
Chapter 10
Single Track Models

Single track models allow a physically plausible description of the driving
behavior of vehicles without major modeling and parameterization effort. Hence,
in this chapter a number of linear and nonlinear single track models will be
described.

10.1 Linear Single Track Model

The classic linear single track model (Riekert and Schunk 1940) allows the
approximate, yet physically plausible description of the lateral dynamics of a
vehicle, Ref. (Fig. 10.1).
The modeling is based on a series of simplifications:

• The velocity of the vehicle’s center of gravity is considered to be constant
along the longitude of its trajectory.

• All lifting, rolling and pitching motion will be neglected.
• The vehicle’s mass is assumed to be concentrated at the center of gravity S.
• The front and the rear tires will be represented as one single tire on each axle.

The imaginary tire contact points V and H, which the tire forces are to act upon,
lie along the center of the axle.

• The pneumatic trail and the aligning torque resulting from the slip angle of the
tire will be neglected.

• The wheel-load distribution between front and rear axle is assumed to be
constant.

• The longitudinal forces on the tires, resulting from the assumption of a constant
longitudinal velocity, will be neglected.

The first two assumptions lead to four constraints for the six degrees of freedom
of rigid bodies in the model. As a result, the only possible motion left is the heading

angle (yaw angle) wV, which only occurs in the form of the yaw rate _wV , and the
side slip angle b. The side slip angle represents the direction of the deviation of the
center of gravity from the vehicle’s steering axis. The steering angle d of the front
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axle serves as the input parameter. This greatly idealized vehicle model allows the
investigation of the fundamental driving dynamic relationships within the lateral
acceleration region of

ay� 0; 4g � 4
m
s2

ð10:1Þ

on dry roads (Ammon 2013).

10.1.1 Equations of Motion of the Linear
Single Track Model

To generate the equations of motion the rigid body kinematics of the vehicle has to
be reviewed. To this end, the kinematics of the vehicle in the xE, yE-plane of the
inertial system can be described as KE ¼ OE; xE; yE; zEf g, Ref. Fig. 10.2. Espe-
cially in the quasi-stationary situation, i.e. for very small velocities v of the center
of gravity S, all points of the vehicle move along a circle with the center of the
curvature being KA. In this case, this coincides with the instantaneous center of
rotation M of the motion. The steering angle required to execute this motion is,
under the assumption of small steering motion and large radii of curvature relative
to the measurements of the vehicle, given as:

tan dA ¼
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
M � l2

h

p

�!dAj j�1;lh�qM dA �
l

qM
: ð10:2Þ

Fig. 10.1 Linear single track model

224 10 Single Track Models



The steering angle dA of the front wheels resulting from Eq. (10.2) is called the
Ackermann steering angle.

In general, the vehicle velocity is given according to (Fig. 10.2) in the vehicle
fixed coordinate system KV ¼ OV ; xV ; yV ; zVf g:

V v ¼
v cos b
v sin b
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5: ð10:3Þ

The acceleration of the vehicle’s center of gravity S, represented in the coor-
dinate system KV, is therefore:
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Fig. 10.2 Mathematical description of the linear single track model
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Due to the assumption of a constant longitudinal velocity v = const, the
acceleration a is only a purely normal acceleration an, perpendicular to the vehicle
ðaT v ¼ 0Þ. Its magnitude is given by:

an ¼ anj j ¼ v _wV þ _b
� �

: ð10:5Þ

From Fig. 10.2 it can be inferred that the radius of curvature qK of the path
curve of the center of gravity is described by

qK ¼
v

_wV þ _b
� � : ð10:6Þ

For the following observations, the acceleration of the center of gravity per-
pendicular to the vehicle velocity is required. For small side slip angles b
according to Eq. (10.6), this results in:

ay ¼ v _wV þ _b
� �

cos b � v _wV þ _b
� �

¼ v2

qK
: ð10:7Þ

The calculation of the horizontal tire forces still requires the velocities of the
tire contact point. These are calculated according to Fig. 10.2:
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at the front wheels and

V vh ¼ Vv þ x � V
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at the rear wheels. Here, Srv and Srh are the position vectors based on the center of
gravity S of the vehicle to the front tire contact point V and to the rear contact
point H respectively. The current velocity vv of the front wheels can now be
expressed as the side slip angle b and the steering angle d in the vehicle fixed
coordinate system KV:

V vv ¼
v cos b

v sin bþ lv
_wV

0

2

4

3

5 ¼
vv cos d� avð Þ
vv sin d� avð Þ

0

2

4

3

5: ð10:10Þ
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The first two components in Eq. (10.10) offer the relationship to the front slip
angle av for small steering angles d:

tan d� avð Þ ¼ v sin bþ lv _wV

v cos b
� bþ lv

_wV

v

) av ¼ d� b� lv

_wV

v
:

ð10:11Þ

This procedure can be applied similarly to the rear axle:

V vh ¼
v cos b

v sin b� lh
_wV
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From the first and the second components of this vector equation, one then gets:

� tan ah ¼
v sin b� lh _w

v cos b
� b� lh

_wV

v
;

) ah � �bþ lh
_wV

v
:

ð10:13Þ

To set up the equations of motion, the values of the forces acting on the vehicle
along with the kinematic descriptions are still required. While still considering the
position of the center of gravity of the vehicle (Fig. 10.3), the normal forces on the
tires are given by:

Fv;z ¼ mg
lh
l

and Fh;z ¼ mg
lv

l
: ð10:14Þ

The tire forces may then be calculated assuming a linear relationship between
the lateral forces and the tire slip angles as discussed in Chap. 7:

Fv;y ¼ ca;v av and Fh;y ¼ ca;h ah; ð10:15Þ

with the cornering stiffnesses ca,v and ca,h (Ref. Fig. 10.4).

Fig. 10.3 Tire loads in a
linear single track model
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In Fig. 10.4 it is noteworthy that the cornering stiffness is a function of the tire
loads. This will be dealt with in more detail in Sect. 10.3. With help of the
accelerations (10.4) and Fig. 10.4, the principle of linear momentum in the lateral
direction yields

mv _wV þ _b
� �

cosb ¼ cosd Fv;y þ Fh;y: ð10:16Þ

The corresponding principle of angular momentum about the vertical axis is

h€wV ¼ Fv;y cosd lv � Fh;y lh: ð10:17Þ

If one were to substitute the expressions for the tire’s lateral forces with the
relationships given in Eq. (10.15) as well as in Eqs. (10.11) and (10.13) and
considering cosb � 1; cosd � 1 for bj j; dj j � 1, one finally arrives at the two
equations of motion of the linear single track model:

mv _bþ mv2 þ ca;vlv � ca;hlh
� �

_wV

v
þ ca;v þ ca;h
� �

b ¼ ca;vd; ð10:18Þ

h€wV þ ca;vl2
v þ ca;hl2

h

� �
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v
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� �

b ¼ ca;vlvd: ð10:19Þ

With the substitution
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; ð10:20Þ

one arrives at the state space representation
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with the [2 9 1]-state vector x, the [2 9 2]-system matrix A, the [2 9 1]-control
matrix B and the [1 9 1]-input vector u. This leads to the representation of the
linear single track model as a dynamic system with a corresponding transfer
function (Fig. 10.5). The representation (10.21) is a suitable basis for fundamental
analysis of vehicle dynamics. This will be exemplified in the following sections.
For a more detailed analysis, the interested reader is referred to (Willumeit 1998).

10.1.2 Stationary Steering Behavior and Cornering

For cornering along a circle with a constant radius q, the steering angle d as well as

the yaw rate _wV and the side slip angle b are all constant, i.e. it follows:

d ¼ const; _d ¼ 0; ð10:22Þ

_wV ¼ const; €wV ¼ 0; ð10:23Þ

b ¼ const; _b ¼ 0; ð10:24Þ

qK ¼
v

_wV þ _b
¼ v

_wV

¼ q: ð10:25Þ

With the additional constraints (10.22)–(10.25) and by implementing the
Eqs. (10.16) and (10.17) as well as considering the Eq. (10.15), in a single step
one obtains the relationship:

av � ah ¼
mv2

ql

lh
ca;v
� lv

ca;h

� �

¼ m

l

lhca;h � lvca;v

ca;vca;h

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

EG

v2

q
: ð10:26Þ

The expression EG in Eq. (10.26) is called the self-steering gradient which
characterizes the typical driving behavior of a given vehicle for a given steering
motion. As a result, one can for example solve the following practical problems:

• Which steering angle dH ¼ iLd with the steering transmission ratio iL is nec-
essary for a vehicle with a velocity v to follow a circle with a radius q?

Linear 
Single Track Model 

Fig. 10.5 Linear single track
model as a dynamic system

10.1 Linear Single Track Model 229



• Which parameters become stationary when a steering angle dH is applied to a
vehicle travelling in a straight line?

• What happens in the transition region (instationary steering behavior)?

To answer the first question, one first calculates the slip angle and the steering
angle for a given circle with the radius q. From the side slip angle of the rear wheels
(10.13), the side slip angle of the vehicle can be calculated using the transformation:

b ¼ lh
_wV

v
� ah ¼

lh
q
� m

ca;h

lv
l

v2

q
: ð10:27Þ

The steering angle required for the circular path is then given with the slip angle
at the front wheels (10.11):

d ¼ lv
_wV

v
þ av þ b ¼ l

q
þ av � ah

¼ l

q
|{z}
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þm

l
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� �
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v2

q
|{z}
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¼ dA þ EG � ay:
ð10:28Þ

The first summand occurring in Eq. (10.28) is the Ackermann steering angle
(compare Eq. (10.2)). With increasing velocity v, the required steering angle
increases or decreases for a given circular path, depending on the sign of the self-
steering gradient EG, Ref. (Fig. 10.6). If the required steering angle is greater than
the Ackermann steering angle (EG [ 0), this is called under steering driving
behavior, in the case of (EG \ 0), it is called over steering driving behavior. In
case of EG = 0, it is characterized as a neutral driving behavior.
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Fig. 10.6 Self steering gradient in the linear region
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From Eq. (10.28), one can also derive the relationship

EG � ay ¼ av � ah ð10:29Þ

i.e. the self-steering behavior depends on the difference of the slip angles between
the front and rear wheels. Now, the remaining parameters can also be calculated.
The yaw rate is defined as

_wV ¼
v

q
¼ const; ð10:30Þ

the tire loads are

Fv;y ¼ m
lh

l

v2

q
; Fh;y ¼ m

lv

l

v2

q
; ð10:31Þ

and the tire slip angle is (Fig. 10.7)
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Fv;y
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q
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ch
¼ m
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l
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q
: ð10:32Þ

If a steering angle d is applied to a vehicle driving in a straight line, then the
yaw rate

_wV ;stat ¼
v

q
¼ v

lþ EG � v2
dstat ð10:33Þ
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Fig. 10.7 Self-steering behavior of a linear single track model
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has to be considered. This means that the yaw rate takes on different values
depending on the self-steering gradient. One denotes

_wV

d
¼ v

lþ EG � v2
ð10:34Þ

as the yaw amplification factor for a velocity v. This factor is small for big self-
steering gradients (understeering vehicle) and large for small (negative) self-
steering gradients (oversteering vehicle). For

EG ¼ � l

v2
\0 ð10:35Þ

the numerator in Eq. (10.34) becomes zero and the yaw amplification factor strives
toward an infinite value. In reality, this means that the vehicle will tend to become
instable (more precise: it leaves the linear region), as even very small steering
inputs would lead to infinite yaw rates. The velocity

vkr ¼
ffiffiffiffiffiffiffiffiffiffiffi

� l

EG

r

; ð10:36Þ

necessary for this to occur (consider EG \ 0) is defined as the critical velocity.
Vice versa, one can calculate the maximum yaw amplification for a given positive
self-steering gradient. Through differentiation of Eq. (10.34) with respect to the
velocity v one obtains:

d

dv

_wV

d

 !

¼ l� EG � v2

lþ EG � v2ð Þ2
¼ 0) v2

ch ¼
l

EG
: ð10:37Þ

The velocity vch, at which the yaw amplification factor reaches its maximum, is
called the characteristic velocity. It is interpreted as the vehicle velocity at which
the vehicle reacts most sensitively to steering inputs. Typical values of vch are
between 65 and 100 km/h.

10.1.3 Instationary Steering Behavior: Vehicle Stability

In order to investigate the driving stability during straight line driving, one
assumes the steering angle to be equal to zero in Eq. (10.21). This way, one arrives
at the linear homogenous state space equation:
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or in short
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with the coefficients

a11 ¼
ca;vl2v þ ca;hl2h

h
; a12 ¼

ca;vlv � ca;hlh

h
;

a21 ¼
ca;vlv � ca;hlh

m
; a22 ¼

ca;v þ ca;h

m
:

ð10:40Þ

As a result, one derives the polynomial for the characteristic equation of the
system matrix A:

det kE� Að Þ ¼ k2 þ 1
v

a11 þ a22ð Þk� a12 þ
1
v2

a11a22 � a12a21ð Þ

¼ k2 þ a1kþ a2:

ð10:41Þ

The linear system (10.38) is known to be stable when both coefficients of the
characteristic polynomial are positive. This is obviously always the case for a1.
From the constraint for a2 it follows that:

a2 ¼ � a12 þ
1
v2

a11a22 � a12a21ð Þ

¼ ca;vca;hl2

mhv2
1 þ ca;hlh � ca;vlv

ca;vca;hl2
mv2

� �

[ 0:
ð10:42Þ

This condition is valid for any velocity v, if:

ca;hlh [ ca;vlv: ð10:43Þ

In any other case, the velocity is limited by following equation:

v2\
1
m

ca;vca;hl2

ca;vlv � ca;hlh
: ð10:44Þ
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The right side of the inequality (10.44) corresponds exactly to the critical
velocity vkr calculated earlier. This means that an oversteering vehicle can become
unstable after a certain velocity, whereas this is not the case in understeering
vehicles.

10.2 Nonlinear Single Track Model

The single track model covered in the previous section already allows for a
conclusive insight into the typical self-steering (eigen-) behavior of a vehicle.
However, it neither includes a description of the drivetrain, nor does it allow the
representation of the vehicle behavior at larger steering angles or with higher
lateral accelerations. As a result, an extended model will be introduced in the
following section, allowing the description of the nonlinear vehicle behavior in
spite of a few restrictions.

10.2.1 Kinetics of the Nonlinear Single Track Model

The nonlinear single track model (Figs. 10.8 and 10.9) consists of

• The vehicle chassis as a rigid body, with the translational degrees of freedom
xV, yV and the rotation wV about the vertical axis.

• One imaginary front and rear wheel respectively (indices v and h), character-
ized by the wheel speed and tire forces.

• A given steering angle (toe angle) d at the front axle and the steering trans-
mission ratio iL which are derived from the steering wheel angle dH as d ¼ 1

iL
dH

O

O v h

Fig. 10.8 Nonlinear single track model—side view
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• The description of the wheel driving torques MA,v and MA,h as functions of the
engine torque MM and the current, depending on the chosen gear transmission
ratio iG(G). The engine torque is a function of the motor rpm xM and the
acceleration pedal position pF(t). The entire driving torque MA ¼ MA;v þMA;h

can be distributed arbitrarily by a factor na (also temporal) onto the front and
rear axles, which allows for the simulation of a four-wheel drive configuration.

• The description of the air resistance.
• Specifying the brake torques MB,v and MB,h on the wheels as functions of the

brake pedal position pB(t). The brake force distribution nb can similar to na also
be specified arbitrarily.

To generate the necessary equations of motion, one first applies the principle of
linear momentum on the chassis, which is considered to be a rigid body:

m€rV ¼ Fv þ Fh þ FW þ FG. ð10:45Þ

The acceleration of the vehicle chassis is obtained by twofold differentiation
with respect to time of the position vector rV to the center of gravity S of the
vehicle given in the inertial system KE:

O

O

Fig. 10.9 Nonlinear single track model—top view
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The forces on the front and rear wheel as well as the weights are given in
coordinates of the inertial system as:
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As a single external force, the air resistance is given by:
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with an air resistance coefficient cW, the air density qL and the front surface area
A of the vehicle. In this case, only the air flow opposite to the trajectory of the
center of gravity of the vehicle is considered. If the influences of both the side
stream and the vertical forces need to be considered, then Eq. (10.48) needs to be
extended correspondingly as discussed in Chap. 9. From Eq. (10.45), and com-
bined with the Eqs. (10.46)–(10.48), one can finally derive the complete principle
of linear momentum in coordinates of the inertial system:
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5: ð10:49Þ

In a similar manner, one can arrive at the principle of angular momentum of the
vehicle with respect to its center of gravity in the general form as:

HV _xV þ xV � HV � xVð Þ ¼ V rv � Fv þ Vrh � Fh: ð10:50Þ

With the moment of inertia matrix in the vehicle fixed coordinate system

HV ¼
0 0 0
0 0 0
0 0 hzz

2

4

3

5; ð10:51Þ

the vectors for the angular velocity and acceleration
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5; ð10:52Þ

and the vectors for the points of application of the tire forces

V
Vrv ¼

lv
0
�hS
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which can finally be simplified as a final vector Eq. (10.50) of the complete
vehicle as a scalar equation:

hzz
€wV ¼ lVv Fv;y � lV

h Fh;y: ð10:54Þ

10.2.2 Tire Forces

In order to evaluate the Eqs. (10.49) and (10.54), the tire forces in the wheel fixed
coordinate system are required which are initially only stationary and linear with
respect to cornering stiffness cs,v/h and ca,v/h and the slip variables sv/h and av/h:

vFv;x;stat
vFv;y;stat

� 	

¼ cs;vsv

ca;vav

� 	

;
hFh;x;stat
hFh;y;stat

� 	

¼ cs;hsh

ca;hah

� 	

: ð10:55Þ

The force components in Eq. (10.55) later need to be included in the inertial
system or the vehicle fixed system respectively. This approach is applied in
Sect. 10.3, in which it shall however be considered that the four coefficients cs,v,
cs,h, ca,v and ca,h are generally nonlinear and dependent on the tire loads. Alter-
natively to Eq. (10.55) it is also possible to use a more detailed description with a
(simplified) Magic Formula (Ref. Chap. 7), especially for higher lateral accelera-
tions, which will be dealt with below, Ref. for example (Gipser 1999; Orend 2007).

For the sake of clarity, only the definitions for the front axle are below. The
corresponding definitions for the rear axle are derived simply by replacing the
index ‘‘v’’ with ‘‘h’’. A simplified Magic Formula approach for the tire forces
yields:

Fv;x;stat

Fv;y;stat

� 	

¼ Fv;z;eff

lv;x sin cv;x arctan bv;x
sv;a

lv;x

� �� �

lv;y sin cv;y arctan bv;y
sv;a

lv;y

� �� �

2

4

3

5; ð10:56Þ
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with the effective tire load

Fv;z;eff ¼ Fv;z 1� ez
Fv;z

Fv;z;0

� �2
 !

: ð10:57Þ

Equations (10.56) and (10.57) contain the friction coefficients lv,x and lv,y, the
tire parameters cv,x, cv,y, ch,x, ch,y and bv,x, bv,y, bh,x, bh,y as well as the variable tire
loads vFv;z and hFh;z. The degressive dependency of the horizontal tire forces on
the tire loads is considered using the degressive parameter ez. Furthermore, the slip
variables sv, av and sh, ah are included as the input variables for whose calculation
the velocity of the wheel center point is required. This is represented by the
kinematic relationships in the inertial system:

_rv ¼ _rV þ xV � TV wVð ÞVVrv

¼
_xV

_yV

0

2

6

4

3

7

5

þ
0

0
_wV

2

6

4

3

7

5

�
cos wV � sin wV 0

sin wV cos wV 0

0 0 1

2

6

4

3

7

5

lv
0

� hs � rð Þ

2

6

4

3

7

5

)
_xv

_yv

_zv

2

6

4

3

7

5

¼
_xV � lv _wV sin wV

_yV þ lv
_wV cos wV

0

2

6

4

3

7

5

;

ð10:58Þ

and

_rh ¼ _rV þ xV � TV wVð ÞVV rh

¼
_xV

_yV

0

2

6

4

3

7

5

þ
0

0
_wV

2

6

4

3

7

5

�
cos wV � sin wV 0

sin wV cos wV 0

0 0 1

2

6

4

3

7

5

�lh

0

� hs � rð Þ

2

6

4

3

7

5

)
_xh

_yh

_zh

2

6

4

3

7

5

¼
_xV þ lh _wV sin wV

_yV � lh _wV cos wV

0

2

6

4

3

7

5

:

ð10:59Þ

For calculating the slip values however, the velocities are required in the wheel
fixed coordinate system. To this end, if one were to consider the rotation of the
wheels with respect to the vehicle fixed coordinate system it would yield:

v _rv ¼
v _xv
v _yv
v _zv

2

4

3

5 ¼ v TE _rv ¼
cðwV þ dÞ sðwV þ dÞ 0
�sðwV þ dÞ cðwV þ dÞ 0

0 0 1

2

4

3

5

_xv

_yv

_zv

2

4

3

5; ð10:60Þ
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h _rh ¼
h _xh
h _yh
h _zh

2

4

3

5 ¼ hTE _rh ¼
cwV swV 0
�swV cwV 0

0 0 1

2

4

3

5

_xh

_yh

_zh

2

4

3

5: ð10:61Þ

Note: In the following Eqs. (10.62)–(10.67) the tire forces are only given for the
front axle. For the rear axle, the index ‘‘v’’ is to be replaced with the index ‘‘h’’.
With the components of the velocity vector (10.60) and (10.61), after subtraction
of the rolling velocity r _qv and normalizing, the longitudinal and lateral slips at the
front one obtains:

sv ¼
v _xv � r _qv

max r _qvj j; v _xvj jð Þ ; ð10:62Þ

av ¼ �
v _yv

r _qvj j : ð10:63Þ

Now, as described in Chap. 7, the normalized total slip

sv;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
v þ tan2 av

q

ð10:64Þ

is calculated at the front and rear axle. From Eq. (10.56) and the direction of action
of the slip

wv ¼ arctan
av

sv
; ð10:65Þ

the resulting tire forces are given by the Eqs. (10.56)–(10.65), at first the
magnitude:

Fwv
ðsv;aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
vF2

v;x;stat þ a2
vF2

v;y;stat

s2
v;a

s

ð10:66Þ

and from it, the tire forces in the wheel fixed coordinate system:

vFv;x;stat
vFv;y;stat

� 	

¼ Fwv
sa;v

� � cos wv

sin wv

� 	

¼ 1
sv;a

Fwv
sa;v

� � sv

av

� 	

: ð10:67Þ

To consider the settling time of the tires during fast changes of course or
velocity according to Chap. 7, an addition to Eq. (10.56) is necessary. Suitable
time delay constants Tv,x and Tv,y are chosen to represent the first order response of
the system. As the conditional equation for the dynamic tire forces Fv and Fh

based on the already known quasi-stationary forces Fv,stat and Fh,stat a first order
differential equation is used. Exemplarily for the front axle they read:
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v _Fv;x

v _Fv;y

" #

¼
1

Tv;x
0

0 1
Tv;y

" #

vFv;x;stat

vFv;y;stat

� 	

�
vFv;x

vFv;y

� 	� �

¼
cv;x r _qvj j

cs;v
0

0 cv;y r _qvj j
ca;v

2

4

3

5

vFv;x;stat

vFv;y;stat

� 	

�
vFv;x

vFv;y

� 	� �

:

ð10:68Þ

To this end, the time constants for the x- and y-directions are calculated
according to Chap. 7 as follows:

1
Tv;x
¼ cv;x r _qvj j

cs;v
;

1
Tv;y
¼ cv;y r _qvj j

ca;v
: ð10:69Þ

With the equilibrium of momentum about the vehicle center of gravity S, and
the force equilibrium in the z-direction of the inertial system, the tire loads are
determined. Hence, the tire normal forces at the front and the rear are:

VFv;z ¼
lh

l
mg � hs

l
V Fv;x þ VFh;x

� �

; ð10:70Þ

VFh;z ¼
lv
l

mg þ hs

l
V Fv;x þ VFh;x

� �

: ð10:71Þ

Finally, the principle of momentum conservation at the front and the rear
wheels with respect to the wheel center is required:

hv€qv ¼ MA;v � sign _qvð ÞMB;v � rvFv;x ð10:72Þ

hh€qh ¼ MA;h � sign _qhð ÞMB;h � rhFh;x: ð10:73Þ

10.2.3 Drive and Brake Torques

A random distribution of the driving torques between the front and the rear axle
MA,v and MA,h is modeled in this example. The eigen-dynamics of the drivetrain
will not be considered. For a dimensionless factor 0� na� 1, it follows:

MA;v ¼ 1� nað ÞMA ¼ MA �MA;h; ð10:74Þ

MA;h ¼ naMA: ð10:75Þ

With this, na ¼ 0 represents a front wheel drive, while na ¼ 1 represents a rear
wheel drive. For all other values 0\na\1; a four wheel drive configuration with
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variable distribution on the axles is obtained. For the calculation of the driving
torque MA one first needs an approximation of the engine speed of rotation:

xM ¼ iDiG Gð Þ 1� nað Þ _qv þ na _qhð Þ; 0� na� 1: ð10:76Þ

The drivetrain parameters iD and iG represent the transmission of the central
differential and that of the gearbox respectively. In this manner, the total driving
torque MA, required for the evaluation of the Eqs. (10.72) and (10.73), based on
the engine torque MM is given by:

MA ¼ iDiG Gð ÞMM xM; pFð Þ: ð10:77Þ

The engine torque is interpolated from a two dimensional engine torque
characteristic curve (Fig. 10.10). Along with the engine speed xM, another
dimensionless input parameter, the acceleration pedal position 0� pF � 1 is also
required. The pedal position is normally interpreted as an excitation function pF(t).

Analogous to this the brake torques are calculated as follows:

MB;v ¼ 1� nbð ÞMBðpBÞ ¼ MBðpBÞ �MB;h; ð10:78Þ

MB;h ¼ nbMB pBð Þ: ð10:79Þ

Here, 0� nb� 1 is a dimensionless distribution parameter again and pB(t) is the
brake pedal travel dependent on time, Ref. Fig. 10.11.

10.2.4 Equations of Motion

After the initial preliminary work in the past sections it is now possible to list the
complete set of equations of motion of the nonlinear single track model.
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Fig. 10.10 Schematic
representation of a engine
characteristic curve
dependent on the rpm and
acceleration pedal position
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• Principle of conservation of linear momentum:

m x
::

V

m y
::

V

� 	

¼ Fv;x þ Fh;x � FW ;x

Fv;y þ Fh;y � FW ;y

� 	

; ð10:80Þ

with

FW;x ¼
1
2

cwqLA _xV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x2
V þ _y2

V

q

;

FW;y ¼
1
2

cwqLA _yV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x2
V þ _y2

V

q

;

ð10:81Þ

Fv;x ¼ cosðwV þ dÞvFv;x þ sinðwV þ dÞvFv;y;

Fv;y ¼ � sinðwV þ dÞvFv;x þ cosðwV þ dÞvFv;y;
ð10:82Þ

Fh;x ¼ cos wV
hFh;x þ sin wV

hFh;y;

Fh;y ¼ � sin wV
hFh;x þ cos wV

hFh;y:
ð10:83Þ

• Principle of conservation of the angular momentum for the chassis in the
vehicle fixed coordinate system:

hzz
€wV ¼ lv

V Fv;y � lh
V Fh;y: ð10:84Þ
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with

VFv;y ¼ sin d vFv;x þ cos d vFv;y;
VFh;y ¼ hFh;y:

ð10:85Þ

• Principle of conservation of the angular momentum for the front and rear axle:

hv€qv ¼ MA;v �MB;vsign _qvð Þ � rvFv;x; ð10:86Þ

hh€qh ¼ MA;h �MB;hsignð _qhÞ � rhFh;x: ð10:87Þ

• Dynamic tire forces:

v _Fv;x
v _Fv;y

� 	

¼
cv;x r _qvj j

cs;v
0

0 cv;y r _qvj j
ca;v

" #

vFv;x;stat
vFv;y;stat

� 	

�
vFv;x
vFv;y

� 	� �

; ð10:88Þ

h _Fh;x
h _Fh;x

� 	

¼
ch;x r _qhj j

cs;h
0

0 ch;y r _qhj j
ca;h

" #

hFh;x;stat
hFh;y;stat

� 	

�
hFh;x
hFh;y

� 	� �

: ð10:89Þ

10.2.5 Equations of State

One can now transfer the equations of motion into the state space form:

_x ¼ f x; t; uð Þ; ð10:90Þ

with the state vector

x ¼ xV ; yV ;wV ; _xV ; _yV ; _wV ; _qv; _qh;
vFv;x;

vFv;y;
hFh;x;

hFh;y

h iT
ð10:91Þ

and the excitation vector

u ¼ dH ; pF; pB;G½ �T : ð10:92Þ
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Along with the acceleration and brake pedal position pF and pB, the steering
wheel angle dH and the gear parameter G (defining the gear engaged) also appear.
As a result, the nonlinear single track model can be represented as a dynamic
system as shown in Fig. 10.12.

As a whole, the Eqs. (10.90)–(10.92) read:

_xV

_yV
_wV
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V
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V _Fh;y

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

|fflfflfflfflffl{zfflfflfflfflffl}
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1
m ðFv;y þ Fh;y � FW ;yÞ

1
hzz
ðlvV Fv;y � lhVFh;yÞ
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fðx;t;uÞ

ð10:93Þ

10.3 Linear Roll Model

Due to their modeling constraints, the single track models discussed in this chapter
so far do not allow the description and investigation of effects resulting from
different tire loading, for example during cornering. These effects will obviously
be included in the spatial modeling, which is the focus of Chaps. 11 and 12. It is
however also possible for real time simulations or for simple fundamental
investigations in example, to model and consider such effects in the single track
models discussed until now. However, the following constraints still hold:

• Changes in the chassis geometry as a result of the forces will not be considered.
This means that all equilibrium conditions need to be formulated from the
output geometry.

, / , /

Nonlinear Single 
Track Model 

Fig. 10.12 Nonlinear single
track model of a dynamic
system
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