Chapter 2
Statistical Relational Learning

This chapter presents background on SRL models on which our work is based on.
We start with a brief technical background on first-order logic and graphical models.
In Sect. 2.2, we present an overview of SRL models followed by details on two
popular SRL models. We then present the learning challenges in these models and
the approaches taken to solve them in literature. In Sect. 2.3.3, we present functional-
gradient boosting, an ensemble approach', which forms the basis of our learning
approaches. Finally, We present details about the evaluation metrics and datasets we
used.

2.1 Representing Structure and Uncertainty

We first define some notation that is used throughout this book. We use capital letters
such as X, Y, Z to represent variables and small letters such as x, y, z to represent
values taken by the variables. We use bold-faced letters to represents sets. Letters
such as X, Y, Z represent sets of variables and X, y, z represent sets of values. We
use Z_; to denote z\z, i.e., every element from z except z. Similarly x_; is used to
represent X\x;.

2.1.1 Representation: First-Order Logic

A simplistic view of first-order logic (FOL) is that it generalizes propositional logic
by introducing variables as arguments to propositions (p to p(X)) which can be used
to make logical statements about all objects in the domain (Russell and Norvig 2003).
To avoid confusion with random variables, We use sans-serif capital letters X, Y, and Z

! Ensemble methods learn multiple models instead of one Bishop (2006).

© The Author(s) 2014 5
S. Natarajan et al., Boosted Statistical Relational Learners,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-13644-8_2

6 2 Statistical Relational Learning

Table 2.1 First-order logic terminology

Constants Represent objects in the domain
E.g., anna, bob
Variables A variable can be assigned a value from a range of constants

E.g., Variable X may take a value from {anna, bob}.

Predicate Represents relations between objects in the domain

E.g., the Friends predicate captures the friendship relation

Atom A predicate along with its arguments

E.g., Friends(X,Y), Father(bob,anna)

Literal An atom or its negation
E.g., Friends(anna,bob), = Father(X,Y)
Grounding Substituting a variable with a constant

E.g., A possible grounding of Father(X,Y)is Father(bob,anna)

Ground atom/literal | An atom/literal without any variables E.g., Friend(bob, anna)

Clause A disjunction (i.e., OR) of literals E.g., Friend(X,Y) Vv Father(X,Y)
states that either X is a friend of Y OR X is the father of Y

Horn clause A clause with only one positive literal commonly represented with an
implication (Body = Head) having one literal in the head

E.g., Friend(X,Y) A Smokes(Y) = Smokes(X),

ie., 7 Friend(X,Y) v =Smokes(Y) v Smokes(X)

to represent logical variables. We use lower-case sans-serif letters such as X, y and
Z to represent values taken by logical variables i.e. objects in the domain. The com-
mon logical operators/quantifiers are A (AND), v (OR), = (implication—condition
implies consequence), V (for all) and 3 (existential O true for at least one value).
used in this book are:

Furthermore, we assume that all logical variables are implicitly universally quan-
tified (i.e. V) unless explicitly existentially quantified. Table 2.1 presents sample
definitions of first-order logic terms that are used in the book.

2.1.2 Uncertainty: Graphical Models

Graphical models (Koller and Friedman 2009) represent conditional dependence
among random variables which can then be used to factor the joint distribution over
these variables. The factored distribution also reduces the number of parameters
needed to model the joint distribution. Undirected models such as Markov networks
(Kindermann and Snell 1980) factor the joint distribution as the product over po-
tentials defined over cliques in the graph (subject to a normalization term). The
potentials are generally represented using the function ¢ and the normalization term
using Z. Directed models such as Bayesian networks (Pearl 1988) represent the joint

2.2 Statistical Relational Models 7

Fig. 2.1 Different areas of Al

with respect to learning, % Statistical +* Statistical
representation and uncertainty £ Machine Relational
0 Learning Learning
vy
L
Probabilistic Probabilistic
9 Models Logic
wi
=
g Propositional Inductive Logic
g‘ Rule Pr:gramming
Learning
{‘@%
) .Propositionai First.Order
Logic Logic
4’0{,
6,
ﬁf"l‘{'q -
§ Propositional Relational

distributions as a product of conditional distributions for each variable given the par-
ents of the variable. To ensure the product of conditional distributions represents the
joint distribution, directed models require the model to be acyclic. The key idea is
that the factored distributions can have exponentially smaller number of parameters
compared to the full joint distribution.

Dependency networks (Heckerman et al. 2001) are directed graphical models that
remove this acyclicity condition thereby allowing for faster learning of these models.
But the product of the conditional distributions may not produce a consistent joint
distribution.

2.2 Statistical Relational Models

Statistical Relational Learning (SRL) (Getoor and Taskar 2007) addresses the chal-
lenge of applying statistical inference and learning approaches to problems which
involve rich collections of objects linked together in a complex, stochastic, and
relational world. Figure 2.1 presents different areas in Al with respect to three di-
mensions: learning, representation and uncertainty. As can be observed, SRL extends
statistical machine learning (Mitchell 1997) by using a richer representation, extends
inductive logic programming (Lavrac and Dzeroski 1994; Raedt 2008) by modeling
uncertainty and extends probabilistic logic (Nilsson 1986) by employing learning al-
gorithms. The advantage of SRL models (Getoor et al. 2001; Heckerman et al. 2004;
Jaeger 1997; Kersting and De Raedt 2007; Milch et al. 2004; Neville and Jensen
2007; Ngo and Haddawy 1995; Poole 1993; Sato and Kameya 2001; Domingos and
Lowd 2009; Gutmann and Kersting 2006; Taskar et al. 2002) is that they can suc-
cinctly represent probabilistic dependencies among the attributes of different related
objects, leading to a compact representation of learned models. We present two SRL

8 2 Statistical Relational Learning

Fig. 2.2 A dependency
network

T

I'DIII > |
[o— o

models for which we will show how to use boosting to learn them automatically from
data: one directed and one undirected relational model.

2.2.1 Relational Dependency Networks

Dependency networks (DNs) Heckerman et al (2001) are graphical models that ap-
proximate a joint probability distribution as a product of conditional probability
distributions (CPDs) (P(X) ~ [[; P(X; | Pa(X;))). Unlike Bayesian Networks, DNs
allow cycles in the graphical model, as a result the joint distribution is ap-
proximated. The key advantage of this approximation is that each conditional
distribution can be learned independently, which makes learning DNs much faster.
Figure 2.2 shows a sample DN where P(A, B, C, D) is approximated by the product
P(B|A)P(C|B,D)P(D|A)P(A|D). While these are approximate models, Hecker-
man et al. (2001) have shown that ordered pseudo-Gibbs sampling can be used to
recover the full joint distribution from these conditional distributions as long as each
conditional distribution is consistent.

Relational Dependency Networks (RDNs) are relational extensions of DNs. RDNs
are dependency networks where each node is a (first-order) predicate and the CPDs
capture the conditional distribution of a predicate given a subset of all the other
predicates. Similar to DNs, the network in RDNs can have cycles and hence approx-
imate the joint distribution. Each predicate has an associated CPD conditioned on
the value of its parents. Each CPD can be compactly represented using models such
as Relational Probability Trees (RPT) (Neville et al. 2003a) or Relational Bayesian
Classifiers (RBC) (Neville et al. 2003b).

An example RDN is presented in Fig. 2.3 for an university domain. The ovals
indicate predicates, while the dotted boxes represent the objects in the domain. As
can be seen, there are professor, student and course objects with taughtBy and takes
as the relations among them. The nodes avgSGrade and avgCGrade are aggregator
functions over grades on students and courses respectively. The arrows indicate the
probabilistic (or possibly deterministic) dependencies among the predicates. For
example, the predicate grade has difficulty, takes, and IQ as its parents. Also note
that there is a bidirectional relationship between satisfaction and takes. Given the
structure along with the conditional distributions, we can now use ordered pseudo-
Gibbs sampling (Heckerman et al. 2001) to answer queries such as satisfaction of a
student.

2.2 Statistical Relational Models 9

Professor(P)

Professor Information

Course Ratings

taughtBy(P,C)

ratings(P,C,R)

takes(S,C)

grade(S,C,G)

Student Grades

em——————————

Course Information

Fig. 2.3 A relational dependency network
2.2.2 Markov Logic Networks

Markov Logic Networks (MLNs) (Domingos and Lowd 2009) are relational models
represented using weighted first-order logic rules. These rules provide a template
for generating a Markov network by grounding the variables to all the constants” in
the first-order logic rules. Each rule ; forms a clique in the ground network and its
weight w; determine the potential for each clique. Fig. 2.4.

Weight = 1.1 Friends(X,Y) A Smokes(Y) — Smokes(X)

This rule presents a MLN clause from a simple cancer domain (adopted from Domin-
gos and Lowd 2009). The corresponding ground Markov network generated from
this rule for a domain with two constants X,Y € {a, b} is shown in Fig. 2.4.

The joint probability distribution in a MLN is given by the product of the potentials
on each clique, similar to Markov networks. For a given world state (truth value
assignment to all ground atoms), the clique potential function returns "’ if the ground
clause is true, otherwise it returns 1. Since all the cliques generated by grounding
the same clause have the same weight, the probability of a given world state can be
calculated using the number of true groundings of each clause. Hence the probability
of the data is given by:

PX = x)= %exp (Z wini(x))

2 We assume a finite set of constants throughout this document.

10 2 Statistical Relational Learning

Fig. 2.4 A ground Markov g
network for the friends and @ Friends(a,b))
~ o
smokes rule where g
X,Y € {a,b}. Each node in

—

— —

the ground network is a Ry
ground atom. Red (dark) ijkES(b}/
nodes indicate ground atoms e

that are false whereas green o Tl e S
(light) nodes are true

Gasd P @y

where n;(x) is the number of times the ith formula is satisfied by the world x and Z
is a normalization constant (as in Markov networks). In Fig. 2.4, the sample MLN
clause : = Friends(X,Y)V—=Smokes(Y)V Smokes(X) is only false for the grounding
{X =a,Y = b} and true for the remaining three groundings. So in this given world
state, n;(x) = 3.

Similar to Markov networks, the normalization term is expensive to compute
since its size is exponential in the number of features. For example in the sample
MLN, the Friends predicate would have O(n?) groundings, where 7 is the number
of people in the data set. Computation of the normalization terms requires summing
over all these groundings. As a result, most learning methods use the approximate
pseudo-likelihood (PL):

PLX = x) = [| P(X; = xiIMB(X)))
X;eX

where M B(X;) corresponds to the Markov blanket® of the ground atom, X; in the
ground Markov network. An avid reader must have noted that the pseudo-likelihood
term is similar to the probability distribution of RDNs, which is also defined as a
product of the conditional distributions.

2.3 Learning in SRL Models

SRL Models, and graphical models in general, are specified in terms of the structure
of the model and the parameters defined over this structure. The structure defines
the relations among the variables and the parameters quantify this relationship.

2.3.1 Parameter Learning

Since the parameters of a model are defined with respect to a model structure, the
parameter-learning approaches assume that the structure is already provided.

3 The Markov blanket of a node x; is all the direct neighbors of x; in the ground Markov network.

2.3 Learning in SRL Models 11

Directed Models

In case of directed models such as PRMs, BLPs and RDNEs, it is assumed that the par-
ents of every logical predicate is known. Similar to Bayesian networks, the problem
of parameter learning in these models can be viewed as learning the conditional dis-
tributions for each predicate. The standard approach in this research is to formulate
the optimization problem as either maximizing the log-likelihood or minimizing the
mean squared error when given some training data (Natarajan et al. 2005; Natarajan
et al. 2008; Kersting and De Raedt 2007; Getoor et al. 2001). Then either gradient-
descent or EM algorithm is adapted to fill in the parameter values. Since relational
models can have multiple instantations of a logical variable, either combining rules
or aggregations are used to handle this issue. The algorithms are capable of learning
the parameters of these combining rules as well.

Undirected Models

In MLNSs, since the first-order logic rules specify the cliques in the network, the
parameter-learning problem corresponds to learning the weights of the rules. The
earliest approaches for learning the weights in MLNs used gradient descent (Singla
and Domingos 2005) where the gradients for the weight of the clause are computed.
The issue is that this gradient computation requires computation of the expected
number of groundings of the clause which in turn requires inference at each step. So
approximations such as maximum a posteriori (MAP) estimates were used instead of
the actual expectation. This work was later extended to second-order gradient descent
approach (Lowd and Domingos 2007) and to margin-based approaches (Huynh and
Mooney 2009, 2011). But all of these approaches perform iterative updates to the
weights where each update computation needs to perform inference. As a result, even
parameter learning in MLNs can be computationally intensive.

2.3.2 Structure Learning

Unlike parameter learning, structure-learning approaches search over the space of
possible structures for amodel. Generally structure-learning approaches use a scoring
function to evaluate a structure, a hypothesis space of valid structures to search over
and a search strategy to search within the hypothesis space. Since the number of
possible structures for relational models can be very large (structure learning is
NP-Hard even in propositional models; Chickering 1996), most approaches use a
greedy search strategy in the hypothesis space. Since the predictive performance of
a structure (standard scoring function) depends on the parameters too, the search
procedure needs to learn the parameters for every candidate structure, increasing the
computational complexity of structure learning.

Most early structure learning methods employed the use of Inductive Logic Pro-
gramming (ILP) (Muggleton and Raedt 1994) that learned logical theories such that
these theories cover most of the positive examples and as few as possible of a set of
negative examples. They perform a greedy search for the set of “clauses” that are

12 2 Statistical Relational Learning

consistent with the training examples. Needless to say that these are deterministic
clauses which do not handle noisy data well. However, these are the early techniques
that inspired several structure learning methods inside SRL. One successful adapta-
tion of this inductive learning method is the learning of TILDE trees (Blockeel and
Raedt 1998). These trees upgrade the attribute representation of the classical deci-
sion trees by allowing for logical clauses as tests inside each node. Hence, learning
a decision tree can be understood as learning a decision list of first-order clauses
using some ILP learning method. TILDE trees extend this learning by computing
regression values (or probabilities) in the leaves of these trees. This is one of the
earliest successful statistical relational structure learning method. We now present
the other more recent methods briefly.

Directed Models

Most directed models such as BLPs and PRMs use a greedy hill-climbing approach
based on operators over the structure similar to the structure-learning approaches
for Bayesian networks. BLPs define operators such as adding or removing literals
from clauses, replacing variables by constants or vice versa, and adding or removing
clauses. PRMs, on the other hand, define a set of potential parents for every target
attribute and only considers adding/removing a parent from this set during the greedy
search. The commonality is that to score a candidate structure, both the models
first calculate the parameters based on counts in the data as mentioned before. The
candidate structure with the highest score (calculated based on the likelihood of the
training data) is accepted and the process continues.

The simplest among all directed models is the case of local models such as RDNs
where learning the set of conditional distributions independently is sufficient to learn
the structure. Neville and Jensen (2007) use two models: Relational Probability Trees
(RPT; Neville et al. 2003a) and Relational Bayesian Classifiers (RBC; Neville et
al. 2003b) to model the conditional distributions. A simple way to understand this
learning is that at the start of learning process, all the other predicates are assumed
to be parents of the target predicate. Then learning corresponds to simply finding
the best tree that models the conditional distribution (similar to feature selection in
a decision tree for propositional machine learning). Hence, an RDN is a set of RPTs
learned one after another.

Undirected Models

For undirected models, since most of the prior work as well as our work focuses on
MLNSs, we present structure-learning approaches for MLNs. Structure learning in
MLNSs corresponds to learning the clauses along with the weights of these clauses.
The initial approach to learn MLN structure avoided learning parameters for every
structure by learning the structure, i.e., the clauses of the model first and then learning
the parameters (Richardson and Domingos 2004). They used CLAUDIEN (Van Laer
et al. 1994), a first-order logic clause learner, to first learn the rules and then learned
the weights of the rules. But this approach does not take the potential parameters
into account before scoring the clauses and as a result can be sub-optimal. Follow-
ing this work, Kok and Domingos (2005) developed a structure-learning approach
that searched over the space of clauses and learned the weights for scoring each

2.3 Learning in SRL Models 13

candidate structure. Bottom-up structure learning (Mihalkova and Mooney 2007)
uses a propositional Markov network learning algorithm to identify paths of ground
atoms. These form the templates that are generalized into first-order formulas. Hy-
pergraph lifting (Kok and Domingos 2009) on the other hand clusters the constants
and true atoms to construct a lifted (first-order) graph. Relational path-finding on
this hypergraph is used to obtain the MLN clauses. Structural motif learning (Kok
and Domingos 2010) uses random walks on the ground network to find symmetrical
paths and cluster nodes with similar path distributions. All these methods obtain the
candidate clauses first, learn the weights and modify the clauses.

2.3.3 Functional-Gradient Boosting

Recall from the introduction that the goal of this book is to bring the complexity of
structure learning as close to parameter learning as possible. To this effect, we now
present a learning algorithm that in the propositional case can learn the parameter
and structure of the model simultaneously.

Most machine learning approaches use a parametric model that optimizes a spe-
cificloss function. For example, the logistic regression model uses a weight parameter
w, and uses gradient descent to find the best parameters that maximize the likelihood
of the data. Let {x,...,x,} be the set of examples and {yy,..., y,} be their corre-
sponding binary labels (represented as 1 and -1). In a logistic regression model, the
probability of a label for a given example is given by P(y;|x;;w) = 1/(1+ e xi).
Assuming the examples are independent, the log-likelihood (LL) of the full dataset
is given by

LL(y,x;w) = Z log P(y;|xi;w)

X; €EX

The standard method of learning in these models is based on gradient descent where
the learning algorithm starts with initial parameters wy and computes the gradient of
the log-likelihood (LL) function. The gradient during the mth iteration is given by

_ 8LL(y7 X; Wm—l)

m
8Wm—l

and the weight parameter at the end of m iterations is given by

W =wo+A1+...+ 4,

Friedman (2001) suggested that instead of using a parametric approach, apply the
numeric optimization in the function space. For example, the probability of an ex-
ample can be defined to be P(y;|x;;¢¥) = 1/(1 + e ¥(i)y and the gradients can
be computed with respect to the function . Similar to parametric gradient descent,

14 2 Statistical Relational Learning

Table 2.2 Training data with

class label ¢ # a b ¢
1 1 0 1
2 0 0
3 1 1

we start with an initial function vy and compute the gradients with respect to the
function :

OLL(y,x;Y—
A, = Ex,y[v, x; ¢ 1)i|

albm—l

The function at the end of m iterations is given by

Ym=v%o+A1+...+ A,

Since we only have a finite set of examples, rather than computing the gradients over
the entire space of possible examples, Friedman suggests calculating the gradient
for each training example. The gradient for an example x; is given by A,,(x;) =
OLL(Y,X; ¥u—1)/0V¥m—1(x;). We can then fit a regression function, fz(x,-) to these
gradients, A, (x;). Most functional-gradient approaches learn a regression tree to
represent h and minimize the least-square error:

by = argming Y [h(x;) — Ap(x))?

Xi

Since we approximated the gradients (A,,) using a regression function (hy), the
potential function v after the mth iteration is given by:

Y = Vo +hy+ ..+ Iy

Standard boosting approach Freund and Schapire (1996) learns a sequence of models
where the weight on the examples (think importance of the examples) is updated
after every iteration to increase the weight on incorrectly classified examples. As a
result, every subsequent model attempts to correct the mistakes in the current model.
FGB also learns a sequence of models (h; in this case) where every subsequent
model focuses on the incorrectly classified examples (due to the example’s higher
regression values), hence the boosting in its name.

Consider the small dataset with three examples shown in Table 2.2 with two fea-
tures (a and b) and the class label c. If we assume P(y; = 1|x;;) = 1/(14+e V&),
the gradients can be shown to be A,,(x) = We(y; = 3:)— P(yi = 3i|xi; ¥m), where
We(y; = ;) is the indicator function and J; is the true label of x; in the training data.
Let us assume the initial prior v returns O for every example i.e., {o(x) = 0, Vx.
Given this initial prior, all the examples would have the predicted probability of
P(y; = 1|x;;¢%9) = 0.5, based on the current model.

2.3 Learning in SRL Models 15

Table 2.3 Initial regression dataset # a b A
1 1 0 0.50
2 0 0 —0.50
3 1 1 —0.50
Table 2.4 Regression values after tree 1 # a b A,
1 1 0 0.50
2 0 0 -0.37
3 1 1 —0.50

Fig. 2.5 A sample model for
predicting class label c after + + ...+ =y,
m iterations

[00] [00] [-05] [oo1] [-0.02]
bo hy B

The gradient A for the positive example is 0.5 whereas for the negative examples
is —0.5, as shown in Table 2.3. Hence the gradients for the positive examples are
pushing the 1 function for those examples to a higher value, thereby pushing the
predicted probability closer to 1. Let us assume that we learn a regression tree with
only one node that tests for a being true or not. The left (true) branch would contain
two examples (#1 and #3) and the right (false) branch would contain only one example
(#2). Since the mean of the regression values of examples #1 and #3 is zero, the left
leaf would return zero. On the other hand, the right branch would return —0.50 as
the regression value. So the learned regression function h to fit the A values shown
in Table 2.3 is:

hi(x)

0.0 ifa=1
=—-0.5 ifa=0

Since our ¥ function returned zero for all the examples, adding le to ¥y would
give us ¥ = Yo + hy = hy as our new current model. Given this model, we can
compute the probabilities for the training examples. Since examples #1 and #3 have
Y1(x) = 0, they still have the same gradients, but the gradient for example #2 has
reduced to —0.37, as shown in Table 2.4. The next tree learned on this regression
dataset would split on feature b and reduce the gradient on example #3, similar to
what we observed in the previous step with example #2. Hence with each iteration,
the gradients on the examples move closer to zero and our predicted probabilities
would move closer to the observed values in the training data. Figure 2.5 shows a
sample model v, after m iterations of boosting.

16 2 Statistical Relational Learning

2.4 Benchmark Datasets

We now present details about the evaluation approach used. To show that the
boosting approach learns a more accurate model, we compare the accuracy of the
probabilistic predictions made by the models using three evaluation measures com-
monly used in literature. In addition to conditional log-likelihood (CLL), we use the
areas under Precision-Recall curve (AUC-PR) and Receiver Operating Characteristic
curve (AUC-ROC) (Davis and Goadrich 2006). It has been shown that CLL is not
a perfect measure when dealing with skewed data sets. Relational data is inherently
skewed as most of the relations are generally false (the number of friends of a person
is much smaller than the entire population). In such cases, AUC-PR and AUC-ROC
are considered better evaluation metrics.

Most of our learning approaches are evaluated on standard SRL data sets. We will
present details about three of the most commonly used data sets in literature that are
also used in our work. For other experiments, we refer to the corresponding paper.

2.4.1 UW-CSE

The UW-CSE dataset (Richardson and Domingos 2006) was creating from Uni-
versity of Washington’s Computer Science and Engineering department’s student
database (hence the name). The data set consists of details about professors,
students and courses from five different sub-areas of computer science (Al, pro-
gramming languages, theory, system and graphics). The dataset includes predicates
such as professor, student, publication, advisedBy, hasPosition, projectMember,
yearsInProgram, courseLevel, taughtBy, and teachingAssistant and equality predi-
cates such as samePerson, sameCourse etc. The goal in this data set is to predict the
advisedBy relationship between a student and a professor using the other predicates.

There are 4,106,841 possible advisedBy relations out of which 3380 relations
are true. Since the dataset consists of five areas (or mega-examples), we performed
five-fold cross-validation. Unless specified, we train on four areas and evaluated the
results on the remaining area. This is the same approach taken in the MLN literature
(Domingos and Lowd 2009) where each of the four areas form a “mega-example” that
consists of all the inter-related objects of that area. Creating more folds would require
breaking up the network of connected objects within each area. Hence each area is
viewed as a single example. Our results are thus averaged over five mega-examples.

2.4.2 Cora

Cora dataset, now a standard dataset for citation matching, was first created by
Andrew McCallum, and later segmented by Bilenko and Mooney (2003). The dataset

2.4 Benchmark Datasets 17

was later converted into relational format by Poon and Domingos (2007). In citation
matching, the task is to identify citations that refer to the same paper, which as a
sub-task may include matching the author, title and venue of citations. A cluster is
a set of citations that refer to the same paper, and a nontrivial cluster contains more
than one citation. The Cora dataset has 1295 citations and 134 clusters where almost
every citation in Cora belongs to a nontrivial cluster; the largest cluster contains 54
citations. Sets of clusters were combined to create five mega-examples by Poon and
Domingos.

For each citation we have information about the various fields using predicates
such as author, title, venue, hasWordAuthor, hasWordTitle, and hasWordVenue.
This task has multiple target predicates (sameAuthor, sameVenue, sameTitle, and
sameBib) for identifying matching authors, venues, titles and the complete citation.
This dataset has five mega-examples and hence We perform 5-fold cross-validation
to evaluate on this dataset.

2.4.3 IMDB

This dataset was created by Mihalkova and Mooney (2007) from IMDB.com and
contains information about actors, movies, directors and the relationships between
them. The predicates in this dataset are: actor, director, workedUnder, genre, and
gender. The task is to predict the workedUnder, genre, and gender given all the
other predicates. The actor and director predicates are mutually exclusive predicates
(i.e., actor(X) < —director(X)) that provide type information for the people in
the domain. Since the dataset is divided to five mega-examples by Mihalkova and
Mooney (each mega-example contains four movies), we perform five-fold cross-
validation in the experiments. Following Kok and Domingos (2009), we omitted the
four equality predicates. The goal is to learn the conditional distribution to predict
all the predicates except actor and director.

2 Springer
http://www.springer.com/978-3-319-13643-1

Boosted Statistical Relational Learners

From Benchmarks to Data-Driven Medicine
Matarajan, S.; Kersting, K.; Khot, T.; Shawvlik, J.
2014, W, 74 p. 25 illus., Softcover

[SBM: 878-3-319-13643-1

	Chapter 2 Statistical Relational Learning
	2.1 Representing Structure and Uncertainty
	2.1.1 Representation: First-Order Logic
	2.1.2 Uncertainty: Graphical Models

	2.2 Statistical Relational Models
	2.2.1 Relational Dependency Networks
	2.2.2 Markov Logic Networks

	2.3 Learning in SRL Models
	2.3.1 Parameter Learning
	2.3.2 Structure Learning
	2.3.3 Functional-Gradient Boosting

	2.4 Benchmark Datasets
	2.4.1 UW-CSE
	2.4.2 Cora
	2.4.3 IMDB

