
Chapter 6
Enabling Lean Software Development

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

(Consider ye the seed from which ye sprang;
Ye were not made to live like unto brutes,
But for pursuit of virtue and of knowledge.)

Dante Alighieri, Divina Commedia, Inferno, Canto 26, 118–120

Lazily, Uli went back to his office. He called Euril, Perim, Sinon, and Elp.
“Knowledge, value, improvement—this is what they asked me to clarify. . . Any
suggestion guys?” None spoke; they were all still a bit shocked of all what happened
the day before. “Well, I had a meeting with our top managers and actually there
were not so excited of keeping the project running. It appears that for some of them
not altering the consolidated way of doing business is more valuable than keeping
a project and trying something new. Can you believe this?” “Indeed, said Perim,
indeed. The good-old-way does not jeopardize any position while trying something
new may alter the current status of businesses. But you should also consider the
point they raised. I do think that there is something to think. Yesterday I asked
something similar and you answered with a typical consulting term. . . what was it?
Situational awareness—the usual consultant b***s**t!”

Uli stood, joined his hands “Ladies, gentlemen” he started “can you consider
why you started to work in software? What were your aims, your desires? All of you
knew at the time that this was the land of unknown, the land of discovery, the land of
opportunity. You selected software engineering because you aimed to increase your
knowledge and the knowledge of the human being, still being able to do something
concrete; you wanted to pursue your virtues. If you wanted to stay in a more
comfortable, secure, quite discipline, you would have built houses and not software
systems. If you wanted to be creative but not attached to the reality, you would
have studied management. But now, you are a software engineering—someone who
combines quest for the unknown and the ability to build solid elements, someone
who put knowledge, and also value and improvement at the top of his priorities.”

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__6

129

130 6 Enabling Lean Software Development

None said a word. Uli sat. Everyone was silent and it was a very loud silence.
The walls were speaking: two posters dominated the scene. On one side a big poster
contained an artistic painting of stars in the Austral hemisphere on the 9th of April.
It was a bit surreal but beautiful. In the spare time Uli used to joke with his senior
architects telling them that he would have liked to be the first western man crossing
the ocean to see such scene, or that he should have rented the space shuttle to take
them all for a space tour as a prize for completing the project on time. On the other
side there was the picture of an ancient Greek ship sinking during a horrendous
nightly hurricane, with a mountain in the background and under a pale light of the
moon; this picture had always been there, Uli disliked it but never took it away, as,
he said, reminded always the risk of a failure.

After this heavy silence and after staring at the two pictures Perim said: “I want
a ticket for the space shuttle!” and left the room. All the other also left.

At that point Uli knew what to do.

6.1 Introduction

The concept of Lean Software Development refers to the several attempts to transfer
and adapt the principle of Lean Management into Software Engineering.

Remember, Lean Management was conceived in Japan by Taiichi Ono [21] for
the automobile industry. Posting it to the software industry is not straightforward.

At the time of writing this book, a detailed methodology that fully applies the
principles of Lean Management to Software Engineering does not exist yet. We
have the impression that existing approaches do as if writing software would be
similar to producing a car and ignore that software is invisible. A comprehensive
measurement approach is needed that is aligned with the organizational goals as
evidenced by the founders of Lean.

Current approaches emphasize different values of Lean but neglect the need of
instilling a measurement and an experience management culture to overcome the
invisibility of software and to improve its development constantly.

6.2 Existing Proposals to Create “Lean Software
Development”

Practitioners and academics are exploring the terrain to adopt Lean ideas within
software development. Pioneers in this exploration are Mary and Tom Poppendieck.
In their book “Implementing Lean Software Development From Concept to
Cash” [23], they characterize Lean software development with the following seven
principles:

6.2 Existing Proposals to Create “Lean Software Development” 131

1. Eliminate waste;
2. Build quality—we used the terms “autonomation” and “standardization”;
3. Create knowledge;
4. Defer commitment—we used the term “just-in-time”;
5. Deliver fast—get frequent feedback from the customer and increase learning

through frequent deployments;
6. Respect people—we used the term “worker involvement”;
7. Optimize the whole—we used the term “constant improvement.”

Furthermore, to respect people means that the knowledge people accumulate
during their work is acknowledged and that they are given the possibility to change
the working processes. According to them, this has consequences on different
levels:

• Entrepreneurial Leadership: the leader promotes committed and thinking peo-
ple and concentrates their efforts on creating a product that provides maximum
value to the customer.

• Expert Technical Workforce: the company makes sure that the technical
expertise is nurtured and that teams have the expertise needed to accomplish
their goals.

• Responsibility-Based Planning and Control: teams are organized using “Man-
agement by Objectives” (see Chap. 4) and people are trusted to self-organize to
achieve their goals.

Curt Hibbs and his colleagues have developed a different proposal to adapt the
principle of Lean Management to Software Engineering. Their approach is more
oriented to the code. In their book “The Art of Lean Software Development, A
Practical and Incremental Approach,” [13] propose the following practices:

1. Source Code Management and Scripted Builds;
2. Automated Testing;
3. Continuous Integration;
4. Less Code;
5. Short Iterations; and
6. Customer Participation.

These principles are an implementation of the concept of autonomation to
coding.

The use of source code management and scripted builds together with automated
testing is one way to instantiate autonomation for software engineering.

Automated, scripted builds and automated testing autonomate coding because
they detect if the produced source code does not conform to the expectations
and stop the production process. Therefore, they contribute to avoid committing
defective code to the production code.

132 6 Enabling Lean Software Development

Continuous integration is also a form of autonomation. By continuously integrat-
ing the different parts of code, all the problems related to integrating different parts
of the software system become immediately evident and the production process does
not proceed forward until the issues that break the integrations are solved.

Short iterations and customer participation enable the team to obtain frequent
feedback and to improve the understanding of what creates value for the customer.

In summary, the proposal of Mary and Tom Poppendieck aims to “leanify” the
overall process while Hibbs and his colleagues specify how coding can be made
Lean.

Alan Shalloway et al. [25] take a more comprehensive perspective and propose
a “Lean-Agile software development.” Their approach is more generic than the two
previously presented and organizes the transition of Lean Thinking to Lean Software
Development into the following layered model (see Fig. 6.1):

1. Foundational Thinking. The underlying belief system of Lean Thinking, based
on the work of Deming.

2. Perspective and Principles. The Perspective is the choice of what is considered
important to observe in the process. The Principles are the rules of behavior that
adhere to the Foundational Thinking and are taken from the work of Mary and
Tom Poppendieck.

3. Attitudes. The choice of what is considered important and what is not.
4. Knowledge. “Know-how” based on experience or, in other words, “lessons

learned.”
5. Practices. Recommendations on what to do, based on the knowledge acquired.

Attitudes

Perspective

Foundational Thinking

Principles

Knowledge

Practices

Fig. 6.1 The layered structure of Lean-Agile software development [25]

What is continuous integration?

Martin Fowler and Kent Beck were the first to write about continuous
integration. We use ten practices proposed by Fowler [10] to explain this
concept:

(continued)

6.2 Existing Proposals to Create “Lean Software Development” 133

1. Maintain a single source repository: maintain all resources of one
software project in one place;

2. Automate the build: automate all steps to transform source code into a
running system.

3. Make your build self-testing: include automated tests in the build process
and execute them after building a new release.

4. Everyone commits to the mainline every day: the more often everybody
commits to the mainline, the lower the effort of resolving conflicting
changes by different developers becomes.

5. Every commit should build the mainline on an integration machine:
because of different reasons (e.g., undisciplined developers, environmental
differences between the developer machine and the integration machine,
etc.), tests can still fail on the integration machine. Therefore, every
commit should start an automatic build and test on the integration machine.

6. Keep the build fast: the faster the build, the faster the feedback that is
given to the developer, and the lower is the risk that other developers are
making their modifications based on the defective code, increasing the
caused damage.

7. Test in a clone of the production environment: test your build in an
environment that is similar to the production environment.

8. Make it easy for anyone to get the latest executable: put the latest
executable on a well-known place to allow demonstrations and exploratory
testing, find out about changes, etc.

9. Everyone can see what’s happening: communicate to everybody the state
of the build.

10. Automate deployment: to test the developed code in multiple environ-
ments, it is important to automate the necessary deployment steps.

Table 6.1 contains some of the tools currently available to support the
different phases of continuous integration.

Table 6.1 Tools to support continuous integration

Tool Useful
for step

Subversion [2], GIT [12] 1

Make [11], Apache Ant [1] 2

Unit testing frameworks (known as xUnit frameworks) such as Junit for
Java [16] or CppUnit for C++ [7], GUI testing frameworks such as Sikuli [26]

3

CruiseControl [8], Jenkins [15] 5

VMWare [31], VirtualBox [22] 7, 10

134 6 Enabling Lean Software Development

The three examples presented above (the proposal of Mary and Tom Poppendieck
and of Curt Hibbs and his colleagues and the approach of Alan Shalloway et al.)
show that Lean Thinking can be translated in different ways into software engi-
neering. However, all these three approaches lack an essential component of Lean
Management, its concrete use of real measurements supporting the process [19].
They are more faith-based, while Lean advocates a constant and concrete analysis
of the process to produce value and eliminate waste.

Concretely, our approach is to develop a Lean software development process that
avoids the three issues we identified in the previous chapter:

1. the problem of communicating the goals and methods of Agile methods to
stakeholders, which generates skepticism since Agile methods seem to ignore
“well-known” best practices;

2. the guru approach that has dominated the way Agile ideas became known among
practitioners; and

3. Agile extremists that promote the dark side of Agile.

Now we describe how we want to tackle these issues.

6.3 Share a Common Vision

Lean Thinking advocates new, unconventional methods for producing goods. It is
essential that these methods can be explained solidly to our customers. They should
not think that we are “original.” They should understand such methods and, at least,
understand that they are grounded in solid theories. Otherwise, we would not have
customers, or, worse, we might get customers who want to adopt our proposals
simply because they are cool, and when their coolness will go away, we will not
have anymore a job. It is interesting to note that several Agile projects had this fate,
despite being successful.

Therefore, we need to communicate to our customers how we work, what we do,
what outcomes we expect from it, and which support we need from them.

Agile methods heavily rely on the collaboration with the customers. Extreme
programming, for example, has a practice called “customer on-site,” requiring
customers to sit with the project team throughout the project and to supply the
essential knowledge of the applicative domain whenever needed and to help the
team to stay focused on the common goal.

However, customers have their own priority. In most cases, their ideal relation-
ship with the developers is that they communicate shortly their desires, and, after
a certain amount of time (the sooner, the better), they get what they dreamed at.
Van Deursen [30] has identified three major causes why it is hard to have customers
on-site.

6.3 Share a Common Vision 135

Actually, it turns out to be difficult to convince the customer that it is worth to
collaborate personally and continuously [30]:

• customers have to do their regular work and be on-site, which is not always
possible;

• the customer usually wants to buy a “whole solution,” and not to run a
customization project requiring his involvement; and

• the best customers from a programmer’s perspective are also often best in other
aspects, which makes them busy, and it is unlikely to allocate to the project all
the required time.

Some customers expect software development to be like building a house; they
want the “whole solution,” the “turn-key project.” They want to get the solution in
a ready-to-use condition. Such customers think: “Why do you ask me? You are the
expert, you should know. Why am I paying you?”

Having the customer on-site, we are only halfway through: establishing a
fruitful communication with the customer is also challenging. Some reasons for
this are [30]:

• Technologists and end users have a high “semantic gap,” which makes commu-
nication complicated. Both sides base their communication on assumptions. If
some information is based on an assumption that the other side does not know
about, this information might be not interpreted as intended by the speaker.
Making these gaps explicit, i.e., talking about the hidden underlying assumptions,
is perceived as an annoying, boring activity.

• Neither developers nor customers consider talking to each other a useful task, but
rather a waste of time.

• End users may resist changes in their way of working, making it very hard to
involve them in a constructive way in the customization of the product.

• Developers might be against an on-site customer. Beck and Andres [4] call it the
“sausage factory” effect when the developers think: “if the customers knew how
messed up software development was, they would never trust us.”

From a financial point of view, a trade-off exists between having a customer
on or off site. Let us analyze the trade-off looking at a client organization
“BusyClient” that hires the software organization “AgileCoders” to produce a tool
called “SuperTool.” BusyClient has to decide if its best sales representative, Mr.
Seller, should act as a customer on-site.

If Mr. Seller works as an on-site customer at AgileCoders, he is not working as a
sales representative, but as a requirement analyst. He can work a bit while sitting at
AgileCoders, but he cannot leave to visit customers. This causes considerable costs
for BusyClient and increases the total development costs of SuperTool.

The alternative is that Mr. Seller helps only off-site, which makes it harder for
AgileCoders to obtain a clear understanding of the requirements since Mr. Seller is
sometimes busy and not reachable when he is talking with customers.

136 6 Enabling Lean Software Development

AgileCoders might waste time because of misunderstandings, wrong assump-
tions because Mr. Seller is not available, and so on. This might then delay the
shipment of SuperTool, which increases again the costs for BusyClient.

Additionally, because the shipment of SuperTool is delayed, AgileCoders is also
facing higher costs compared to a scenario in which Mr. Seller acts as a customer on-
site. AgileCoders, which wants to survive on the long run, has to charge BusyClient
with this additional development costs.

In summary, BusyClient has to take decision: is it more costly to have Mr. Seller
work for a while at AgileCoders or to pay more for SuperTool?

BusyClient can decide using the concept of risk exposure explained previously.
The risk exposure of losing business opportunities increases the more Mr. Seller
is absent from BusyClient. On the other side, the risk exposure of an expensive
development of SuperTool decreases with the amount of time Mr. Seller invests to
manage requirements at AgileCoders (see Fig. 6.2). BusyClient should consider the
total risk exposure and choose the sweet spot that minimizes it.

R
is

k
ex

po
su

re

Time and effort invested by customers on-site

Risk exposure due to
unclear requirements

Risk exposure
due to the

absence of an
important

collaborator on
the client side

Total risk
exposure

Sweet spot

Fig. 6.2 Trade-off between an on-site and off-site customer

The current (2nd) edition of Extreme Programming sees on-site customers (the
practice is now called “Real Customer Involvement”) as a corollary practice, i.e., as
“difficult or dangerous to implement before completing the preliminary work of the
primary practices [4].”

In any case, with or without a customer on-site, AgileCoders and BusyClient
have to have a shared view on how the project is carried out. If they do not,
BusyClient might expect something different from what AgileCoders is delivering.
We observed such a situation with a company that was doing frequent releases. After
some time we noticed that the client was quite nervous because he interpreted the

6.3 Share a Common Vision 137

frequent releases as an indicator for low quality: in his eyes, the developers could
not get things right and had to fix things continuously.

There are several approaches to communicating a strategy to a client. One
possibility is a “mission statement”: it states the vision and describes the chosen
means to achieve it.

The mission statement of St. Michael’s Hospital in Ontario states that its vision is
“Creating a healthier world, through our culture of caring and discovery” and states
the following means to achieve it [29]:

1. providing exemplary physical, emotional, and spiritual care for each of our
patients and their families;

2. balancing the continued commitment to the care of the poor and those most in
need with the provision of highly specialized services to a broader community;

3. building a work environment where each person is valued and respected and has
an opportunity for personal and professional growth;

4. advancing excellence in health services education;
5. fostering a culture of discovery in all of our activities and supporting exemplary

health sciences research;
6. strengthening our relationships with universities, colleges, other hospitals, agen-

cies, and our community; and
7. demonstrating social responsibility through the just use of our resources.

The mission statement is easy to understand. Its aim is to be a general guidance
for the day-to-day decisions within the organization.

The problem arises if we do not know if the mission is being achieved or not. It
is like not knowing where we are on the map, then we do not know where to go to
reach our destination.

To understand how good we are in achieving the mission, we need to find ways
to measure it. For example, for the point five of the mission statement above, we
could look at the “Percent of time dedicated to research.” This measurement would
tell us how much time employees are able to dedicate to research.

Only through measurements can we objectively (see box below) assess the
current situation and compare our performance with the performance of others or
with our performance of the past.

Using the “Percent of time dedicated to research” to measure point 5 of the
mission statement defines what we specifically mean by it. It shows what we
consider important but also what we do not. For example, by not measuring tangible
results like patents or papers, we tell that we do not consider them essential.

This example shows that to find the right set of measurements, we need to have a
clear understanding of what is causing success and what is preventing it. If we have
a wrong perception of the reality, we will measure the wrong thing.

In the city, to measure how much time it will take us to reach some place, it is fine
to use the distance in km. On the mountain this is not enough. We have to consider
the height difference too; otherwise our estimation will be very imprecise.

138 6 Enabling Lean Software Development

This example shows that it can be necessary to collect a set of measurements to
have a precise understanding of the situation. On the other hand, we prefer having
few measurements to explain a situation than to have many. This preference (in
statistics called “parsimony”) aims to keep the measurement easy to understand
(and easy to extend if needed).

What does “objectively” mean?

The term “objectively” is a word used in everyday’s language. Objective is the
opposite of subjective. It means that we try to observe some object excluding
the influence of us looking at it. This is sometimes difficult or even impossible.

For example, if we take an experienced skier and ask whether some skiing
slope is steep, he will probably say: “no.” If we ask a beginner, he might be
frightened just to think about it.

The two answers are subjective: they depend on who gave the answer.
We cannot compare the answers of many skiers, since they are based on
evaluations of the terrain that are influenced by their own experience.

To get an objective answer, we need to find a way to measure the steepness
of the slope, independently from who is measuring. We need to (a) define a
measure of steepness and (b) define how the measurement is obtained, i.e.,
define a measurement procedure.

The second aspect—to define the measurement procedure—is crucial: only
if the measurement can be performed by anybody obtaining the same result
can we then speak about an objective measurement.

We could define the steepness in percent as the relationship between the
vertical climb and the horizontal distance. We measure how much height a
slope gains in relationship to how much horizontal distance it gains. Figure 6.3
shows a slope where (at the point where we measured) the vertical climb is
0.88 m and the horizontal distance is of 2 m.

0,
88

m

1,1 m

Fig. 6.3 Measuring the steepness of a slope

(continued)

6.3 Share a Common Vision 139

According to our definition, the steepness in percent is calculated as

0.88 m (vertical gain)

1.1 m (horizontal distance)
� 100 D 80%

As a measurement procedure we choose to use two yardsticks: one is
positioned perpendicular and is used to measure the vertical gain, and one
leveled yardstick is used to measure the horizontal distance from the end of
the first yardstick back to the slope.

Using the steepness in percent and the agreed measurement procedure, we
can objectively say how steep a slope is, whether it is 10 % or around 100 %
as the couloir of Fig. 6.4.

Fig. 6.4 Joel couloir, Sella group, Dolomites, Italy: Is it steep or not?

140 6 Enabling Lean Software Development

An example of a “mission statement” with measurements is the Balanced
Scorecard (already mentioned in Chap. 3). The goal of the Balanced Scorecard is
to provide a balanced (all aspects of the company should be considered) view of the
performance of the company. The Balanced Scorecard itself, in its entirety, can act
as a mission statement since it defines what is important (what is measured, what is
considered relevant in the organization) and what is not.

The Balanced Scorecard is structured in perspectives, which are the different
views of the organization. The initial set of views proposed by the authors
are [17]:

1. Customer perspective: measures the ability of the company to provide value
to the customers. This perspective includes performance, quality, and service
measurements.

2. Internal business perspective: measures the ability of the company to adapt the
internal processes to satisfy customer needs.

3. Innovation and learning perspective: the customer and internal business per-
spective define what the company considers important for competitive success.
For example, the ability of the company to innovate, improve, and learn.

4. Financial perspective: measures if the company’s strategy, implementation, and
execution are contributing to bottom-line improvement.

The Balanced Scorecard helps to get an overall picture of the company.
A problem affects different parts of the company at different times. For example,

a customer service that is not able to satisfy customers will be visible looking at the
internal business perspective. If customers complain, it will appear in the customer
perspective. Finally, if customers switch to the competition, we will see it in the
financial perspective.

This means that we can map cause and effect relationships within the Balanced
Scorecard [20]. Figure 6.5 shows some of them as arrows between the perspectives.

We now present two ways to communicate a strategy to stakeholders: the
mission statement as well as the Balanced Scorecard. These two examples differ
in the approach: the Balanced Scorecard is a quantitative approach that collects
quantitative evidence to interpret the reality; the mission statement follows a
descriptive, qualitative approach (see Chap. 11) to give an overall picture of the
elements that characterize the strategy and how they interact.

The way a strategy is described depends also on the type of control we want
to exert. In Chap. 4 we discussed behavior controls (e.g., to ensure that employees
dedicate a certain amount of time to research) and outcome controls (e.g., to ensure
that developers produce a certain amount of code per year). In the same way, a
strategy can define the desired behavior and/or the desired results qualitatively or
quantitatively.

6.3 Share a Common Vision 141

There is decadelong debate whether the qualitative or quantitative approach
is preferable [3]; both have their advantages. Some authors combine qualitative
and quantitative approaches, for example, as “exploratory designs” or “explanatory
designs” [6]. An exploratory design begins with a primary qualitative phase, then the
findings are validated by quantitative results. An explanatory design is characterized
by an initial quantitative phase that is followed by a qualitative phase. Usually, the
qualitative results serve to explain the quantitative results.

In Lean management we find qualitative and quantitative approaches. The stan-
dard worksheet (see Chap. 2) uses a qualitative, descriptive approach. Autonomation
uses a quantitative approach to detect a problem; it requires some measurable
property to verify its correct value. Because of the importance of autonomation
in Lean management, we focus on quantitative ways to define and evaluate the
achievement of strategies.

We will use the GQM approach described in the next chapter (similar to
the Balanced Scorecard approach, but more general) to quantitatively define the
common vision, i.e., what Lean really means for the company. This will alleviate
the problem of communicating the goals and methods of Lean to stakeholders and
build trust towards those that claim the advantages of Lean.

Financial perspective

Goals Measures

Innovation and learning
perspective

Goals Measures

Customer
perspective

Goals Measures

Internal business
perspective

Goals Measures

How do
customers

see us?

What must
we excel at?

How can we
continue to
improve and
create value?

How can we
serve customers

better in the
future?

How do we look
to shareholders?

What are the emerging opportunities and challenges?

Are we
satisfying
customer
needs?

Are we
working

effectively
and

efficiently?

Internal efficiency +
customer satisfaction
= financial success

Fig. 6.5 The Balanced Scorecard [17]

142 6 Enabling Lean Software Development

6.4 Deprive Gurus of Their Power

We previously stated that Agile methods have been conceived and refined by
“gurus.” What we criticize is that gurus tell us the “know-how,” but not the “know-
why.” This critique is not completely fair, since gurus not always actually know the
“know-why,” i.e., the reason why what they preach is working.

Frequently, the gurus were those people that discovered the new method (e.g.,
Ken Schwaber, Kent Beck). They made the experience that something works and
something does not. It is this experience that they are describing in their books. This
does not mean that they were able to develop the wisdom why their method works.

If we need to find out how good a certain technology can work for us and cannot
find anyone that can tell us, we have to develop the experience ourselves. We need
to use the so-called scientific method1 to systematically find the knowledge we seek.
We need to [3] (see also [32]):

1. formulate a problem in form of hypotheses, i.e., tentative explanations;
2. identify what we want to study;
3. apply research methods to obtain data (e.g., observation, survey, experiment);
4. analyze the data; and
5. use the results to confirm or falsify the hypotheses;

Usually the scientific method begins with idea that pops up or somebody
promoting a new technology or method to us. “You have to do testing, then you
will have software without defects!” might be a claim. If you are a risk-seeking
person, you will immediately introduce testing throughout the company. You risk
that the advice is wrong and that the defects increase or that other aspects (such as
development speed) suffer. If you are a risk-averse person, you follow the scientific
method.

According to the scientific method, we need to formulate the research problem
first. An initial formulation could be: “Does testing reduce the number of defects?”
We will begin to investigate this question, develop test cases for classes, and
document the defects that we find for both types of classes: tested and untested.

We then will formulate the hypothesis: “Testing a method reduces the number
of defects in that method.” Counting the defects that we find and classifying them
whether they were found in tested or untested classes is the measurement with which
we test our hypothesis.

There is a difference between confirming hypotheses and falsifying them. If we
confirm a hypothesis, we do not know if there is some situation in the future that
falsifies it. If we falsify a hypothesis, we know it is false. If we are not able to falsify
it, we can consider the hypothesis provisionally valid.

1The here described scientific method should not be confused with the scientific method promoted
by Frederick Winslow Taylor.

6.4 Deprive Gurus of Their Power 143

In our case the result of our experiment can have three results:

1. we proof that the hypothesis is wrong: we now know that—in our environment
and in our experimental setting—testing does not reduce the number of defects;

2. we cannot proof that the hypothesis is wrong: we now know that—in our
environment and in our experimental setting—testing can reduce the number of
defects; and

3. we cannot proof that the hypothesis is wrong or right (e.g., if the results are
random): we cannot say anything; we have to continue investigating. Using the
words of the English writer William Cowper (1731–1800): “Absence of proof is
not proof of absence.”

The example shows that a hypothesis that is formulated vaguely is hard to falsify.
It is difficult to proof that testing never reduces the number of defects present in a
method. Moreover, the usefulness of a hypothesis that could not be falsified is not
high: the statement that testing can help is not that useful. An example of a more
specific hypothesis is: “Does the % of code that represents testing code correlate
with the number of defects?” Failing to falsify this hypothesis would mean that the
more we test, the less defects we have. We could then start to look at the optimal
amount of testing, and so on.

The experience that we gain from our experiments should be used to improve our
work. Only then the time and effort we invested will pay off. We have to document
our findings and refine them as we get more knowledge. To be able to apply it and
to get the support from others, we need to communicate our findings in way that
others understand it.

If we want to share our experience, we have to package it in a reusable form.
Reusable means that the know-how and know-why become evident: others can
understand how and why it works. Experience reuse wants to make use of previously
gained experience in similar problems to help to solve an actual one.

Being able to use a previously packaged experienced has several advan-
tages [5]:

• Shorter problem-solving time: the cumbersome task of designing experiments,
formulating hypotheses, collecting data, etc. can be avoided.

• Improved solution quality: building on previous experience can reduce the
probability of wrong decisions.

• Less skills are required: the problem solver needs to have less skills if he can
rely on previous experience.

The application of the scientific method in software development—the continu-
ous experimenting, evaluating, and adapting—is the way how software companies
innovate and gain competitive advantage. This finding convinced scientists and
practitioners to develop process models that embed the steps advised by the
scientific method.

Lean Thinking also advocates this method to constantly improve.

144 6 Enabling Lean Software Development

An example of such a study would be to compare Kanban and Scrum in a
specific context and find out their different effects. Such a study was conducted
by Sjøberg et al. [28], and they discovered that in their context, after replacing
Scrum with their implementation of the Kanban concept, they were able to reduce
the number of bugs and improve productivity.

In Chap. 8 we will look at the Experience Factory, which is one way to perform
continuous improvement using the scientific method and builds on the Plan-Do-
Study-Act method presented previously.

The relationship between Lean and Agile

We can find Agile ideas within Lean Thinking: “Everyone knows that things
do not always go according to plan. But there are people in the world who
recklessly try to force a schedule even though they know it may be impossible.
They will say ‘it is good to follow the schedule’ or ‘it is a shame to change
the plan,’ and will do anything to make it work. But as long as we cannot
accurately predict the future, our actions should change to suit changing
situations [21].”

Here Ono clearly describes Agile practices within the Toyota context. But
in the Toyota Production System, Agility is a means to an end, not an end in
itself. Also inside Agile Methods there are Lean principles, for example, the
tenth principle of the Agile Manifesto: “Simplicity—the art of maximizing
the amount of work not done—is essential.”

Altogether, these methods use each other to achieve their respective
goals:

• Agile Methods aim to achieve Agility, i.e., the ability to adapt to the needs
of the stakeholders.

• Lean production aims to achieve efficiency, i.e., the ability to produce what
the stakeholders need with the least amount of resources possible.

Both methods, Lean production and Agile methods, focus on being
effective: to maximize the value for their stakeholders. However, they have
different perspectives. While Agile Methods focus on software development,
Lean production is an approach that aims to optimize the entire organization.

To illustrate the different perspectives of Lean and Agile, we look at the
entire “socio-technical system” (see Fig. 6.6).

(continued)

6.4 Deprive Gurus of Their Power 145

Hardware

Software

User
activities

Clients User

User

Client

Domain

Product I/O

Domain
I/O

Business domain

Fig. 6.6 Socio-technical system [18]

This concept looks at IT organizations from three perspectives:

• the product perspective is about the hardware and software of the product;
• the domain perspective is about how users use the product; and
• the business domain perspective is about the business value the users are

able to add using the product.

For example, in most restaurants nowadays the waiter uses a device to
register the orders. The device is the product. The waiter is the user of the
product. The business domain perspective analyzes how well the waiter is
able to satisfy the wishes of the guests using the product.

Software is embedded into a socio-technical system, and users interact with
hardware and software to solve issues, which help to fulfill their business
goals. Therefore, software cannot be seen as a purely technical issue [27].

The difference between Agile and Lean is that they were conceived to work
in different perspectives of the socio-technical system.

Agile methods concentrate on the delivery of a product that provides value
to the user. The point of view is the one of the developer creating a product for
the user. The user knows what is best for him and provides the requirements.

Lean Thinking looks at the entire business domain and seeks the most
efficient way to create value for the client of the organization, not the user
of the product. This allows to optimize over the entire organization, not only
within the activity of software development as Agile methods do.

146 6 Enabling Lean Software Development

6.5 Disarm Extremists

In contrast to the gurus of the previous chapter, Agile extremists are the followers
of the guru. The extremists we are talking about are risk neutral, optimistic, and
idealistic people.

They are willing to accept risk to introduce radical changes. Because of their
optimism, risk is not managed, i.e., anticipated, estimated, and minimized using
countermeasures, but it is ignored. Problems are addressed as they arise. Their
idealism makes them see the whole world as Agile, Lean, etc. Every problem is
framed in their “believe system,” in their view of the world.

To rise the awareness that a given technology does not always work, we need
objective data; otherwise, we and the extremists discuss based on faith.

Unfortunately, the collection of objective data is expensive. The costs to intro-
duce a measurement program (for the first year) can account for 1–2 % of the
total engineering or IT effort [9]. In a study Rico and Pressman made in 2004,
the complete cost to use a manual measurement program like the Personal Software
Process [14] to help produce 10,000 lines was $145,600 [24].

To disarm extremists and confront them with hard data, in Chap. 8 we introduce
non-invasive measurement. This term—borrowed from medicine—indicates that
the measured object is not altered because of the measurement. In the case of
measurement, the term indicates that we adopt an approach in which no time has
to be spent for the measurement itself, just for the data analysis and interpretation.
This kind of measurement is non-invasive because it does not disturb, i.e., distract
those involved in the measurement process.

6.6 Summary

This chapter is an anticipation of what will follow in the following chapters: we will
introduce the different components we propose to create what we describe in the
preface: a practical implementation of Lean software development, gluing together
well-proven tools to provide a way to develop Lean. We want to achieve this through
the utilization of goal-oriented, automated measurement for the creation of a Lean
organization and the facilitation of Lean software development.

The components we foresee are:

• Agile Software Development, described in Chap. 4,
• Non-invasive measurement, described in Chap. 9,
• GQMCStrategies, described in Chap. 7,
• the Experience Factory, described in Chap. 8, and
• Lean Thinking (together with the practices proposed by Taiichi Ono in his book

“The Toyota Production System”), described in Chap. 2.

In Chap. 10 we will see how the different components work together.

References 147

Problems

6.1. Tag each software development practice of Mary and Tom Poppendieck’s
proposal of Lean software development as:

• value: if its primary goal is to identify what has value and what has not;
• knowledge: if its primary goal is to increase the understanding of what happened,

what is happening, and what will happen; and
• improvement: if its primary goal is to improve the status quo.

6.2. Imagine you have to develop a Balanced Scorecard for a software development
team. Which perspectives would you use? Which goals would you use for each
perspective?

References

1. Apache Software Foundation: Apache ant (2013). Online: http://ant.apache.org. Accessed 4
Dec 2013

2. Apache Software Foundation: Apache subversion (2013). Online: http://subversion.apache.org.
Accessed 4 Dec 2013

3. Atteslander, P.: Methoden der empirischen Sozialforschung. Studienbuch Series, 10th edn.
Walter de Gruyter, Berlin (2003)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley, Reading (2004)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology, and
Internet-Based Applications. Lecture Notes in Computer Science. Lecture Notes in Artificial
Intelligence, vol. 2432. Springer, Berlin (2002)

6. Borrego, M., Douglas, E.P., Amelink, C.T.: Quantitative, qualitative, and mixed research
methods in engineering education. J. Eng. Educ. 98(1), 53–66 (2009)

7. CPPUnit Contributors: Cppunit—c++ port of junit (2013). Online: http://sourceforge.net/
projects/cppunit. Accessed 4 Dec 2013

8. CruiseControl contributors: Cruisecontrol (2013). Online: http://cruisecontrol.sourceforge.net.
Accessed 4 Dec 2013

9. Ebert, C., Dumke, R.: Software Measurement: Establish, Extract, Evaluate, Execute. Springer,
Berlin (2007)

10. Fowler, M.: Continuous integration (2006). Online: http://martinfowler.com/articles/
continuousIntegration.html. Accessed 4 Dec 2013

11. Free Software Foundation: Gnu make (2013). Online: http://www.gnu.org/software/make.
Accessed 4 Dec 2013

12. GIT Contributors: Git (2013). Online: http://git-scm.com. Accessed 4 Dec 2013
13. Hibbs, C., Jewett, S.P., Sullivan, M.: The Art of Lean Software Development: A Practical and

Incremental Approach. Theory in Practice. O’Reilly Media, Sebastopol (2009)
14. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Professional,

Reading (1996)
15. Jenkins CI Contributors: Jenkins ci (2013). Online: http://jenkins-ci.org. Accessed 4 Dec 2013
16. JUnit Contributors: Junit (2013). Online: http://sourceforge.net/projects/junit. Accessed 4 Dec

2013
17. Kaplan, R.S., Norton, D.: The balanced scorecard: measures that drive performance. Harv. Bus.

Rev. 70(1), 71–79 (1992)

http://ant.apache.org
http://subversion.apache.org
http://sourceforge.net/projects/cppunit
http://sourceforge.net/projects/cppunit
http://cruisecontrol.sourceforge.net
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.gnu.org/software/make
http://git-scm.com
http://jenkins-ci.org
http://sourceforge.net/projects/junit

148 6 Enabling Lean Software Development

18. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley, Harlow (2002)
19. Maglyas, A., Nikula, U., Smolander, K.: Lean solutions to software product management

problems. IEEE Softw. 29(5), 40–46 (2012)
20. Martinsons, M., Davison, R., Tse, D.: The balanced scorecard: a foundation for the strategic

management of information systems. Decis. Support Syst. 25(1), 71–88 (1999)
21. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Cambridge (1988)
22. Oracle: Virtualbox (2013). Online: http://www.virtualbox.org. Accessed 4 Dec 2013
23. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept

to Cash. Addison-Wesley Professional, Upper Saddle River (2006)
24. Rico, D.F.: ROI of Software Process Improvement: Metrics for Project Managers and Software

Engineers. J Ross Publishing Series. J. Ross Publishing, Boca Raton (2004)
25. Shalloway, A., Beaver, G., Trott, J.R.: Lean-Agile Software Development: Achieving Enter-

prise Agility. Lean-Agile Series. Addison-Wesley Professional, Upper Saddle River (2009)
26. Sikuli Contributors: Sikuli script (2013). Online: http://sikuli.org. Accessed 4 Dec 2013
27. Sitter, L.U.D., Hertog, J.F.D., Dankbaar, B.: From complex organizations with simple jobs to

simple organizations with complex jobs. Hum. Relations 50, 497–534 (1997)
28. Sjøberg, D., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban versus scrum:

a case study. IEEE Softw. 29(5), 47–53 (2012)
29. St. Michael’s Hospital: St. Michael’s Hospital, Mission & Values (2013). Online: http://www.

stmichaelshospital.com/about/mission.php. Accessed 4 Dec 2013
30. van Deursen, A.: Customer involvement in extreme programming: Xp2001 workshop report.

ACM SIGSOFT Softw. Eng. Notes 26(6), 70–73 (2001)
31. VMWare: vmware (2013). Online: http://www.vmware.com. Accessed 4 Dec 2013
32. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in

Software Engineering. Computer Science. Springer, Berlin (2012)

http://www.virtualbox.org
http://sikuli.org
http://www.stmichaelshospital.com/about/mission.php
http://www.stmichaelshospital.com/about/mission.php
http://www.vmware.com

http://www.springer.com/978-3-662-44178-7

	6 Enabling Lean Software Development
	6.1 Introduction
	6.2 Existing Proposals to Create ``Lean Software Development''
	6.3 Share a Common Vision
	6.4 Deprive Gurus of Their Power
	6.5 Disarm Extremists
	6.6 Summary
	Problems
	References

