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We begin with a friendly advice to our readers. Please, try an online map projection forum. Do
at least study the exercises. Remember: No one expects a guitarist to learn to play by going
to concerts in Central Park or by spending hours reading transcriptions of Jimi Hendrix solos.
Guitarists practice! Guitarists play the guitar until their fingertips are calloused. Similarly, map
projectors solve problems. Of course, if you do not know the prerequisites, you are not be able to
understand the subject.
Of course, there is the whole world of geo-data portals like

• BING MAPS, Microsoft Virtual Earth,
• GOOGLE Earth, GOOGLE Maps, GOOGLE OCEAN (these maps refer to AST (Lowest

Astronomic Tide) and IHO (International Hydrographic Office) represented by the Geodesist
P. VANICEK ),

• NASA WORLD WIRQ,
• YELLOW MAPS,
• Open Street Map.

and many others. But, in order to understand the ART of Map Projections, read our book!

Please, read: Zero Meridian Internationally Defined for the Planet Earth

Orientation of a World Atlas is gained by Longitude/Latitude maps. The Zero Meridian was
neatly defined: The traditional Star Observatory in London’s suburb Greenwich was originally cho-
sen as the Zero Meridian. At the time of the Greek Geographer Ptolomäus described about 150AC
as the longitude origin the Canary Island FERRO, nowadays known as El Hierro. At 13 October
1884 a global definition of the longitude origin at the International Meridian Conference at
Washington, DC was agreed upon, in addition to the numbering system of degrees/minutes/
seconds. In consequence, position information was divided in Westerly and Easterly of Greenwich
Observatory. In principle, modern GPS satellites for Navigation follow this definition, but with
slight changes described here.
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A second important result at the World International Meridian Conference in Washington,
DC was a unique time measuring system: the Midday Sun over the local observatory defined the
Greenwich Mean Time (GMT). All worldwide clocks fitted to 24 different time zones depended on
the GMT. Meanwhile, over the many years passed, location and time mark lost their importance.
Responsible was the progress in positioning to the millimeter accuracy and in timing to the sub-
millisecond. In 1948 the Time Reference Measure GMT was changed into “Coordinated World
Time” (UTC), Atomic Clocks were measuring precisely Time.
In addition, the Zero Meridian was changed, not anymore relating to the Greenwich Meridian.

Displacements caused by continental drifts, plate tectonics and tidal effects change spatial dis-
tances. In addition, the Earth figure has changed from the plane over the sphere to the ellipsoid of
reference, for instance the World Ellipsoid 2000. Following C.F. Gauss, the topographic Earth fig-
ure was orthogonally projected to the World Ellipsoid of Reference. He designed also an ellipsoid
projection in strips to the plane: his Gauss-Kruger Map/ellipsoidal Universal Transversal Mer-
cator Projection(UTM), manifest of the worldwide Ellipsoid 1984 Reference System (WGS84 ).
C.F. Gauss, in addition, defined also the proper three-dimensional Reference Coordinate Sys-
tem “ellipsoidal longitude, ellipsoidal latitude, ellipsoidal height” as the orthogonal projection to
the Reference Ellipsoid, the worldwide basis of the GPS reference system, a million times used
easily for GPS positioning ! Nowadays, the official Zero Meridian passes about 100m East of a
line marked as the historical Star Observatory in Greenwich, relating to the best fitted Reference
Ellipsoid, for instance the World Geodetic Reference System 2000/World Geodetic Datum 2000.

What topics have been added

Chapter 22 introduces optimal map projections by the variational calculus, namely generating
harmonic maps. We solve the LAPLACE-BELTRAMI equations on the International Reference
Ellipsoid, the characteristic boundary value problem of an arc preserving mapping. Up to now,
the only solutions harmonic maps exist for the Reference Sphere. An important technical tool is
our distortion energy analysis of TISSOT type, extended by appendices.
Alternative structure for map projections is the subject of Chap. 23. Up to now, we did analyze

the mapping of sphere-to-plane, ellipsoid-to-plane as well as the double projection ellipsoid-to-
sphere-to plane. Now, we analyze map projections of the torus (pneu), the hyperboloid (cooling
tower), the paraboloid (parabolic mirror), the Onion surface (church tower) as well as the min-
imum distance mapping of the clothoid (High-Speed Railways) taking advantage of FRENEL
integral. The target is always Project Surveying, a subject of Engineering Geodesy.
Finally, Chap. 24 reviews the group, C10(3) in a three-dimensional Euclidean space, namely the

ten parameter conformal transformation as a datum transform. Such a differential space leaves
angles and distance ratios equivariant.
How complex the situation with various map projection really is can be seen by the Double

Helix illustrating DNA. Such a structure of DNA has been invented by Francis Crick and James
D. Watson in 1953. It revealed how DNA was the substance of the genes, containing two polynu-
cleotide strands wounding around each other. Both of them got the Nobel Prize for their research
result. Read “Genes, Girls and Gamow” by J.D. Watson, A.A. Knopf Publ., New York 2002.
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Fig. 1. Double Helix (DNA)
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World of Map Projections is much larger as here presented. Map projections of type Robinson—
very popular in cartographic circles—are not treated here. Have a look into the large world of
journals on Map Projections!
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Enjoy the Wonderful World of Map Projections!

Erik W. Grafarend, Rey-Jer You, Reiner Syffus
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This book is dedicated to the Memory
of US GS’s J. P. Snyder (1926–1997),
genius of inventing new Map Projections.

Our review of Map Projections has 21 chapters and 10 appendices. Let us point out the most
essential details in advance in the following passages.

Foundations.

The first four chapters are of purely introductory nature. Chapters 1 and 2 are concerned with
general mappings from Riemann manifolds to Riemann manifolds and with general mappings
from Riemann manifolds to Euclidean manifolds and present the important eigenspace analysis
of types Cauchy–Green and Euler–Lagrange. Chapter 3 introduces coordinates or parameters of
a Riemann manifold, Killing vectors of symmetry, and oblique frames of reference for the sphere
and for the ellipsoid-of-revolution. A special topic is the classification of surfaces of zero Gaussian
curvature for ruled surfaces and for developable surfaces in Chap. 4.
Next, we intend to follow the classical scheme of map projections. Consult the formal scheme

above for a first impression.

The standard map projections: tangential, cylindric, conic.

Chapters 5–7 on mapping the sphere to the tangential plane, namely in the polar aspect (nor-
mal aspect)—for instance, the Universal Polar Stereographic Projection (UPS)—and the meta-
azimuthal mapping in the transverse as well as the oblique aspect, follow. They range from
equidistant mapping via conformal mapping to equal area mapping, finally to normal perspective
mappings. Special cases are mappings of type “sphere to tangential plane” at maximal distance,
at minimal distance, and at the equatorial plane (three cases). We treat the line-of-sight, the
line-of-contact, and minimal versus complete atlas. The gnomonic projection, the orthographic
projection, and the Lagrange projection follow. Finally, we ask the question: “what is the best
projection in the class of polar and azimuthal projections of the sphere to the plane?” A special
section on pseudoazimuthal mappings, namely the Wiechel polar pseudoazimuthal mapping, and

ix
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Mappings of the sphere or the ellipsoid to the tangential plane

Mappings of the sphere or the ellipsoid 
to the cylinder

Mappings of the sphere or the ellipsoid 
to the cone

Conformal mappings

Equidistant mappings Equal area mappings

Geodetic mappings
(initial value versus boundary value problems)

Pseudo-mappings of types
azimuthal, cylindric, or conic

perspective mappings

Double projections
(“sphere to ellipsoid” and “sphere to plane”)

Fig. 1. The classical scheme of map projections

another special section on meta-azimuthal projections (stereographic, transverse Lambert, oblique
UPS and oblique Lambert) concludes the important chapter on various maps “sphere to plane.”

�

Chapter 8 is the first chapter on mapping the ellipsoid-of-revolution to the tangential plane. We
treat special mappings of type equidistant, conformal, and equal area, and of type perspective.
Chapter 9 is the first chapter on double projections. First, we introduce the celebrated Gauss
double projection. Alternatively, we introduce the authalic equal area projection of the ellipsoid to
the sphere and from the sphere to the plane.
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�

Chapters 10–13 are devoted to the mapping “sphere to cylinder,” namely to the polar aspect, to
the meta-cylindric projections of type transverse and of type oblique, and finally to the pseudo-
cylindrical mode. Four examples, namely from mapping the sphere to a cylinder (polar aspect,
transversal aspect, oblique aspect, pseudo-cylindrical equal area projections) in Chaps. 10–13
document the power of these spherical projections. The resulting map projections are called (a)
Plate Carrée (quadratische Plattkarte), (b) Mercator projection (Gerardus Mercator 1512–1594),
and (c) equal area Lambert projection. A special feature of the Mercator projection is its property
“mapping loxodromes (rhumblines, lines of constant azimuths) to a straight line crossing all
meridians with a constant angle.” The most popular map projection is the Universal Transverse
Mercator projection (UTM) of the sphere to the cylinder, illustrated in Fig. 11.3. The pseudo-
cylindrical equal area projections—they only exist—are widely used in the sinusoidal version
(Cossin, Sanson–Flamsteed), in the elliptic version (Mollweide, very popular), in the parabolic
version (Craster), and in the rectilinear version (Eckert II).

�

In Chap. 10, a special section is devoted to the question “what is the best cylindric projection
when best is measured by the Airy optimal criterion or by the Airy–Kavrajski optimal criterion?”
We have compared three mappings: (a) conformal, (b) equal area, and (c) distance preserving in
the class of “equidistance on two parallel circles.” We prove that the distance preserving maps
are optimal and the equal area maps are better than the conformal maps, at least until a latitude
of Φ = 56◦, when we apply the Airy optimal criterion. Alternatively, when we measure optimality
by the Airy–Kavrajski optimal criterion, we find again that the optimum is with the distance
preserving maps, but conformal maps produce exactly the same equal area maps, less optimal
compared to distance preserving maps.

�
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In contrast, Chaps. 14–16 are a review in mapping an ellipsoid-of-revolution to a cylinder. We start
with the polar aspect of type {x = AΛ, y = f(Φ)}, specialize to normal equidistant, normal confor-
mal, and normal equiareal, in general, to a rotationally symmetric figure (for example, the torus).
The transverse aspect is applied to the transverse Mercator projection and the special Gauss–
Krueger coordinates (UTM, GK) derived from the celebrated Korn–Lichtenstein equations subject
to an integrability condition and an optimality condition for estimating the factor of conformality
(dilatation factor) in a given quantity range [−lE,+lE] × [BS, BN] = [−3.5◦,+3.5◦] × [80◦S, 84◦N]
or [−lE,+lE]× [BS, BN] = [−2◦,+2◦]× [80◦S, 80◦N], namely ρ = 0.999, 578 or ρ = 0.999, 864. Due
to its practical importance, we have added three examples for the transverse Mercator projection
and for the Gauss–Krueger coordinate system of type {Easting, Northing}, adding the meridian
zone number. Another special topic is the strip transformation from one meridian strip system to
another one, both for Gauss–Krueger coordinates and for UTM coordinates. We conclude with
two detailed examples of strip transformation (Bessel ellipsoid, World Geodetic System 84). At
the end, we present to you the oblique aspect of type Oblique Mercator Projection (UOM) of the
ellipsoid-of-revolution, also called rectified skew orthomorphic by M. Hotine. J.P. Snyder calls it
“Hotine Oblique Mercator Projection (HOM).” Landsat-type data are a satellite example.

�

Only in the polar aspect, we present in Chap. 17 the maps of the sphere to the cone. We use
Fig. 17.1 as an illustration and the setup {a = Λ sinΦ0, r = f(Φ)} in terms of polar coordinates.
n := sinΦ0 range from n = 0 for the cylinder to n = 1 for the azimuthal mapping. Thus, we
are left with the rule 0 < n < 1 for conic projections. The wide variety of conic projections
were already known to Ptolemy as the equidistant and conformal version on the circle-of-contact.
If we want a point-like image of the North Pole, the equidistant and conformal version on the
circle-of-contact is our favorite. Another equidistant and conformal version on two parallels is the
de L’Isle mapping. Various versions of conformal mapping range from the equidistant mappings
on the circle-of-contact to the equidistant mappings on two parallels (secant cone, J.H. Lambert).
The equal area mappings range from the case of an equidistant and conformal mapping on the
circle-of-contact over the case of an equidistant and conformal mapping on the circle-of-contact
and a point-like image of the North Pole to the case of equidistance and conformality on two
parallels (secant cone, H.C. Albers).

�
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Chapter 18 is an introduction into mapping the sphere to the cone, namely of type pseudo-conic.
We specialize on the Stab–Werner projection and on the Bonne projection. Both types have the
shape of the heart.

�

The polar aspect of mapping the ellipsoid-of-revolution to the cone is the key topic of Chap. 19.
We review the line-of-contact and the principal stretches before we enter into special cases, namely
of type equidistant mappings on the set of parallel circles of type conformal (variant equidistant
on the circle-of-reference, variant equidistant on two parallel circles, generalized Lambert conic
projection) and type equal area (variant equidistant and conformal on the reference circle, variant
pointwise mapping of the central point and equidistant and conformal on the parallel circle,
variant of an equidistant and conformal mapping on two parallel circles, generalized Albers conic
projection).

�

Geodesics and geodetic mappings, in particular, the geodesic circle, the Darboux frame, and the
Riemann polar and normal coordinates are the topic of Chap. 20. We illustrate the Lagrange and
the Hamilton portrait of a geodesic, introduce the Legendre series, the corresponding Hamilton
equations, the notion of initial and boundary value problems, the Riemann polar and normal
coordinates, Lie series, and specialize to the Clairaut constant and to the ellipsoid-of-revolution.
Geodetic parallel coordinates refer to Soldner coordinates. Finally, we refer to Fermi coordinates.
The deformation analysis of Riemann, Soldner, and Gauss–Krueger coordinates is presented.

Datum problems.

Datum problems, namely its analysis versus synthesis and its Cartesian approach versus curvilinear
approach, are presented in Chap. 21. Examples reach from the transformation of conformal coor-
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dinates of type Gauss–Krueger and type UTM from a local datum (regional, national, European)
to a global datum (WGS 84) of type UM (Universal Mercator).

Appendices.

Appendix A is entitled “Law and order.” It brings up relation preserving maps. We refer to Venn
diagrams, Euler circles, power sets, Hesse diagrams, finally to fibering. The inversion of univari-
ate, bivariate, in general, multivariate homogeneous polynomials is presented in Appendix B. In
contrast, Appendix C reviews elliptic functions and elliptic integrals. Conformal mappings are
the key subject of Appendix D. First, we treat the classical Korn–Lichtenstein equations. Second,
we treat the celebrated d’Alembert–Euler equations (usually called Cauchy–Riemann equations)
which generate conformal mapping both (a) on the basis of real algebra and (b) on the basis of
complex algebra. Lemma D.1 gives three alternative formulations of the Korn–Lichtenstein equa-
tions. The fundamental solutions of the d’Alembert–Euler equations subject to the harmonicity
condition are reviewed in Lemma D.2 in terms of a polynomial representation (D.15)–(D.29). An
alternative solution in terms of matrix notation based upon the Kronecker–Zehfuss product is
provided by (D.30) and (D.31). Lemmas D.3 and D.4 review two solutions of the d’Alembert–
Euler equations subject to the integrability conditions of harmonicity, by separation of variables
this time. Two choices of solving the basic equations of the transverse Mercator projection are
presented: x = x(q, p), y = y(q, p). We especially estimate (a) the boundary condition for the
universal transverse Mercator projection modulo an unknown dilatation factor and (b) we solve
the already formulated boundary value problem with respect to the d’Alembert–Euler equations
(Cauchy–Riemann equations). Finally, the unknown dilatation factor is optimally determined by
optimizing the total distance distortion measure (Airy optimum) or the total areal distortion.
Appendix E introduces the extrinsic terms geodetic curvature, geodetic torsion, and normal cur-
vature, the notion of a geodesic circle, especially the Newton form of a geodesic in Maupertuis
gauge on the sphere and on the ellipsoid-of-revolution. Mixed cylindrical maps of the ellipsoid-
of-revolution of type equiareal based upon the Lambert projection and the sinusoidal Sanson–
Flamsteed projection, especially as the horizontal weighted mean versus the vertical weighted
mean, are the central topics of Appendix F. The generalized Mollweide projection and the gener-
alized Hammer projection (generalized for the ellipsoid-of-revolution) are the key topics, especially
of our studies in Appendices G and H. The optimalMercator projection and the optimal polycylin-
dric projection of type conformal, here developed on the ellipsoid-of-revolution, are applied to the
many islands of the Indonesian Archipellagos in Appendix I. Projection heights in the geometry
space are the topic of Appendix J. We treat the plane, the sphere, the ellipsoid-of-revolution, and
the triaxial ellipsoid, and we review the solution algorithm for inverting Cartesian coordinates to
projection heights. An example is the Buchberger algorithm. In detail, we review surface normal
coordinates, for example, in the computation of the triaxial ellipsoids of type Earth, Moon, Mars,
Phobos, Amalthea, Io, and Mimas.
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We here would like to emphasize that our introduction into Map Projections is exclusively based
upon right-handed coordinates. In this orientation, we particularly got support from my German
colleagues J. Engels (Stuttgart), V. Schwarze (Backnang), and R. Syffus (Munich). We here would
like to note that the software manuscript was produced by V. Weberruß with expertise. To all our
readers, we appreciate their care for the Wonderful World of Map Projections. We dedicate
our work to J.P. Snyder (1926–1997), who worked for the US Geological Survey for a lifetime.
We stay on the strong shoulders of great scientists, for example, C.F. Gauss, J.L. Lagrange,
B. Riemann, E. Fermi, J.H. Lambert, and J.H. Soldner. May we remember their great works.

Stuttgart, Germany Erik W. Grafarend
Stuttgart, Germany Friedrich W. Krumm



http://www.springer.com/978-3-642-36493-8


