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Abstract. Particle Swarm Optimization (PSO) is a stochastic optimiza-
tion method, based on the social behavior of bird flocks. The method,
known for its high performance in optimization, has been mainly devel-
oped for problems involving just quantitative variables. In this paper we
propose a new approach called Qualitative Particle Swarm Optimization
(Q-PSO) where the variables in the optimization can be both qualitative
and quantitative and the updating rule is derived adopting probabilistic
measures. We apply this procedure to a complex engineering optimiza-
tion problem concerning building fagade design. More specifically, we
address the problem of deriving an energy-efficient building design, i.e.
a design that minimizes the energy consumption (and the emission of
carbon dioxide) for heating, cooling and lighting. We develop a simula-
tion study to evaluate Q-PSO procedure and we derive comparisons with
most conventional approaches. The study shows a very good performance
of our approach in achieving the assigned target.

Keywords: Qualitative particle swarm optimization - Engineering
optimization - Energy-efficient building design

1 Introduction

Particle Swarm Optimization (PSO) is an optimization method inspired by
the social behavior of bird flocks or fish schools. Introduced by Kennedy and
Eberhart [1] as a stochastic optimization algorithm, PSO is a population-based
search procedure in which the population is conceived as a swarm composed
of particles. In this approach each particle moves in the search space with an
adaptable velocity, recording the best position it has ever visited in the search
space, i.e. the position with the lowest objective function value when we deal
with the minimization problems. Each particle has a neighborhood that con-
sists of some pre-defined particles and the best position attained so far by each
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member of the neighborhood is communicated to the particle itself and affects
its movement. In this way a particle moves in the search space looking for the
optimal values with both the information on its best position, called cognitive
component, and the information on the best position reached by the neighbor-
hood, called social component. PSO has been applied to solve a large number of
optimization problems [2], mainly to search in continuous domains. There are
few variants of the approach that operate in discrete spaces, such as the proce-
dures developed for binary problems [3], or integer and combinatorial problems
[4,6].

In this paper we propose an innovative PSO approach able to deal with prob-
lems characterized by both qualitative and quantitative variables. We develop
this approach to address an optimization problem for the design of energy-
efficient building envelopes. More specifically we consider the problem of min-
imizing the carbon dioxide emissions due to the heating, cooling and lighting
energy consumption in a room regarded as a module of a building.

The paper is structured as follows. In Sect. 2 we describe PSO approach and
we show the updating rules by which the particles change their position in the
search space; in Sect.3 we introduce the Qualitative Particle Swarm Optimiza-
tion (Q-PSO) to address problems that involve qualitative variables. In Sect. 4
we perform a simulation study to test the approach and evaluate its performance
in deriving optimal values for designing energy-efficient building facades. Finally
in Sect. 5, we derive some remarks on the performance of the approach also in
comparison with other procedures.

2 Particle Swarm Optimization (PSO) Approach

Addressing continuous optimization problems which involve the optimization of
an objective function h(x) of a variable vector x defined on a D-dimensional
space, PSO algorithm adopts a population (swarm) of particles that adjust
their position in time according to their own information and neighborhood
particles information. In this procedure the swarm S is composed by P parti-
cles. At each iteration (step ¢ of the algorithm), the i-th particle of the swarm
is associated with the position in the continuos D-dimensional search space
x;(t) = [231(t),®i2(t), ...,z p(t)], and with its velocity, describing the last
particle position change, v;(t) = [v;1(¢),vi2(t), ..., v, p(t)]. To the i-th particle
it is then associated the objective function h(x;), with i € {1,2,..., P}.

At the first step of the procedure, both the position and velocity vectors
are randomly initialized within a range of feasible values. Then, both of these
parameters are iteratively updated until a stopping criterion is met. The update
equation rules are:

vi,a(t + 1) = f (vi,a(t), zi a(t), pbest; 4(t), nbest; 4(t)) (2.1)
xi,d(t + 1) =g (Ii’d(t)7 Ui’d(t + 1)) (2.2)

where f(-) and g(-) are suitable functions, pbest; 4(t) is the d-th element of the
vector pbest;(t) representing the historical best position of the particle 4, i.e.
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the lowest objective function value (personal best), and nbest; 4(t) is the d-th
element of vector nbest;(t) related to the best position of the i-th particle’s
neighborhood (social best).

According to these rules, the i-th particle position at step (¢t + 1) is deter-
mined by the function g (-) of its previous position and its velocity at time t.
Moreover the velocity of i-th particle at time (¢ + 1) is a function f (-) depending
on the velocity and the position at time ¢, and the best positions achieved by
the particle and its neighborhood. Based on the paper of Kennedy and Eberhart
[1], the functions f () and g (-) are specified by the following equations:

via(t+1) = v; 4(t) + c1p1 (pbest; q(t) — z; q(t)) +
capa (nbest; 4(t) — z;,4(t)) (2.3)
{,Ciyd(t + 1) = .’L‘i’d(t) + 'Ui,d(t + ].)

where ¢; and ¢y are two positive constants representing the cognitive and social
acceleration coefficients; p1, p2 ~ U(0, 1) are two independent uniformly distrib-
uted random values in the range [0, 1] introduced to weight the velocity toward
the particle personal best and the velocity toward the global best solution.

When the neighborhood of each particle is represented by the whole swarm,
then nbest; naturally becomes gbest, that is the global best solution. This
condition is known as the gbest topology. Under this condition all the particles
are connected among them, achieving a full connected graph: the unique best
particle position in the entire population affects all the other particles positions.

One of the most problematic characteristic of PSO is its propensity to con-
verge, prematurely, on early best solutions. In the paper of Shi and Eberhart [7] a
inertia weight, w, was introduced to control the velocity of the particles in order
to overcome this limitation. In their successive paper [8], a linearly decreasing w
is proposed changing its value according to the number of iterations. Further, in
order to improve the performance of the method, Chatterrjee and Siarry [9] sug-
gested an updating equation for the inertia weight w that introduces a non linear
component in the velocity function. Rather then considering the inertia weight,
Clerc and Kennedy [5] introduced the constriction coefficient, which alleviates
the requirement to clamp the velocity.

Considering discrete optimization problems, several PSO algorithms have
been proposed in the literature. Kennedy and Eberhart [3] introduced a proce-
dure able to deal with sequences of bits rather than real numbers. In this app-
roach each element of the velocity vector is bound in the interval [0, 1] through a
sigmoid function, setting a probability threshold to flip the d-th element of the
vector x;(t) from 0 to 1 or vice versa. This procedure can also be adopted when
the accessible values are more than two, simply converting decimal to binary
numbers (i.e. gray code). Liao et al. [10] extended discrete PSO [3] to solve the
flow-shop scheduling problem by redefining the particle and the velocity and
incorporating a local search scheme to move a particle to the new sequence.
Dealing with integer problems, the approach proposed by Laskari et al. [4]
addresses the issue by simply rounding the updated value x; q(t + 1) in (2.4)
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to the nearest integer x} ;(t + 1). For a review on PSO for discrete optimization
problems see [11]. ’

Addressing directly the problem of optimization involving both qualitative
and quantitative variables, we propose a novel approach based on the concept
of probabilistic attraction.

3 Qualitative Particle Swarm Optimization (Q-PSO)

Many real-world optimization problems require the involvement of qualitative
variables that are variables whose values are represented by a finite set of labels.
In this work, we consider nominal qualitative variables, i.e. variables described
by non-ordered labels.

In order to derive an optimization procedure based on the fundamental prin-
ciples of PSO and suitable to deal with qualitative variables, we propose to
introduce in the algorithm an updating probabilistic rule. More specifically we
propose to update the value of a qualitative variable using a probability distrib-
ution rather than a velocity parameter. For a particle i, we specify the position
vector as follows:

Xi = (Ti,1, 5,25+ s Ti,Qs Ti, Q15 Ti, Q425 - - - s Ti,Q+C )5 (3.1)

qualitative variables quantitative variables

xiele...xLQxRC

where the first () variables are qualitative while the remaining C' variables are
quantitative (continuous). We then denote with L, the set of labels of the ¢-th
qualitative variable, with ¢ € {1,2,...,Q} and nr, the cardinality of the set L,.

The position and the velocity of the quantitative variables can be updated
using the rules introduced by canonical PSO algorithms. The parameters of the
qualitative variables introduced in this algorithm require instead the specification
of a new set of equations.

To build a PSO algorithm that allows the consideration of qualitative vari-
ables, we introduce the concept of probabilistic attraction. The probabilistic
attraction consists in sampling from the L, possible labels of each qualitative
variable with a probability distribution. At generation ¢ + 1, this distribution
depends on the contribution of each label in determining the global and local
best positions at generation t of the algorithm. In this way we sample more
frequently those labels that contribute most to determine optimal values of the
objective function, and less frequently the others. With the probabilistic attrac-
tion procedure we also assign a non-zero probability to choose other labels of
the variable, avoiding in this way to get stuck in some local optimum.

Considering the i-th particle, with ¢ € {1,2,..., P}, and the ¢g-th qualitative
variable, with ¢ € {1,2,...,Q}, at generation ¢ + 1 we define the probabilistic
attraction procedure as follows.

Let m be the equal sampling probability of each label of the ¢-th variable
(equiprobability condition), ;w2°*** () the probability to choose the individual best
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position of particle i for the g-th variable at generation ¢, X(¢) the position matrix
of all the particles in the swarm at time ¢, X(¢) = [x1(t), x2(t),...,xp(t)]", and
II(t) the matrix of the individual best positions of each particle in the swarm at
generation ¢, TI(t) = [pbest, (t), pbesty(t), . .., pbestp(t)]”.

Then the sampling probabilities of each label in L,, based on the results
obtained at the current generation t, is determined by:

1. the identification of the individual best label ; LE***(t) of the particle i at the
current generation ¢, with respect to the objective function to be optimized;

2. the identification of the best global label Lgbe‘“(t) of the whole swarm at the
current generation ¢, in optimizing the objective function;

3. the assessment of the probability iwgb“t(t + 1) to choose the individual best

label ; LPP*s*(t) at the next generation ¢ + 1

iﬂgb“t(t +1)=Pr{z;t+1) = iLgbeSt(t)}
= f (m,mBPet (1), X (1), IX(1)) (3-2)
where f(-) is a suitable function;

4. the computation of the probability wngSt(t+ 1) to choose the global best label
Lgbest(t) at the next generation ¢+ 1

ﬂ_gbest(t +1) =Pr{z; ,(t+1) = Lgbest(t)}

=49 (7T7 ngeSt (t)a X(t)v H(t)) ) (33)

where g(-) is a suitable function and ;w8°***(¢) in 3.2 is substituted by 7g****(t).
5. the computation of the probabilities of the labels that are not the individual
or global best as follows:

img(t+1) = b (egP°H(t + 1), ml"*t (¢ + 1), n1,)
VI € Ly, 1 & {LgPt, ,LPbest}. (3.4)

where h(-) is a suitable function.

In this paper the functions in (3.2), (3.3) and (3.4) assume fixed values accord-
ing to the case study that we will address. In particular we assume that h (-)
depends on wgb"‘“ and iwgbe‘gt, as described in the following equation:

et 1)

7'Trl](t + 1) (nLq — 2) )

VI € Ly, 1 ¢ {LI"",LPves'y, (3.5)

where

et 1) =1 — [r0P (t+ 1) + Pt 4+ 1)] . (3.6)

For the k-th particle, which defines the best global label of the whole swarm,
we have Lgbest = pLpbest = Lhest In this case we define its distribution proba-
bility as a monotonically increasing function () as follows:

Pr{wy,q(t + 1) = LEU(1)} = pmlet(t + 1) = ¢ (P!l . (3.7)
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This situation happens at least one time in each generation of the algorithm,
because the global best position is selected among the individual best positions.
In particular we assume that ,w2®s* (£ + 1) = [7P°H(t 4 1) + 2P (t + 1)].

According to this assumption, the probability of each label different from
LZGSt could be derived as in Eq. (3.5), and normalized to guarantee the constraint
Zyi 1 7rg (t + 1) = 1. Then the probability of sampling one of the remaining labels
is calculated as follows:

kT (E+ 1)
D kT

At time ¢t + 1, when all the probability values are determined, we update the
g-th qualitative variable of x; according to the following distribution function:

Rt + 1) = lef{l,...,n}. (3.8)

bes best
Lbest(t) mgvest(t + 1)
Tiq = iLngSt(t) iﬂ.gbest(t + 1) (39)
ZLfI # {L‘ngSt (t), ingbest (t)} i’]Té (t + ].) 1¢{pbest,gbest},

where 7Pt (t 4 1) > mbbest(t 4 1) > ;mh(t 4 1).

We denote this approach Qualitative Particle Swarm Optimization (Q-PSO).
It represents a generalization of the particle swarm optimization approach, since
allows framing the problems considering both quantitative and qualitative vari-
ables. In this paper we will derive Q-PSO approach for the problem of designing
building envelopes with the objective of reducing the consumption of energy.
Some of the variables involved in this optimization problem are in fact qualita-

tive, and a more general PSO approach may lead to a more accurate analysis.

4 Q-PSO for Energy-Efficient Building Envelope Designs

The reduction of pollutant emissions is nowadays a fundamental problem related
to the climate change issue and environmental sustainability. Major causes of air
pollution are the emission of carbon dioxide from energy building consumption,
vehicular traffic, and industrial production. In this article, we focus on the objec-
tive to reduce building carbon dioxide emissions meanwhile maintaining living
and comfort conditions inside buildings. The quantity of energy consumed for
heating, cooling and lighting a building is a function of several variables (quali-
tative and quantitative) and parameters, including the climatic conditions of the
construction site, the building orientation, the materials, the type of insulation
and the geometry of the interior and exterior. In this field, several studies have
addressed the problem by using different optimization procedures, which include
the evolutionary optimization approaches [12-14]. In particular, Zemella et al.
[13] proposed an Evolutionary Neural Network to optimize a building envelope
design where some qualitative variables were involved.

In designing energy-efficient building fagades several variables have to be
considered and their single and interactive effects on energy consumption should
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Fig. 1. Graphical representation of variables involved in the optimization problem

be measured under a large set of conditions and constraints. In this research we
focus on the following variables, regarded in the literature as the most relevant
for the problem: the proportion of glaze in the surface, the depth of different
overhangs for shading the windows and the type of glass used. All the considered
variables are continuos quantitative variables except for type of glass, which is
a nominal qualitative variable. We formulate the optimization problem as the
minimization of the energy consumption necessary for maintaining the comfort
conditions of a room, regarded as a module of a building. We address this problem
by developing a simulation study. We compute the energy loads for heating Q g,
lighting Qignt and cooling Q.o adopting the software EnergyPlus!.

According to Kragh and Simonella [15], we can estimate the amount of carbon
dioxide emissions with the following expression:

Eco, = Jous Qu + fa <Qlight +
Ui:s

Qcool
COP

> kgC O, (4.1)

where Qu, Quight, Qeoor are measured in kWh, fyqs = 0.194kgCO2/kWh and
fer = 0.422kgCOo/kW h represent the amount of carbon dioxide for the pro-
duction of 1kWh using natural gas or electricity respectively, ngy = 0.89 is a
measure of the efficiency of the heating system and COP is the performance’s
coefficient, that is the ratio of useful output to energy input. Here we refer to
the London climatic conditions, so we assume COP = 3.4 [13].

The variables involved in the minimization problem are:

— h: height, in meters, of the glazed surface, discretized as follows
h € {0.75+0.05¢,i=0,..., Ny}

hmaa: - hmzn
Np = ————, hmaz =285, hpmin =0.75, hgep = 0.05

hstep

! http://appsl.eere.energy.gov/buildings/energyplus/
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Table 1. Parameters of the simulation

Algorithms | Parameters for the quantitative | Parameters for the qualitative variable

variables
Ps0OCC x = 0.729, ¢1 = c2 = 2.05 3 bit, Gray code, Vipaz = 4.0
PSOIW 04<w<0.9,¢0=co=1.49
PSOIWNL 0<w<0.729, c; =c2 =1.49
Q-PSOCC | x = 0.729, c1 = ¢z = 2.05 w905t = 0.35, 70 = 0.25, 77 = 0.40

Q-PSOIW 04<w<0.9,¢1=c2=1.49
Q-PSOIWNL |0<w <0.729, ¢1 =cp =1.49

— d: depth, in meters, of the horizontal overhang, discretized as follows
d €{0.1040.10¢, i = 0,..., Ny}

dmam - dmin
Ny = =28t i g ae = 1.00,  Bpin = 0.10,  hyep = 0.10

dstep

— dL: depth, in meters, of the left vertical overhang, discretized as follows

dy € {0.10 4 0.10i, i = 0,..., Ny, }
dLma:r - dLmzn

N =
e dLstep

v dLpae = 1.00, dLym = 0.10,  dLstep = 0.10

— dR: depth, in meters, of the right vertical overhang, discretized as follows

d, € {0.10+0.104, i =0,...,Ny, }
dRmax - dRmzn

Ny = —292 ™% (Rmaz = 1.00, dRyin =0.10, dRgtep = 0.10
dRstep

— g: type of glass, with the following labels

9 =1{90,91,92,93,94}

4.1 The Optimization Problem

Without loss of generality, we restrict the domains of variables h, d, dL and dR to
a finite set of possible levels in order to achieve reasonable solutions. The variable
g, coded by labels g;, ¢ = 1...4, is considered as a nominal qualitative variable
as it describes specific types of glass. A schematic graphical representation of
the variables is reported in Fig. 1.

For designing a building facades we derive Q-PSO introduced in Sect. 3, which
allows the consideration of both quantitative variables (h, d, dL and dR) and a
qualitative variable (g). Since the search space consists of the finite set of points
defined by the Cartesian product of the domains of each variable, the number
of possible experimental points is equal to 215 000.
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This number of candidate points makes extremely difficult to compute the
objective function defined in 4.1 for the whole space as the calculation of Qp,
Quight and Qeoor by means of EnergyPlus would involve a very large amount
of computational time. We address this problem by considering two different
settings, which differ for the number of variables and complexity:

— Clase 1: we characterize the problem with variables h, d and g, which requires
to test 2 150 experimental points;

— Case 2: we characterize the problem with variables h, d, g, dL and dR, which
requires to test 215 000 experimental points.

The relative small number of experimental points of case 1 allows the evaluation
of all the search space and the identification of the actual minimum value. The
structure of case 1 can then be used as a “test-bed” to evaluate the performance
of Q-PSO.

Due to the computational time needed to evaluate the whole search space, for
case 2 we will consider the minimum value that has been found in the simulation
study as the problem optimum value.

We address the optimization problem in the following way:

1. Initialization of a random population of P particles, where each particle rep-
resents a specific variable configuration for the facade (i.e. an experimental
point);

2. Computation of the energy consumption associated to each particle by means
of the simulation software EnergyPlus;

3. Computation of the amount of carbon dioxide produced by each particle using
formula (4.1);

4. Update the particle positions according to the achieved result;

5. Repeat steps 2-4 T times, where T is a parameter (called the number of
generations) fixed by the investigator.

In this simulation we set different values of parameters for the experimentation:
for case 1 we use P = 30 and T' = 10, while for case 2 we assume P = 50 and
T = 30. With respect to the orientation of the facade, we assume in this setting
the East orientation.

Due to the stochastic nature of the optimization techniques, we decide to
test the algorithm on 5 different runs in order to validate the results and to
evaluate the performance of the optimization procedure. The implementation of
the algorithm is realized by using the free software R-project?.

4.2 The Performance of Q-PSO Optimization Approach

In addressing the problem of designing energy-efficient facades we build Q-PSO
with sampling probabilities based on the knowledge achieved on the process and
some preliminary tests. In particular, we set:

2 http://www.r-project.org
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7T.gbest(t) =0.35 iﬂ_gbeSt(t) =0.25 Wé(t) = %a (42)

L g {Lgbest  LRbesty Wt e {1,2,...,T}, Vie {1,2,...,P}

To evaluate the performance of Q-PSO and develop comparisons with other
approaches, we implement binary PSO as proposed by [3], currently used to
deal with qualitative variables. We derive binary PSO encoding the labels of the
variable g with a 3 bit Gray code. The comparison between binary PSO and
Q-PSO is realized under different hypotheses on the inertia weight.

In particular, we consider:

— PSOCC and Q-PSOCC, a constriction coefficient x is introduced in according
with [5];

— PSOIW and Q-PSOIW, linearly decreasing inertia weight is considered [§];

— PSOIWNL and Q-PSOIWNL, non-linearly decreasing inertia weight is considered

[9]-

In Table 1 we summarize the parameters, x, w, ¢; and cs, of the implemented
algorithms for different weight structures. First we consider case 1, in order to
evaluate the performance of the algorithms when the optimal solution is known,
and later we will consider case 2, where the complexity of the problem imposes
to regard the optimum as 175.60 (the best minimum value obtained in the sim-
ulations).

For case 1 we evaluate by simulation all the 2150 possible different facade
configurations and achieve the minimum value 179.55, regarded as the target of
the optimization procedures. The comparison of the algorithms performance is
then derived by computing the average of the minimum values and the minimum
value of the objective function determined on the best positions gbest(t) at
each generation t € {1,2,...,T} by each method over 5 runs. The main results
are presented in Table2. We observe that Q-PSO finds better averages of the
minimum values with respect to standard PSO. Both the approaches find the
minimum value identified as target, but Q-PSO improves the average minimum
solution in 5 runs reducing its variability. Q-PSO always reaches the target of
the minimization problem, exhibiting a particular stability of the approach.

Table 2. Performance of the algorithms for case 1

PSOCC | Q-PSOCC | PSOIW | Q-PSOIW | PSOIWNL | Q-PSOIWNL

Target 179.55 | 179.55 179.55 | 179.55 179.55 179.55
Average of the 180.04 |179.57 180.04 | 180.03 180.48 179.55

minimum value

in 5 runs
(sd) (1.05) (0.04) (1.05) (1.03) (1.27) (0.00)
Num. of runs 3 4 3 3 3 5

achieving the

minimum
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Table 3. Performance of the algorithms for case 2

PSOCC | Q-PSOCC | PSOIW | Q-PSOIW | PSOIWNL | Q-PSOIWNL
Minimum value 175.60 | 175.60 175.60 | 175.60 175.60 175.60
Average of the 176.05 | 175.90 176.64 |175.89 175.90 175.60
minimum value
in 5 runs
(sd) (0.45) (0.66) (0.61) (0.64) (0.66) (0.00)
Num. of runs 1 4 1 4 4 5
achieving the
minimum
8 -+ PSOIW S -+ PSOw
- —— Q-PSOIW - —¢— Q-PSOIW
N o A S o A
o - o -
o o
28] = 2g.
c - 1&& <
2o \ g e
E =] xx';if é =]
MY
N 2ok i
= v’: i - XXXXX: oy ’r: i
ot +'|+|-H+H¢kl+|+ 4| OF ‘
E 7 &xxxxxxxxx g 7 H+
XXXXX XYk
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Generations Generations
(a) Average minimum value in 5 runs (b) Minimum value in 5 runs
PSOIW vs Q-PSOIW PSOIW vs Q-PSOIW

Fig. 2. Case 2: comparison of PSO and Q-PSO.

Similarly for case 2 we should evaluate by simulation the 215000 possible
different fagade configurations to discover the minimum value of the objective
function and regard this value as the target of the optimization procedures. Given
the computational time needed to evaluate the objective function we proceed by
comparing the behavior of the two approaches in 30 generations and different
inertia weights. Results are summarized in Table 3. In Fig. 2 we can observe that
also for complex problems, as the one proposed in case 2, Q-PSO outperforms
PSO both in the behavior of the average of the minimum values and in the
minimum values, for all the inertia weight structures here considered. Moreover,
Q-PSO achieves the minimum value in fewer generations than PSO.

5 Concluding Remarks

In this paper we addressed an optimization problem which involves both quan-
titative and qualitative variables adopting the successful and well-known pro-
cedure of PSO. Given the difficulties of this procedure to deal with qualitative
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variables we introduced a generalization of the procedure: Qualitative Particle
Swarm Optimization (Q-PSO), which is a stochastic optimization approach able
to deal both with qualitative and quantitative variables. Q-PSO approach is
based on the idea of sampling labels of qualitative variables with a probability
distribution depending on the global and individual best labels achieved in each
generation of the algorithm.

We implemented Q-PSO to the case study of deriving the optimal design of a
building envelope able to minimize the carbon emissions due to heating, cooling
and lighting, and compared this approach to standard PSO (binary PSO). The
study, which involves different structures of the problem, shows that Q-PSO
outperforms PSO in almost all the parameter configurations that we considered.
We observe in fact that Q-PSO achieves very good results in finding minimum
values and averages of minimum values over a set of runs and in few generations
of the algorithm. In conclusion, in this study we introduced a new, easy to
implement and effective approach that allows considering qualitative variables
in complex optimization problems.

As future works we intend to test Q-PSO to different case studies in order
to generalize its properties and to study the robustness increasing the number
of runs.
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