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Abstract NetWeaver is one of the foundational technologies of the Ecosystem
Management Decision Support (EMDS) system. NetWeaver’s graphical interface,
real time evaluations, fuzzy-logic-based measures of uncertainty, and overall ease
of use led to it being chosen as a major component of EMDS. By way of back-
ground on this stand-alone knowledge engineering tool, and in order to provide
enhanced perspective on EMDS and its inner workings, we first present a
description of the origins of NetWeaver, and how and why it was developed.
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1 Background

A computer-based model of human expertise is called a knowledgebase. Net-
Weaver is a knowledgebase development system that provides a graphical envi-
ronment in which to construct and evaluate knowledgebases (Saunders and Miller
1997) built with dependency networks (see definition below). Before the advent of
NetWeaver, we built knowledgebases by drawing dependency networks on
whiteboards or flipcharts. These drawings were then handed off to a knowledge
engineer to code. Before C++ was available, the dependency network drawings
were hard coded as if-then statements in the C language.
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The next stage of development was to separate the coding of knowledgebases
from their code implementations. This meant creating a LISP-like scripting lan-
guage to represent the knowledgebases and the creation of an inference engine to
read and implement the new knowledgebases. In computer science, an inference
engine is an application that acts to interpret a knowledgebase. The scripting
language implementation had two main advantages: (1) a non-programmer could
easily code a knowledgebase, and (2) a knowledgebase could be edited indepen-
dently from the inference engine.

This early implementation led to large increases in our ability to produce
knowledgebases. However, limitations of this approach became evident when a
project came our way that involved 100s of dependency networks drawn by a
subject matter expert (SME). Hand coding the scripts revealed two flaws: they
were tedious to edit (but not nearly as tedious as hard-coding!), and it was difficult
to verify that they accurately depicted the hand-drawn dependency networks.

Facing an overwhelming amount of work, a graphical dependency network editor
was conceived. Enter NetWeaver. Conceived and written over winter break of 1991, it
originally only displayed edited dependency networks, saving the knowledgebases in
the same scripting system. But now graphical editing was possible: click a button to
add a node, click a button to move a node. It was truly a what-you-see-is-what-you-get
editor, so the flow of changes was easy to handle, and verification was as simple as
comparing the hand-drawn dependency network to the one on the screen.

Once the dependency network was coded correctly, the next issue was ensuring
that a given dependency network represented its intended logic correctly. The
chosen solution was to integrate the inference engine into NetWeaver so that the
user could test the graphical model with data. Now, knowledgebases could be
designed and verified live. No more disjointed design, coding, and testing loops, and
a SME could independently build knowledgebases and get real-time verification.

Over the years, NetWeaver has evolved and its capabilities have expanded. To
deal with missing data and with qualitative concepts, we developed evaluation
algorithms based upon fuzzy math (Saunders et al. 2005) that worked well (see
below for more details).

In the early years of the 21st century, NetWeaver underwent a thorough rewrite
to NetWeaver2. NetWeaver2’s main improvements were:

e Internationalization—for both development and deployment.

e Runtime applications—deployable self-contained knowledgebase applications.

e Documentation—robust internal and exported documentation at all levels of the
knowledgebase, and with all the capabilities of a modern word processor.

e Binary file format—to make the software smaller, faster, more extensible.

e Knowledgebase security—password protection for various aspects of the
knowledgebase.

e Automated documentation—exporting the knowledgebase to HTML docu-
ments, complete with all linkages and embedded documentation.

(see http://rules-of-thumb.com/development_plans for a more complete review)
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2 NetWeaver Concepts

Knowledgebase systems come in a variety of forms, but the dominant types cur-
rently in use are rule-based systems (Parsaye and Chignell 1988). Knowledge
representation in NetWeaver, in contrast, is based on object-oriented fuzzy-logic
networks (dependency networks). These types of dependency networks offer
several significant advantages over the more traditional rule-based representation.

Compared to rule-based knowledgebases, NetWeaver knowledgebases are
easier to build, test, and maintain because their underlying object-based repre-
sentation makes them modular. The modularity of NetWeaver knowledgebases, in
turn, allows the designer to incrementally evolve complex knowledgebases from
simpler ones. Modularity also allows interactive knowledgebase debugging at any
and all stages of development, which expedites the process.

Finally, fuzzy logic provides a formal and complete calculus for knowledge
representation that is less arbitrary than the “confidence factor approach” (Negoita
1985), used in rule-based systems, and more parsimonious than bivalent rules.

Although the term “fuzzy logic” has a distinctly esoteric ring to it, the concept
is actually quite simple. Fuzzy logic provides a metric for expressing the degree to
which an observation on some variable belongs to a set that represents that vari-
able. Alternatively, one might say that fuzzy logic is concerned with “aboutness.”
To make the concept clear, consider the following example.

Everyone has some concept of what it means to be an adult. For legal purposes,
an adult, in western cultures is often defined to be a person who is 21 years old or
older. A rule-based system dealing with legal issues can easily accommodate this
bivalent definition: if a person is 20 years, 11 months, and 30 days old, they are
not an adult, but if the person is at least one day older than 21 years, they are an
adult. This characterization of adultness is sufficient if the concept of adult is
limited to a simplistic legal one. However, if by adultness we instead are really
interested in expressing something more complex such as an individual’s emo-
tional maturity, then the simple bivalent rule for determining adultness is no longer
adequate. Most people would agree that a five-year-old has no, or at best minimal,
adult qualities. In a 13-year-old, however, we might begin to see at least some
early signs of adult characteristics. Some 18-year-olds demonstrate many adult
qualities (they act very “grown up”). Conversely, most people can think of at least
a few 25-year-olds they have met in their life that could not be called particularly
emotionally mature. Thus, as a first step toward improving the characterization of
adultness, one might construct a simple fuzzy membership curve that translates
age into degree of membership in the set “adult.”

We indicated that fuzzy logic allowed a more parsimonious knowledge rep-
resentation than that which is possible with rule-based systems. The reason is
simple. A single fuzzy membership function is sufficient to express the full
spectrum of adultness. In contrast, rule-based systems are inherently bivalent,
meaning that a rule is either true or false. To more precisely characterize adultness
in a rule-based system, one would need to define, say, five age categories
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Table 1 The NetWeaver logical node types and their function

OR An OR node is true when any one of its antecedents is true. It is false when all of its
antecedents are false. Functionally, it passes the value of its most true antecedent

AND  An AND node is true when all of its antecedents are true. It is false when any one of its
antecedents is false. Functionally, it performs a weighted average of the values of its
antecedents unless one of the antecedents is fully false. Compare this with the next
definition of UNION

UNION A UNION is true when all of its antecedents are true. It is false when all of its
antecedents are false. As a practical distinction between AND and UNION nodes,
antecedents to AND function like limiting factors, whereas antecedents to UNION
function like compensating factors

NOT A NOT node simply inverts the value of its antecedent

SOR A SOR node (sequential OR) is a special class of node designed to select between
alternative decision scenarios where there is a definite hierarchy of quality level
associated with each possible data gathering method. In other words, the SOR node
is a data route selector; it provides a method for selecting the best choice of paths
within the scope of the currently given data. For example, the preferred path may
involve decision making on the basis of acid neutralizing capacity (ANC), but if
ANC is missing, then the decision can be based on an alternate parameter such as
conductivity or pH. Connections to the antecedents of a SOR node are represented
with dotted lines to indicate their relative position in the hierarchy

XOR A XOR node (exclusive OR) is true when one and only one of its antecedents is true

corresponding to different levels of adultness, and each category would require a
rule. Moreover, if our rule base also dealt with intelligence, and this attribute
similarly had five categories (ranging from brilliant to ignorant, for example), then
to jointly consider both adultness and intelligence in our rule base could require as
many as 25 additional rules. In contrast, in a fuzzy-logic-based representation of
this more complex situation, we only need one more fuzzy curve and perhaps a
new network object to jointly evaluate the two fuzzy curves. So, in our example,
two fuzzy curves have an expressive power that is equal to or better than 35
(10 + 25) rules. To summarize, the number of rules needed to adequately repre-
sent possible outcomes explodes approximately combinatorially, whereas the
number of fuzzy curves and related objects needed to describe the same problem in
an object-oriented fuzzy logic representation increases approximately linearly.

NetWeaver uses OR, AND, UNION, NOT, and XOR and SOR logic nodes to
define the logical dependency of a network on antecedent networks, and on data
links (Table 1). A data link is a type of dependency network object in NetWeaver.
A data link is where data are interpreted by an argument (i.e., simple data links), or
where data are used in a mathematical expression, the result of which is interpreted
by an argument (i.e., calculated data links). If no data links antecedent to a network
use fuzzy arguments, then the operation of these nodes conforms quite closely to
their usage in conventional logic. The only real difference in this context between
these nodes, as used in NetWeaver, and in standard logic is that true = 1,
false = —1 in NetWeaver.
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Fig. 1 A dependency network as represented in NetWeaver. In this dependency network, there
are three data links represented by the squares at the bottom of the figure. Each of the data items
is evaluated relative to the degree to which it satisfies its arguments. The network can be read as a
rule as follows: “IF Data 1 satisfies the argument Data 1 arg. AND Data 2 satisfies the argument
Data 2 arg. OR Data 3 satisfies the argument Data 3 arg. THEN the assertion is true.” The degree
to which the assertion is true is a function of the degree(s) to which the individual data satisfy
their arguments and the types and arrangements of the logical nodes used within the network

NetWeaver allows simple or calculated data links to take fuzzy arguments to
determine a data value’s membership in a fuzzy set. In order for fuzzy set
membership to be propagated through a knowledgebase, the definitions of the
conventional logical operators OR, AND, NOT, and XOR have been extended to
handle measures of fuzzy-set membership (Table 1). The SOR node object is
unique to Net-Weaver, and we describe its operation in a later example.

As previously mentioned, models in NetWeaver are based on dependency net-
works which are graphical depictions of rules (Fig. 1). At the bottom of a depen-
dency network are data links (e.g., Data 1, Data 2), which are used to hold, fetch, or
modify raw data. There are two types of data links; simple and calculated. Simple
data links fetch and hold data from various sources (databases, GIS map layers,
direct data input, environmental variables, and other sources). Calculated data links
modify data (e.g., calculate an ecological index or a mathematical relation from raw
data) through networks of calculation nodes chosen from a toolbox of arithmetic,
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Fuzzy set membership

pH Value

Fig. 2 A fuzzy argument used for interpreting the pH value of a stream. The fuzzy membership
is shown on the Y axis with —1 indicating no fuzzy set membership (i.e., False) and 1 indicating
complete membership in the fuzzy set (i.e., True). For this example, pH values between 7 and 8
fully satisfy the argument and indicate that the pH is indicative of a healthy stream. pH values
less than 5 and greater than 10 are unacceptable pH values for a healthy stream

trigonometric, selection, summation, and other tools. Both types of data link are
visually represented as a square object in a dependency network.

To provide a “trueness” level that can be used in a dependency network, the
data within a data link are compared to an “argument.” Arguments can be ref-
erence conditions, ecological thresholds, ecological index set points, or other types
of indicator measures (e.g., single values or ranges of pH values, ranges of water-
temperature values). NetWeaver provides two types of arguments, the standard
argument and the fuzzy argument. The standard argument compares data values
against an argument to return a TRUE or FALSE value (or undetermined when
data are absent). An example of a standard argument is presence (TRUE) or
absence (FALSE) of a particular species. The fuzzy argument compares the data
values against a fuzzy set membership function that returns a level of trueness
based on the degree of membership in the fuzzy set. In NetWeaver, fuzzy set
membership is measured on a scale of —1 (no membership in the fuzzy set TRUE,
which is equivalent to 100 % FALSE), to 0 (UNDETERMINED in the case of no
data, or if there are data provided, it represents 50 % membership in the fuzzy set
TRUE), to 1 (complete membership in the fuzzy set, which is equivalent to 100 %
or completely TRUE). There are four break points provided to define a fuzzy
argument within a data link, each of which can be defined to be TRUE, UNDE-
TERMINED, or FALSE. An example of a fuzzy argument is the range of pH that
is ideal to support aquatic organisms (Fig. 2).

3 Why Use NetWeaver Knowledgebases

Knowledge-based reasoning is a general modeling methodology in which phe-
nomena are described in terms of abstract entities and their logical relations to one
another (Holsapple and Whinston 1996). There are two basic reasons for using
knowledge-based reasoning:
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e The entities or relations involved in the problem to be solved are inherently
abstract, so that mathematical models of the problem are difficult or even
impossible to formulate.

e A mathematical solution is possible in principle, but current knowledge is too
imprecise to formulate an accurate mathematical model.

Both cases are common. The first case naturally arises when the nature of the
problem involves relatively abstract entities. These problems may simply be easier
to solve with logic. The second case arises very frequently, particularly when
dealing with ecosystems, because there are an almost unlimited number of rela-
tions of potential interest. Agencies, academia, and others have developed
numerous mathematical models to describe some of the important relations of
interest to ecosystem management, but many relations have not been studied in
sufficient detail to provide generally applicable mathematical models. However,
there is often a wealth of human experience in these same institutions that can be
drawn upon to develop useful, more qualitative, knowledge-based models to guide
decision making.

Another valuable aspect of knowledge-based reasoning that makes it ideal for
use in environmental assessment is that such systems can provide clear reasoning
with incomplete information. The NetWeaver engine provides partial evaluations
of system states and processes based on available information, and provides useful
information about the influence of missing data, which can be used to improve the
logical completeness of an assessment.

In its most basic form, a NetWeaver knowledgebase is a collection of depen-
dency networks. It can also include such things as supporting documentation and
hyperlinks. A NetWeaver knowledgebase represents relations among concerns,
system states and processes, and data requirements. Uses of dependency networks
include:

e Evaluation of the truth value of assertions about system states and processes,
given existing data.

e Identification of data requirements for an analysis.

¢ Ranking of missing data in order of relative importance to the analysis.

One of the virtues of a dependency-network representation is that a single
knowledgebase may incorporate a very wide variety of topics. This is particularly
valuable in the context of ecological assessments in which topics of interest might
include, for example, many different topics and subtopics related to terrestrial
vegetation and wildlife habitat conditions, native fish population status, available
recreation opportunities, water and air quality conditions, visual and aesthetic
concerns, and commercial concerns or opportunities. The number of topics and the
interrelations that can be represented in a knowledgebase is only limited by the
state of knowledge held by SMEs, and by a computer’s dynamic memory.
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4 Evolving Knowledgebases

NetWeaver is a rigorous, object-oriented, knowledgebase development system.
One of the more practical implications of object-oriented knowledgebases is that it
is very easy to start with simple knowledge representations and gradually to evolve
them into large, complex systems because they are extremely modular. A basic
modeling principle that has motivated development and application of object-
oriented technology, in general, is well captured by Gall (1978):

A complex system that works is invariably found to have evolved from a simple system
that worked... A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working simple
system.

NetWeaver is designed to build a knowledgebase in an incremental and evo-
lutionary fashion. The best possible advice we can give to the novice user is to
avoid designing large, complex systems at the outset, and instead, start with a
simple knowledgebase, built from a small number of dependency networks, and
gradually evolve this simple representation into a more complex representation of
the problem.

As another practical matter, we have found that it is almost always best to start
at the top with the highest-level (primary) dependency networks that apply to the
problem domain, and develop the structure downward. To get started, create and
document at least a few of the primary dependency networks. It is not necessary to
identify an exhaustive list of primary networks at the outset. Because of the
modular structure of NetWeaver knowledgebases, new dependency networks can
easily be added later in development without upsetting overall knowledgebase
structure.

For each primary network in the knowledgebase, create antecedents. Unless it is
an unusually simple knowledgebase, there will usually be at least one or two levels
of antecedents before a chain of dependencies terminates in a data link.

In a completed knowledgebase, you will normally want to be sure that each
chain of dependencies terminates in a data link. However, while a knowledgebase
is under development, it is always possible to evaluate a network object, regardless
of how complete the network structure is.

As a knowledgebase structure evolves, you will probably find occasion to use
existing antecedents (both dependency networks and data links). Multiple occur-
rences of dependency networks and data links in a single knowledgebase are not a
problem because NetWeaver objects are reusable. In fact, the presence of a
dependency network in two or more other networks within the same knowledge-
base is an important mechanism by which networks are interrelated through shared
antecedents.
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5 Applications

NetWeaver has been used to develop a broad array of knowledge-based models,
many of which are detailed in this book and in Wikipedia (http://en.wikipedia.org/
wiki/Ecosystem_Management_Decision_Support). For purposes of illustration, we
refer to a recent effort that sought to characterize watershed conditions within the
Delaware Water Gap National Recreation Area (DEWA) and Upper Delaware
Scenic and Recreational River (UPDE) (see Mahan et al. 2011 for a complete
description of this model).

The focus of this modeling effort was on natural resources at these two park
units; however, our assessment was conducted at the watershed scale in each park.
The assessment was developed to assist superintendents and natural resource
managers with: (1) strategic planning, (2) general management planning, (3) park
reporting on land health goals, and (4) overall natural resource management and
conservation.

As a positive consequence of employing a NetWeaver modeling approach for
this systematic natural condition assessment, we delivered not only the required
final report complete with tables and maps, but also an operational system that
park managers can revisit as new data become available. Periodic re-running of the
delivered NetWeaver model will allow managers to generate new reports to assess
the new conditions and to identify any trends.

All data used in this assessment were compiled from relevant reports, scientific
literature, and data files, and were initially managed using an online Wiki tool. We
used these data and information available in the scientific literature to develop
thresholds for our overall natural resource assessment model. We also used a
variety of GIS-based analytical models to synthesize landscape data and develop
indices of landscape condition across the two parks. These landscape condition
indices included input data on impervious surfaces, forest fragmentation, and land
use within watersheds at both parks.

The overall assessment examined a variety of aquatic and terrestrial ecosystem
components and their interactions. Components included: chemical and physical
elements of water quality, biologic elements of water quality, and forest landscape
condition elements. For the water quality chemical and physical elements, we used
a water quality index to assess water quality in each watershed. For the water
quality biologic elements we used the Ephemeroptera, Plecoptera, Tricoptera
(EPT) and the Hilsenhoff indices. Finally, for the landscape forest condition ele-
ments of our model, we used percentage area in forest, and percentage area with
impervious surfaces measures. In addition, the DEWA/UPDE model contains
natural resource elements that were not included in the overall assessment per se,
but may be useful for management of park resources. For instance, our model
included information on the number of stream crossings, dams, road miles, and
rare species per watershed, and in each park.

In most cases, data did not come from single sources. For many elements, the
data sources were varied. For example, pH values for any given watershed could
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have come from a handful of published reports, National Park Service (NPS)
curated databases, or from gauge-station data of the US Geological Survey. Net-
Weaver facilitated the prioritization of these disparate data sources for a watershed
based on the available data for a given watershed. The ability to aggregate data
sources greatly enhanced the coverage of the analyses.

In some cases, multiple analyses were performed using competing analytical
measures to observe differences in results, such as when using EPT or Hilsenhoff
index when evaluating water quality, with respect to available aquatic insect taxa
(US EPA 2002). Where data were sufficient, the results of the competing methods
could be compared. Where data were lacking for one or the other method, the
results from the method with sufficient data were used to represent conditions,
according to NPS preference.

The logical nodes that are available for use within NetWeaver are shown in
Table 1. In addition to purely logical operators such as AND, OR, and NOT, there
are other operators that can be useful when dealing with multiple sources of data
that vary in terms of desirability, accuracy, quality, and relevance. In the DEWA/
UPDE model, the sequential OR (SOR) node was used frequently. This node
(Fig. 3, EPT taxa found) provides the modeler with the ability to specify the order
in which the model will use data, and in so doing, consistently apply the best
available data to the model. In this example, the data for extant EPT taxa within a
given watershed could be found in at least four reports. Some of these reports (and
the data within) were preferred over others, often based on the originating agency
of the report, report recency, and other factors. In Fig. 3, we show how a SOR
node can be used to ensure that the most preferred data source is used. The SOR
node always ensures that the left-most source of extant data is used. If there are no
data present, the SOR node seeks its value from the next data source to the right.
In the case of the DEWA/UPDE watershed model, any EPT value from any of the
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four sources was evaluated the same. However, cases arise whereby a modeler
may wish to interpret less reliable data in a more conservative manner than would
be applied to more reliable data. This can be easily implemented by attaching a
data link or dependency network to the SOR node that is designed to evaluate
these less reliable data sources.

6 Conclusions

NetWeaver software provides graphic tools for constructing executable depen-
dency networks that permit both forward- and backward-chained reasoning.
Because the inference engine is integrated, networks can be evaluated in real-time
with nodes changing color to indicate their changing “trueness” levels. This
ability to peer into the logical workings of a knowledge network greatly optimizes
the knowledge engineering process by:

e Providing the ability to run and evaluate freshly elicited knowledge in the
presence of the domain expert(s).

e Enabling the knowledge engineer to trace the logic structure from data to
conclusions.

e Allowing the knowledge engineer to quickly identify and edit errors and
inconsistencies in the logic.

e Providing consistent analyses across a landscape.

e Providing intelligent prioritization of data and results.

e Allowing competing analytical methods to be employed simultaneously.
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