Chapter 10
Single Track Models

Single track models allow a physically plausible description of the driving
behavior of vehicles without major modeling and parameterization effort. Hence,
in this chapter a number of linear and nonlinear single track models will be
described.

10.1 Linear Single Track Model

The classic linear single track model (Riekert and Schunk 1940) allows the
approximate, yet physically plausible description of the lateral dynamics of a
vehicle, Ref. (Fig. 10.1).

The modeling is based on a series of simplifications:

e The velocity of the vehicle’s center of gravity is considered to be constant
along the longitude of its trajectory.

e All lifting, rolling and pitching motion will be neglected.

e The vehicle’s mass is assumed to be concentrated at the center of gravity S.

e The front and the rear tires will be represented as one single tire on each axle.
The imaginary tire contact points V and H, which the tire forces are to act upon,
lie along the center of the axle.

e The pneumatic trail and the aligning torque resulting from the slip angle of the
tire will be neglected.

e The wheel-load distribution between front and rear axle is assumed to be
constant.

e The longitudinal forces on the tires, resulting from the assumption of a constant
longitudinal velocity, will be neglected.

The first two assumptions lead to four constraints for the six degrees of freedom
of rigid bodies in the model. As a result, the only possible motion left is the heading
angle (yaw angle) iy, which only occurs in the form of the yaw rate l/}V, and the
side slip angle f. The side slip angle represents the direction of the deviation of the
center of gravity from the vehicle’s steering axis. The steering angle 6 of the front
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Fig. 10.1 Linear single track model

axle serves as the input parameter. This greatly idealized vehicle model allows the
investigation of the fundamental driving dynamic relationships within the lateral
acceleration region of

aygo,4gz4;l; (10.1)

on dry roads (Ammon 2013).

10.1.1 Equations of Motion of the Linear
Single Track Model

To generate the equations of motion the rigid body kinematics of the vehicle has to
be reviewed. To this end, the kinematics of the vehicle in the xz, yz-plane of the
inertial system can be described as Kg = {Og; xg, g, zg}, Ref. Fig. 10.2. Espe-
cially in the quasi-stationary situation, i.e. for very small velocities v of the center
of gravity S, all points of the vehicle move along a circle with the center of the
curvature being K,. In this case, this coincides with the instantaneous center of
rotation M of the motion. The steering angle required to execute this motion is,
under the assumption of small steering motion and large radii of curvature relative
to the measurements of the vehicle, given as:

! l<thpn s L (10.2)

tan o4 =
o — Pu



10.1 Linear Single Track Model 225

YE

Yy
Op

8 —(ay —ap)

> <

Fig. 10.2 Mathematical description of the linear single track model

The steering angle J,4 of the front wheels resulting from Eq. (10.2) is called the
Ackermann steering angle.

In general, the vehicle velocity is given according to (Fig. 10.2) in the vehicle
fixed coordinate system Ky = {Oy;xy,yy,zy }:

vcos ff
v = |vsinf |. (10.3)
0

12

The acceleration of the vehicle’s center of gravity S, represented in the coor-
dinate system Ky, is therefore:

2 —vsin BB 0 vcosfi
Vazd—tv—l—vwxvv: vcosﬁB + 0 X | vsinf
0 l.PV 0
—v(t'pv + /3) sin f8 (104)
V(l,.bv + ﬁ) cos f§

0
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Due to the assumption of a constant longitudinal velocity v = const, the
acceleration a is only a purely normal acceleration a,,, perpendicular to the vehicle
(a”v = 0). Its magnitude is given by:

= |ay] = v({pv +[>’). (10.5)

From Fig. 10.2 it can be inferred that the radius of curvature px of the path
curve of the center of gravity is described by

)

For the following observations, the acceleration of the center of gravity per-
pendicular to the vehicle velocity is required. For small side slip angles f
according to Eq. (10.6), this results in:

(10.6)

2

a},:v(t'pv+[3) cosﬂ%v(l'pv+ﬁ> :;—. (10.7)

K

The calculation of the horizontal tire forces still requires the velocities of the
tire contact point. These are calculated according to Fig. 10.2:

Yo, =Yy + Vo x{ry
v cos f3 0 L, vcos ff (10.8)
=|vsinf| + 0] x |0] = |vsinf+LYy |, '
0 W 0 0
at the front wheels and
Vv;, ="y + o xgrh
vcos f§ 0 —I vcos f§ (10.9)
=|vsinf| + |0 | x| 0| =|vsinf—Iny '
0 Yy 0 0

at the rear wheels. Here, sr, and gry, are the position vectors based on the center of
gravity S of the vehicle to the front tire contact point V and to the rear contact
point H respectively. The current velocity v, of the front wheels can now be
expressed as the side slip angle f# and the steering angle J in the vehicle fixed
coordinate system Ky:

veosf v, cos(d — ay)
Vy, = |vsinf4+ Ly, | = | v, sin(d —a,) |. (10.10)
0 0
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Fig. 10.3 Tire loads in a
linear single track model

The first two components in Eq. (10.10) offer the relationship to the front slip
angle o, for small steering angles J:

) L .
an(o — ) = LSy gy Yy
v cos i v (10.11)
=o,=0—f- Vﬂ.
v
This procedure can be applied similarly to the rear axle:
veosf Vj, COS 0y,
Vo= |vsinf—Lyy, | = | —vusing, |. (10.12)
0 0

From the first and the second components of this vector equation, one then gets:

Ctanoy = LS Yy
v cos f§ v (10.13)
= oy ~ —ﬂ—|—lhlp—vv

To set up the equations of motion, the values of the forces acting on the vehicle
along with the kinematic descriptions are still required. While still considering the
position of the center of gravity of the vehicle (Fig. 10.3), the normal forces on the
tires are given by:

I I,
F,.= mg7h and  Fj. = mg. (10.14)

The tire forces may then be calculated assuming a linear relationship between
the lateral forces and the tire slip angles as discussed in Chap. 7:

Foy=cyyo, and Fpy = cypop, (10.15)

with the cornering stiffnesses ¢, and ¢, ; (Ref. Fig. 10.4).
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Fig. 10.4 Relationship E, .
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and the slip angle region

FZ,z > Fl,z
Ca(FZlZ) /_

lateral force
1
S

ca(Fyz)

»
>
a

slip angle

In Fig. 10.4 it is noteworthy that the cornering stiffness is a function of the tire
loads. This will be dealt with in more detail in Sect. 10.3. With help of the
accelerations (10.4) and Fig. 10.4, the principle of linear momentum in the lateral
direction yields

mv(‘/}v + B)COSB = COS&Fv,y + Fh,y- (1016)

The corresponding principle of angular momentum about the vertical axis is

Oy = Fyycosdl, — Fiyly. (10.17)

If one were to substitute the expressions for the tire’s lateral forces with the
relationships given in Eq. (10.15) as well as in Egs. (10.11) and (10.13) and
considering cosfi &~ 1,cosd = 1 for |f|,|d] < 1, one finally arrives at the two
equations of motion of the linear single track model:

mvﬁ + (mv2 —+ Cx,vlv — thlh) % + (Caz,v + Coz,h)ﬂ = C\x’vé’ (1018)
Oy + (Canl® + copl?) % + (coply = canln) B = coylyd. (10.19)

With the substitution

[1-[4)

one arrives at the state space representation

. 1 Cmrlg‘kvx,hli couvlv—conly Cyvly
X _1 _ Ca X 3
L= o b Pl 1ie ] 9] (10.21)
X2 -1 - 1 Cavlbv—=Canln _ 1 CuvtCan X2 2 \ ,
Ve v_m S~ N~

2
v m u

m
X A X B
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Fig. 10.5 Linear single track Yy
model as a dynamic system —

Linear B
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with the [2 x 1]-state vector x, the [2 x 2]-system matrix A, the [2 x 1]-control
matrix B and the [1 x 1]-input vector u. This leads to the representation of the
linear single track model as a dynamic system with a corresponding transfer
function (Fig. 10.5). The representation (10.21) is a suitable basis for fundamental
analysis of vehicle dynamics. This will be exemplified in the following sections.
For a more detailed analysis, the interested reader is referred to (Willumeit 1998).

10.1.2 Stationary Steering Behavior and Cornering

For cornering along a circle with a constant radius p, the steering angle ¢ as well as
the yaw rate y,, and the side slip angle f§ are all constant, i.e. it follows:

& = const,d = 0, (10.22)
l.pV = const, ‘Lv = Oa (1023)
B = const, =0, (10.24)
v v
Px == = =p. (10.25)
by + B Wy

With the additional constraints (10.22)—(10.25) and by implementing the
Egs. (10.16) and (10.17) as well as considering the Eq. (10.15), in a single step
one obtains the relationship:

201 I, Inean — ey 2
o — oy =¥ (ko _ I (IhCah — Cay ) V. (10.26)
pl \cuv Con l CovCoh p
EG

The expression EG in Eq. (10.26) is called the self-steering gradient which
characterizes the typical driving behavior of a given vehicle for a given steering
motion. As a result, one can for example solve the following practical problems:

e Which steering angle dy = i; 0 with the steering transmission ratio i; is nec-
essary for a vehicle with a velocity v to follow a circle with a radius p?
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Fig. 10.6 Self steering gradient in the linear region

e Which parameters become stationary when a steering angle J is applied to a
vehicle travelling in a straight line?
e What happens in the transition region (instationary steering behavior)?

To answer the first question, one first calculates the slip angle and the steering
angle for a given circle with the radius p. From the side slip angle of the rear wheels
(10.13), the side slip angle of the vehicle can be calculated using the transformation:

/ l 1,v?
/)):lhh_ah:_h_ m_v_
v p Canlop

(10.27)

The steering angle required for the circular path is then given with the slip angle
at the front wheels (10.11):

[
5=lvﬂ+av+/3:—+o¢v—o¢h
v p
[ m (Leon — Ly V2 10.28
= — +_(L) — =04+ EG-a,. ( )
P l CovCoh P
~— ~—
04 EG ay

The first summand occurring in Eq. (10.28) is the Ackermann steering angle
(compare Eq. (10.2)). With increasing velocity v, the required steering angle
increases or decreases for a given circular path, depending on the sign of the self-
steering gradient EG, Ref. (Fig. 10.6). If the required steering angle is greater than
the Ackermann steering angle (EG > 0), this is called under steering driving
behavior, in the case of (EG < 0), it is called over steering driving behavior. In
case of EG = 0, it is characterized as a neutral driving behavior.
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Fig. 10.7 Self-steering behavior of a linear single track model
From Eq. (10.28), one can also derive the relationship
EG-ay = o, — oy (10.29)

i.e. the self-steering behavior depends on the difference of the slip angles between
the front and rear wheels. Now, the remaining parameters can also be calculated.
The yaw rate is defined as

Yy = Yo const, (10.30)
0
the tire loads are
1, v 1, v?
Fvv = mT—, F]‘” m7;7 (1031)
and the tire slip angle is (Fig. 10.7)
F, I,v? F I,v?
o, =22 = My o Thy MLV (10.32)
Cy Coy lp Ch Can l p

If a steering angle § is applied to a vehicle driving in a straight line, then the
yaw rate
v v

7275?{1 1
p I+EG-v2 " (10.33)

lpV,stat =
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has to be considered. This means that the yaw rate takes on different values
depending on the self-steering gradient. One denotes
l/./v v
Rl A A 10.34
6 I+EG-? ( )

as the yaw amplification factor for a velocity v. This factor is small for big self-
steering gradients (understeering vehicle) and large for small (negative) self-
steering gradients (oversteering vehicle). For

l
EG = 2 <0 (10.35)
the numerator in Eq. (10.34) becomes zero and the yaw amplification factor strives
toward an infinite value. In reality, this means that the vehicle will tend to become
instable (more precise: it leaves the linear region), as even very small steering
inputs would lead to infinite yaw rates. The velocity

— /- (10.36)

necessary for this to occur (consider EG < 0) is defined as the critical velocity.
Vice versa, one can calculate the maximum yaw amplification for a given positive
self-steering gradient. Through differentiation of Eq. (10.34) with respect to the
velocity v one obtains:

d (Y, [— EG-v? , 1
(2 =_—"_=" " _9 =—. 10.37
dv < 5) (1+ EG - v2)? = Ve T EG ( )

The velocity v, at which the yaw amplification factor reaches its maximum, is
called the characteristic velocity. It is interpreted as the vehicle velocity at which
the vehicle reacts most sensitively to steering inputs. Typical values of v, are
between 65 and 100 km/h.

10.1.3 Instationary Steering Behavior: Vehicle Stability

In order to investigate the driving stability during straight line driving, one
assumes the steering angle to be equal to zero in Eq. (10.21). This way, one arrives
at the linear homogenous state space equation:
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. Copl2teanl? Covly—Counl
X B _% 2 »0 T _ Co 7 ohth X (10 38)
X | 11 Cavlv—Conln 1 Cavtean x|’ ’
vV m 4 m ~ J/
x A x
or in short
X1 —1ay —ap X1
. = 1 v 1 1 B (1039)
X2 —l—=3zd21 —jan| [X2
S~—~— N—~—
x A x

with the coefficients

2 2
Ca,vlv + Cu,hlh Cx.vlv - Coc,hlh
ayy = ————5 ap = —F7
Y 0 (10.40)
c%,vlv - Coc,hlh Coy + Coh
ay = 77 axy = T

As a result, one derives the polynomial for the characteristic equation of the
system matrix A:

1 1
2
det(JE —A) = A +;(a11 +an)i—an +V—2(a11a22 — dnay) (10.41)

= /12—|—a12—|—612.

The linear system (10.38) is known to be stable when both coefficients of the
characteristic polynomial are positive. This is obviously always the case for a;.
From the constraint for a, it follows that:

1
ap = —ap + ﬁ(anazz — ana)
Ca.vcac,hlz 1+ Canln — Caply 2) < 0 (1042)
=— : — my .
mov? coc,vcoc,hl2
This condition is valid for any velocity v, if:
Coz,hlh > CO(,VZV‘ (1043)
In any other case, the velocity is limited by following equation:
1 v 112
V< e (10.44)

mczx,vlv - Co:,hlh
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Fig. 10.8 Nonlinear single track model—side view

The right side of the inequality (10.44) corresponds exactly to the critical
velocity vy, calculated earlier. This means that an oversteering vehicle can become
unstable after a certain velocity, whereas this is not the case in understeering
vehicles.

10.2 Nonlinear Single Track Model

The single track model covered in the previous section already allows for a
conclusive insight into the typical self-steering (eigen-) behavior of a vehicle.
However, it neither includes a description of the drivetrain, nor does it allow the
representation of the vehicle behavior at larger steering angles or with higher
lateral accelerations. As a result, an extended model will be introduced in the
following section, allowing the description of the nonlinear vehicle behavior in
spite of a few restrictions.

10.2.1 Kinetics of the Nonlinear Single Track Model

The nonlinear single track model (Figs. 10.8 and 10.9) consists of

e The vehicle chassis as a rigid body, with the translational degrees of freedom
Xy, yy and the rotation y/,, about the vertical axis.

e One imaginary front and rear wheel respectively (indices v and /), character-
ized by the wheel speed and tire forces.

e A given steering angle (toe angle) o at the front axle and the steering trans-
mission ratio i; which are derived from the steering wheel angle 5z as 6 = i(SH
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Fig. 10.9 Nonlinear single track model—top view

e The description of the wheel driving torques M, , and M, ; as functions of the
engine torque M,, and the current, depending on the chosen gear transmission
ratio ig(G). The engine torque is a function of the motor rpm @y, and the
acceleration pedal position pg(t). The entire driving torque My = My, + My,
can be distributed arbitrarily by a factor &, (also temporal) onto the front and
rear axles, which allows for the simulation of a four-wheel drive configuration.
The description of the air resistance.

Specifying the brake torques My, and Mg, on the wheels as functions of the
brake pedal position pg(#). The brake force distribution &, can similar to £, also
be specified arbitrarily.

To generate the necessary equations of motion, one first applies the principle of
linear momentum on the chassis, which is considered to be a rigid body:

miy = F, + Fj + Fy + Fg. (10.45)

The acceleration of the vehicle chassis is obtained by twofold differentiation
with respect to time of the position vector ry to the center of gravity S of the
vehicle given in the inertial system Kg:
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Xy Xy Xy
rv=|yv|.,fv=|Jv |, Fyv= |y |. (10.46)
hs 0 0

The forces on the front and rear wheel as well as the weights are given in
coordinates of the inertial system as:

Fv,x Fh,,\: O
F,= |F,|, Fy,= |Fy|, Fg= 0 . (10.47)
F\; Fi. —mg

As a single external force, the air resistance is given by:

1 Fw x %CWPLAXV V x%/ + y%/
Fy = EprLArV|rV| = FVOV,y = %CwPLA)"V\/ Xy v (10.48)
0

with an air resistance coefficient cy, the air density p, and the front surface area
A of the vehicle. In this case, only the air flow opposite to the trajectory of the
center of gravity of the vehicle is considered. If the influences of both the side
stream and the vertical forces need to be considered, then Eq. (10.48) needs to be
extended correspondingly as discussed in Chap. 9. From Eq. (10.45), and com-
bined with the Eqgs. (10.46)—(10.48), one can finally derive the complete principle
of linear momentum in coordinates of the inertial system:

me Fv,x +Fh,x —Fy
mYy | = | Foy+Fny—Fwy |. (10.49)
0 Fv,z+F11,z_mg

In a similar manner, one can arrive at the principle of angular momentum of the
vehicle with respect to its center of gravity in the general form as:

@V(bv + oy X (@V . (Dv) = yr, X FV —+ yrp X Fh. (1050)
With the moment of inertia matrix in the vehicle fixed coordinate system
0
0
OZZ

0 0
Oy=10 0 , (10.51)
0 0

the vectors for the angular velocity and acceleration


http://dx.doi.org/10.1007/978-3-540-36045-2_9

10.2 Nonlinear Single Track Model 237

0 0
Yoy =101, Yay= |0 [, (10.52)
_‘//V wV

and the vectors for the points of application of the tire forces

Iy =l
grv = 0 7“;']‘]1 = O y (1053)
| —hs —hg

which can finally be simplified as a final vector Eq. (10.50) of the complete
vehicle as a scalar equation:

0.y =1'Fyy — 1) Fiy. (10.54)

10.2.2 Tire Forces

In order to evaluate the Eqgs. (10.49) and (10.54), the tire forces in the wheel fixed
coordinate system are required which are initially only stationary and linear with
respect to cornering stiffness ¢/, and ¢,/ and the slip variables s,,, and o,:

"Fy x stat Cs Sy hFh.x,smt _ | CspSh
|:VFV‘)"Slaf:| N {Cmvav]’ |:hFh,y,stat:| B |:Ca,h“h:| ' (105)
The force components in Eq. (10.55) later need to be included in the inertial
system or the vehicle fixed system respectively. This approach is applied in
Sect. 10.3, in which it shall however be considered that the four coefficients c; ,,
Cs» Coy and c,;, are generally nonlinear and dependent on the tire loads. Alter-
natively to Eq. (10.55) it is also possible to use a more detailed description with a
(simplified) Magic Formula (Ref. Chap. 7), especially for higher lateral accelera-
tions, which will be dealt with below, Ref. for example (Gipser 1999; Orend 2007).
For the sake of clarity, only the definitions for the front axle are below. The
corresponding definitions for the rear axle are derived simply by replacing the
index “v” with “h”. A simplified Magic Formula approach for the tire forces
yields:

10.56
Fv,y,.vtaz ( )

|:Fv,x‘smz } — Froup My, SN (cv_,x arctan (bv‘x ;\‘Q)
— fvze ( (

. Sy ?
W, sin{ ¢, arctan|( b, , u_>)
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with the effective tire load

Fo. )
Fuz-,eﬁ' = Fv.,z 1—e; F - . (10.57)
v,z,0

Equations (10.56) and (10.57) contain the friction coefficients u, . and u, ,, the
tire parameters ¢, y, Cy.y, Cpx» Cpy and b, ., by, by, by, , as well as the variable tire
loads "F); and hF - The degressive dependency of the horizontal tire forces on
the tire loads is considered using the degressive parameter e,. Furthermore, the slip
variables s,, o, and s, o, are included as the input variables for whose calculation
the velocity of the wheel center point is required. This is represented by the
kinematic relationships in the inertial system:

i'v:i'V+wVXTV(¢V)\\;rv

Xy 0 cosyy, —sinyy, O L
= |y |+ ]| 0| x|singyy, cosy, O 0
0 | Uy 0 0 1| | =(hs—7) (10.58)
iy | ky — Ly sinyry,
= || = |jv+L¥ycosyy |
2y | 0

and

i'h :i'v —‘r(,()v X Tv(lpv)“;rh

Xy 0 cosyy, —sinyy, O —Ip
= |y |+ ]| 0| x |sinyy, cosypy, O 0
0 | vy 0 0 1| | =(hy—7) (10.59)
G| [av o+ y singy
= || = ).)V_lhl.pVCOSl//V
Zn | 0

For calculating the slip values however, the velocities are required in the wheel
fixed coordinate system. To this end, if one were to consider the rotation of the
wheels with respect to the vehicle fixed coordinate system it would yield:

Vjcv C(lpV + 5) S(lpV + 5) 0 xv
v"'v = Vyv =" TEiv = 7S(¢V+5) C(¢V+5) 0 }-}v ; (1060)
YZy 0 0 1 Zy
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L " o ey syy 0 ):Ch
r, = h)./h = TErh = _Slpv Clpv 0 Yu |- (106])
bz 0 0 1] [z

Note: In the following Egs. (10.62)—(10.67) the tire forces are only given for the
front axle. For the rear axle, the index “v” is to be replaced with the index “A”.
With the components of the velocity vector (10.60) and (10.61), after subtraction
of the rolling velocity rp, and normalizing, the longitudinal and lateral slips at the
front one obtains:

Ve .
Xy —Ip,

5y =— " 10.62

max(iru ) (10.62)
Yy

= (10.63)

Now, as described in Chap. 7, the normalized total slip

Sva = /52 +tan’ a, (10.64)

is calculated at the front and rear axle. From Eq. (10.56) and the direction of action
of the slip

v, = arctanﬁ, (10.65)

Sy

the resulting tire forces are given by the Egs. (10.56)—(10.65), at first the
magnitude:

s2F2 + 02F2
Fw‘,(s\;’a) _ \/ vi vox,stat v vy.stat (1066)

2
sv,a

and from it, the tire forces in the wheel fixed coordinate system:

|:VFV,x,stat:| = Fy (sas) {cos ‘//v:| — Ly (su) [;v } (1067

v .
Fv,y,stat sin WV Sv.a v

To consider the settling time of the tires during fast changes of course or
velocity according to Chap. 7, an addition to Eq. (10.56) is necessary. Suitable
time delay constants T, , and T, are chosen to represent the first order response of
the system. As the conditional equation for the dynamic tire forces F, and F,
based on the already known quasi-stationary forces F, i, and F, y,, a first order
differential equation is used. Exemplarily for the front axle they read:


http://dx.doi.org/10.1007/978-3-540-36045-2_7
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vFv,x _ Ti_x 0 ( |:VFv,x,stat :| |:VFv,x :| )
VFVLV B 0 L VFv,y,stat VFv,y

T,y

Cyx ‘ Py ‘
Csy O VFv,x.,xtat VFv,x
0 M vFv.)msrul vFv.y '
Coy ’

W

(10.68)

To this end, the time constants for the x- and y-directions are calculated
according to Chap. 7 as follows:

L:walr,bv‘ L:cv,yvlbvl
Tv,x Csy ’ Tv,y Coy

) s

(10.69)

With the equilibrium of momentum about the vehicle center of gravity S, and
the force equilibrium in the z-direction of the inertial system, the tire loads are
determined. Hence, the tire normal forces at the front and the rear are:

l h

'Fo. = Thmg - Ts (VFv,x + VFhvx), (10.70)
L, hg

"Fie = 7m8 T T(VFv,x + VFhy). (10.71)

Finally, the principle of momentum conservation at the front and the rear
wheels with respect to the wheel center is required:

0,p, = Ma, — sign(p,)Mg, — r'F, (10.72)

(9,,,bh = MAJ, — sign(ph)MBJ, — FhF/Lx. (1073)

10.2.3 Drive and Brake Torques

A random distribution of the driving torques between the front and the rear axle
M, and M, is modeled in this example. The eigen-dynamics of the drivetrain
will not be considered. For a dimensionless factor 0 < &, <1, it follows:

My, = (1 —E )My =My — My, (10.74)
My = EMj. (10.75)

With this, £, = 0 represents a front wheel drive, while £, = 1 represents a rear
wheel drive. For all other values 0 <&, <1, a four wheel drive configuration with
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variable distribution on the axles is obtained. For the calculation of the driving
torque M, one first needs an approximation of the engine speed of rotation:

op = ipig(G)((1 = &a)py + Capp), 0< & <1 (10.76)

The drivetrain parameters ip and ig represent the transmission of the central
differential and that of the gearbox respectively. In this manner, the total driving
torque M,, required for the evaluation of the Eqgs. (10.72) and (10.73), based on
the engine torque M,, is given by:

MA = lDlG(G)MM(C{)M,pF) (1077)

The engine torque is interpolated from a two dimensional engine torque
characteristic curve (Fig. 10.10). Along with the engine speed w,,, another
dimensionless input parameter, the acceleration pedal position 0 <pp <1 is also
required. The pedal position is normally interpreted as an excitation function p ().

Analogous to this the brake torques are calculated as follows:

Mg, = (1 —&,)Mp(ps) = Mp(p) — Mg, (10.78)
Mg, = E,Mg(ps). (10.79)

Here, 0 < &, <1 is a dimensionless distribution parameter again and pp(f) is the
brake pedal travel dependent on time, Ref. Fig. 10.11.

10.2.4 Equations of Motion

After the initial preliminary work in the past sections it is now possible to list the
complete set of equations of motion of the nonlinear single track model.
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e Principle of conservation of linear momentum:

m.‘X}V va+FhAx_FWJC
|:myvj| [Fv,y‘FFh,y_FW,y ( )

with

F _1 A. .2 .2
va—ECwPL XyA/ Xy + Yy,

1 (10.81)
Fwy = ECwPLAyV\/ x%, + }’%/’
F, = cos(Yy + 0)'Fyx +sin(yy, + 6)"F,, (10.82)
Fyy = —sin(Yy, + 0)"Fyx + cos(¥y + 06)"F, ., '
Fj, = cos hF.x—i—sin hg ,
h, lpV h, ‘//V hyy (1083)

. h h
Fhy = —sinyy, "Fj . 4 cos Yy "Fy,.

e Principle of conservation of the angular momentum for the chassis in the
vehicle fixed coordinate system:

QZZILV = lvVFv,y - thFhA,y- (10.84)
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with

VF,y, = sind"F,, + cosd"F,,,

(10.85)
VEpy = "Fpy.

e Principle of conservation of the angular momentum for the front and rear axle:

0.p, = Ma, — Mg sign(p,) — r'F,,, (10.86)

Onpy, = May — Mpsign(p,) — r"Fj. (10.87)

e Dynamic tire forces:

. _C»'-X|"/>v‘ 1
VFV,X — Csy O VFv,x,stat _ VFv,x (10 88)
VFv,y 0 % VFv,y,stat VFv,y ’ '
. r Clnx‘rﬁ xl 7
|:h]:7h‘x :| — Csh : 0 ) < |:hFh,x7smt :| _ |:hFh,x:| ) ) (1089)
hFhA,x 0 %r]p"‘ hFh,y.,smz hFh,y

10.2.5 Equations of State

One can now transfer the equations of motion into the state space form:
x=f(x,t,u), (10.90)
with the state vector
. T
x = (5000, Wy kv, 3, v s o P Py P iy | (10.91)
and the excitation vector

u= [5H7pFap37G}T' (1092)
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Along with the acceleration and brake pedal position py and pp, the steering
wheel angle dy and the gear parameter G (defining the gear engaged) also appear.
As a result, the nonlinear single track model can be represented as a dynamic
system as shown in Fig. 10.12.

As a whole, the Eqgs. (10.90)—(10.92) read:

Xy
[ Xy T ):’V
Yv Yy
l'/(v i(Fv,x + Fh,x - FW,x)
4 #(Fv,y + Fh-,y - FW,y)
Yy 0L (LY Fyy = 13" Fny)
‘kV — 9_1‘ (MA.,V - MBNSign(/')v) —-r VFV:X) (10.93)
Py o (Ma s — M sign(py) — r "Fi)
ph Cvxlrpy
Vva % (VFv,x,stat _vFv,x)
VFV,y L,;‘:‘P\‘ (VFv,y,stat _VFv,y)
VI‘:h’x G|y (hth stat _hFh x)
Vi Co 8 )
- hy Chy|rpnl (hF _hF )
x‘f L Con h,y,stat h,y i
Slx.tu)

10.3 Linear Roll Model

Due to their modeling constraints, the single track models discussed in this chapter
so far do not allow the description and investigation of effects resulting from
different tire loading, for example during cornering. These effects will obviously
be included in the spatial modeling, which is the focus of Chaps. 11 and 12. It is
however also possible for real time simulations or for simple fundamental
investigations in example, to model and consider such effects in the single track
models discussed until now. However, the following constraints still hold:

e Changes in the chassis geometry as a result of the forces will not be considered.
This means that all equilibrium conditions need to be formulated from the
output geometry.
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