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Abstract Leaf Area Index (LAI), the area of leaves per unit ground area, and the
Fraction of Photosynthetically Active Radiation (FPAR; 400–700 nm) absorbed
by vegetation are important biophysical variables for quantifying the cycling of
water, carbon and nutrients through ecosystems. The LAI/FPAR products from the
Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor and the Système Pour l’Observation
de la Terre (SPOT) sensor have a large Earth science community user base and the
ease of access, provision of pixel quality and validation information have greatly
aided the use of these products. Recent research efforts focusing on inter-sensor
product consistencies have developed a foundation upon which mature algorithms
and a validation framework can act synergistically to further refine the accuracy
and precision of these existing long-term products. This chapter provides a brief
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overview of the recent progresses in LAI/FPAR estimation algorithms and
resulting biophysical products from the AVHRR, MODIS, SPOT and Landsat
data.

2.1 Introduction

Leaf Area Index (LAI), the one-sided green leaf area per unit ground area, and the
Fraction of Photosynthetically Active Radiation (FPAR; 400–700 nm) absorbed
by vegetation are important biophysical variables for quantifying the cycling of
water, carbon and nutrients through ecosystems (Demarty et al. 2007; Sellers et al.
1996; Tian et al. 2004). LAI characterizes the functioning surface area of a veg-
etation canopy (Myneni et al. 2002). The interactions between the vegetation
surface and the atmosphere, for example, radiation exchange, transpiration rates,
precipitation interception, momentum and gas exchange, is predominantly deter-
mined by leaf area (Monteith and Unsworth 1990). An increase in leaf area, for
example, increases the uptake of CO2 from the atmosphere due to greater sunlight
absorption and hence results in increased canopy conductance and transpiration
rates (Field and Mooney 1983). Field measurements of LAI include hemispherical
photography and optical instruments like TRAC, LAI-2000 or LI-3000C (Chen
et al. 1997; Weiss et al. 2004). Satellite remote sensing enables retrieval of LAI
globally at different spatial resolutions and temporal frequency with algorithms
based on the physics of radiative transfer. Another parameter that characterizes the
energy absorption capacity of a vegetation canopy is FPAR, defined as the fraction
of photosynthetically active radiation (0.4–0.7 lm) absorbed by the vegetation
canopy. FPAR depends on the incident radiation field, architecture and absorption,
reflectance and transmission spectra of the canopy as well as the reflectance of the
soil and/or understory background. FPAR is well related to NDVI and usually
increases with fractional canopy cover and plant leaf area (Myneni and Williams
1994). It is one of the fundamental parameters used to estimate net primary pro-
duction and for modeling of terrestrial carbon processes (Knorr and Kattge 2005;
Pitman 2003; Sellers et al. 1986). Similar to LAI, FPAR has also been identified as
one of the fundamental terrestrial state variables in the context of global change
studies (GCOS 2006).

The LAI/FPAR products from the Advanced Very High Resolution Radiometer
(AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
and the Système Pour l’Observation de la Terre (SPOT) sensor have a large Earth
science community user base and the ease of access, provision of pixel quality and
validation information have greatly aided the use of these products. Recent
research efforts focusing on inter-sensor product consistencies have developed a
foundation upon which mature algorithms and a validation framework can act
synergistically to further refine the accuracy and precision of these existing long-
term products (Brown et al. 2006; Ganguly et al. 2008b; Tarnavsky et al. 2008;
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Van Leeuwen et al. 2006). Multi-decadal, validated, consistent global and regional
data sets of LAI/FPAR from the AVHRR, MODIS, and the SPOT-VGT sensors
are now available at resolutions of 1 km to 1� in service of several national and
international initiatives (Chen 2002; Fernandes and Butson 2003; Ganguly et al.
2008a; Myneni et al. 2002). Long-term records of LAI and FPAR are required by
various terrestrial biosphere models, like the Terrestrial Ecosystem Model (TEM)
(Melillo et al. 1993), Biome-BGC (Running and Gower 1991), Simple Biospheric
Model (SiB) (Sellers et al. 1986), Integrated Biosphere Simulated Model (IBIS)
(Foley et al. 1996), Lund-Potsdam-Jena (LPJ) dynamic global vegetation model in
Land Surface Model (LSM) (Bonan et al. 2003) and the Atmospheric-Vegetation
Interactive Model (AVIM) (Jinjun 1995), for the investigation of the response of
ecosystems to the changes in climate, carbon cycle, land cover and land use. The
Landsat series of sensors also provides a unique opportunity to characterize ter-
restrial ecosystem processes at a spatial scale at which most natural resources
management decisions are made. Although regional- to continental-scale multi-
temporal mosaics of Landsat data have been constructed for pilot studies of
national land use change monitoring and disturbance mapping (Chander et al.
2009; Hansen et al. 2008; Wulder et al. 2002), the Landsat archive has not yet been
exploited to derive long-term biophysical products. This chapter provides a brief
overview of the recent progresses in some of the key LAI/FPAR estimation
algorithms and resulting biophysical products from the AVHRR, MODIS, SPOT
and Landsat data at global to continental scales.

2.2 Algorithmic Theoretical Basis

There is considerable literature on the estimation of LAI from vegetation indices
like the Normalized Difference Vegetation Index (NDVI), Simple Ratio and
Reduced Simple Ratio (RSR) (Asrar et al. 1984; Chen and Cihlar 1996; Stenberg
et al. 2004; Brown et al. 2000). In particular, (Sellers et al. 1996) introduced an
empirical algorithm that calculated FPAR as a function of the simple ratio. Lu and
Shuttleworth (2002) used this definition of FPAR and approximated the relation-
ship between LAI and FPAR to be exponential (Monteith and Unsworth 1990) for
evenly distributed vegetation. Strong positive correlations were found between
LAI and NDVI for various vegetation types (Myneni et al. 1997), as well as with
simple ratio in coniferous forests (Chen and Cihlar 1996). Site-specific NDVI/
RSR-LAI empirical relationships have been used in various ecosystems (Colombo
et al. 2003; Fassnacht et al. 1997; Stenberg et al. 2004), but with limited success
when applied across sites and vegetation classes.

The sensitivity of NDVI or RSR to LAI is controlled by the relationship
between NDVI/RSR and fractional vegetation cover when LAI is in the range of
about 2–4 (Carlson and Ripley 1997; Stenberg et al. 2004). Steltzer and Welker
(2006) incorporated fractional cover of photosynthetic vegetation for multiple
species into the exponential NDVI-LAI model for a regional scale analysis, and
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suggested that species composition affects the NDVI-LAI relationship through
leaf-level properties (leaf optics, leaf structure and orientation) and canopy-level
structural properties that influence the vertical and horizontal distribution of leaf
area within a canopy. Relationships between RSR and LAI in closed canopy
regimes suggest that the inclusion of the short-wave band decreases the effect of
understory reflectance on the retrieval of LAI below a certain threshold value of
crown-closure (Nemani et al. 1993; Rautiainen 2005). It is evident that NDVI/
RSR-LAI empirical relationships do vary across different species and are sensitive
to canopy structure and fractional ground cover. These empirical relationships can
also vary both seasonally and inter-annually with respect to phenological devel-
opment of the vegetation. Thus, a relationship established between LAI and NDVI
in a particular year may not be applicable in other years (Wang 2004). Conse-
quently, the empirical relationships will be site-, time-, and species-specific, and,
therefore, poorly suited for large-scale operational use (Houborg et al. 2007).

An alternate approach is to use physically based models that describe the
interaction of radiation inside a canopy based on physical principles and provide
an explicit connection between biophysical variables and canopy reflectance
(Combal et al. 2002). The physical models of radiation transfer and interaction in
vegetation canopies are usually categorized into four broad types: (1) radiative
transfer models (Knyazikhin et al. 1998; Myneni et al. 1989), (2) geometrical
optical models (Li and Strahler 1992), (3) hybrid models that incorporate both
radiative transfer as well geometric optics (Welles and Norman 1991), and (4)
Monte-Carlo simulation models (Lewis 1999; Ross and Marshak 1988). In
Sects. 2.1 and 2.2, we describe in brief two state-of-the art physical algorithms in
retrieving LAI and FPAR that have evolved over time.

2.3 Modis LAI/FPAR Algorithm: Scaling to AVHRR
and Landsat

The MODIS LAI/FPAR algorithm retrieves LAI and FPAR values given sun and
view directions, Bidirectional Reflectance Factor (BRF) for each MODIS spectral
band, uncertainties in input BRFs, and land cover classes based on a 8-biome
classification map (Myneni et al. 2002; Yang et al. 2006). The retrieval technique
compares observed and modeled BRFs stored in a Look_Up_Table (LUT) for a
suite of canbiome-opy structures and soil patterns that represent an expected range
of typical conditions for a given biome type. The modeled BRFs are simulated
using a canopy 3D stochastic radiative transfer model. All canopy/soil patterns for
which modeled and observed BRFs differ within a specified uncertainty level are
considered acceptable solutions. The mean values of LAI averaged over all
acceptable solutions and the dispersion are reported as the output of the algorithm
(Knyazikhin et al. 1998). The algorithm currently requires: (a) atmospherically
corrected surface reflectances at Red and NIR bands, and (b) an 8-biome Land
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Cover classification map distinguishing the following biomes types: (1) grasses
and cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5) evergreen
broadleaf forests, (6) deciduous broadleaf forests, (7) evergreen needle leaf forests,
(8) deciduous needle leaf forests. The biome map reduces the number of unknowns
of the inverse problem through the use of simplifying assumptions (e.g., biome-
specific models of leaf orientation distributions; Knyazikhin et al. 1998) and
standard constants (e.g., biome-specific leaf and soil optical properties at given
wavelengths). Over 11 years of Terra MODIS and about 10 years of Aqua
MODIS LAI/FPAR products have been generated with this algorithm. Figure 2.1
shows global fields of annual average LAI and FPAR derived from 10 years of
Terra MODIS Collection 5 data.

A consistent retrieval of LAI/FPAR from different sensors depends on the
parameterization of the physically-based algorithm by adjusting for sensor-specific
features of the BRF measurements (spatial resolution, bandwidth, calibration,
atmospheric correction, information content, etc.). The theory of canopy spectral
invariants provides the required BRF parameterization via a small set of well-
defined measurable variables that specify the relationship between the spectral
response of vegetation canopy bounded be biome-specific canopy architecture low
by a non-reflecting surface to the incident radiation at the leaf and canopy scales
(Huang et al. 2007; Yuri Knyazikhin et al. 2011; Lewis and Disney 2007; Smo-
lander and Stenberg 2005). The core theory provides a more easy and efficient way
of simulating wavelength dependent BRFs as a function of biome-specific canopy
structural attributes. The first order approximation of the BRF for a vegetation
canopy bounded below by a non-reflecting surface (Ganguly et al. 2008b; Huang
et al. 2007) is approximated as:

BRFBS;k Xð Þ ¼ xkR1 Xð Þ þ x2
k

1� pxk
R2 Xð Þ; ð2:1Þ

where xk is the leaf single scattering albedo, R1 and R2 are escape probabilities
expressed relative to the number of incident photons and p refers to the recollision
probability, which is defined as the probability that a photon scattered by a foliage
element in the canopy will interact within the canopy again. The spectral
absorptance, aBS,k of the vegetation canopy with non-reflecting background can be
expressed as:

aBS;k ¼
1� xk

1� pxk
i0; ð2:2Þ

where i0 is the probability of initial collisions, or canopy interceptance, defined as
the portion of photons from the incident beam that are intercepted, i.e., collide with
phytoelements for the first time. The FPAR is a weighted integral of Eq. (2.2) over
the photosynthetically active radiation (PAR) spectral region (Knyazikhin et al.
1998). The formulation in Eq. (2.1) permits decoupling of the structural and
radiometric components of any optical sensor signal, and requires a set of sensor-
specific values of configurable parameters, namely the ‘‘single scattering albedo’’

2 Green Leaf Area and Fraction of Photosynthetically 47



Fig. 2.1 Global color-coded maps of Terra MODIS Collection 5 annual average LAI and FPAR.
These maps were generated from nearly 10 years of Terra MODIS data (January 2001 to
December 2010). Leaf area index (LAI) is defined as the one-sided green leaf area per unit
ground area in broadleaf canopies and as one-half the total needle surface area per unit ground
area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active
radiation (400–700 nm) absorbed by the green elements of a vegetation canopy. Both quantities
are dimensionless
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and ‘‘uncertainties in surface reflectances’’ that allow to maintain consistency in
the retrieved LAI (Ganguly et al. 2008b). The analytical expressions for the total
BRF formulation (e.g. contributions from understory and canopy that are related to
reflectance, transmittance and absorptance simulations) are documented in (Gan-
guly et al. 2012) and are not provided here for the sake of brevity.

To achieve accurate retrievals from a particular sensor like Landsat, the sim-
ulated surface reflectances making up the LUT should be adjusted to be consistent
with the expected range of measured surface reflectances. The simulated surface
reflectances are highly sensitive to leaf single scattering albedo for medium-to-
high LAI and to soil reflectances for low LAI. The single scattering albedo is a
function of spatial resolution and accounts for the variation in BRF with sensor
spatial resolution and spectral bandwidth (c.f. Sects. 4 and 5 of Ganguly et al.
2008b). The theoretical scaling of the algorithm has been demonstrated by
(Ganguly et al. 2008a) to derive LAI from the AVHRR dataset that is consistent
with LAI products from other sensors such as MODIS and SPOT. In essence, the
BRF can be computed for the sensor-specific resolution and spectral bands by
adjusting the single scattering albedo. For Landsat, the initial set of single scat-
tering albedos for the red, NIR and SWIR bands are calculated for each biome as
the mean single scattering albedo, such that

x ¼
Zb

a

xkf kð Þdk ð2:3Þ

where f(k) is the relative spectral response function for the Landsat spectral bands.
a and b represents the lower and upper bounds for wavelengths in the red and NIR
bands and xk for different biomes is obtained from field measured leaf spectral
measurements (Tian et al. 2004). x is further tuned to achieve the best possible
overlap of simulated BRFs with Landsat observed surface reflectances over a suite
of biomes (Ganguly et al. 2012). The dominant factors in classifying the biomes,
based on RED, NIR, and SWIR bands, are soil reflectances and single scattering
albedos in the respective bands.

The LAI retrieval algorithm exploits the location information in the reflectance
cross planes by attributing each point in the spectral space to a specific physical
state that is characterized by a background brightness and LAI (Knyazikhin et al.
1998). A pixel can have a background ranging from dark to bright depending on
the type of soil, and the LAI can vary over a range for each specific instance of
background brightness. Given a Landsat pixel with a reflectance triplet (RED,
NIR, SWIR), a merit function is used to select the set of acceptable solutions such
that

D2 ¼ BRFNIR � BRFNIR;sim

r2
NIR

þ BRFRED � BRFRED;sim

r2
RED

þ BRFSW � BRFSW ;sim

r2
SW

þ

ð2:4Þ
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Here, BRFNIR, BRFRED and BRFSW denote values of measured surface reflec-
tances in the NIR, Red and SWIR spextral bands, while BRFNIR,sim, BRFRED,sim and
BRFSW,sim correspond to respective simulated reflectances from the LUT. The
dispersions r2

NIR; r
2
RED and r2

SW quantify combined model and observational uncer-
tainties in NIR, RED and SWIR spectral bands and are configurable parameters in
the retrieval approach (Wang et al. 2001). The dispersions are represented as
rNIR ¼ eNIR � NIR; rRED ¼ eRED � RED; and rSWIR ¼ eSWIR � SWIR;where eNIR; eRED;
and eSWIR are the corresponding relative uncertainties (Wang et al. 2001). The
optimum values of relative uncertainties used in this study (Ganguly et al. 2008a) are
those that result in maximizing the retrieval index without loss of information
content. The variable D2, characterizing how close the measured surface reflectances
are to the simulated ones, has a Chi square distribution with three degrees of free-
dom. A value of D2 B 3 (3-band inversion) indicates good proximity between
observations and simulations. All LAI and soil reflectance values satisfying this
criterion constitute the set of acceptable solutions for a particular Landsat obser-
vation (NIR, RED and SWIR). In the situation in which D2 B 3 fails to localize a
solution set, Eq. (2.4) limits to a two band based merit function (excluding SWIR
and D2 B 2). If the reflectance based inversion fails, an empirical relationship
between Simple Ratio and LAI is used to retrieve LAIs. (Ganguly et al. 2012) shows
the implementation of the algorithm to derive LAI from Landsat derived surface
reflectances. Figure 2.2 shows a 30 m forest LAI for the Conterminous United
States derived from the Landsat Global Land Survey (GLS) 2005 dataset.

2.4 Spot GEOV2 LAI/FPAR Algorithm

The GEOV2 LAI and FPAR products derive from the past experience gained in
the development of GEOV1 products from the SPOT VEGETATION (GEOV1/
VGT) instrument (Baret et al. 2010, 2013) and AVHRR (GEOV1/AVHRR) (A
Verger et al. 2012). The theoretical framework for GEOV1/VGT capitalizes on the
MODIS and CYCLOPES products development. A database of sites representative
at the global scale was populated with MODIS (Myneni et al. 2002; Shabanov
et al. 2005) and CYCLOPES (Baret et al. 2007) products that were combined to
retain the advantages while minimizing their deficiencies shown in few validation
exercises (Garrigues et al. 2008; Weiss et al. 2007; McCallum et al. 2010). The
resulting LAI or FPAR products values were used to train a neural network with
VEGETATION derived top of the canopy directionally normalized reflectance
values as inputs. This approach provided improved performances as compared to
both MODIS and CYCLOPES products as demonstrated by few validation exer-
cises (Camacho et al. 2012). However, these GEOV1/VGT products did not
improve the continuity of the original MODIS and CYCLOPES products. Further,
the pre-processing steps used to normalize the directional effects was based on a
30 days compositing window, making at least a 15 days delay between the actual
date of the product and its delivery. Several operational applications require real
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time delivery of the products and the 15 days delay was clearly a limitation for
these users. Finally, the VEGETATION observations were starting only from
1998, while several applications require long time series.

The AVHRR archive was consequently exploited to derive the GEOV1/AV-
HRR products that extend the GEOV1/VGT products back to 1981. For this
purpose, the 1999–2000 years where both VEGETATION and AVHRR overlap
were used to train a neural network with GEOV1/VGT products as output and
AVHRR reflectance as inputs. The AVHRR LTDR reflectance products (Devadiga
et al. 2007) were used here. They correspond to atmospherically corrected and
directionally normalized daily values. The corresponding daily LAI and FPAR
products were smoothed using TSGF algorithm (Verger et al. 2011) and gap filled
using the climatology as background information when limited observations are
available. The GEOV1/AVHRR products have been demonstrated to be highly
consistent with the GEOV1/VGT product values while improving largely the
continuity, with almost no gaps (Verger et al. 2012). Figure 2.3a shows a global
map of the GEOV1/VGT LAI product for the first dekad of May 2002 and
Fig. 2.3b demonstrates the consistency between the GEOV1/VGT and GEOV1/
AVHRR products for the overlapping time period.

Fig. 2.2 A 30 m Forest LAI for the Conterminous United States derived from the Landsat
Global Land Survey (GLS) 2005 dataset. Most of the GLS Landsat scenes are acquired during the
peak of growing season. The forested pixels are delineated from the National Land Cover Dataset
(NLCD 2006) classification map. The Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) framework is used to convert the GLS Landsat data to surface reflectances at
the Red, NIR and Shortwave Infrared (SWIR) bands. Following the approach as detailed in
Ganguly et al. (2012), a radiative transfer based inversion methodology was implemented to
retrieve LAI for each pixel given the surface reflectances at the Red, NIR and SWIR bands
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The GEOV2/VGT products were later developed to improve the continuity of
GEOV1/VGT as well as to provide real time estimates of the products. The
MODIS and CYCLOPES products were first combined similarly as what was
achieved with GEOV1/VGT over a globally representative data set. Then the daily
VEGETATION reflectances were used as input to train a neural network to esti-
mate the LAI and FPAR computed from the combination of MODIS and

Fig. 2.3 a GEOV1/VGT LAI global map for the first dekad of May 2002. b Typical temporal
profiles derived from GEOV1/AVHRR (black) and GEOV1/VGT (blue). The overlap period in
1999–2000 shows good consistency between both products. The red crosses correspond to
available ground measurements of LAI
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CYCLOPES products. The resulting daily LAI and FPAR estimates were gap
filled and smoothed with the time series-processing algorithm developed previ-
ously for GEOV1/AVHRR. The use of the background climatology information on
LAI and FPAR values, as well as the smoothing algorithm allowed for short-term
projections required for deriving real time estimates of the products. The resulting
GEOV2/VGT products were demonstrated to be highly consistent with GEOV1/
VGT values with a large improvement in the continuity of the data (Baret et al.
2013). GEOV2/VGT is also fairly consistent with GEOV1/AVHRR and provides
thus a time series of more than 32 years of LAI and FPAR products. The GEOV
series of products are shown below in Table 2.1.

2.5 Availability of Data Products

The LAI/FPAR products as described above are available to use by the scientific
research community. The standard MODIS Collection 5 LAI/FPAR products are
available via the Reverb/ECHO web service at http://reverb.echo.nasa.gov/reverb/.
The standard MODIS products from 2000 till present are available at a spatial
resolution of 1 km and at 8 day temporal frequency. The long-term multi-year
(1981 till present) monthly AVHRR LAI/FPAR dataset based on a scaled version
of the MODIS algorithm is available upon request at the Climate and Vegetation
Research Group at http://cliveg.bu.edu/modismisr/index.html. The GEOV2 LAI/
FPAR products can be downloaded freely from the GEOLAND2 web portal
located at http://www.geoland2.eu/portal/. They are available at the dekadal time
step with 0.05� and 0.0089� spatial sampling interval in lat-lon geographic pro-
jection system. The MODIS LAI products at a spatial resolution of 250 m is also
available upon request via the NASA Earth Exchange (NEX) web portal located at
https://c3.nasa.gov/nex/. NEX in collaboration with USGS EROS is also currently
making Landsat derived LAI available to research community on demand basis.

2.6 Validation Efforts

There has been an extensive effort since the inception of the NASA EOS era to
validate biophysical products. Validation campaigns from existing network of sites
like the BigFoot, AERONET, FLUXNET, EOS Land Validation Core Sites, and
Valeri with sustained efforts from several research teams across the globe have
provided the necessary platform to validate these biophysical products (Garrigues
et al. 2008; Morisette et al. 2006; Pisek and Chen 2007). Both the MODIS and
SPOT derived LAI/FPAR products have been extensively validated over a suite of
vegetation types and climatic regimes. It is to be noted that ‘‘validation’’ refers to
both (a) direct and (b) indirect validation, where the former refers to comparing
satellite derived measures with ground truth while the later refers to an exercise
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intercomparing products from different sensor systems to test consistency. Both
direct and indirect validation provides a comprehensive knowledge about the
accuracy of these products and level of uncertainties that may results due to input
data and modeling errors.

Direct validation results for the MODIS LAI/FPAR over vegetation types
representative of all the major biome types suggest that the product provides
reasonable estimates of LAI for most cover types and land use types (Garrigues
et al. 2008; Huang et al. 2006; Kauwe et al. 2011; Pisek and Chen 2007; Sea et al.
2011; Tan et al. 2005; Yang et al. 2006). The MODIS LAI/FPAR products are
categorized as a Stage 2 land validated product (http://landval.gsfc.nasa.gov/
ProductStatus.php?ProductID=MOD15) that have the following characteristics: (a)
LAI accuracy of 0.5 LAI units (uncertainty of 0.66 LAI), FPAR accuracy of 0.1;
(b) spatial resolution from 500 m to 1 km; (c) temporal frequency from 4 days to
monthly (Yang et al. 2006). Direct validation of the GEOV-1 products also shows
a satisfactory agreement with field observations. An indirect validation imple-
menting a scaled version of the MODIS algorithm to derive an LAI dataset from
AVHRR shows satisfactory agreement with the MODIS and CYCLOPES LAI
products at a range of spatial resolutions and field data (Ganguly et al. 2008a). The
Landsat based LAI products are not rigorously validated, however an indirect
validation with MODIS shows comparable results (Ganguly et al. 2012).
Figure 2.4 briefly demonstrates the results obtained from validation exercises
performed with the AVHRR, MODIS and GEOV suite of LAI products.

2.7 Concluding Remarks

Current scientific research and application studies have demonstrated the useful-
ness of physically derived LAI/FPAR products at local-to-regional scales; how-
ever, there are certain limitations in physically based approaches. First, data
measurement uncertainties from different sensors can impact the retrieval of a
biophysical product. Data uncertainties mostly result from calibration ambiguities,
current state of the atmospheric correction algorithm and other effects introduced
by solar/view angle corrections. Second, global retrievals of LAI/FPAR products
utilize land cover classification maps. Classification inaccuracies are a critical
source of error in the LAI retrieval process, especially for those regions under-
going dynamic land cover change (e.g. changes from herbaceous to woody bio-
mes). There are intrinsic limitations in the retrieval algorithms that mostly include
(1) accurately modeling the uncertainty of the input reflectances and incorporating
the variability in model and input uncertainties with biome types; (2) incorporating
a better understory reflectance characterization in simulating the soil reflectance
behavior and (3) using constrained definitions of leaf spectral properties as defined
by the broad biome types. Finally, a global validation of coarse-to-fine resolution
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LAI/FPAR products with ground measurements is a complicated task because of
issues with aggregation of plot-level measurements to sensor resolution, limited
temporal and spatial sampling of the ground data, field instrument calibrations,
sampling errors, etc.

Future research on LAI/FPAR product development will continue along the
following directions:

(a) Implementation of physical algorithms to derive high-resolution LAI/FPAR
products—this will involve characterizing land cover types at a sufficiently
high resolution.

Fig. 2.4 Validation of global LAI/FPAR products. Panel a shows comparison between MODIS
Collection 5 and AVHRR LAI product from Ganguly et al. (2008b) for the year 2001 (blue color)
and 2002 (red color) for different vegetation classes. The LAI values are globally averaged values
for the respective vegetation pixels. Panel b shows a comparison of AVHRR LAI as in a with
field measurements for the six major vegetation classes. Altogether 44 field data values were used
(Table B2 of Appendix B in Ganguly et al. 2008b). Panel c shows comparison between GEOV1
(GEO_V01 on y-axis) LAI product and ground measurements (DIRECT on x-axis). All ground
measurements for the period January, 1999 till August, 2012 are used. Panel d shows a similar
comparison as in c but with MODIS Collection 5 LAI product. Reprinted from Remote Sensing
of Environment, 112, Ganguly, S., Samanta, A., Schull, M. A., Shabanov, N. V., Milesi, C.,
Nemani, R. R., Knyazikhin, Y., Myneni, R.B., Generating vegetation leaf area index Earth system
data record from multiple sensors. Part 2: Implementation, analysis and validation, 4318–4332,
Copyright (2008), with permission from Elsevier
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(b) Continued validation of coarse-to-high resolution LAI/FPAR products with
available and future acquisitions of field measurements in enhancing the
accuracy of the satellite-derived products. Field measurements that provide
synoptic knowledge about biome-specific spectral characteristics, will be an
integral part of product assessment efforts that feed into algorithm refinement.

(c) Utilization of high-resolution LAI products for estimating above ground bio-
mass and Net Primary Productivity (NPP) estimates. Current algorithms in
fusing Landsat derived LAI and canopy height estimates from the ICESat
GLAS instrument have shown significant potential in estimating biomass over
forested regions.

(d) Enhancing the MODIS experience to Landsat LAI/FPAR products to monitor
long-term changes and trends in land surface characteristics due to climatic
variability and human-induced changes.

References

Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic
radiation and leaf-area index from spectral reflectance in wheat. Agron J 76(2):300–306

Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1:
LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over
existing products. Part1: principles of development and production. Remote Sens Environ
137:299–309

Baret F, Weiss M, Lacaze R, Camacho F, Pacholcyzk P, Smets B (2010) Consistent and accurate
LAI, FAPAR, and FCover global products: principles and evaluation of GEOV1 products. In:
Proceedings of 3rd RAQRS, 27th Sept.- 1st Oct., Torrent, pp 208–213

Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B et al (2007) LAI, fAPAR
and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of
the algorithm. Remote Sens Environ 110(3):275–286. http://www.sciencedirect.com/science/
article/B6V6V-4NKJ1K0-1/2/29e421e7954752424d9bfbf9b697ca68

Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation
model for use with climate models: concepts and description of simulated vegetation
dynamics. Glob Change Biol 9(11):1543–1566. doi:10.1046/j.1529-8817.2003.00681.x

Brown L, Chen JM, Leblanc SG, Cihlar J (2000) A shortwave infrared modification to the simple
ratio for LAI retrieval in boreal forests an image and model analysis. Remote Sens Environ
71(1):16–25. doi:10.1016/S0034-4257(99)00035-8

Brown M, Pinzon JE, Didan K, Morisette JT, Tucker CJ (2006) Evaluation of the consistency of
long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and
Landsat ETM ? sensors. IEEE Trans Geosci Remote Sens 44(7):1787–1793. doi:10.1109/
TGRS.2005.860205

Camacho F, Baret F, Cernicharo J, Lacaze R, Weiss M (2012) Quality assessment of the first
version of Geoland-2 biophysical variables produced at global scale. In: Sobrino J. (Ed.),
Third international symposium on recent advances in quantitative remote sensing. Torrent

Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and
leaf area index. Remote Sens Environ 62(3):241–252

Chander G, Huang C, Yang L, Homer C, Larson C (2009) Developing consistent landsat data sets
for large area applications: the mrlc 2001 protocol. IEEE Geosci Remote Sens Lett
6(4):777–781. doi:10.1109/LGRS.2009.2025244

2 Green Leaf Area and Fraction of Photosynthetically 57

http://www.sciencedirect.com/science/article/B6V6V-4NKJ1K0-1/2/29e421e7954752424d9bfbf9b697ca68
http://www.sciencedirect.com/science/article/B6V6V-4NKJ1K0-1/2/29e421e7954752424d9bfbf9b697ca68
http://dx.doi.org/10.1046/j.1529-8817.2003.00681.x
http://dx.doi.org/10.1016/S0034-4257(99)00035-8
http://dx.doi.org/10.1109/TGRS.2005.860205
http://dx.doi.org/10.1109/TGRS.2005.860205
http://dx.doi.org/10.1109/LGRS.2009.2025244


Chen J (2002) Derivation and validation of Canada-wide coarse-resolution leaf area index maps
using high-resolution satellite imagery and ground measurements. Remote Sens Environ
80(1):165–184. doi:10.1016/S0034-4257(01)00300-5

Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using landsat TM
images. Remote Sens Environ 55(2):153–162

Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997) Leaf area index of boreal forests:
Theory, techniques, and measurements. J Geophys Res-Atmos 102(D24):29429–29443

Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different
vegetation types using high resolution satellite data. Remote Sens Environ 86(1):120–131.
doi:10.1016/s0034-4257(03)00094-4

Combal B, Baret F, Weiss M, Trubuil A, Mace D, Pragnere A, Myneni RB et al (2002) Retrieval
of canopy biophysical variables from bidirectional reflectance using prior information to solve
the ill-posed inverse problem. Remote Sens Environ 84(1):1–15. doi:10.1016/S0034-
4257(02)00035-4

Demarty J, Chevallier F, Friend AD, Viovy N, Piao S, Ciais P (2007) Assimilation of global
MODIS leaf area index retrievals within a terrestrial biosphere model. Geophys Res Lett
34(15):L15402 doi:10.1029/2007GL030014

Devadiga S, Masuoka E, Brown M, Pinzon J, Tucker CJ, Roy DP, Ju J et al (2007) Generating a
long-term land data record from the AVHRR and MODIS Instruments. In: IEEE geoscience
and remote sensing symposium, 2007, IGARSS 2007. pp 1021–1025 doi:10.1109/
IGARSS.2007.4422974

Fassnacht KS, Gower ST, MacKenzie MD, Nordheim EV, Lillesand TM (1997) Estimating the
leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper.
Remote Sens Environ 61(2):229–245

Fernandes R, Butson C (2003) A Landsat TM/ETM ? based accuracy assessment of leaf area
index products for Canada derived from SPOT4/VGT data. Can J Remote Sens
29(2):241–258. http://scholar.google.com/scholar?q=A+Landsat+TM/ETM++basedaccuracy
+assessment+of+leaf+area+index+products+for+Canada+derived+from+SPOT4/
VGT+data&hl=en&btnG=Search&as_sdt=1,5&as_sdtp=on#0

Field C, Mooney HA (1983) Leaf age and seasonal effects on light, water, and nitrogen use
efficiency in a California shrub. Oecologia 56(2–3):348–355

Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An
integrated biosphere model of land surface processes, terrestrial carbon balance, and
vegetation dynamics. Global Biogeochem Cycles 10(4):603–628

GCOS (2006) Systematic observation requirements for satellite-based products for climate.
WMO/TD No. 1338 p 103. http://www.wmo.ch/web/gcos/gcoshome.html

Ganguly S, Nemani RR, Zhang G, Hashimoto H, Milesi C, Michaelis A, Wang W et al (2012)
Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration.
Remote Sens Environ 122:185–202. doi:10.1016/j.rse.2011.10.032

Ganguly S, Samanta A, Schull MA, Shabanov NV, Milesi C, Nemani RR, Knyazikhin Y et al
(2008a) Generating vegetation leaf area index Earth system data record from multiple sensors.
Part 2: Implementation, analysis and validation. Remote Sens Environ 112(12):4318–4332.
doi:10.1016/j.rse.2008.07.013

Ganguly S, Schull M, Samanta A, Shabanov N, Milesi C, Nemani R, Knyazikhin Y et al (2008b)
Generating vegetation leaf area index earth system data record from multiple sensors. Part 1:
Theory. Remote Sens Environ 112(12):4333–4343. doi:10.1016/j.rse.2008.07.014

Garrigues S, Lacaze R, Baret F, Morisette JT, Weiss M, Nickeson JE, Fernandes R et al (2008)
Validation and intercomparison of global Leaf Area Index products derived from remote
sensing data. J Geophys Res 113(G2):G02028. doi:10.1029/2007JG000635

Hansen M, Roy D, Lindquist E, Adusei B, Justice C, Altstatt A (2008) A method for integrating
MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo
Basin. Remote Sens Environ 112(5):2495–2513. doi:10.1016/j.rse.2007.11.012

58 S. Ganguly et al.

http://dx.doi.org/10.1016/S0034-4257(01)00300-5
http://dx.doi.org/10.1016/s0034-4257(03)00094-4
http://dx.doi.org/10.1016/S0034-4257(02)00035-4
http://dx.doi.org/10.1016/S0034-4257(02)00035-4
http://dx.doi.org/10.1029/2007GL030014
http://dx.doi.org/10.1109/IGARSS.2007.4422974
http://dx.doi.org/10.1109/IGARSS.2007.4422974
http://scholar.google.com/scholar?q=A+Landsat+TM/ETM++based+accuracy+assessment+of+leaf+area+index+products+for+Canada+derived+from+SPOT4/VGT+data&hl=en&btnG=Search&as_sdt=1,5&as_sdtp=on#0
http://scholar.google.com/scholar?q=A+Landsat+TM/ETM++based+accuracy+assessment+of+leaf+area+index+products+for+Canada+derived+from+SPOT4/VGT+data&hl=en&btnG=Search&as_sdt=1,5&as_sdtp=on#0
http://scholar.google.com/scholar?q=A+Landsat+TM/ETM++based+accuracy+assessment+of+leaf+area+index+products+for+Canada+derived+from+SPOT4/VGT+data&hl=en&btnG=Search&as_sdt=1,5&as_sdtp=on#0
http://www.wmo.ch/web/gcos/gcoshome.html
http://dx.doi.org/10.1016/j.rse.2011.10.032
http://dx.doi.org/10.1016/j.rse.2008.07.013
http://dx.doi.org/10.1016/j.rse.2008.07.014
http://dx.doi.org/10.1029/2007JG000635
http://dx.doi.org/10.1016/j.rse.2007.11.012


Houborg R, Soegaard H, Boegh E (2007) Combining vegetation index and model inversion
methods for the extraction of key vegetation biophysical parameters using Terra and Aqua
MODIS reflectance data. Remote Sens Environ 106(1):39–58. doi:10.1016/j.rse.2006.07.016

Huang D, Knyazikhin Y, Dickinson RE, Rautiainen M, Stenberg P, Disney M, Lewis P et al
(2007) Canopy spectral invariants for remote sensing and model applications. Remote Sens
Environ 106(1):106–122

Huang D, Yang WZ, Tan B, Rautiainen M, Zhang P, Hu JN, Shabanov NV et al (2006) The
importance of measurement errors for deriving accurate reference leaf area index maps for
validation of moderate-resolution satellite LAI products. IEEE Trans Geosci Remote Sens
44(7):1866–1871. doi:10.1109/tgrs.2006.876025

Jinjun J (1995) A climate-vegetation interaction model: simulating physical and biological
processes at the surface. J Biogeogr 22:445–451

Kauwe MGD, Disney MI, Quaife T, Lewis P, Williams M (2011) An assessment of the MODIS
collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens
Environ 115(2):767–780. doi:10.1016/j.rse.2010.11.004

Knorr W, Kattge J (2005) Inversion of terrestrial ecosystem model parameter values against eddy
covariance measurements by Monte Carlo sampling. Glob Change Biol 11(8):1333–1351.
doi:10.1111/j.1365-2486.2005.00977.x

Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998) Synergistic algorithm
for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically
active radiation from MODIS and MISR data. J Geophys Res 103(D24):32257–32275.
doi:10.1029/98JD02462

Knyazikhin Y, Schull MA, Xu L, Myneni RB, Samanta A (2011) Canopy spectral invariants. Part
1: A new concept in remote sensing of vegetation. J Quant Spectrosc Radiat Transfer
112(4):727–735. doi:10.1016/j.jqsrt.2010.06.014

Lewis P (1999) Three-dimensional plant modelling for remote sensing simulation studies using
the Botanical Plant Modelling System. Agronomie 19(3–4):185–210

Lewis P, Disney M (2007) Spectral invariants and scattering across multiple scales from within-
leaf to canopy. Remote Sens Environ 109(2):196–206

Li XW, Strahler AH (1992) Geometric-optical bidirectional reflectance modeling of the discrete
crown vegetation canopy–effect of crown shape and mutual shadowing. IEEE Trans Geosci
Remote Sens 30(2):276–292

Lu LX, Shuttleworth WJ (2002) Incorporating NDVI-derived LAI into the climate version of
RAMS and its impact on regional climate. J Hydrometeorology 3(3):347–362

McCallum I, Wagner W, Schmullius C, Shvidenko A, Obersteiner M, Fritz S, Nilsson S (2010)
Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote
Sens Environ 114(5):941–949. doi:10.1016/j.rse.2009.12.009

Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global
climate-change and terrestrial net primary production. Nature 363(6426):234–240

Monteith JL, Unsworth MH (1990) Principles of environmental physics (p 291). Edward Arnold,
London

Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV et al
(2006) Validation of global moderate-resolution LAI products: a framework proposed within
the CEOS land product validation subgroup. IEEE Trans Geosci Remote Sens
44(7):1804–1817. doi:10.1109/TGRS.2006.872529

Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y et al (2002)
Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS
data. Remote Sens Environ 83(1–2):214–231

Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the
northern high latitudes from 1981 to 1991. Nature 386(6626):698–702. doi:10.1038/386698a0

Myneni RB, Ross J, Asrar G (1989) A review on the theory of photon transport in leaf canopies.
Agric For Meteorol 45(1–2):1–153

Myneni RB, Williams DL (1994) On the relationship between FAPAR and NDVI. Remote Sens
Environ 49(3):200–211

2 Green Leaf Area and Fraction of Photosynthetically 59

http://dx.doi.org/10.1016/j.rse.2006.07.016
http://dx.doi.org/10.1109/tgrs.2006.876025
http://dx.doi.org/10.1016/j.rse.2010.11.004
http://dx.doi.org/10.1111/j.1365-2486.2005.00977.x
http://dx.doi.org/10.1029/98JD02462
http://dx.doi.org/10.1016/j.jqsrt.2010.06.014
http://dx.doi.org/10.1016/j.rse.2009.12.009
http://dx.doi.org/10.1109/TGRS.2006.872529
http://dx.doi.org/10.1038/386698a0


Nemani R, Pierce L, Running S, Band L (1993) Forest ecosystem processes at the watershed
scale: Sensitivity to remotely-sensed Leaf Area Index estimates. Int J Remote Sens
14(13):2519–2534. doi:10.1080/01431169308904290

Pisek J, Chen JM (2007) Comparison and validation of MODIS and VEGETATION global LAI
products over four BigFoot sites in North America. Remote Sens Environ 109(1):81–94.
doi:10.1016/j.rse.2006.12.004

Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate
models. Int J Climatol 23(5):479–510. doi:10.1002/joc.893

Rautiainen, M (2005) Retrieval of leaf area index for a coniferous forest by inverting a forest
reflectance model. Remote Sens Environ 99:295–303

Ross JK, Marshak AL (1988) Calculation of canopy bidirectional reflectance using the Monte-
Carlo method. Remote Sens Environ 24(2):213–225

Running SW, Gower ST (1991) Forest-BGC, a general-model of forest ecosystem processes for
regional applications.2. Dynamic carbon allocation and nitrogen budgets. Tree Physiol
9(1–2):147–160

Sea WB, Choler P, Beringer J, Weinmann RA, Hutley LB, Leuning R (2011) Documenting
improvement in leaf area index estimates from MODIS using hemispherical photos for
Australian savannas. Agric For Meteorol 151(11):1453–1461. doi:10.1016/
j.agrformet.2010.12.006

Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (sib) for use within
general-circulation models. J Atmos Sci 43(6):505–531

Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, et al. (1996) A revised land
surface parameterization (SiB2) for atmospheric GCMs. Part1: Model formulation. J Clim
9(4):676–705

Shabanov NV, Huang D, Yang W, Tan B, Knyazikhin Y, Myneni RB, Ahl DE et al (2005)
Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf
forests. IEEE Trans Geosci Remote Sens 43(8):1855–1865. doi:10.1109/TGRS.2005.852477

Smolander S, Stenberg P (2005) Simple parameterizations of the radiation budget of uniform
broadleaved and coniferous canopies. Remote Sens Environ 94(3):355–363. doi:10.1016/
j.rse.2004.10.010

Steltzer H, Welker JM (2006) Modeling the effect of photosynthetic vegetation properties on the
NDVI–LAI relationship. Ecology 87(11):2765–2772

Stenberg Pauline, Rautiainen Miina, Manninen T (2004) Reduced simple ratio better than NDVI
for estimating LAI in Finnish pine and spruce stands. Silva Fennica 38:3–14

Tan B, Hu JN, Huang D, Yang WZ, Zhang P, Shabanov NV, Knyazikhin Y et al (2005)
Assessment of the broadleaf crops leaf area index product from the Terra MODIS instrument.
Agric For Meteorol 135(1–4):124–134. doi:10.1016/j.agrformet.2005.10.008

Tarnavsky E, Garrigues S, Brown M (2008) Multiscale geostatistical analysis of AVHRR, SPOT-
VGT, and MODIS global NDVI products. Remote Sens Environ 112(2):535–549.
doi:10.1016/j.rse.2007.05.008

Tian, Y. (2004) Comparison of seasonal and spatial variations of leaf area index and fraction of
absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectrora-
diometer (MODIS) and Common Land Model. J Geophys Res 109(D1), D01103.
doi:10.1029/2003JD003777 American Geophysical Union

Van Leeuwen W, Orr B, Marsh S, Herrmann S (2006) Multi-sensor NDVI data continuity:
uncertainties and implications for vegetation monitoring applications. Remote Sens Environ
100(1):67–81. doi:10.1016/j.rse.2005.10.002

Verger A, Baret F, Weiss M, Lacaze R, Makhmara H, and Vermote E (2012) Long term
consistent global GEOV1 AVHRR biophysical products. 1st EARSeL workshop on temporal
analysis of satellite images, Mykonos (Greece) (pp 1–6)

Verger Aleixandre, Baret F, Weiss M (2011) A multisensor fusion approach to improve LAI time
series. Remote Sens Environ 115(10):2460–2470. doi:10.1016/j.rse.2011.05.006

Wang Y (2004) Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland.
Remote Sens Environ 91(1):114–127. doi:10.1016/j.rse.2004.02.007

60 S. Ganguly et al.

http://dx.doi.org/10.1080/01431169308904290
http://dx.doi.org/10.1016/j.rse.2006.12.004
http://dx.doi.org/10.1002/joc.893
http://dx.doi.org/10.1016/j.agrformet.2010.12.006
http://dx.doi.org/10.1016/j.agrformet.2010.12.006
http://dx.doi.org/10.1109/TGRS.2005.852477
http://dx.doi.org/10.1016/j.rse.2004.10.010
http://dx.doi.org/10.1016/j.rse.2004.10.010
http://dx.doi.org/10.1016/j.agrformet.2005.10.008
http://dx.doi.org/10.1016/j.rse.2007.05.008
http://dx.doi.org/10.1029/2003JD003777
http://dx.doi.org/10.1016/j.rse.2005.10.002
http://dx.doi.org/10.1016/j.rse.2011.05.006
http://dx.doi.org/10.1016/j.rse.2004.02.007


Wang Y, Tian Y, Zhang Y, El-Saleous N, Knyazikhin Y, Vermote E, Myneni RB (2001)
Investigation of product accuracy as a function of input and model uncertainties Case study
with SeaWiFS and MODIS LAI/FPAR algorithm. Remote Sens Environ 78(3):299–313.
doi:10.1016/S0034-4257(01)00225-5

Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf
area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agric For
Meteorol 121:37–53

Weiss M, Baret F, Garrigues S, Lacaze R (2007) LAI and fAPAR CYCLOPES global products
derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4
products. Remote Sens Environ 110(3):317–331. http://www.sciencedirect.com/science/
article/B6V6V-4NKB1YP-1/2/7fc55dac10c40359f085241851a6fa37

Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture.
Agron J 83(5):818–825

Wulder M, Loubier E, Richardson D (2002) Landsat-7 ETM ? orthoimage coverage of Canada.
Can J Remote Sens 28(5):667–671

Yang W, Tan B, Huang D, Rautiainen M, Shabanov NV, Wang Y, Privette JL et al (2006)
MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans
Geosci Remote Sens 44(7):1885–1898. doi:10.1109/TGRS.2006.871215

2 Green Leaf Area and Fraction of Photosynthetically 61

http://dx.doi.org/10.1016/S0034-4257(01)00225-5
http://www.sciencedirect.com/science/article/B6V6V-4NKB1YP-1/2/7fc55dac10c40359f085241851a6fa37
http://www.sciencedirect.com/science/article/B6V6V-4NKB1YP-1/2/7fc55dac10c40359f085241851a6fa37
http://dx.doi.org/10.1109/TGRS.2006.871215


http://www.springer.com/978-3-642-25046-0


	2 Green Leaf Area and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation
	Abstract
	2.1…Introduction
	2.2…Algorithmic Theoretical Basis
	2.3…Modis LAI/FPAR Algorithm: Scaling to AVHRR and Landsat
	2.4…Spot GEOV2 LAI/FPAR Algorithm
	2.5…Availability of Data Products
	2.6…Validation Efforts
	2.7…Concluding Remarks
	References


