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Abstract. We introduce a new graph parameter called the burning
number, inspired by contact processes on graphs such as graph boot-
strap percolation, and graph searching paradigms such as Firefighter.
The burning number measures the speed of the spread of contagion in a
graph; the lower the burning number, the faster the contagion spreads.
We provide a number of properties of the burning number, including
characterizations and bounds. The burning number is computed for sev-
eral graph classes, and is derived for the graphs generated by the Iterated
Local Transitivity model for social networks.

1 Introduction

The spread of social influence is an active topic in social network analysis;
see, for example, [3,8,13,14,18,19]. A recent study on the spread of emotional
contagion in Facebook [16] has highlighted the fact that the underlying network
is an essential factor; in particular, in-person interaction and nonverbal cues
are not necessary for the spread of the contagion. Hence, agents in the network
spread the contagion to their friends or followers, and the contagion propagates
over time. If the goal was to minimize the time it took for the contagion to reach
the entire network, then which agents would you target with the contagion, and
in which order?

As a simplified, deterministic approach to these questions, we consider a new
approach involving a graph process which we call burning. Burning is inspired
by graph theoretic processes like Firefighting [4,7,10], graph cleaning [1], and
graph bootstrap percolation [2]. There are discrete time-steps or rounds. Each
node is either burned or unburned; if a node is burned, then it remains in that
state until the end of the process. Every round, we choose a node to burn. Once
a node is burned in round ¢, in round ¢ + 1, each of its unburned neighbours
becomes burned. In every round, we choose one additional unburned node to
burn (if such a node is available). The process ends when all nodes are burned.
The burning number of a graph G, written by b(G), is the minimum number
of rounds needed for the process to end. For example, it is straightforward to
see that b(K,) = 2. However, even for a relatively simple graph such as the
path P, on n nodes, computing the burning number is more complex; in fact,
b(P,) = [n'/?] as stated below in Theorem 3 (and proven in [6]).
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Burning may be viewed as a simplified model for the spread of social con-
tagion in a social network such as Facebook or Twitter. The lower the value of
b(@), the easier it is to spread such contagion in the graph G. Suppose that in
the process of burning a graph G, we eventually burned the whole graph G in k
steps, and for each i, 1 < i < k, we denote the node that we burn in the i-th step
by x;. We call such a node simply a source of fire. The sequence (z1, %2, ..., Tk)
is called a burning sequence for G. With this notation, the burning number of
G is the length of a shortest burning sequence for G; such a burning sequence
is referred to as optimal. For example, for the path Py with nodes vy, va, v3, vy,
the sequence (vz,v4) is an optimal burning sequence (See Figure 1). Note that
for a graph G with at least two nodes, we have that b(G) > 2.

Fig. 1. Burning the path P, (the open circles represent burned nodes)

The goal of the current paper is to introduce the burning number and explore
its core properties. A characterization of burning number via a decomposition
into trees is given in Theorem 1. As proven in [6], computing the burning number
of a graph is NP-complete, even for planar, disconnected, or bipartite graphs.
As such, we provide sharp bounds on the burning number for connected graphs,
which are useful in many cases when computing the burning number. See The-
orem 2.2 for bounds on the burning number. We compute the burning number
on the Iterated Local Transitivity model for social networks (introduced in [5])
and grids; see Theorem 8 and Theorem 9, respectively. In the final section, we
summarize our results and present open problems for future work.

2 Properties of the Burning Number

In this section, we collect a number of results on the burning number, ranging
from characterizations, bounds, to computing the burning number on certain
kinds of graphs. We first need some terminology. If G is a graph and v is a node
of G, then the eccentricity of v is defined as max{d(v,u) : u € G}. The radius
of G is the minimum eccentricity over the set of all nodes in G. The center of G
consists of the nodes in G with minimum eccentricity. Given a positive integer k,
the k-th closed neighborhood of v is defined to be the set {u € V(G) : d(u,v) < k}
and is denoted by Ni[v]; we denote Nip[v] simply by NJv].

We first make the following observation. Suppose that (z1, 22, ...,zx), where
k > 3, is a burning sequence for a given graph G. For 1 < ¢ < k, the fire spread
from x; will burn only all the nodes within distance k — ¢ from x; by the end of
the k-th step. On the other hand, every node v € V(G) must be either a source of
fire, or burned from at least one of the sources of fire by the end of the k-th step.
In other words, any node of G that is not a source of fire must be an element of
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Ni—i[z;], for some 1 < i < k. Therefore, we can see that (z1,xa,...,z)) forms
a burning sequence for G if and only if the following set equation holds:

Nk,l[xl] UNk,Q[LCQ] U...UNo[xk] = V(G) (1)

Here is another simple observation. For each pair ¢ and j, with 1 <i < j <k,
d(z;,x;) > j—i. Since, otherwise, if d(z;, ;) = I < j—i, then z; will be burned at
stage |+ (< j) which is a contradiction. Hence, we have the following corollary.

Corollary 1. Suppose that (x1,22,...,xk) is a burning sequence for a graph G.
If for some node x € V(G)\{x1,...,zx} and 1 < j < k—1, we have that N[z] C
Nlz;], and for every i # j, d(x,x;) > |i —j|, then (z1,...,%5-1, %, Tjq1, ..., Tk)

is also a burning sequence for G.

2.1 Characterizations of Burning Number via Trees

The following theorem provides an alternative characterization of the burning
number. Note that through the rest of this paper we consider the burning prob-
lem for connected graphs. The depth of a node in a rooted tree is the number of
edges in a shortest path from the node to the tree’s root. The height of a rooted
tree T is the greatest depth in T'. A rooted tree partition of G is a collection of
rooted trees which are subgraphs of G, with the property that the node sets of
the trees partition V(G).

Theorem 1. Burning a graph G in k steps is equivalent to finding a rooted tree
partition into k trees Ty, Ty, ..., Ty, with heights at most (k —1),(k —2),...,0,
respectively such that for every 1 <i,j < k the distance between the roots of T;
and T; is at least |i — j].

Proof. Assume that (z1,z2,...,2k) is a burning sequence for G. For all 1 <
1 < k, after x; is burned, in each round ¢ > i those unburned nodes of G in the
(t—1)-neighborhood of x; will burn. Hence, any node v is burned by receiving fire
via a shortest path of burned nodes from a fire source like x; (this path can be of
length zero in the case that v = x;). Hence, we may define a surjective function
f:V(G) = {x1,29,...,21}, with f(v) = z; if v receives fire from z;, where ¢
is chosen with the smallest index. Now {f~1(z1), f~*(z2),..., f '(ax)} forms
a partition of V(G) such that G[f~!(z;)] (the subgraph induced by f~(x;))
forms a connected subgraph of G. Since every node v in f~!(z;) receives the
fire spread from z; through a shortest path between x; and v, by deleting extra
edges in G[f~!(z;)] we can make a rooted subtree of G, called T; with root ;.
Since every node is burned after k steps, the distance between each node on T;
and x; is at most k — i. Therefore, the height of T; is at most k — 1.
Conversely, suppose that we have a decomposition of the nodes of G into k
rooted subtrees 11,75, ..., Tk, such that for each 1 <1 < k, T; is of height at most
k —i. Assume that x1,x2, ..., 2, are the roots of Ty, T5, ..., T}, respectively, and
for each pair ¢ and j, with 1 <4 < j <k, d(z;, ;) > j—i. Then (z1,22,...,2k)
is a burning sequence for G, since the distance between any node in T; and z; is
at most k — ¢. Thus, after k£ steps the graph G will be burned. a
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Fig. 2. A rooted tree partition

Figure 2 illustrates Theorem 1. The burning sequence is (21, za,23). We
have shown the decomposition of G into subgraphs T3, T5, and 73 based on this
burning sequence by drawing dashed curves around the corresponding subgraphs.
Each node has been indexed by a number corresponding to the step that it is
burned.

The following corollary is useful for determining the burning number of a
graph, as it reduces the problem of burning a graph to burning its spanning trees.
First, note that for a spanning subgraph H of G, it is evident that b(G) < b(H)
(since every burning sequence for H is also a burning sequence for G).

Corollary 2. For a graph G we have that
b(G) = min{b(T) : T is a spanning subtree of G}.

Proof. By Theorem 1, we assume that 17,75, ..., T} is a rooted tree partition of
G, where k = b(G), derived from an optimal burning sequence for G. If we take
T to be a spanning subtree of GG obtained by adding edges sequentially between
the T;’s which do not induce a cycle in G, then b(T) < k = b(G) < b(T'), where
the second inequality holds since 7' is a spanning subgraph of G. ad

2.2 Bounds

A subgraph H of a graph G is called an isometric subgraph if for every pair of
nodes u,v in H, we have that dg(u,v) = dg(u,v). For example, a subtree of a
tree is an isometric subgraph. As another example, if G is a connected graph and
P is a shortest path connecting two nodes of G, then P is an isometric subgraph
of G. The following theorem (with proof omitted) shows that the burning number
is monotonic on isometric subgraphs.

Theorem 2. For any isometric subgraph H of a graph G, we have that b(H) <
b(Q).

However, this inequality may fail for non-isometric subgraphs. For example,
let H be a path of order 5, and form G by adding a universal node to H. Then
b(H) = 3, but b(G) = 2. The following corollary is an immediate consequence of
Theorem 2.
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Corollary 3. If T is a tree and H 1is a subtree of T, then we have that b(H) <
b(T).

The burning number of paths is derived in the following result (with proof
omitted).

Theorem 3. For a path P, on n nodes, we have that b(P,) = [n'/?].
We have the following immediate corollaries.

Corollary 4. 1. For a cycle C,, we have that b(C,) = [n'/?].
2. For a graph G of order n with a Hamiltonian (that is, spanning) path, we
have that b(G) < [n'/?].

The following theorem gives sharp bounds on the burning number. For s > 3,
let K s denotes a star; that is, a complete bipartite graph with parts of order
1 and s. We call a graph obtained by a sequence of subdivisions starting from
K s a spider graph. In a spider graph G, any path which connects a leaf to the
node with maximum degree is called an arm of G. If all the arms of a spider
graph with maximum degree s are of the same length r, we denote such a spider
graph by SP(s,r).

Lemma 1. For any graph G with radius v and diameter d, we have that
[(d+1)Y*] <b(G) <r+1.

Proof. Assume that c is a central node of G with eccentricity r. Since every node
in (G is within distance r from ¢, the fire will spread to all nodes after »+ 1 steps.
Hence, r 4+ 1 is an upper bound for b(G).

Now, let P be a path connecting two nodes v and v in G with d(u,v) = d.
Since P is an isometric subgraph of G, and |P| = d + 1, by Theorem 2 and
Theorem 3 we conclude that b(G) > b(P) = [(d + 1)'/?]. O

As proven in [6], the lower bound is achieved by paths, and the right side bound
is achieved by spider graphs SP(r,r). Note that when proving b(G) < r +1 in
Theorem 1, we viewed G as covered by a ball with radius r, with a central node
chosen as a center of the ball. Hence, by burning a central node, after »+ 1 steps
every node in G will be burned. A covering of G is a set of subsets of the nodes
of G whose union is V(G). We may generalize this idea to the case that there is
a covering of G by a collection of balls with a specified radius.

Theorem 4. Let {C1,Cs,...,C:} be a covering of the nodes of a graph G, in
which each C; is a connected subgraph of radius at most k. Then we have that
b(G) <t+k.

We finish this section by providing some bounds on the burning number in
terms of certain domination numbers. A k-distance dominating set like Dy, for G
is a subset of nodes such that for every node u € V(G) \ Dy, there exists a node
v € Dy, with d(u,v) < k. The number of the nodes in a minimum k-distance
dominating set of G is denoted by v (G) and we call it the k-distance domination
number of G. We have the following result (proof omitted).
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Theorem 5. For any graph G with burning number k we have, v,_1(G) < k.

We now give bounds on the burning number in terms of distance domination
numbers.

Theorem 6. If G is a connected graph, then we have that

1, . ) . )

5 (min{i(G) + i} +1) < b(G) < min{%(G) + i}
Proof. The upper bound is an immediate corollary of Theorem 4. For the lower
bound, let k = b(G), and let (x1,...,2x) be a burning sequence. Then we have
that

V(G) - Nk_l[ﬂh] u...u N0[$k]
- Nkfl[.’lﬁl] Uu...u Nkfl[l'k].

Hence, {x1,..., 2%} is a k-distance dominating set of G. Since by Theorem 5 we
have that 14—1(G) < k, and y,—1(G) + (k — 1) < 2k — 1 = 2b(G) — 1, we derive
that min;>1{7:(G) + i} < v-1(G) + (k — 1) < 2b(G) — 1. O

We have the following fact about the k-distance domination number of graphs.

Theorem 7. [17] If G is a connected graph of order n with n > k + 1, then we

have that
n

E+1

Now we use the bound in Theorem 7 for k-distance domination number which
provides another upper bound for the burning number.

Mw(G) <

Corollary 5. If G is a connected graph of order n, then we have that
b(G) < 2nt/% - 1.

We conjecture that for any connected graph G of order n, b(G) < [n'/?].

3 Burning in the ILT Model

The Iterated Local Transitivity (ILT) model [5], simulates on-line social networks
(or OSNs). The central idea behind the ILT model is what sociologists call
transitivity: if u is a friend of v, and v is a friend of w, then w is a friend of w.
In its simplest form, transitivity gives rise to the notion of cloning, where u is
joined to all of the neighbours of v. In the ILT model, given some initial graph as
a starting point, nodes are repeatedly added over time which clone each node, so
that the new nodes form an independent set. The only parameter of the model is
the initial graph Gy, which is any fixed finite connected graph. Assume that for
a fixed t > 0, the graph G} has been constructed. To form Gy1, for each node
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x € V(Gy), add its clone 2’, such that 2’ is joined to x and all of its neighbours
at time ¢. Note that the set of new nodes at time ¢ + 1 form an independent set
of cardinality |V (Gy)|.

The ILT model shares many properties with OSNs such as low average dis-
tance, high clustering coefficient densification, and bad spectral expansion; see
[5]. The ILT model has also been studied from the viewpoint of competitive
diffusion which is one model of the spread of influence; see [20].

We have the following theorem about the burning number of graphs obtained
based on ILT model. Even though the graphs generated by the ILT model grow
exponentially in order with ¢, we see that the burning number of such networks
remains constant.

Theorem 8. Let G, be the graph generated at time t > 1 based on the ILT model
with initial graph Go. If Gy has an optimal burning sequence (x1,...,xy) in
which xy, has a neighbor that is burned in the (k—1)-th step, then b(G¢) = b(Gop).
Otherwise, b(G¢) = b(Gop) + 1.

Proof. 1t is straightforward to see that Gy is an isometric subgraph of G;. There-
fore, by Theorem 2, b(Gt) > b(Gp). On the other hand, assume that (x1,...,2)
is an optimal burning sequence for Gy. Since every node z’ € V(G;) \ V(G)p) is
adjacent to a node in G, we have that (z1,...,2x) is a burning sequence for the
subgraph of G; induced by V(G¢)\ (Ng, [z1]\ Na, [zx])- Thus, b(Gt) < b(Go)+1.
Hence, we conclude that always either we have that b(G:) = b(Gp), or b(Gy) =
b(Go) + 1.

Suppose that for every optimal burning sequence of Gy all the neighbours
of zj are burned in the k-th step. We claim that b(G1) = b(Go) + 1. Assume
not; that is, b(G1) = b(Go). Let (y1, ¥y, -..,yr) be an optimal burning sequence
for G;. Without loss of generality, by Corollary 1, and the structure of Gj,
we can assume that {y1,92,...,ys—1} C Go. Then, we have two possibilities;
either yr, = = or y,, = 2’ € V(G1) \ V(Gy), for some = € V(Gyp). If the former
holds, then to burn z’ by the end of the k-th step, one of the nodes in the
neighbourhood of z must be burned in an earlier stage, which is a contradiction.
Since in this case (y1, 2, -..,yr) forms a burning sequence for Gy. If the latter
holds, that is, yr = 2’ € V(G1) \ V(Gyp), for some z € V(Gy), then, we must
have = yr_1 (Note that all the neighbours of z must be burned either in the
(k — 1)-th step or the k-th step; Otherwise, yj is burned before the k-th step,
which is a contradiction). Otherwise, if  # yi_1, to burn x by the k-th step,
one of the neighbours of £ must be burned in an earlier stage. But then in this
case, (Y1,...,Yr—1,2) forms an optimal burning sequence for Gy such that one
of the neighbours of x is burned in the (k — 1)-th step which is a contradiction
with the assumption. Thus, z = yx_1.

If all the neighbours of z, including y, are burned in the (k — 1)-th step,
then (y1,...,Yx—2,y, ) forms an optimal burning sequence for Go. But this is
a contradiction with the assumption. If at least one of the neighbours of x like
y is burned at the k-th step, then (y1,...,yk—2,2,y) forms an optimal burning
sequence for G, which is again a contradiction with the assumption. Therefore,
in this case, b(G1) = b(Gy) is impossible, and hence, b(G1) = b(Gp) + 1.
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Conversely, suppose that b(G1) = b(Go) + 1, and (z1,...,xx) is an optimal
burning sequence for Gy. If x; has a neighbour that is burned at stage k — 1,
then x}, is also burned at stage k. Therefore, (x1,...,2zx) is a burning sequence
for G1, and we have that b(G1) = b(Gp), which is a contradiction. Thus, b(G;) =
b(Go)+1, if and only if for every optimal burning sequence of G, say (21, ..., zk),
all the neighbours of x; are burned in stage k. By induction, we can conclude
that b(Gt) = b(Gy) + 1 if and only if for every optimal burning sequence of Gy,
say (x1,...,2), all the neighbours of x; are burned in stage k. Since starting
from any graph G, for any ¢ > 1, b(G¢) = b(Gy), or b(Gy) = b(Go) + 1, we
conclude that b(Gy) = b(Gy) if and only if for every optimal burning sequence
of Gy, say (z1,...,x) one of the neighbours of zj, is burned in stage k — 1. O

4 Cartesian Grids

The Cartesian product of graphs G and H, written GUH, has nodes V(G) x
V(H) with (u,v) adjacent to (z,y) if u =2 and vy € E(H) or v =y and ux €
E(G). The Cartesian m x n grid is P,OP,. We prove the following theorem.

Theorem 9. If G is a Cartesian m x n grid with 1 < m < n, then we have that

B @(n1/2) ifm= O(nl/Q)
oe) = {8((mn)1/3) if m = 2(n1/?).

Proof. First, we find a general upper bound by applying the covering idea in
Theorem 4 as follows. Using a layout as shown in Figure 3 we may provide a
covering of G by a collection of ¢ closed neighbourhoods of radius r. Note that
the r-th neighbourhood of a vertex in a grid is a subset of a “diamond” with
diameter 2r+1 in the Cartesian grid plane. Thus, by a simple counting argument
we have that

=l (e ) (#]+)
<([55 ] ([a5] )

v
=
-— T —
—

-2k | 1=

Fig. 3. A covering of the Cartesian grid
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Therefore, t = O(7 + ™ + ), and consequently, by Theorem 4,
mn m n
WG =0 (r+ 2+ s ). 2
@ =0(rt My " @

First, we consider the case that m = O(n'/?): Since P, is an isometric subgraph
of G, then by Theorem 3, we have that b(G) = £2(n'/2). Moreover, by taking
r = n'/2, we derive that M = m = O(n'?), and = + 2 < 22 = O(n'/?).
Thus, by equation (2), b(G) = O(n'/?), and we conclude that in this case,
b(G) = 6(n'/?).

Now, suppose m = 2(n'/?). Let S = (x1,22,..., ;) be a burning sequence
for G. Thus, every node in G must be in the (k — ¢)-th neighborhood of a node
x;, for some 1 < i < k. By direct checking, the number of nodes in the r-th
closed neighborhood of a node = in G equals

[Nyl = Hy € G:d(x,y) <r}=14+44---+4r
=1+4+2r(r+1).
Therefore, by double counting the nodes of G and by (1), we have that
mn = |G| < [Np—1[za]| + [ Ne—2[z2]| + - - - + [ No[z]|
= 2% + k

=k+> 2i(i+1)= T
=1

Since the above inequality holds for all burning sequences, we conclude that
b(G) = 2((mn)'/3). On the other hand, by taking 7 = (mn)/? in equation (2),
we derive that b(G) = O((mn)'/?). Hence, the proof follows. O

5 Conclusions and Future Work

We introduced a new graph parameter, the burning number of a graph, written
b(G). The burning number measures how rapidly social contagion spreads in
a given graph. We gave a characterization of the burning number in terms of
decompositions into trees, and gave bounds on the burning number which allow
us to compute it for a variety of graphs. We determined the asymptotic order of
the burning number of grids, and determined the burning number in the Iterated
Local Transitive model for social networks.

Several problems remain on the burning number. We conjecture that for a
connected graph G of order n, b(G) < [n'/?]. Determining the burning num-
ber remains open for many classes of graphs, including trees and disconnected
graphs. It remains open to consider the burning number in real-world social net-
works such as Facebook or LinkedIn. As Theorem 8 suggests, the burning number
of on-line social networks is likely of constant order as the network grows over
time. We remark that burning number generalizes naturally to directed graphs;
one interesting direction is to determine the burning number on Kleinberg’s small
world model [15], which adds random directed edges to the Cartesian grid.

A simple variation which leads to complex dynamics is to change the rules
for nodes to burn. As in graph bootstrap percolation [2], the rules could be varied
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so nodes burn only if they are adjacent to at least r burned neighbors, where
r > 1. We plan on studying this variation in future work.

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alon, N., Pralat, P., Wormald, N.: Cleaning regular graphs with brushes. STAM
Journal on Discrete Mathematics 23, 233-250 (2008)

Balogh, J., Bollobds, B., Morris, R.: Graph bootstrap percolation (preprint 2014)
Banerjee, S., Das, A., Gopalan, A., Shakkottai, S.: Epidemic spreading with exter-

nal agents. In: Proceedings of IEEE Infocom (2011)

Barghi, A., Winkler, P.: Firefighting on a random geometric graph. Random Struc-

tures and Algorithms (accepted)

Bonato, A., Hadi, N., Horn, P., Pratat, P., Wang, C.: Models of on-line social

networks. Internet Mathematics 6, 285-313 (2011)

Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph is hard (preprint 2014)U
Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-

ican Mathematical Society, Providence (2011)

Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-

ceedings of the 7th International Conference on Knowledge Discovery and Data
Mining (KDD) (2001)

Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs

of maximum degree three. Discrete Mathematics 307, 20942105 (2007)

Finbow, S., MacGillivray, G.: The Firefighter problem: a survey of results, direc-

tions and questions. Australasian Journal of Combinatorics 43, 57-77 (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, W.H (1979)

Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th International Conference on Knowledge
scovery and Data Mining (KDD) (2003) )

Kempe, David, Kleinberg, Jon M., Tardos, Eva: Influential Nodes in a Diffusion
Model for Social Networks. In: Caires, Luis, Italiano, Giuseppe F., Monteiro, Luis,
Palamidessi, Catuscia, Yung, Moti (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127—
1138. Springer, Heidelberg (2005)

Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proc.
32nd ACM Symp. Theory of Computing (2000)

Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-
scale emotional contagion through social networks. Proceedings of the National
Academy of Sciences 111, 8788-8790 (2014)

Meir, A., Moon, J.W.: Relations between packing and covering numbers of a tree.
Pacific Journal of Mathematics 61, 225-233 (1975)

Mossel, E., Roch, S.: On the submodularity of influence in social networks. In:
Proceedings of 39th Annual ACM Symposium on Theory of Computing (STOC)
2007

%icha)rdson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: Proceedings of the 8th International Conference on Knowledge scovery and
Data Mining (KDD) (2002)

Small, L., Mason, O.: Information diffusion on the iterated local transitivity model
of online social networks. Discrete Applied Mathematics 161, 1338-1344 (2013)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)



2 Springer
http://www.springer.com/978-3-319-13122-1

Algorithms and Models for the Web Graph

11th International Workshop, WAW 2014, Beijing, China,
December 17-18, 2014, Proceedings

Bonato, A Graham, F.C.; Pralat, P. (Eds.)

2014, X, 161 p. 30 illus., Softcover

ISBN: 978-3-319-13122-1



	Burning a Graph as a Model of Social Contagion
	1 Introduction
	2 Properties of the Burning Number
	2.1 Characterizations of Burning Number via Trees
	2.2 Bounds

	3 Burning in the ILT Model
	4 Cartesian Grids
	5 Conclusions and Future Work
	References


