
Chapter 9
Fluvial Processes: Meandering
and Braiding

9.1 General

In general, fluvial processes that belong to the geomorphologic category cover the
complete chronological processes of formation and evolution of a river system
from where it originates to end up in an estuary. However, in a specific sense,
fluvial processes that belong to the category of fluvial hydrodynamics focus on
river morphological changes occurring due to natural processes and/or engineering
activities, such as river regulation and training works. The fluvial processes of
rivers are the result of the interaction of stream flow, sediment, and riverbed. The
riverbed controls the flow and sediment transport, which in turn enhance changes
in the riverbed. Thus, they are interdependent, but complement each other. The
characteristics of rivers are related to the gradient of the terrain from extremely
steep mountainous torrents to steep rivers at the foot-hills and rivers in the plains.
Thus, a river could be regarded as it consisting of upper, middle, and lower reaches
which correspond to erosion, regime, and aggradations states, respectively. In
upper reach, the sediment transport capacity by the stream flow is generally greater
than the prevailing sediment transport rate, leading to an erosion of the streambed.
In middle reach, the sediment transport rate is less than the transport capacity by
the stream due to gradual streambed armoring followed by a long-term bed-sorting
process. This river reach is in a state of quiescent erosion or so-called regime. In
lower reach, aggradations occur due to substantial reduction in transport capacity
with decrease in valley slope.

According to the static and dynamic characteristics, alluvial river patterns are in
general categorized as (1) straight, (2) meandering, and (3) braided rivers (Leopold
and Wolman 1957):

1. Straight rivers have minimal sinuosity1 (\ 1.1) at the bankfull conditions.
Usually, rivers, as simple straight open channels, exist only over short reaches

1 The ratio of the curvilinear length to the linear distance (straight line) between the end points of
the curve is known as sinuosity or sinuosity index. In case of a river, it is the ratio of the actual
river length to the down-valley length. Its minimum value is unity for a perfectly straight river.
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(Fig. 9.1); while long, straight rivers seldom occur in nature. At low flow
stages, alluvial bars exist on either side of the stream. The thalweg2 may wind
in a sinuous route along the bars, even though the channel is straight. The
thalweg may move with alternate bars as they migrate downstream.

2. Meandering rivers (sinuosity [ 1.5) consist of a series of turns with alternate
curvatures connected at the points of inflection or by short straight crossings, as
shown in Figs. 9.2 and 9.3. They have a relatively low gradient. The natural
meandering rivers are quite unstable due to predominant bank erosion down-
stream of concave banks. Deeper flows are prevalent in the bends and higher
velocities along the outer concave banks. The flow depth at crossings is rela-
tively shallow compared to that at bends. Meandering rivers migrate gradually
and hence sinuosity tends to increase. Eventually, the channel forms almost a
closed loop and the meander gets often cutoff during a flood. Meandering is
therefore the result of streambed instability; in particular, when instability acts
on the banks.
Here, it is pertinent to discuss that the rivers with a sinuosity of less than 1.1 is
described as straight, those between 1.1 and 1.5 are sinuous, and meandering
rivers have a sinuosity of greater than 1.5. Therefore, sinuous rivers are the
transition between straight and meandering rivers. Although these descriptions
are commonly used, they are somewhat arbitrary, since they are not based on
any physical differences. Further, there is a tendency for the thalweg to swing
from side to side along the rivers. This is observed even in straight rivers and is
often associated with the development of riffles, pools, and alternate bars.

3. Braided rivers are wide and shallow and divided to branches by a number of
semistable or unstable bars or islands (Figs. 9.4 and 9.5). More specifically,
braided river can be defined as one that flows in two or more channels around
alluvial bars or islands. They have a braided look at the low flow stages with
exposed bars, but all or some of the bars are submerged during the high flow
stages. However, in most of the occasions, the branching is such that one is the
main stream and the others are subsidiary channels. The main stream is rela-
tively stable, but it can change its route under some flow and sediment transport
conditions, while the subsidiary channels are quite unstable and often change
during floods.

In changing the planform geometry, that is the transition from meandering to
braiding and vice versa, although it is best viewed as gradual, empirical equations
were put forward to set up some potential relations for the threshold of meandering
or braiding (Carson 1984). Leopold and Wolman (1957) gave a relationship to
define the transition from meandering to braiding involving riverbed slope S0 and
bankfull discharge Qbf (m3 s-1)

2 The locus of lowest bed elevation or maximum flow depth within a watercourse is known as
thalweg.

530 9 Fluvial Processes: Meandering and Braiding



S0 ¼ 0:012Q�0:44
bf ð9:1Þ

The above equation, which is the simplest one, indicates that the threshold bed
slope above which a river could exhibit a braided form increases with a decrease in
bankfull discharge. In addition, Lane (1957) proposed slightly different criterion
for the thresholds of meandering from a straight river and braiding from a
meandering river by using mean annual discharge Q as

S0 ¼ 7� 10�4Q�0:25 ðmeandering thresholdÞ;
S0 ¼ 0:004Q�0:25 ðbraiding thresholdÞ

ð9:2Þ

Fig. 9.1 Photograph of a straight river. Photograph by the author

Fig. 9.2 Aerial photograph of a meandering river (courtesy of O. Link, Universidad de
Concepción, Chile)
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Fig. 9.3 Photograph of a meandering river. Photograph by the author

Fig. 9.4 Photograph of a braided river downstream of a valley glacier (courtesy of O. Link,
Universidad de Concepción, Chile)
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The above equations are in metric units being applicable for sand-bed streams.
Note that the bed slopes for these two thresholds (meandering and braiding) differ
by a factor of approximately 6.

Equations (9.1) and (9.2) are too general. Henderson (1963) and Ferguson
(1987) identified the importance of participation of sediment size d50 along with
mean annual discharge Q in defining the threshold of braiding from meandering.
Henderson and Ferguson suggested the following equations, respectively:

S0 ¼ 2� 10�4d1:15
50 Q�0:44 and S0 ¼ 4:9� 10�3d0:52

50 Q�0:21 ð9:3Þ

where d50 is in mm and Q is in m3 s-1.
Parker (1976) related planform geometry to a form parameter E as

E ¼ SeB

pFrh
^ Fr ¼ U

ffiffiffiffiffiffiffi

ghd

p ð9:4Þ

where Se is the energy slope, Fr is the flow Froude number, h is the flow depth, B is
the average river width, U is the area-averaged flow velocity, g is the acceleration
due to gravity, and hd is the hydraulic depth. In the above equation, the parameters
B, h, U, and hd correspond to the bankfull conditions. The meandering corresponds
to E \ 1 and braiding to E [ 1.

On the other hand, Millar (2000) argued that the bank vegetation affects
planform geometry of a river. He showed that the resistance to bank erosion is to
increase the threshold bed slope for braiding from meandering. He introduced a
bank sediment friction angle /b in degrees in his equation. The /b takes into
account the effects of binding of bank sediment by the roots of bank vegetation,
sediment packing, etc. He suggested

Fig. 9.5 Photograph of a braided river with gravel bars. Photograph by the author
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S0 ¼ 2� 10�4/1:75
b d0:61

50 Q�0:25
bf ð9:5Þ

where d50 is in m and Qbf is in m3 s-1. The value of /b is approximately 40� for
sparsely vegetated gravel banks, but it can be as high as 80� for heavily vegetated
banks because of the grip made by the roots.

Hayashi and Ozaki (1978) proposed the criteria for the prediction of different
planforms in terms of flow Froude number Fr and a nondimensional parameter
~B ¼ ðBS0=hdÞ by using the stability analysis as follows:

Fr� 3:16~B0:5ðstraightÞ
3:16~B0:5�Fr� 2~B0:5ðtransition from straight to meanderingÞ
2~B0:5�Fr� ~B0:5ðcoexistance of meandering and braidingÞ
~B0:5�Fr ðbraidingÞ

9
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>

;

ð9:6Þ

9.2 Meandering Rivers

In alluvial plains of lower reaches, the rivers normally develop a single-twisting
course, termed meander, as already discussed in preceding section. The degree of
meandering of a river is defined by the sinuosity, which is the ratio of centerline
length to wavelength of meander. Note that the thalweg length is also considered
instead of centerline length by some authors. The sinuosity is a function of valley
slope or stream power. For a meandering river, sinuosity that is always greater than
unity increases with valley slope, but it reverts close to unity when braiding forms.

Figure 9.6 illustrates an idealized planform of a meandering river. In reality,
unlike the idealized illustration, alternating bends of a meandering river are rather
quasi-regular. The down-valley axis x in a rectilinear coordinate system represents
the centerline of the meandering planform downstream of the valley slope, while
the sinuous axis n in a curvilinear coordinate system defines the centerline of the
meandering path. Points of inflection for changing the curvatures (also called
crossovers) are denoted by I-1, I0, I1, and I2. The deflection angle h is the angle
that creates the meandering path at any location n with the down-valley axis. It
changes continuously along the sinuous axis n. Note that h(n = 0) = h0 is the
maximum value of h. It is pertinent to mention that the radius of curvature of
meandering path denoted by rc is not constant for a given meandering bend, so a
single value of rc is somewhat subjective to define for the meandering bend. For
instance, the rc is minimum at the apex of the bend and maximum at the crossings.
Besides, the meandering wavelength is denoted by km, the meandering arc length
(that is the length along the meandering path between two repeating points of
inflection) by L, the meandering belt width by Bm, the meandering amplitude (or
meander width) by am, and the average flow width by B.
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The idea of the sine-generated curve was used by von Schelling (1951) to
outline the most probable path between fixed points. For a given number of steps,
he considered the Gaussian distribution for the changing over the direction at the
terminus of each step. He showed that a criterion for the most probable path of a
continuous curve is obtained if the variance or overall curvature becomes a
minimum. Following the minimum variance concept, Langbein and Leopold
(1966) argued that a meandering river to achieve the minimum variance is more
stable than a straight river and gave the equation of a regular meandering path as

h ¼ h0 cos
2px

L
ð9:7Þ

The above equation thus produces a sine-generated curve that can fit well the
meandering path of a river, provided appropriate values of h0 and L are chosen.

In a meandering bend, the centrifugal acceleration influences the flow, which is
characterized by a helical motion with a super-elevated free surface. Flow near the
free surface is deflected toward the outer bank and near the bed is inclined toward
the inner bank. This phenomenon is already discussed in Sect. 2.7. As a stream
actively curves to flow, obvious erosion takes place at the outer bank (looking
convex from the ground alongside the stream) of the bend. The sediment eroded
from the outer bank is transported inward and deposited on the inner edge of the
next bend downstream, where the flow velocity is slower, building up an inner
point bar (Figs. 9.7 and 9.8). Remembering that the zone of high velocity in a
meandering bend shifts from inner (at the inflection zone) to outer side (at the apex
zone) with the distance, the zone of maximum bed shear stress shifts similar way.
This effect actively shifts the river very slowly toward the eroded banks. The
cross-section at the meandering bend apex is normally asymmetrical having deep
portion of the stream located along the outer bank and a broad, shallow portion
extending from the inner bank toward the center of the stream (Fig. 9.7). The
thalweg wanders from deep pool at the outer side of a bend over a shallow
crossover to next deep pool at the outer side of the next bend, and so on (Fig. 9.7).
As most of the natural river sediments are nonuniform, the asymmetry in
cross-section in meandering bends is associated with a spanwise sediment sorting
feature. By the influence of the helicoidal flow, finer particles tend to move inward.
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Fig. 9.6 Definition sketch of an idealized planform of a meandering river
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In this way, the coarser particles tend to accumulate near the outer banks with a
gradual fining toward the inner banks. Dietrich and Smith (1984) argued that the
maximum flow depth is inversely proportional to the ratio of radius of curvature of
the bend to stream width, that is, hmax * (rc/B)-1. Note that the river that has a
tendency to braiding does not have an exclusively localized erosion and deposition
at the bends only. Evidently, the braiding occurs only when the stream power
exceeds a higher threshold. Thus, the sequence of straight, meandering, and
braided rivers corresponds to an increase in valley slope or stream power
magnitude.

The meander loops are, in general, inherently asymmetrical due to local dif-
ferences in bank erodibility producing irregularities in bend forms, although
Langbein and Leopold (1966) tried to define them by a so-called sine-generated
curve [see Eq. (9.7)]. In reality, the nature of this asymmetry in meander loops is
not random, but they are well defined and somewhat consistent. Such an asym-
metry to exist in meander loops does not appear to be the result of probability, but
seems to reflect certain inherent flow features through bends. The most important
feature in the asymmetrical meander loops is the location of the inflection points
that alter on opposite sides of the valley axis, producing a delayed inflection from
one meandering turn to the next one downstream (Carson and Lapointe 1983;
Parker et al. 1983). Consequently, the most meandering bends are facing down-
valley. Thus, from a geometric viewpoint, restraint of the meander amplitude
could be at the expense of that part of the traverse downstream of the inflection
point. In this process, it produces an aborted form that is dominantly convex
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C1

C2

Thalweg

Centerline

Valley slope

Zone of erosion

Zone of deposition or point bar

A1 A2

C1 C2

Fig. 9.7 Sketch showing zones of erosion and deposition in a meandering river
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Fig. 9.8 Photograph of a meandering river showing the erosion at outer banks and the formation
of point bar in the inner bank (courtesy of L. Solari, University of Florence, Italy)

Fig. 9.9 Photograph of the meandering loops of a river showing the potentiality of cutoff by the
broken line (courtesy of Z. Wang, Tsinghua University, China)
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down-valley. Delayed inflection is attributed to a delayed thalweg crossover
leading to spatial variations of bank erosion rates being in turn translated into a
delayed inflection in the meander loops. Note that the delayed inflection appears to
be prevalent for the meandering rivers that carry considerable suspended load
(Carson and Griffiths 1987).

Meander cutoff is a fundamental process in the evolution of meandering rivers.
As the planform of a meandering river progressively migrates in the downstream
direction and expands in the transverse direction, the meander loops shift at a
differential rate due to nonuniform erosion rates at the banks. The resulting shape
in a developed state appears to form a bulb with inflection zones of a loop to come
closer forming a neck (two closest portions of river). Eventually, the banks at the
neck breach by a chute channel, called cutoff, that connects the neck of the loop
(Gagliano and Howard 1984; Hooke 1995). Figure 9.9 displays the potentiality of
cutoff at the necks of meandering loops of a river. Besides bank-breaching, cutoff
may also occur when floods incise a floodplain channel or chute that evolves into
the dominant conveyor of river flow (Hooke 1995; Gay et al. 1998). The cutoff
causes the flow to abandon the meander and to continue straight downslope. After
formation of a cutoff, a new meandering bend may slowly grow again. Cutoffs are
a natural part of the evolution of a meandering river. The abandoned meander
forms an oxbow lake that may persist over a long time period before getting it
filled. The oxbow lake formation process through a meandering neck cutoff is
schematically illustrated in Fig. 9.10.

Ripley (1927) studied the meandering rivers and gave the criterion for a
meander loop to have a tendency to form a cutoff as rc \ 40A0.5, where A is the
flow cross-sectional area. However, he also suggested the criterion for a stable
meandering bend as 40A0.5 \ rc \ 110A0.5.

The aforementioned description is related to sand-bed meandering rivers, which
are regarded as low-energy rivers. Carson and Griffiths (1987) reported that the
characteristics of gravel-bed meandering rivers, regarded as high-energy rivers, are
considerably different from sand-bed rivers in terms of meandering outline. The
gravel-bed rivers exhibit a premature inflection instead of a delayed inflection that
is observed for a low-energy river. Premature inflection in high-energy rivers
results in up-valley migration of meandering course and is associated with over-
widening of meandering bends (Carson 1986). In low flow stages, high-energy
meandering rivers sometimes have a tendency to cut across the point bars. This
along with over-widening of meandering bends in low flow stages may initiate to
develop the braiding. Carson and Griffiths (1987) designated this type of rivers’
configuration, which is in fact a transition between meandering and braiding, as
pseudo-meandering streams.
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9.2.1 Meander Planform Characteristics

Field and laboratory observations on the dimensions of meandering geometry have
been used to develop empirical relationships between certain planform charac-
teristics that are somewhat consistent for a wide range of river sizes. Various
investigators, importantly Inglis (1947), Leopold and Wolman (1957), and Zeller
(1967), recognized that the meandering wavelength km is directly proportional to
flow width B. The relationship that was obtained by Garde and Ranga Raju (2000)
from the data plots is

km � 6B ð9:8Þ

Further, Leopold and Wolman (1960) proposed the following relationships
between different planform characteristics of meandering rivers:

km ¼ 4:6r0:98
c ; L ¼ 11B1:01; am ¼ 6B1:1 ð9:9Þ

The units of the quantities in Eq. (9.9) are in m.
On the other hand, Chang (1988) suggested rc & 3B.

9.2.2 Concepts of Meandering

Attempts have been made to identify the cause of meandering and to understand
the background mechanism of its development. Some of the important concepts
are discussed below:

Cutoff

1 2

3 4 

Oxbow
lake

Fig. 9.10 Oxbow lake formation process following a meandering loop cutoff shown in the
sequence of 1–4 line diagrams

9.2 Meandering Rivers 539



Earth’s Revolution Concept: The Coriolis effect3 is caused by the revolution of
the earth, and the inertia of the mass of an object is to experience the effect. On the
earth, an object that moves along a north–south path, or longitudinal line,
undergoes apparent deflection to the right in the northern hemisphere and to the
left in the southern hemisphere. Rather than rivers flowing directly as they would
be in a nonrevolving system, the flow tends to the right in north of the equator and
to the left in south of it. In the nineteenth century, naturalist Karl Ernst von Baer
observed that the rivers in the northern hemisphere do most of their erosion on the
side to the right of the direction of flow; and on the left in the southern hemisphere.
The reason is attributed to the Coriolis effect. Albert Einstein (1926) simply
observed that as the stream flow curves on the earth surface, the Coriolis effect
induces rotational motion to the flow. The flow moves helicoidally downstream, as
if a corkscrew moves. Einstein’s discussion on the cause of meander was rather
casual, but characteristically insightful, as his attribution of secondary currents to
the Coriolis force might have been among the earliest. Besides, Gilbert (1884),
Eakin (1910), and Lacey (1923) before Einstein’s observation and Chatley (1938),
Quraishy (1943), and Neu (1967) after Einstein’s observation argued that the
earth’s revolution could be the cause of river meandering.

Instability Concept: Any irregularities or perturbations in the upstream flow
cause a modification in the flow structure in the downstream direction leading to
meandering. In fact, irregularities introduce instability to the flow and the bed to
form meanders. The initial irregularities could be due to any obstacle or sediment
deposition on the bed (Griggs 1906; Werner 1951), random velocity fluctuations due
to turbulence (Hjulström 1957), oblique entry of flow in a channel (Friedkin 1945),
or some other reasons. Agarwal (1983) observed alternate bars in an experimental
flume by introducing a two-dimensional periodic disturbance on the bed.

Helicoidal Flow Concept: A group of investigators believed that the helicoidal
flow due to secondary current of Prandtl’s first kind (see Sect. 3.10) is potentially
responsible for the occurrence of meandering. Since secondary current is present
in all the stream flows, the asymmetry in secondary circulation due to asymmet-
rical cross-section and/or bed resistance of natural rivers is the cause to initiate
meandering (Prus-Chacinski 1954; Leliavsky 1966; Onishi et al. 1976; Shen
1983). Once the meandering is initiated, secondary current of Prandtl’s first kind is
the governing mechanism.

Excess Flow Energy Concept: This concept is based on the energy content in
the stream flow on which the meandering process is related. Flow in a meandering
river is to reduce the excess energy (and in turn, to reduce the excess slope) of the
flow by increasing its traveling length (Schoklitsch 1937; Inglis 1947). According
to Bagnold, the energy loss in a bend is least if the ratio of bend radius to river
width lies between 2 and 3. Based on Bagnold’s concept of minimum bend loss,

3 The Coriolis effect is an apparent deflection of the path of an object in motion due to an
induced transverse force normal to its path, when it is set in a rotating reference frame. In a
reference frame with clockwise rotation, the deflection is to the left of the motion of the object,
while with counter-clockwise rotation, the deflection is to the right.

540 9 Fluvial Processes: Meandering and Braiding

http://dx.doi.org/10.1007/978-3-642-19062-9_3
http://dx.doi.org/10.1007/978-3-642-19062-9_3


Leopold and Wolman (1960) and Ramette (1980) argued that the minimization of
energy is associated with the formation of meandering in rivers. However, Yang
(1971) expressed dissatisfaction about the legitimacy of the hypothesis that a river
meanders in order to dissipate excess flow energy. Thus, he introduced a concept
of minimum time rate of energy expenditure. According to his concept, during the
evolution of a meandering river toward its equilibrium state, a river finds its course
of flow in such a way so that the minimum time rate of potential energy expen-
diture per unit mass of water prevails along its course.

Large-Scale Eddy Concept: Yalin and da Silva (2001) argued that the mean-
dering is caused by the large-scale eddies. They identified that the horizontal
length scale (streamwise spacing) kx of large eddies in a straight rectangular open
channel approximately equals the horizontal length Kb of alternate bars
(Figs. 9.11a, b); and both the length scales are six times of the flow width B. The
formation of alternate bars at a relatively regular interval is analogous to the
formation of dunes caused by the large-scale eddies that also appear at a relatively
regular interval resulting in decrease and increase in bed shear stress (see Fig. 8.4).
Thus, taking into account the relationship given by Eq. (9.8), one can relate

kx ¼ Kb ¼ km � 6B ð9:10Þ

Equation (9.10) therefore suggests that both alternate bars and meanders initiate
because of the same mechanism, that is, the large-scale eddies or large-scale
turbulent structure. Alternate bars are caused by the action of large-scale turbu-
lence structure collapse on the erodible bed, and the threshold of meandering is
caused by the action of turbulence structure collapse on the erodible banks
(Fig. 9.11b).
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Erosion ErosionDeposition Deposition Deposition

Deposition Deposition
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z 
x 

(a)

(b)

Fig. 9.11 Conceptual illustration of large-scale eddy concept after Yalin and da Silva (2001):
a top view of large eddies appearing at a relatively regular interval and b top view of alternate
bars appearing at a relatively regular interval
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9.3 Mathematical Modeling of Meandering Rivers

In this section, the flow and bed topography models developed by Ikeda and
Nishimura (1986) and Odgaard (1989) are presented in details.

9.3.1 Ikeda and Nishimura’s Model

9.3.1.1 Flow Field

Ikeda and Nishimura (1986) considered orthogonal curvilinear coordinates (s, n) to
represent depth-averaged velocity components (U, V) (Fig. 9.12a). The U and
V are decomposed as

U ¼ �U þ U0; V ¼ V 0 ð9:11Þ

where �U is the reach-averaged velocity in s-direction, and U0 and V0 are the
perturbed velocity components.

Referring to Fig. 9.12b, the average flow depth H is decomposed as
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Fig. 9.12 Definition sketch: a meandering river with coordinate system and b cross-section of
river at A1–A2

542 9 Fluvial Processes: Meandering and Braiding



H ¼ hþ fþ g ð9:12Þ

where h is the reach-averaged flow depth, f is the super-elevation of the free
surface due to curvilinear flow induced by centrifugal inertia, and g is the change
of bed elevation with respect to mean bed level due to erosion or deposition.

According to Kikkawa et al. (1976), the g is

g
h
¼ r

rc

� �#

�1 ^ # ¼ 3
4
� lCD

1þ gRl

� �0:5ns

j
� �u�

ðDgd50Þ0:5
4:167

k0:5
f

� 6:6

 !

ð9:13Þ

where r = rc + n, # is an exponent defining erosion factor, l is the coefficient of
dynamic viscosity, CD and CL are the drag and lift coefficients, respectively, ns is
the sheltering coefficient, gR is CL/CD, j is the von Kármán constant, �u� is the
shear velocity at the centerline [= (ghS0)0.5], D is the submerged relative density,
kf is the friction parameter ð¼ ghS0=�U2 ¼ gh3S0=q2Þ, and q is the discharge per
unit width.

Using Eq. (9.13) and approximation of rc by a sine-generated curve
½r�1

c ¼ r�1
c0 cos kwbsð Þ�, perturbed streamwise velocity U0 can be obtained as follows

(Ikeda et al. 1981):

U0

�U
¼ n

rc0

½a sinðkwbsÞ þ b cosðkwbsÞ� ð9:14Þ

where rc0 is the minimum radius of curvature at the bend apex, kwb is the wave
number of centerline of meandering, and a and b are as follows:

a ¼ kfkwbhð#þ Fr2 þ 2Þ
4k2

f þ ðkwbhÞ2
; b ¼ 2ð#þ Fr2Þk2

f � ðkwbhÞ2

4k2
f þ ðkwbhÞ2

^ Fr ¼
�U

ðghÞ0:5

ð9:15Þ

The wave number in meandering rivers, according to Ikeda et al. (1981), is
expressed as kwb = 1.5kf/h.

The perturbed transverse velocity V0 is given by

V 0

�U
¼ kwbrc0

2
� rc

r
� h

H
½a cosðkwbsÞ � ðbþ #þ Fr2Þ sinðkwbsÞ� B

2rc0

� �2

� n

rc0

� �2
" #

ð9:16Þ
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Assuming that the velocity defect law is preserved in streamwise velocity
distributions in meandering rivers, the time-averaged streamwise velocity �u zð Þ at
any elevation z was obtained by Ikeda and Nishimura. It is

�u

�u�
¼ u

U
�U

�U

�u�
þ 1

j
ð1þ ln ĝÞ

� �

¼ u
U
�U

1

k0:5
f

þ 1
j

GðĝÞ
" #

^ ĝ ¼ 1þ z

H
ð9:17Þ

where u is a function of ĝ being unity in main flow zone and zero at the banks,
GðĝÞ ¼ 1þ ln ĝ, and z is the vertical distance (Fig. 9.12b).

Then, centrifugally induced time-averaged transverse velocity component
v00(z) of the secondary current is given by

v00

�U
¼ u2 U

�U

� �2 H

jr
vu0

rc

rc0

cosðkwbs� rLÞ ð9:18Þ

where v is the factor for secondary current, u0 ¼ u1ðĝÞ � k0:5
f j�1u2ðĝÞ, u1ðĝÞ ¼

�15ðĝ2ln ĝ� 0:5ĝ2 þ 0:278Þ, u2ðĝÞ ¼ 7:5ðĝ2ln2 ĝ� ĝ2ln ĝþ 0:5 ĝ2� 0:352Þ, and
rL is the phase lag of the secondary current relative to meandering planform.

The vorticity equation for secondary current in a sinuous river is expressed as

�u
oXs

os
� 2

r
�u
o�u

oz
¼ et

o2Xs

oz2
^ Xs �

ov00

oz
ð9:19Þ

where Xs is the vorticity of secondary current, which is approximated as above due
to negligible time-averaged vertical velocity component, and et is the turbulent
diffusivity. At the centerline (r = rc) of the meandering rivers, u = 1, U ¼ �U, and
H = h. Using r�1

c ¼ r�1
c0 cos kwbsð Þ, Eq. (9.19) at the centerline becomes

�U
oXs

os
� 2 cosðkwbsÞ

rc0

�U
o�U

oz
¼ et

o2Xs

oz2
ð9:20Þ

Substituting Eqs. (9.17) and (9.18) into Eq. (9.20) and then equating the
coefficients of sin(kwbs) and cos(kwbs) to obtain two equations, the v and rL are
solved as

v ¼ 2
dG

dĝ
kwbh

�U

�u�
� du0

dĝ
sin rL �

et

�u�h
� d

3u0

dĝ3
cos rL

� ��1

ð9:21aÞ

rL ¼ arctan kwbh
du0

dĝ
et

�u�h
� �u��U �

d3u0

dĝ3

� ��1
" #

ð9:21bÞ

Ikeda et al. (1985) proposed et=ð�u�hÞ ¼ 0:1 for the flow in sinuous rivers. Then,
v and rL take the forms
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v ¼ kwbh
1:11

k0:5
f

� 1:42

 !

sin rL þ cos rL

" #�1

ð9:22aÞ

rL ¼ arctan kwbh
1:11

k0:5
f

� 1:42

 !" #

ð9:22bÞ

Note that kwbh = 1.5kf, as already stated.
The estimation of �u zð Þ is possible from Eq. (9.17) using Eqs. (9.11), (9.14) and

(9.15); and the time-averaged transverse velocity component �v zð Þ can be calcu-
lated from the decomposition relationship �v ¼ V 0 þ v00, where V0 is given by
Eq. (9.16) and v00 can be obtained from Eq. (9.18) using Eqs. (9.22a, b).

9.3.1.2 Bed Deformation

In equilibrium state, the continuity equation of sediment transport resulting in a
change of bed level is given and then its integral form is obtained as

rc

r
� oqts

os
þ 1

r
� oðrqtnÞ

on
¼ 0 ^ qts ¼ qbs þ qss _ qtn ¼ qbn þ qsn

) qtn ¼ �
rc

r

Z

oqts

os
dn

ð9:23Þ

where qts and qtn are the volumetric total-load transport rate in s- and r-direction,
respectively, qbs and qbn are the volumetric bed-load transport rate in s- and r-
direction, respectively, and qss and qsn are the volumetric suspended-load transport
rate in s- and r-direction, respectively.

Ikeda and Nishimura used Parker’s (1979) formula, (Eq. 5.24), to estimate qbs.
Equation (5.24) is rearranged as

qbs ¼ 11:2ðDgd3
50Þ

0:5 ðH� 0:03Þ4:5

H3 ð9:24Þ

where H is the Shields parameter, which is u2
�=ðDgd50Þ for a horizontal bed of a

straight river. Here, u* is the local shear velocity. Due to helicoidally curvilinear
flow in meandering rivers, H is corrected as

H ¼ u2 U
�U

� �2 �u2
�

Dgd50
ð9:25Þ
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Parker (1984) gave

qbn

qbs
¼ tan bþ 1þ gRl

nsl
Hc

H

� �0:5

tan a ^ a ¼ arctan
og
on

where b is the angle made by the near-bed limiting streamline with s-direction, that
is, arctan ð�vd=�udÞ, �vd is the near-bed time-averaged transverse velocity, �ud is the
near-bed time-averaged streamwise velocity, Hc is the threshold Shields parameter,
and a is the angle made by the transverse bed slope with horizontal. For sand-beds,
Kikkawa et al. (1976) approximated l, gR, and ns as 0.43, 0.85 and 0.59, respec-
tively; and the above equation becomes

qbn

qbs
¼ tan bþ 5:38

Hc

H

� �0:5
og
on

ð9:26Þ

Ikeda and Nishimura obtained �ud from the logarithmic law of velocity distri-
bution for hydraulically rough flow applied to the roughness height level ks as

�ud ¼ u� 8:5þ 1
j

ln
zþ H

ks

�

�

�

�

z¼�Hþks

 !

¼ 8:5u� ^ u� ¼ u
U
�U

�u�

) �ud ¼ 8:5u
U
�U

�u�

ð9:27Þ

They obtained �vd from the relationship �v ¼ V 0 þ v00, where v00ðĝ ¼ 0Þ at the bed
is obtained from Eq. (9.18). Then, tanb is given by

tan b ¼ V 0

�U
þ u2 U

�U

� �2 H

jr
vu0ð0Þ

rc

rc0

cosðkwbs� rLÞ
" #

8:5u
U
�U

� �

k0:5
f

� ��1

ð9:28Þ

where u0ð0Þ ¼ �4:167þ 2:64 k0:5
f j�1.

The suspended-load transport rate qss in s-direction and time-averaged con-
centration distribution C(z) are given by

qss ¼
Z

0

�H

C�udz ð9:29aÞ

C ¼ Ca exp �ws

es

ðzþ HÞ
� �

ð9:29bÞ

where Ca is the near-bed concentration, ws is the terminal fall velocity of sediment,
and es is the sediment diffusivity. Above equations are the modified forms of Eqs.
(6.1a) and (6.20) due to change of position of the origin of z-axis. The sediment
diffusivity es can be assumed as follows (Vanoni 1975):
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es ¼ 0:077u�H ð9:30Þ

Further, Ikeda and Nishimura (1985) gave Ca in empirical form as

Caðu� 	 88:3wsÞ ¼ 2:31� 10�4 u�
ws

� �1:6

; Caðu�[ 88:3wsÞ ¼ 0:3 ð9:31Þ

Inserting Eqs. (9.17) and (9.29b) into Eq. (9.29a) yields

qss

�UH
¼ u

U
�U

Uss ð9:32Þ

where
Uss ¼Caf½w1�w2expð-�1Þ�-þ ½w3�w4expð-�1Þ�-2

þ ½w5�w6expð�-�1Þ�-3 þ w7½1�expð�-�1Þ�-4g,
- ¼ es= wsHð Þ ¼ 0:077u�=ws ¼ 0:077uU�u�=ð�UwsÞ, w1 ¼ 1� 5:798k0:5

f ,

w2 ¼ 1þ 2:678k0:5
f , w3 ¼ 26:6k0:5

f , w4 ¼ 6:95k0:5
f , w5 ¼ �69:45k0:5

f ,

w6 ¼ 30:15k0:5
f , and w7 ¼ 99:6k0:5

f :
The suspended-load transport rate qsn in n-direction is given by

qsn ¼
Z

0

�H

C�vdz ð9:33Þ

Inserting expressions for �v ð¼ V 0 þ v00Þ and Eq. (9.29b) into Eq. (9.33) yields

qsn

�UH
¼ V 0

�U
Usn1 � u2 U

�U

� �2 H

jr
v

rc

rc0

cosðkwbs� rLÞUsn2 ð9:34Þ

where Usn1 = Ca[1 - exp(--�1)]-, Usn2 = Ca{[n1exp(--�1) - n2]- +

[n3exp(--�1) - n4]-2 + [n5exp(--�1) - n6]-3 � 72.34[exp(--�1) - 1]-4},
n1 ¼ 3:26� 2:58k0:5

f , n2 ¼ �4:29þ 7:005k0:5
f , n3 ¼ �1:57þ 3:69k0:5

f , n4 ¼ 4:61

�22:86k0:5
f , n5 ¼ �42:36þ 26:55k0:5

f , and n6 ¼ 15þ 13:28k0:5
f :

Equation of bed-level variation can be obtained by substituting Eq. (9.26) into
Eq. (9.23) as

og
on
¼ �0:186

H
Hc

� �0:5 1
qbs

rc

r

Z

o

os
ðqbs þ qssÞdnþ qsn þ qbs tan b

� �

ð9:35Þ

The bed- and suspended-load transport rates, qbs, qbn, qss, and qsn, are obtained
from Eqs. (9.24), (9.26), (9.32) and (9.34), respectively. The partial derivative
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qqbs/qs can be obtained from Eq. (9.24) by using Eqs. (9.11), (9.14) and (9.25).
Further, qqss/qs can be obtained from Eq. (9.32) in terms of H and u*. Using the
relationship given by Ikeda et al. (1981), that is, f = Fr2hn/rc, and Eq. (9.13), H is
expressed as

H ¼ h Fr2 n

rc

þ r

rc

� �#
" #

ð9:36Þ

Thus, the term q(qbs + qss)/qs in Eq. (9.35) can take the form

1
�Uh
� 1
kwb

� o

os
ðqbs þ qssÞ

¼ u
n

rc0
Wbs þ Fr2 n

rc

þ r

rc

� �#
" #

ðUss þWssÞ
( )

� ½a cosðkwbsÞ � b sinðkwbsÞ� � u
U
�U
� n

rc0
Fr2 þ # r

rc

� �#�1
" #

Uss sinðkwbsÞ

ð9:37Þ

where

Wbs ¼ 33:6
ðDgd3

50Þ
0:5

�Uh
u

U
�U
� �u2

�
Dgd50

� ðHþ 0:06ÞðH� 0:03Þ3:5

H4 ;

Wss = Ca{-c1exp(--�1) + [c2 - c3exp(–-�1)]- + [c4 - c5exp(--�1)]-2 +

[c6 - c7exp(--�1)]-3 + c8[1 - exp(–-�1)]-4}, c1 ¼ 26:6k0:5
f , c2 ¼ 2:6�

15:07k0:5
f , c3 ¼ 2:6þ 13:91k0:5

f , c4 ¼ 95:76k0:5
f , c5 ¼ 55:17k0:5

f , c6 ¼ �319:5k0:5
f ,

c7 ¼ 238:3k0:5
f , and c8 ¼ 557:8k0:5

f . Then, the integration in Eq. (9.35) can be per-
formed with the determination of integral constant from the condition that the
average variation of bed level across the cross-section is zero, that is

z

h

η

B

nH

s

w
– 

v– 

�

C L 

Fig. 9.13 Definition sketch
showing cross-section of a
sinusoidal river
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Z

0:5B

�0:5B

gdn ¼ 0

9.3.2 Odgaard’s Model

9.3.2.1 Flow Field and Bed Topography

Odgaard (1989) considered orthogonal curvilinear coordinates (s, n, z) to represent
time-averaged velocity components �u, �v, �wð Þ and bed variations, as shown in
Fig. 9.13. The plan view of a sinusoidal river is same as shown in Fig. 9.12a. In
meandering rivers, the prevailing conditions are the flow depth to be smaller than
the flow width (H 
 B) and the radius of curvature to be generally larger than the
width (rc [ B). Under these conditions, all the terms containing �w can be dropped
out in momentum and continuity equations as �w! 0. This approximation makes
the problem a two-dimensional. According to Rozovskii (1957), the two-dimen-
sional momentum equations of flow can be written as

�u
o�u

os
þ �v

o�u

on
þ �u�v

r
¼ 1

q
� o�p

os
þ oss

oz

� �

ð9:38aÞ

�u
o�v

os
þ �v

o�v

on
� �u2

r
¼ 1

q
� o�p

on
þ osn

oz

� �

ð9:38bÞ

where r is the local radius of curvature, �p is the time-averaged hydrostatic pressure,
and ss and sn are the shear stresses in s- and n-direction, respectively. The con-
tinuity equations of flow and sediment transport are

o�u

os
þ 1

r
� oð�vrÞ

on
¼ 0 ð9:39aÞ

oqbs

os
þ 1

r
� oðqbnrÞ

on
¼ 0 ð9:39bÞ

where qbs and qbn are the bed-load transport in s- and n-direction, respectively.
The integration (with respect to depth) of the pressure containing terms in Eqs.

(9.38a, b) can be expressed in terms of the free-surface slopes (Ss and Sn) as -gSs

in s-direction and -gSn in n-direction. Here, g is the acceleration due to gravity.
Thus, the depth-averaged momentum and continuity equations become
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U
oU

os
þ V

oU

on
þ UV

r
¼ gSs �

s0s

qH
ð9:40aÞ

U
oV

os
þ V

oV

on
� U2

r
¼ gSn �

s0n

qH
ð9:40bÞ

and

oðUHÞ
os

þ 1
r
� oðVHrÞ

on
¼ 0 ð9:41Þ

where U and V are the depth-averaged velocities in s- and n-direction, respec-
tively, and s0s and s0n are the bed shear stresses in s- and n-direction, respectively.
In the above, the approximate relationships are used as �u�v � UV and �u�u � U2,
which are based on the field and laboratory experimental data (Dietrich and Smith
1983; Bergs 1989).

The �u distribution is represented by a power law as

�u

U
¼ 1þ m

m

z

H

� 	1=m
^ m ¼ j

U

u�
¼ j

8
kD

� �0:5

¼ j
CR

g0:5
_ u� ¼

s0s

q

� �0:5

ð9:42Þ

where m is an exponent indicating resistance to flow, kD is the Darcy–Weisbach
friction factor, and CR is the Chézy coefficient. Above relationship for m was given
by Zimmermann and Kennedy (1978). In bankfull conditions, the m is 3 B m B 5.

On the other hand, the �v distribution is represented as an addition of V and
centrifugally induced transverse velocity component v00(z) of the secondary cur-
rent, which is approximated by a linear law as 2v000 z=Hð Þ�0:5½ �, where v000 ¼
v00ðz ¼ hþ fÞ (Rozovskii 1957; Kikkawa et al. 1976). Thus,

�v ¼ V þ v00 ¼ V þ 2v000
z

H
� 1

2

� �

ð9:43Þ

Subtracting Eq. (9.40b) from Eq. (9.38b) at z = h + f yields

�u0
o�v0

os
� U

oV

os
þ �v0

o�v0

on
� V

oV

on
¼ �u2

0 � U2

r
þ s0n

qH
þ 1

q
� osn

oz

�

�

�

�

z¼hþf

ð9:44Þ

where �u0 ¼ �uðz ¼ hþ fÞ and �v0 ¼ �vðz ¼ hþ fÞ. The partial derivative in the last
term of the right-hand side of Eq. (9.44) can be determined as

osn

oz
¼ o

oz
et

o�v

oz

� �

550 9 Fluvial Processes: Meandering and Braiding



Then, by solving et from the power law and ss = s0s[1 - (z/H)] and assuming
an isotropic et with �v given by Eq. (9.43), the above partial derivative at free
surface is obtained as

osn

oz

�

�

�

�

z¼hþf

¼ � m

1þ m
� 2qjv000u�

H
ð9:45Þ

The ratio of s0n to s0s is obtained from the deflection of the near-bed limiting
streamline from s-axis, that is, tanb ¼ �vd=�ud. Then,

s0n

s0s
¼ �vd

�ud

¼ V � v000
U

ð9:46Þ

Note that the expression for m in Eq. (9.42) leads to

s0s ¼ qj2 1
m2

U2 ð9:47Þ

Substituting Eqs. (9.42), (9.43) and (9.47) into Eq. (9.40a) yields

1
2
� oU2

os
þ j2

m2H
U2 ¼ gSs � V

oU

on
þ U

r

� �

ð9:48Þ

Substituting Eqs. (9.42), (9.43), (9.45) and (9.46) into Eq. (9.44) yields

oV

os
þ ð1þ mÞ ov000

os
þ m

U
� oðv

00
0VÞ

on
þ m

2U
� oðv

00
0v000Þ
on

¼ 1þ 2m

m
� U

r
þ j2

mH
V � j2

mH
1þ 2m2

1þ m

� �

v000

ð9:49Þ

Thus, the above mathematical analysis produces Eqs. (9.39a, b), (9.48) and
(9.49) as governing equations for solving V, H, U, and v000, respectively.

From field and laboratory results, Odgaard argued that the variables �u and H are
essentially constant along the centerline, but vary somewhat linearly in transverse
direction. Hence, they are linearized with respect to their centerline values:

U

Uc

¼ 1þ n

h
~Ucn ^ ~Ucn ¼ h

o

on

U

Uc

� �� �

c

ð9:50aÞ

H

h
¼ 1þ n

h
Scn ^ Scn ¼

oH

on

�

�

�

�

c

ð9:50bÞ

where Uc and h are the depth-averaged velocity and flow depth at the centerline,
respectively, ~Ucn is the nondimensional transverse velocity gradient at the cen-
terline, and Scn is the transverse gradient of the bed at the centerline. In the above,
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subscript ‘‘c’’ refers to the centerline value. From Eq. (9.41), Vc is obtained as an
integral equation and then solved using Eqs. (9.50a, b) and r = rc + n. Thus,

Vc ¼
1

hrc

� d
ds

Z

0:5B

0

rUHdn) Vc ¼
an

8
Uc

B2

h
� d
ds
ðScn þ ~UcnÞ ð9:51Þ

where an is the transverse flux correction factor having an average value of 0.4.
Odgaard assumed qbs = [qbs]c(U/Uc)

M, where [qbs]c is the bed-load transport
rate in s-direction at the centerline and M is an exponent varying from 2 to 4
(Simons and Sentürk 1977). Then, integration of Eq. (9.39b) yields

½qbn�c ¼
1
rc

� d
ds

Z

0:5B

0

qbsrdn) ½qbn�c ¼ ½qbs�c
bn

8
� B

2

h
M

d ~Ucn

ds
ð9:52Þ

where [qbn]c is the bed-load transport rate in n-direction at the centerline and bn is
the transverse sediment flux correction factor have an order of magnitude same as
that of an.

Using Eqs. (9.26), (9.46) and (9.47), Eq. (9.52) yields

5:38
j

mðDgd50Þ0:5H0:5Scn ¼
an

8
� B

2

h
UcM

d ~Ucn

ds
þ ½v000 �c � Vc ð9:53Þ

Substituting Eqs. (9.50a, b), (9.51) and (9.53) into Eqs. (9.48) and (9.49) and
neglecting higher order terms, the resulting linear equations are

d ~Ucn

dŝ
þ a1 ~Ucn ¼

1
2

a1Scn ^ ŝ ¼ s

B
ð9:54aÞ

d2Scn

dŝ2
þ a2

d2 ~Ucn

dŝ2
þ a3

dScn

dŝ
þ a4

d ~Ucn

dŝ
þ a5Scn ¼ a6 ð9:54bÞ

where

a1 ¼
2j2

m2
� B

h
, a2 ¼ 1� 1þ m

2þ m
M, a3 ¼ 43

H0:5

anjFd

� mð1þ mÞ
2þ m

� h
B

þ 2j2m

ð1þ mÞð2þ mÞ �
B

h
, a4 ¼

2j2m

ð1þ mÞð2þ mÞ 1�M 1þ 1
2m
þ 1

2m2

� �� �

B

h
,

a5 ¼ 43
jH0:5

anð2þ mÞFd

1þ 2m2

1þ m

� �

, a6 ¼
8
an
� 1þ 2m

mð2þ mÞ �
h

rc

where Fd is the densimetric Froude number [= Uc/(Dgd50)0.5]. Further, using
Eq. (9.54a), Eq. (9.54b) is rearranged as
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d3 ~Ucn

dŝ3
þ b1

d2 ~Ucn

dŝ2
þ b2

d ~Ucn

dŝ
þ b3 ~Ucn ¼ b4 ð9:55Þ

where b1 = a1 + 0.5a1a2 + a3, b2 = a1a3 + 0.5a1a4 + a5, b3 = a1a5, and
b4 = 0.5a1a6. Equation (9.55) can be solved for ~Ucn for the given boundary
conditions, and then, Scn can be determined from Eq. (9.54a).

Note that in fully developed flow in a channel bend, the terms dð�Þ=dŝ ¼ 0, and
Eqs. (9.54a, b) reduce to

U

Uc

¼ H

h

� �0:5

; Scn0 ¼
GFdch

rc

^ G ¼ ð1þ mÞð1þ 2mÞ
5:38jH0:5mð1þ mþ 2m2Þ

where Scn0 is the fully developed value of Scn and Fdc is the Fd at the centerline.
An approximate solution of Eqs. (9.54a, b) can be obtained assuming d2 ~Ucn=d2ŝ

to be negligible. Then, Eqs. (9.54a, b) produce

d2Scn

dŝ2
þ a3 þ

a4

2

� 	 dScn

dŝ
þ a5Scn ¼ a6 ð9:56Þ

At the starting section of the bend (that is ŝ ¼ 0), both Scn and dScn=dŝ vanish;
and the solution of Eq. (9.56) is

Scn ¼ Scn0 1� 1þ a0

2/0

� �2
" #0:5

cosð/0ŝ� w0Þ exp � a0ŝ

2

� �

8

<

:

9

=

;

ð9:57Þ

where /0 ¼ 0:5ð4a5� a2
0Þ

0:5, a0 = a3 + 0.5a4, and w0 = arctan(0.5a0//0).

9.3.2.2 Stability of Meandering Rivers

In stability analysis, Odgaard (1989) introduced a small perturbation in the form of
a traveling sinusoidal wave to the system of governing equations of a river flow
coupled with the sediment transport. Then, their effect on river planform is
determined by evaluating the growth rate of perturbation. The perturbation due to a
traveling sinusoidal wave is introduced as river displacement n(x, t) given by

nðx; tÞ ¼ amcðtÞ sin½kwbðx� ctÞ� ð9:58Þ

where x is the coordinate distance along the unperturbed river axis or the valley
slope (Fig. 9.12a), kwb is the wave number (= 2p/km), amc is the amplitude, km is
the meandering wavelength, c is the celerity of sinusoidal wave, and t is the time.

Approximating local radius of curvature as r�1
c ¼ �d2n=dx2 and using

Eq. (9.58), Eq. (9.55) is solved for ~Ucn as
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~Ucn ¼
Bk2

wbamc

ðe2
1 þ e2

2Þ
0:5 N sin½kwbðx� ctÞ � c0� ^ c0 ¼ arctan

e2

e1

� �

ð9:59Þ

where e1 ¼ b3� 2b1B2k2
wb, e2 ¼ b2Bkwb� k3

wbB3, and

N ¼ 8j2

an
� 1þ 2m

m3ð2þ mÞ :

Substituting Eq. (9.59) into Eq. (9.54a) yields

Scn ¼
2Bk2

wbamc

ðe2
1 þ e2

2Þ
0:5 N 1þ Bkwb

a1

� �2
" #0:5

sin½kwbðx� ctÞ � b0� ð9:60Þ

where b0 = c0 - arctan(Bkwb/a1).
Odgaard assumed that the rate of bank retreat nb is linearly proportional to the

change of bed level at the bank:

nb ¼ EUc

Hbank

h
� 1

� �

ð9:61Þ

where E is the erosion parameter and Hbank is the near-bank value of H. Due to
small curvature of the river, nb & qn/qt. The closure of the analysis is achieved by
substituting Eq. (9.58) into left-hand side of Eq. (9.61) and Eqs. (9.59) and (9.60)
into right-hand side of Eq. (9.61). Performing required simplifications, the equa-
tions of growth rate of amplitude qamc/qt and celerity c are obtained as follows:

1
amc

� oamc

ot
¼ 2EUc

B
KBkwb 1þ Bkwb

a1

� �2
" #0:5

cos b0 ^ K ¼ NB

2h
� Bkwb

ðe2
1 þ e2

2Þ
0:5

ð9:62aÞ

c ¼ 2EUcK 1þ Bkwb

a1

� �2
" #0:5

sin b0 ð9:62bÞ

Note that the wave number kwb corresponding to maximum amplitude growth,
called dominant wave number, can be determined from the following condition:

o2amc

otokwb

¼ 0
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9.4 Braided Rivers

Braided rivers are quite dynamic with strong fluvial activities (interactions
between streambed morphology, flow, and sediment transport) to follow rapidly
change in subdivided stream forms. The bars and islands characterize braiding by
dividing streams by their sides. While bars are relatively unstable having complex
features, islands are rather stable with well-defined shapes. Bars are modified by
the processes of erosion and deposition and evolve over a short period of time.
During high flow stages, major changes take place due to rapid rates of stream
migration facilitated by high stream power and unstable banks. There can also be
extensive changes in stream position as subdivided streams are abandoned or
earlier abandoned streams are reactivated. However, even in a braided reach, a
single dominant stream, in some cases, can be distinguishable. Planform of braided
rivers can change radically with the change in discharge. For instance, Bristow and
Best (1993) argued that the discharge fluctuations are a prerequisite for braiding
especially in sand-bed rivers. Rivers may act as a single stream during bankfull
conditions and exhibit characteristic braided pattern at lower stages. Therefore, the
number of bars to be emerged may vary with flow stages; as such, complex
sequence of erosion and deposition may occur with the variation of flow stages.
Nevertheless, at both low and high stages, some of the rivers show braided pattern
where some of the islands are in general permanent. Southard et al. (1984) reported
that the process of bar growth and streambed erosion occurs almost simulta-
neously, and the majority of the emerged bars are the result of complex events of
erosion and deposition. Robert (2003) gave a good overview on braided rivers.

Lane (1957) studied planforms of many braided rivers and their history. He
came out with a conclusion that the braiding can be caused by (1) overloading and
(2) steep slopes. Overloading refers to when the sediment discharge (inflow
transport rate) exceeds the sediment capacity (outflow transport rate) of a river
depositing sediment load (aggradations) throughout the reach. As a consequence,
the river carrying most of the sediment load gradually changes its morphology as
the excess sediment load settles progressively in the downstream direction.
Besides, the fining of bed sediment size takes place in the downstream direction
and is usually accompanied by a downstream reduction in bed slope. The depo-
sition of sediment in an aggrading river makes it out of bankfull conditions. The
river tends to widen and becomes shallow with an appearance of bars subjected to
changes in morphology. At low stages, a series of small streams divide and rejoin
through the exposed bars in more or less regular and repeatable processes. These
streams are braided as the bed slope enhances with aggradations. On the other
hand, steep slope that induces greater stream power for the given discharge results
in a wide shallow river in which bars and islands are readily developed. Stream
subdivision is continued until there is inadequate stream power to erode the banks
(Leopold and Wolman 1957). A distinction is often made between bars and
islands, although they have the same origin and may share similar morphological
characteristics. While bars are only developed at low stages being unvegetated, but
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often submerged in bankfull conditions, islands are more stable and may be
vegetated, but emerge even in bankfull conditions.

Carson and Griffiths (1987) recognized three types of braided rivers: unstable
multiple stream, stable multiple stream, and multi-thalweg. In unstable multiple-
stream pattern, streams are separated by the bars and can be rapidly diverted from
one stream to another depending on sediment deposition. Stable multiple-stream
pattern consists of relatively stable streams even during high flow stages with
subdivided streams separated by stable vegetated islands. On the other hand, multi-
thalweg pattern is characterized by braids being separated by submerged bars
during high flow stages.

9.4.1 Mechanism of Braid Formation

Complex mechanisms are involved in inception and development of braided
planforms, depending on the stream flow characteristics and both erosional and
depositional processes. Ashmore (1991) identified four types of mechanisms of
braid formation: middle bar accretion, transverse bar conversion, chute cutoff, and
multiple bar dissection. A summary of various mechanisms put forward by dif-
ferent investigators is presented below:

Leopold and Wolman (1957) were the first to study the mechanism of inception
and development of braided planforms through laboratory experiments. They
identified that the development of braided planforms by middle bar accretion takes
place through a sequence of events that comprise of deposition in mid-river and
erosion of banks. The characteristic shape of middle bars (also called linguoid
bars) is rhombic or lobate in plan view and elongated in streamwise direction. In
an unbraid river reach, localized flow converges to a high velocity at the upstream
end of the narrower flanking river reach leading to an excessive erosion. It forms a
sheet of bed-load sediment (that includes coarser to finer size fractions) that is
transported along the riverbed. In transporting the bed load, a small submerged
gravel bar where the flow becomes locally incompetent to transport the coarsest
particles, called lag deposits, is formed. The upstream of the bar margin is made up
by the coarse fraction of bed-load sediment that is transported along the middle
portion of the river. Finer particles are in general transported over the bar, while a
fraction of finer particles are deposited on the bar and/or trapped behind the coarser
particles, leading to the enlargement of the emerging bar in all dimensions (ver-
tical, streamwise, and transverse directions). Once the bar becomes sufficiently
large, it starts affecting the divided streams along its sides by increase in the flow
velocity or in turn, the stream power, which begins to attack the banks and widens
the river by bank erosion. The bar gradually gets stabilized due to more deposition
on and around it. The feedback process then recurs in another place along the river,
eventually leading to the formation of braided planforms. Ashmore (1991)
observed that the mechanism of middle bar formation is restricted to the near-
threshold flow conditions (that is, the Shields parameter H is in the order of 0.06).
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The mechanism therefore involves the deposition of coarser particles carried as a
bed load by the stream flow, where a small change of local flow depth can be
adequate to reduce the local bed shear stress below the threshold bed shear stress,
being incompetent to transport the coarser particles. Figure 9.14 displays a pho-
tograph of a middle bar in a river.

In an experimental study, Ashmore (1991) observed that another kind of bar
formation process, called the transverse bar conversion, is prevalent. The main
morphological feature of a transverse bar is that it has downstream avalanche faces
being developed under high stream power conditions. Initially, a contracted chute
(narrow channel) with steep sides is formed due to bed erosion by the flow con-
vergence, which possesses an enhanced stream power. Consequently, a substantial
amount of sediment is removed due to the chute erosion and transported down-
stream. As a part of this process, as the flow diverges out of the contracted chute
with a declining flow competency to carry sediment, a massive sediment load is
then deposited forming an incipient bar. As the time progresses, the bed load
continues to deposit in succession in the form of layers as it passes over and across
the bar. This process contributes to the vertical accretion of the bar form by
building up its surface. In the process of deposition of sediment, a steep slant face
is formed where the deposited sediment starts to avalanche over the downstream
edges of the bar. As the elevation of the bar grows, the emerging bar starts to

Fig. 9.14 Photograph of a middle bar in a river (courtesy of A. Radecki-Pawlik, Polish Academy
of Sciences, Poland)
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obstruct the flow that is then deflected off the edges of the bar. The mechanism of
middle bar formation is thus different from that of transverse bar, where the bar
accretions are initiated by the erosion and extensive deposition of large amount of
bed load, rather than the deposition of only the coarser sediment particles which
are locally incompetent to transport by the flow. In contrast to middle bars, when
the bed shear stress is considerably greater than its threshold value, it is possible
for the large amount of sediment required for the transverse bar mechanism to be
eroded and deposited (Ashmore 1991). Figure 9.15 shows a photograph of a
transverse bar in a river.

Fig. 9.15 Photograph of a transverse bar in a river (courtesy of A. Radecki-Pawlik, Polish
Academy of Sciences, Poland)

Fig. 9.16 Photograph of the chute cutoff of a point bar in a river (courtesy of A. Radecki-Pawlik,
Polish Academy of Sciences, Poland)

558 9 Fluvial Processes: Meandering and Braiding



According to Ashmore (1991), other two mechanisms involved in the formation
of a braid can be described as erosional processes. They are chute cutoff and
multiple bar dissection. In chute cutoff, the development of a chute due to bed
erosion across a point bar is prevalent during the inception of braiding. Eventually,
the point bar is separated off from the bank (Fig. 9.16). Chute, in this case, rep-
resents a relatively narrow stream that occurs due to flow concentration to run
through a point bar surface. Chute cutoff may occur on single point bars in existing
braided rivers or across alternate point bars in moderately straight rivers. In a
developed state, the size of chute may become almost similar to that of main
stream on the other side of the separated point bar. Further, middle bars can also be
cutoff by a single stream or multiple streams exhibiting multiple bar dissection
(Rundle 1985a, b). Flow concentration is responsible to the formation of cutoff
into the bar surface. The dissection of bars usually occurs during high flow stages
when the flow crosses over the submerged bar surface. In low flow stages, the
dissected bars are exposed as two or more in numbers of smaller bars, as shown in
Fig. 9.17.

There are additional situations associated with the braid formations that need to
be discussed. Avulsion is defined as a relatively abrupt switching of the stream
flow from one branch to another (Ferguson 1993). This situation prevails when
chute cutoffs form. Also it may occur when the stream flows switch over to
previously abandoned branches of stream. Another mechanism includes the
blocking of a stream flow by a bar deposition and thus leading to the formation of
an upstream pool and a downstream overfall.

Fig. 9.17 Photograph of a dissected bar in a river (courtesy of A. Radecki-Pawlik, Polish
Academy of Sciences, Poland)
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