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of Information Science, Bioinformatics,

and Neuroinformatics
Nikola Kasabov

This chapter presents some background informa-
tion, methods, and techniques of information
science, bio- and neuroinformatics in their sym-
biosis. It explains the rationale, motivation, and
structure of the Handbook that reflects on this sym-
biosis. For this chapter, some text and figures from
[1.1] have been used. As the introductory chapter, it
gives a brief overview of the topics covered in this
Springer Handbook of Bio-/Neuroinformatics with
emphasis on the symbiosis of the three areas of
science concerned: information science (informat-
ics) (IS), bioinformatics (BI), and neuroinformatics
(NI). The topics presented and included in this
Handbook provide a far from exhaustive coverage
of these three areas, but they clearly show that
we can better understand nature only if we uti-
lize the methods of IS, BI, and NI, considering their
integration and interaction.

1.1 Nature as the Ultimate Inspiration
and Target for Science .......................... 1

1.2 Information Science (IS) ........................ 3
1.2.1 The Scope of IS ............................. 3
1.2.2 Probability, Entropy,

and Information .......................... 3
1.2.3 Statistical Information Methods ..... 5
1.2.4 Machine-Learning Methods........... 5
1.2.5 Knowledge Representation............ 6

1.3 Bioinformatics...................................... 7
1.3.1 Biology Background...................... 7
1.3.2 Data Analysis and Modeling

in Bioinformatics ......................... 8

1.4 Neuroinformatics.................................. 9
1.4.1 Human Brain and Nervous System .. 9
1.4.2 Data Analysis and Modeling

in Neuroinformatics ..................... 10

1.5 About the Handbook............................. 11
1.5.1 Bioinformatics ............................. 11
1.5.2 Neuroinformatics ......................... 11

1.6 Conclusion ........................................... 12

References .................................................. 12

1.1 Nature as the Ultimate Inspiration and Target for Science

Science aims at understanding nature. Scientific meth-
ods are inspired by principles from nature, too. The
beauty of our world is that, along with the fascinating
geographical formations, it has life as a variety of bi-
ological species. Most importantly, it has the highest
level of life: the conscious brain. Nature and life have
been the ultimate inspirations and targets for three im-
portant areas of science: information science (IS, also
called informatics), bioinformatics (BI), and neuroin-
formatics (NI).

IS deals with generic methods for information pro-
cessing. BI applies these methods to biological data and
also develops its own specific information processing
methods. NI applies the methods of IS to brain and

nervous system data and also develops its own specific
methods.

Nature evolves in time. The most obvious exam-
ple of an evolving process is life. Life is defined in the
Concise Oxford English Dictionary as follows:

a state of functional activity and continual change
peculiar to organized matter, and especially to the
portion of it constituting an animal or plant before
death; animate existence; being alive.

Continual change, along with certain stability, is what
characterizes life. Modeling living systems requires that
the continuous changes are represented in the model,
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2 Introduction

i. e., that the model adapts in a lifelong mode and at the
same time preserves some features and principles that
are characteristic to the process. This stability–plasticity
dilemma is a well-known principle of life. In a liv-
ing system, evolving processes are observed at different
levels (Fig. 1.1).

At the quantum level, particles are in a complex
evolving state all the time, being at several locations at
the same time, which is defined by probabilities. Gen-
eral evolving rules are defined by several principles,
such as entanglement, superposition, etc. [1.2–6]. The
discovery of atomic structure by physics and chemistry
revolutionized understanding of these quantum princi-
ples. Among the scientists who contributed to this is
Ernest Rutherford (1871–1937) (Fig. 1.2).

At a molecular level, ribonucleic acid (RNA) and
protein molecules, for example, evolve and interact in
a continuous way based on the deoxyribonucleic acid
(DNA) information and on the environment. The cen-
tral dogma of molecular biology constitutes a general
evolving rule, but what are the specific rules for dif-
ferent species and individuals? The area of science that
deals with the information processing and data manip-
ulation at this level is BI. At the cellular level (e.g.,
neuronal cells) all the metabolic processes, cell growth,
cell division, etc., are evolving processes [1.7].

At the level of cell ensembles, or at a neural net-
work level, an ensemble of cells (neurons) operates
in concert, defining the function of the ensemble or
the network through learning, for instance, perception
of sound, perception of an image, or learning lan-
guages [1.8].

In the human brain, complex dynamic interactions
between groups of neurons can be observed when cer-
tain cognitive functions are performed, e.g., speech and
language learning, visual pattern recognition, reason-
ing, and decision making [1.9–11].

At the level of a population of individuals, species
evolve through evolution (Charles Darwin). A bio-

6. Evolutionary (population/generation) processes

5. Brain cognitive processes

4. System information processing (e.g., neural ensemble)

3. Information processing in a cell (neuron)

2. Molecular information processing (genes, proteins)

1. Quantum information processing

Fig. 1.1 Six levels of evolving processes in a higher-level
living organism (after [1.1])

logical system evolves its structure and functionality
through both lifelong learning of an individual and the
evolution of populations of many such individuals. In
other words, an individual is a result of the evolu-
tion of many generations of populations, as well as
a result of its own developmental lifelong learning pro-
cesses [1.11, 12].

Processes at different levels from Fig. 1.1 show gen-
eral characteristics, such as those listed below:

1. Frequency: Frequency, denoted as F, is defined as
the number of signal/event repetitions over a period
of time T (seconds, minutes, centuries). Some pro-
cesses have stable frequencies, but others change
their frequencies over time. Different processes
from Fig. 1.1 are characterized by different frequen-
cies defined by their physical parameters. Usually,
a process is characterized by a spectrum of frequen-
cies. Different frequency spectrums characterize
brain oscillations (e.g., delta waves), speech signals,
image signals, and quantum processes.

2. Energy: Energy is a major characteristic of any ob-
ject or organism. Albert Einstein’s most celebrated
formula defines energy E as depending on the mass
of the object m and the speed of light c as E = mc2.
Defining the energy in a living system is more com-
plicated. The energy of a protein, for example, de-
pends not only on the DNA sequence that is translated
into this protein, but on the three-dimensional (3-D)
shape of the protein and on external factors.

3. Information: Information is a characteristic that
can be defined in different ways, as discussed in
Sect. 1.2.

4. Interaction: There are many interactions within each
of the six levels from Fig. 1.1 and across these lev-
els. Interactions are what make a living organism
complex. Understanding them is also a challenge
for BI and NI; For example, there are complex in-
teractions between genes in a genome, and between

Fig. 1.2 Ernest Rutherford (1871–1937)
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Understanding Nature 1.2 Information Science ( IS) 3

proteins and DNA. There are complex interactions
between the genes and the functioning of each neu-
ron, a neural network, and the whole brain [1.13].

Abnormalities in some of these interactions are
known to cause brain diseases, and many of them
remain unknown at present [1.14].

1.2 Information Science ( IS)
Information science is the area of science that devel-
ops generic methods and systems for information and
knowledge processing, regardless of the domain speci-
ficity of this information.

1.2.1 The Scope of IS

IS incorporates the following subject areas:

• Data collection and data communication (sensors
and networking)• Information storage and retrieval (database systems)• Methods for information processing (information
theory)• Creating computer programs and information sys-
tems (software engineering and system develop-
ment)• Acquisition, representing, and processing knowl-
edge (knowledge engineering)• Creating intelligent systems and machines (artificial
intelligence).

Generally speaking, data are raw entities: numbers,
symbols etc., e.g., 36.

Information is labeled, understood, interpreted data,
e.g., the temperature of the human body is 36 ◦C.

Knowledge is the understanding of a human, the
way we do things, the interpretable in different situa-
tions, general information; e.g., IF the human temper-
ature is between 36 ◦C and 37 ◦C degrees, THEN the
human body is in a healthy state.

Some basic ways to represent data, information, and
knowledge are presented in Sect. 1.2.2.

1.2.2 Probability, Entropy, and Information

The formal theory of probability relies on the following
three axioms, where p(E) is the probability of an event
E to happen and p(¬E) is the probability of an event not
to happen. E1, E2, . . ., Ek is a set of mutually exclusive
events that form a universe U:

Axiom 1.1
0 ≤ p(E) ≤ 1.

Axiom 1.2∑
p(Ei )= 1, E1∪E2∪ . . .∪Ek =U , U-problem space.

Corollary 1.1
p(E)+ p(¬E) = 1.

Axiom 1.3
p(E1 ∨ E2) = p(E1)+ p(E2), where E1 and E2 are mu-
tually exclusive events.

Probabilities are defined as:

• Theoretical: some rules are used to evaluate the
probability of an event.• Experimental: probabilities are learned from data
and experiments – throw a die 1000 times and mea-
sure how many times the event “getting a 6” has
happened.• Subjective: probabilities are based on common-
sense human knowledge, such as defining that the
probability of getting a 6 after throwing a die is
(1/6)th, without really throwing it many times.

A random variable x is characterized at any moment
of time by its uncertainty in terms of what value this
variable will take in the next moment – its entropy.
A measure of uncertainty h(xi ) can be associated with
each random value xi of a random variable x, and the
total uncertainty H(x), called the entropy, measures our
lack of knowledge, the seeming disorder in the space of
the variable x

H(X) =
∑

i=1,...,n

pi h(xi ) , (1.1)

where pi is the probability of the variable x taking the
value xi .

The following axioms for the entropy H(x) apply:

• Monotonicity: if n > n′ is the number of events (val-
ues) that a variable x can take, then Hn(x) > Hn′(x);
so, the more values x can take, the greater the en-
tropy.
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Fig. 1.3 Claude Shannon (1916–2011)

• Additivity: if x and y are independent random
variables, then the joint entropy H(x, y), meaning
H(x AND y), is equal to the sum of H(x) and H(y).

The following log function satisfies these two axioms:
h(xi ) = log(1/pi ) . (1.2)

If the log has base 2, the uncertainty is measured in [bit],
and if it is the natural logarithm ln, then the uncertainty
is measured in [nat],

H(x) =
∑

i=1,...,n

[pi h(xi )] = −c
∑

i=1,...,n

(pi log pi ) ,

(1.3)

where c is a constant.
Based on Shannon’s (Fig. 1.3) measure of un-

certainty – entropy – we can calculate an overall
probability for a successful prediction for all states of
a random variable x, or the predictability of the variable
as a whole

P(x) = 2−H(x) . (1.4)

The maximum entropy is calculated when all the n val-
ues of the random variable x are equiprobable, i. e.,
have the same probability 1/n – a uniform probability
distribution

H(x) =−
∑

i=1,...,n

pi log pi ≤ log n . (1.5)

The joint entropy between two random variables x and
y (for example, an input and an output variable in a sys-
tem) is defined by the formulas

H(x, y) = −
∑

i=1,...,n

p(xi AND y j )

× log p(xi AND y j ) , (1.6)

H(x, y) ≤ H(x)+ H(y) . (1.7)

The conditional entropy, i. e., the uncertainty of a vari-
able y (output variable) after observing the value of
a variable x (input variable), is defined as

H(y|x) =−
∑

i=1,...,n

p(xi , y j ) log p(y j |xi ) , (1.8)

0 ≤ H(y|x) ≤ H(y) . (1.9)

Entropy can be used as a measure of the information
associated with a random variable x, its uncertainty, and
its predictability.

The mutual information between two random vari-
ables, also simply called the information, can be
measured as

I (y; x) = H(y)− H(y|x) . (1.10)

The process of online information entropy evaluation is
important, as in a time series of events; after each event
has happened, the entropy changes and its value needs
to be reevaluated.

Information models based on probability include:

• Bayesian classifiers• Hidden Markov models (HMM).

A Bayesian classifier uses a conditional probability esti-
mated to predict a class for a new datum (1.11), which is
represented as the conditional probability between two
events C and A, known as the Bayes formula (Tamas
Bayes, 18th century)

p(A|C) = p(C|A)p(A)/p(C) . (1.11)

It follows from (1.11) that

p(A∧C) = p(C ∧ A) = p(A|C)p(C)

= p(C|A)p(A) . (1.12)

Problems with the Bayesian learning models relate to
unknown prior probabilities and the requirement of
a large amount of data for more accurate probability cal-
culation. This is especially true for a chain of events
A, B,C, . . ., where the probabilities p(C|A, B), . . .,
etc. need to be evaluated. The latter problem is ad-
dressed in techniques called hidden Markov models
(HMM).

HMM [1.15] is a technique for modeling the tempo-
ral structure of a time series or sequence of events. It is
a probabilistic pattern-matching approach which mod-
els a sequence of patterns as the output of a random
process. The HMM consists of an underlying Markov
chain

P[q(t +1)|q(t), q(t −1), q(t −2), . . ., q(t −n)]
≈ P[q(t +1)|q(t)] , (1.13)

where q(t) is state q sampled at time t.
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Understanding Nature 1.2 Information Science ( IS) 5

1.2.3 Statistical Information Methods

Correlation coefficients represent possible relationships
between variables. For every variable xi (i = 1, 2, . . .,
d1), its correlation coefficients Corr(xi , y j ) with all
other variables y j ( j = 1, 2, . . ., d2) are calculated.
Equation (1.14) is used to calculate the Pearson corre-
lation between two variables x and y based on n values
for each of them

Corr = SUMi
(xi −Mx)(yi −My)

(n −1)StdxStdy
, (1.14)

where Mx and My are the mean values of the two vari-
ables x and y, and Stdx and Stdy are their respective
standard deviations.

The t-test and the signal-to-noise ratio (SNR)
evaluate how important a variable is to discriminate
samples belonging to different classes. For the case of
a two-class problem, the SNR ranking coefficient for
a variable x is calculated as an absolute difference be-
tween the mean value M1x of the variable for class 1
and the mean M2x of this variable for class 2, divided
by the sum of the respective standard deviations

SNR x = abs
M1x −M2x

Std1x +Std2x
. (1.15)

A similar formula is used for the t-test:

t-test x = abs
M1x −M2x

Std1x2/N1 +Std2x2/N2
, (1.16)

where N1 and N2 are the numbers of samples in class 1
and class 2, respectively.

Principal component analysis (PCA) aims at find-
ing a representation of a problem space X defined by
its variables X = {x1, x2, . . ., xn} into another orthog-
onal space having a smaller number of dimensions
defined by another set of variables Z = {z1, z2, . . ., zm},
such that every data vector x from the original space
is projected onto a vector z of the new space, so that
the distance between different vectors in the original
space X is maximally preserved after their projection
into the new space Z.

Linear discriminant analysis (LDA) is a transfor-
mation of classification data from the original space
into a new space of LDA coefficients that has an ob-
jective function to preserve the distance between the
samples, using also the class label to make them more
distinguishable between the classes.

Multiple Linear Regression Methods (MLR)
The purpose of MLR is to establish a quantitative re-
lationship between a group of p independent variables

(X) and a response y

y = XA+b , (1.17)

where p is the number of independent variables, y is
an n × 1 vector of observations, X is an n × p matrix of
regressors, A is a p × 1 vector of parameters, and b is an
n × 1 vector of random disturbances. The solution to the
problem is a vector, A′, which estimates the unknown
vector of parameters.

The least-squares solution is used so that the linear
regression formula or another model approximates the
data with the least root-mean-square error (RMSE) as

RMSE = SQRT

{

SUM
i=1,2,...,n

(yi − y′i )2

n

}

, (1.18)

where yi is the desired value from the dataset corre-
sponding to an input vector xi , y′i is the value obtained
through the regression formula for the same input vec-
tor xi , and n is the number of samples (vectors) in the
dataset.

Another error measure is also used to evaluate the
performance of the regression and other models – the
nondimensional error index (NDEI) – the RMSE di-
vided by the standard deviation of the dataset:

NDEI = RMSE/Std . (1.19)

1.2.4 Machine-Learning Methods

Machine learning is an area of IS concerned with the
creation of information models from data, the represen-
tation of knowledge, and the elucidation of information
and knowledge from processes and objects. Machine
learning includes methods for feature selection, model
creation, model validation, and knowledge extraction.

One of the widely used machine-learning method is
artificial neural networks (ANNs) [1.9, 11, 16–22].

ANNs are computational models that mimic the ner-
vous system in its main function of adaptive learning.
An ANN consists of small processing units – artificial
neurons – connected with each other. It has two major
functions: learning, which is the process of present-
ing examples to the ANN and changing the connection
weights, and recall, which is the process of presenting
new examples to the trained ANN and examining its re-
action (output). The connection between the neurons are
analogized to the synaptic weights in the nervous sys-
tem. Most of the known ANNs learning algorithms are
influenced by a concept introduced by Hebb [1.23]. He
proposed a model for unsupervised learning in which
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Fig. 1.4 From data to information and knowledge, and then back to information modeling (after [1.1])

the synaptic strength (weight) is increased if both the
source and the destination neurons become simultane-
ously activated. It is expressed as

wij (t +1) = wij (t)+ coio j , (1.20)

where wij (t) is the weight of the connection between the
ith and jth neurons at moment t, and oi and o j are the
output signals of neurons i and j at the same moment t.
The weight wij (t +1) is the adjusted weight at the next
time moment (t +1).

In general terms, a learning system {S,W, P, F, L, J}
is defined by its structure S, its parameter set P, its vari-
able (e.g., connections) weights W , its function F, its
goal function J , and a learning procedure L . The sys-
tem learns if the system optimizes its structure and its
function F when observing events z1, z2, z3, . . . from
a problem space Z. Through a learning process, the sys-
tem improves its reaction to the observed events and
captures useful information that may be later repre-
sented as knowledge.

Another class of machine-learning methods are in-
spired by evolution of biology in nature, being called
evolutionary computation (EC) [1.24, 25]. Here, learn-
ing is concerned with the performance not only of an
individual system but of a population of systems that
improve their performance through generations. The
best individual system is expected to emerge and evolve
from such populations. EC methods, such as genetic
algorithms (GA), utilize ideas from Darwinism.

Another popular machine-learning method is called
support vector machines (SVM). It was first proposed
by Vapnik and his group at AT&T Bell Laborato-
ries [1.26]. For a typical learning task defined as
probability estimation of output values y depending on

input vectors x

P(x, y) = P(y|x)P(x) , (1.21)

a SVM classifier is used to build a decision function

fL : x → {−1,+1} (1.22)

based on a training set

fL = L(Strain) , (1.23)

where Strain = (x1, y1), (x2, y2), . . ., (xn, yn).
In SVM, the primary concern is to determine an op-

timal separating hyperplane that gives a low generaliza-
tion error. Usually, the classification decision function
in the linearly separable problem is represented by

fw,b = sign(w · x+b) . (1.24)

In SVM, this optimal separating hyperplane is de-
termined by giving the largest margin of separation
between vectors that belong to different classes. It bi-
sects the shortest line between the convex hulls of the
two classes.

1.2.5 Knowledge Representation

The ultimate goal of information processing is the
creation of knowledge. The process of knowledge ac-
quisition from nature is a continuous process that will
never end. This knowledge is then used to understand
nature, to preserve it, to model it, and to predict events.
From data to information and knowledge and then
back: this is what information science is concerned with
(Fig. 1.4).

In
trod

u
ction



Understanding Nature 1.3 Bioinformatics 7

Different types of knowledge can be used in ma-
chine-learning systems, some of them being [1.1, 21]:

• Propositional logic rules (Aristotle)• First-order logic rules• Fuzzy logic rules [1.27]• Semantic maps• Schemata• Metarules• Finite automata• Higher-order logic.

Fuzzy logic is an extension of propositional logic. It
was first introduced by Zadeh in 1965 [1.27]. It deals

with fuzzy propositions that can have any truth value
between true (1) and false (0). Fuzzy propositions are
used to represent fuzzy rules that better represent hu-
man knowledge [1.21, 28], e.g., IF the gene expression
of gene G is High AND the age of the person is Old
THEN the risk of cancer is High, where fuzzy member-
ship functions (rather than Yes or No values) are used to
represent the three propositions.

Modeling and knowledge can be [1.26, 29]:

• Global: valid for the whole population of data• Local: valid for clusters of data [1.1, 30]• Personalized: valid only for an individual [1.1, 26,
31].

1.3 Bioinformatics

1.3.1 Biology Background

Bioinformatics brings together several disciplines – mo-
lecular biology, genetics, microbiology, mathematics,
chemistry and biochemistry, physics, and of course
informatics, with the aim of understanding life. The
theory of evolution through natural selection (Charles
Darwin, 1809–1882, Fig. 1.5) was a significant step to-
wards understanding species and life.

With the completion of the first draft of the human
genome and the genomes of some other species, the
task is now to be able to process this vast amount of
ever-growing dynamic information and to discover new
knowledge.

Deoxyribonucleic acid (DNA) is a chemical chain,
present in the nucleus of each cell of an organism; it
consists of ordered double-helix pairs of small chem-
ical molecules (bases), adenine (A), cytosine (C), gua-
nine (G), and thymine (T), linked together by a sugar
phosphate nucleic acid backbone (Fig. 1.6).

The central dogma of molecular biology states that
DNA is transcribed into RNA, which is translated into
proteins.

DNA contains millions of base pairs, but only 5%
or so is used for production of proteins, and these are
the segments of the DNA that contain genes. Each gene
is a sequence of base pairs that is used in the cell to
produce RNA and/or proteins. Genes have a length of
hundreds to thousands of bases.

Ribonucleic acid (RNA) has a similar structure to
DNA, but here thymine (T) is substituted by uracil (U).
In pre-RNA, only segments that contain genes are ex-

tracted from the DNA. Each gene consists of two
types of segments: exons, which are segments trans-
lated into proteins, and introns, which are segments that
are considered redundant and do not take part in protein
production. Removing the introns and ordering only the
exon parts of the genes in a sequence is called splicing,
and this process results in the production of a messenger
RNA (mRNA) sequences.

Fig. 1.5 Charles Darwin (1809–1882)

Fig. 1.6 DNA is organized as a double helix
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mRNAs are directly translated into proteins. Each
protein consists of a sequence of amino acids, each of
them defined by a base triplet, called a codon. From
one DNA sequence, many copies of mRNA produced,
the presence of a certain gene in all of them defining
the level of gene expression in the cell and indicating
what and how much of the corresponding protein will
be produced in the cell.

Genes are complex chemical structures that cause
dynamic transformation of one substance into another
during the whole life of an individual, as well as the life
of the human population over many generations. When
genes are in action, the dynamics of the processes in
which a single gene is involved are very complex, as
this gene interacts with many other genes and proteins,
and the process is influenced by many environmental
and developmental factors.

Modeling these interactions, learning about them,
and extracting knowledge are major goals for bioinfor-
matics.

Bioinformatics is concerned with the application of
the methods of information science for the analysis,
modeling, and knowledge discovery of biological pro-
cesses in living organisms.

1.3.2 Data Analysis and Modeling
in Bioinformatics

There are five main phases of information pro-
cessing and problem solving in most bioinformatic
systems:

1. Data collection, e.g., collecting biological samples
and processing them

2. Feature analysis and feature extraction – defin-
ing which features are more relevant and therefore
should be used when creating a model for a particu-
lar problem (e.g., classification, prediction, decision
making)

3. Modeling the problem, which consists of defin-
ing the inputs, outputs, and type of the model
(e.g., probabilistic, rule-based, connectionist), train-
ing the model, and statistical verification

4. Knowledge discovery in silico, in which new knowl-
edge is gained through analysis of the modeling
results and the model itself

5. Verifying the discovered knowledge in vitro and
in vivo – biological experiments in both laboratory
and real life to confirm the discovered knowl-
edge.

When creating models of complex processes in
molecular biology, the following issues must be consid-
ered:

• How to model complex interactions between genes
and proteins, between the genome and the environ-
ment.• Both stability and repetitiveness are features that
need to be modeled, because genes are relatively
stable carriers of information.• Dealing with uncertainty; For example, when mod-
eling gene expressions, there are many sources
of uncertainty, e.g., alternative splicing (a splicing
process of the same RNAs resulting in different
mRNAs); mutation in genes caused by ionizing
radiation (e.g., x-rays); chemical contamination,
replication errors, viruses that insert genes into host
cells, etc. Mutated genes express differently and
cause the production of different proteins.

There are many problems in bioinformatics that require
solution through data analysis and modeling. Typical
problems are:

• Discovering patterns from DNA and RNA se-
quences (e.g., promoters, binding sites, splice junc-
tions)• Analysis of gene expression data and gene profile
creation• Protein discovery and protein function analysis• Modeling interaction networks between genes, pro-
teins, and other molecules• System biology approach to modeling the whole dy-
namic process of biological functioning• Creating biological and medical prognostic and
decision-support systems

All the above tasks require different information meth-
ods, both generic (taken from IS) and specific, being
created for the particular analysis and modeling of
a specific problem and type of biological data.
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1.4 Neuroinformatics

1.4.1 Human Brain and Nervous System

The human brain can be viewed as a dynamic, evolv-
ing information-processing system, probably the most
complex one. Processing and analysis of information
recorded from brain and nervous system activity, and
modeling of perception, brain functions, and cognitive
processes, aim at understanding the brain and creat-
ing brain-like intelligent systems. This is a subject of
neuroinformatics.

The brain evolves initially from stem cells. It
evolves its structure and functionality from an embryo
to a sophisticated biological information processing
system (Fig. 1.7).

In an embryo, the brain grows and develops based
on genetic information and nutritional environment.
The brain evolves its functional modules for vision,
speech and language, music and logic, and many other
cognitive tasks.

There are predefined areas of the brain that are allo-
cated for language and visual information processing,
for example, but these areas may change during the
neuronal evolving processes. The paths of the signals
traveling in, and the information processes of, the brain
are complex and different for different types of infor-
mation. Even at the age of 3 months, some functional
areas are already formed, but identical embryos with the
same genetic information can develop in different ways
to reach the state of an adult brain. This is because of
the environment in which the brain evolves. Both the
genetic information (nature) and the environment (nur-
ture) are crucial factors. They determine the evolving
rules for the brain. The challenge is how to reveal these
rules and eventually use them in brain models. Are they
the same for every individual?

A significant step in understanding the brain and the
nervous system was the discovery of the structure of the
neural system by Ramón y Cajal (1852–1934, Figs. 1.8,
1.9).

A neuron, which receives signals (spikes) through
its dendrites and emits output signals through its
axon, is connected to thousands other neurons through
synapses. The synaptic connections are subject to adap-
tation and learning and represent the long-term memory
of the brain.

Neurons can be of different types according to
their main functionality [1.11]. There are, for exam-
ple: sensory neurons, motor neurons, local interneurons,
projection interneurons, and neuroendocrine cells.

It is through the organization of neurons into
ensembles that functional compartments emerge. Neu-
rosciences provide a very detailed picture of the
organization of the neural units in the functional com-
partments (functional systems). Each functional system
is formed by various brain regions that are responsible
for processing of different types of information. It is
shown that the paths which link different components
of a functional system are hierarchically organized.

It is mainly in the cerebral cortex where the cog-
nition functions take place. Anatomically, the cerebral
cortex is a thin, outer layer of the cerebral hemisphere
with thickness of around 2–4 mm. The cerebral cortex
is divided into four lobes: frontal, parietal, temporal,
and occipital.

Several principles of the evolving structure, func-
tions, and cognition of the brain are listed below:

• Redundancy; i. e., there are many redundant neurons
allocated to a single stimulus or a task; e.g., when
a word is heard, there are hundreds of thousands of
neurons that are immediately activated.• Memory-based learning; i. e., the brain stores exem-
plars of facts that can be recalled at a later stage.
Some studies suggest that all human actions, in-
cluding learning and physical actions, are based on
memorized patterns.• Learning is achieved through interaction of an
individual with the environment and with other in-
dividuals.• Inner processes take place, e.g., information consol-
idation through sleep learning.

Primary motor
cortex

Motor association
cortex

Prefrontal
cortex

Speech center

Auditory cortex

Auditory association area

Visual association
area

Visual cortex

Primary somatosensory
cortex

Sensory association
cortex

Wernicke's area

Fig. 1.7 The brain evolves its structure and functionality through
genetic information and developmental learning (after [1.32])
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10 Introduction

Fig. 1.8 Santiago Ramón y Cajal (1852–1934) (af-
ter [1.33])

Fig. 1.9 A drawing by Ramón y Cajal of a neuronal cir-
cuitry (after [1.33])

• The learning process is continuous, evolving, and
lifelong.• Learning and memory are of three main types: short
term (within hundreds of milliseconds), which is
manifested in the synapses, the neuronal membrane
potentials, and the spiking activity of neurons; long
term (within minutes or days), which is manifested
in the synaptic weights; and genetic (within months,
years, or millions of years), which is manifested in
the genes and their expressions). These three types
of memory and learning interact in a dynamic way
in the brain.• Through the process of evolving brain struc-
tures (neurons, connections), higher-level concepts
emerge; these are embodied in the structure and rep-
resent a level of abstraction.

1.4.2 Data Analysis and Modeling
in Neuroinformatics

The brain is the most complex information processing
machine. It processes data, information, and knowledge
at different levels. Modeling the brain as an informa-

tion processing machine has different results depending
on the goals of the models and the detail with which
the models represent the genetic, biological, chemical,
physical, physiological, and psychological rules and the
laws that govern the functioning and behavior of the
brain.

Several levels of brain data analysis and modeling
can be distinguished.

Molecular/Genetic Level
At the genetic level, the genome constitutes the input
information, while the phenotype constitutes the output
result, which causes:

1. Changes in the neuronal synapses (learning)
2. Changes in DNA and its gene expression [1.12].

Neurons from different parts of the brain, associated
with different functions, such as memory, learning, con-
trol, hearing, and vision, function in a similar way, and
their functioning is genetically defined. This principle
can be used as a unified approach to building different
neuronal models to perform different functions, such as
speech recognition, vision, learning, and evolving. The
genes relevant to particular functions can be represented
as a set of parameters of a neuron. These parameters de-
fine the way the neuron functions and can be modified
through feedback from the output of the neuron.

Single Neuronal Level
There are many information models of neurons that
have been explored in neural network theory (for a re-
view, see [1.11]). Among them are:

1. Analytical models. An example is the Hodgkin–
Huxley model (1952) [1.34].

2. McCulloch and Pitts-type models (1943) [1.35].
3. Spiking neuronal models (Maas, Gerstner, Kistler,

Izhikevich, Thorpe, Wysoski et al.) [1.29, 36–45].
4. Neurogenetic models, where a gene regulatory net-

work is part of the neuronal model ([1.8,32,38,40]).

Neural Network (Ensemble) Level
Information is processed in ensembles of neurons that
form a functionally defined area, such as sensory modal-
ities [1.46]. The human brain deals mainly with five
sensory modalities: vision, hearing, touch, taste, and
smell. Each modality has different sensory receptors.
After the receptors perform the stimulus transduction,
the information is encoded through the excitation of
neural action potentials. The information is encoded us-
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ing the average of pulses or the time interval between
pulses. This process seems to follow a common pattern
for all sensory modalities, however there are still many
unanswered questions regarding the way the informa-
tion is encoded in the brain.

Cognitive Level
Information is processed in the whole brain through
many interacting modules. Many neuronal network
modules are connected together to model a complex
brain structure and learning algorithms [1.47, 48]. To
date, the most effective means available for brain activ-

ity measurements are electroencephalography (EEG),
magnetoencephalography (MEG), and functional mag-
netic resonance imaging (fMRI). Once the data from
these measurement protocols has been transformed into
an appropriate state-space representation, an attempt
to model different dynamic brain functions can be
made.

Modeling the entire brain is far from having been
achieved, and it will take many years to achieve this
goal, but each step in this direction is useful towards
understanding the brain and towards the creation of in-
telligent machines that will help people [1.49].

1.5 About the Handbook

This Springer Handbook includes 12 parts, 6 of them
covering topics from BI and 6 from NI. Each part in-
cludes chapters, and each chapter introduces topics that
integrate BI and IS, or NI and IS, or BI, NI, and IS
together.

1.5.1 Bioinformatics

Part A is about understanding information processes in
biological systems. It includes chapters that reveal the
information processing at cellular level, genomics level,
proteomics level, and evolutionary molecular biology
point of view.

Part B covers the methods of molecular biology,
including: analysis of DNA sequences, analysis and
discovery of microRNA signatures, discovery of reg-
ulatory elements in RNA, protein data modeling, and
protein structure discovery.

Part C presents different machine-learning methods
for analysis, modeling, and knowledge discovery from
bioinformatics data. It includes chapters that review
the applications of different methods, such as Bayesian
classifiers and support vector machines (SVM); case-
based reasoning; hybrid clustering; fuzzy logic; and
phylogenetic cladograms.

Part D presents more sophisticated methods for in-
tegrated, system biology analysis and modeling in BI,
including chapters on: inferring interaction network
from Omics data; inferring gene transcription networks;
analysis of transcriptional regulations, inferring genetic
networks using differential evolution; pattern discov-
ery in protein–protein networks; visual representation
of molecular networks; and a pipeline model for identi-

fying somatic mutations with examples from leukemia
and colon cancer.

Part E presents databases and ontologies that con-
tain structured bioinformatics data to enable worldwide
research and study in bioinformatics. It includes chap-
ters on bioinformatics databases and bioinformatics
ontology systems.

Part F is about applications of bioinformatics in
medicine, heath, and ecology. It includes chapters on
modeling cancer stem formation, epigenetics, immune
system control, nutrigenomics, nanomedicine, person-
alized medicine, health informatics, and ecological
informatics.

1.5.2 Neuroinformatics

Part G is about understanding information processes
in the brain and the nervous system. It includes chap-
ters on information processes at a lower, synaptic level,
spiking neural networks that represent and model in-
formation processes at a neuronal ensemble level; brain
connectivity study based on fMRI data; and information
processes at the level of the whole brain.

Part H introduces advanced signal processing meth-
ods for brain signal analysis and modeling. The
methods are applicable to study spatiotemporal spik-
ing activities of single neurons and neuronal ensembles
along with spiking activity of the whole cortex. This
part includes chapters on adaptive filtering in kernel
spaces for spike train analysis, analysis and visualiza-
tion of multiple spike trains, and the multivariate em-
pirical mode decomposition method for time–frequency
analysis of EEG signals.
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Part I is concerned with modeling perception, sen-
sation, and cognition. It includes chapters on modeling
vision, modeling the gustatory system, perception and
motor control modeling based on EEG with application
for brain–computer interfaces, spiking neural network
and neurogenetic systems for spatio- and spectrotem-
poral brain data analysis and modeling, and models of
natural language.

Part J presents neuroinformatics databases and sys-
tems to help brain data analysis and modeling. It
includes chapters on brain-gene ontology systems, neu-
roinformatics databases, and worldwide organizations.

Applications of neuroinformatics methods for un-
derstanding and curing of brain diseases is presented
in Part K. It contains chapters on Alzheimer disease

genetic regulatory networks, integrating data and prior
knowledge for understanding Alzheimer disease, a sys-
tem biology approach to modeling and understanding
Parkinson and Alzheimer disease, modeling gene dy-
namics in epilepsy, predicting outcome of stroke, and
surface electromyography methods for nerve–muscle
system rehabilitation using the case study of stroke.

Nature-inspired integrated information technolo-
gies, presented in the last Part L, combine different
principles from the biology, brain, and quantum levels
of information processing (Fig. 1.1). It includes chap-
ters on brain-like robotics, interactive, developmental
multimodal robotic systems, quantum and biocom-
puting integration, and integrated brain-, gene-, and
quantum-inspired computational intelligence.

1.6 Conclusion

This chapter presents a brief overview of the topics
covered in this Springer Handbook of Bio-/Neuroinfor-
matics, with emphasis on the symbiosis of the three
areas of science concerned: information science (in-
formatics), bioinformatics, and neuroinformatics. The

topics presented and included in the Handbook pro-
vide a far from exhaustive coverage of these three areas,
but they show clearly that we can better understand na-
ture only if we utilize the methods of IS, BI, and NI,
considering their integration and interaction.
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