriptions bear resemblance to Message
Sequence Charts [16]. Thus, scenarios are partial protocol definitions [23]

Figure 8.7 shows an interaction between the subcomponents of the SensorChannel

component introduced in figure 8.4. This representation is similar to UML sequence

diagrams. Components are depicted with ports and timelines while interactions are

depicted as arrows between these timelines.

Fig. 8.7: A Scenario of Interactions inside SensorChannel

Scenarios can serve as specifications for model-based tests. From a scenario

model, the expected behavior of each participating component can be derived. This

behavior can be used (a) as a reference against which components under test can be

evaluated and (b) as a basis for mocking components with whom components under

test interact.

8.7 Language Execution

The model-based SDK for the SensorCloud consists of several tools that combine

source code of traditional programming languages and models of the clArc language

family.

At the core is a modular code generator that is composed of many generator

modules, each being responsible for different aspects of the generated code (e.g. pro-

tocols, resource management). This code generator generates a deployment-specific

service framework based on clADL, TDL and MDL models. This framework is

customized with handwritten code and integrates with the SensorCloud’s platform

APIs. The result is a complete implementation of a SensorCloud service. The use

of models lifts the abstraction of this implementation and makes it agnostic of the

actual SensorCloud’s API. Platform-specific code is strictly left to the code genera-

L Hermerschmidt et al..

8 A Model-based Software Development Kit for the SensorCloud Platform 139

tor. In this way, the platform can evolve without affecting the implementation of its

services.

In addition, a test-specific code generator can generate a functionally equivalent

variant of a service’s implementation that can be executed locally. In this way, the

service can be functionally tested without the need for a testing infrastructure. Con-

crete test cases can be generated from scenario models.

8.8 Conclusion

In this paper we described a model-based SDK based on the clArc toolkit for devel-

oping cloud services for the SensorCloud platform. The SDK is in ongoing devel-

opment and will enter its evaluation phase in the third and final year of the Sensor-

Cloud’s research and development schedule.

References

1. SensorCloud. URL http://www.sensorcloud.de/
2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. Dissertation,

Massachusetts Institute of Technology (1986)
3. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski,

A., Lee, G., Patterson, D., Rabkin, A.: A View of Cloud Computing. Communications of the
ACM 53(4), 50 (2010)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley Professional (2005)

5. Broy, M., Stø len, K.: Specification and Development of Interactive Systems. Focus on
Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

6. Department of Software Engineering at RWTH Aachen University: MontiCore. URL http:
//www.monticore.de/

7. Engels, G., Whittle, J.: Ten years of software and systems modeling. Software & Systems
Modeling 11(4), 467–470 (2012). DOI 10.1007/s10270-012-0280-x. URL http://dblp.
uni-trier.de/db/journals/sosym/sosym11.html\#EngelsW12

8. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems Modeling Lan-
guage (2008). URL http://dl.acm.org/citation.cfm?id=1477660

9. Haber, A., Ringert, J.O., Rumpe, B.: Towards Architectural Programming of Embedded
Systems. In: Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung
eingebetteter Systeme VI (2010). URL http://www.se-rwth.de/publications/
HRR10.pdf

10. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Interactive Dis-
tributed and Cyber-Physical Systems. Tech. rep., RWTH Aachen University, Aachen (2012)

11. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based program-
ming. Theoretical Computer Science 410(2-3), 202–220 (2009). DOI 10.1016/j.tcs.2008.
09.019. URL http://dblp.uni-trier.de/db/journals/tcs/tcs410.html\
#HallerO09

12. Harper, R. (ed.): The Connected Home: The Future of Domestic Life. Springer London, Lon-
don (2011). DOI 10.1007/978-0-85729-476-0. URL http://link.springer.com/
chapter/10.1007/978-0-85729-476-0_1/fulltext.html

140

13. Iwai, A., Aoyama, M.: Automotive Cloud Service Systems Based on Service-Oriented Archi-
tecture and Its Evaluation. In: 2011 IEEE 4th International Conference on Cloud Computing,
pp. 638–645. IEEE (2011). DOI 10.1109/CLOUD.2011.119. URL http://ieeexplore.
ieee.org/xpl/articleDetails.jsp?arnumber=6008765

14. Krahn, H.: MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im Software-
Engineering. Dissertation, RWTH Aachen University (2010)

15. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: A Framework for Compositional Development
of Domain Specific Languages. International Journal on Software Tools for Technology Trans-
fer 12(5), 353–372 (2010). DOI 10.1007/s10009-010-0142-1. URL http://dblp.uni-
trier.de/db/journals/sttt/sttt12.html\#KrahnRV10

16. Krüger, I.: Distributed System Design with Message Sequence Charts. Ph.D. thesis, Techni-
sche Universität München (2000)

17. Lee, E.A.: Cyber-Physical Systems - Are Computing Foundations Adequate? October (2006)
18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems - Specifica-

tion. Springer (1992)
19. Medvidovic, N., Taylor, R.N.R.: A Classification and Comparison Framework for Software

Architecture Description Languages. IEEE Transactions on Software Engineering 26(1), 70–
93 (2000). DOI 10.1109/32.825767. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=825767

20. Rumpe, B.: Modellierung mit UML: Sprache, Konzepte und Methodik. Xpert.press. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

21. Rumpe, B.: Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.
Xpert.press. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

22. Schindler, M.: Eine Werkzeuginfrastruktur zur Agilen Entwicklung mit der UML/P. Disserta-
tion, RWTH Aachen University (2011)

23. Selic, B.: Protocols and Ports: Reusable Inter-Object Behavior Patterns. In: ISORC, pp. 332–
339 (1999)

24. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley professional
computing. Wiley (1994)

25. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice (2009)

L Hermerschmidt et al..

http://www.springer.com/978-3-319-12717-0

	8 A Model-based Software Development Kit for the SensorCloud Platform
	Abstract
	8.1 Introduction
	8.2 Model-based Engineering of Cloud Software
	8.2.1 Interactive Cloud Software Systems
	8.2.2 Executable Modeling Languages

	8.3 Modeling Languages
	8.3.1 Architecture Style

	8.4 Architecture Modeling
	8.4.1 Replication
	8.4.2 Contexts
	8.4.3 Service Interfaces

	8.5 Infrastructure and Deployment Modeling
	8.5.1 Target Description Language
	8.5.2 Mapping Description Language

	8.6 Model-based Testing
	8.7 Language Execution
	8.8 Conclusion
	References

