
2

From Riemann Manifolds to Euclidean Manifolds

Mapping from a left two-dimensional Riemann manifold to a right two-dimensional Euclidean
manifold, Cauchy–Green and Euler–Lagrange deformation tensors, equivalence theorem for
equiareal mappings, conformeomorphism and areomorphism, Korn–Lichtenstein equations
and Cauchy–Riemann equations, Mollweide projection, canonical criteria for (conformal,
equiareal, isometric, equidistant) mappings, polar decomposition and simultaneous diago-
nalization for more than two matrices.

Let there be given the left two-dimensional Riemann manifold {M2
l , GMN} as well as the right two-

dimensional Euclidean manifold {M2
r , gμν} = {R2, δμν} = E

2. In many applications, the choice
of {R2, δμν} is the “plane manifold”, for instance, (i) the equatorial plane of the sphere or the
ellipsoid, (ii) the meta-equatorial, also called oblique equatorial plane of the sphere or the ellipsoid,
(iii) the plane generated by developing the cylinder, the cone, a ruled surface (namely surfaces
which are “Gauss flat”), (iv) the tangent space TU 0M

2
l of the left two-dimensional Riemann man-

ifold fixed to the point U 0 := {U1
0 , U

2
0} being covered by Cartesian coordinates. (Refer to all pre-

vious examples.) We shall not repeat the various deformation measures of type multiplicative and
additive for the special case of the right two-dimensional Euclidean manifold {R2, δμν}. Instead, we
present to you (i) the left and right eigenspace analysis and synthesis of the Cauchy–Green defor-
mation tensor, special case {M2

r , gμν} = {R2, δμν}, (ii) the left and right eigenspace analysis and
synthesis of the Euler–Lagrange deformation tensor, special case {M2

r , gμν} = {R2, δμν}. (iii) Con-
formeomorphism, conformal mapping, special case {M2

r , gμν} = {R2, δμν}; Korn–Lichtenstein
equations, special case Cauchy–Riemann equations (d’Alembert–Euler equations).

2-1 Eigenspace Analysis, Cauchy–Green Deformation Tensor

Left and right eigenspace analysis and synthesis of the Cauchy–Green deformation tensor,
special case {M2

r , gμν} = {R2, δμν}.

First, let us confront you with Lemma 2.1, where we present detailed results of the left and right
eigenspace analysis and synthesis of the Cauchy–Green deformation tensor for the special case of
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112 2 From Riemann Manifolds to Euclidean Manifolds

a right Euclidean manifold. Second, we focus on an interpretation of the results and additionally
discuss a short example.

Lemma 2.1 (Left and right eigenspace analysis and synthesis of the Cauchy–Green deformation
tensor, special case {M2

r , gμν} = {R2, δμν}).

(i) Synthesis.

For the matrix pair of positive-definite and symmetric matrices {Cl, Gl} or {Cr, Gr}, a simulta-
neous diagonalization is (the right Frobenius matrix Fr is an orthonormal matrix)

Cl = JTl Jl, F
T
l ClFl = diag[Λ2

1, Λ
2
2], F

T
l GlFl

= I versus FT
r CrFr = diag [λ2

1, λ2
2], FT

r Fr = I. (2.1)

(ii) Analysis.

Left eigenvalues or left principal stretches:

|Cl − Λ2
iGl| = 0,

Λ2
1,2 = Λ2

± =
1

2

(
tr[ClG

−1
l ] ±

√
(tr[ClG

−1
l ])2 − 4det[ClG

−1
l ]

)
. (2.2)

Left eigencolumns:

[
F11

F21

]
=

1√
G11(c22 − Λ2

1G22)2 − 2G12(c12 − Λ2
1G12)(c22 − Λ2

1G22) +G22(c12 − Λ2
1G12)2

×

×
[
+(c22 − Λ2

1G22)
−(c12 − Λ2

1G12)

]
, (2.3)

[
F12

F22

]
=

1√
G22(c11 − Λ2

2G11)2 − 2G12(c11 − Λ2
2G11)(c12 − Λ2

2G12) +G11(c12 − Λ2
2G12)2

×

×
[−(c12 − Λ2

2G12)
+(c11 − Λ2

2G11)

]
.

Right eigenvalues or right principal stretches

(the right general eigenvalue problem reduces to the right special eigenvalue problem):

|Cr − λ2
iGr| = |Cr − λiI2| = 0 ∀ i ∈ {1, 2},

λ2
1,2 = λ2

± =
1

2

(
tr[CrG

−1
r ] ±

√
tr[CrG−1

r ])2 − 4det [CrG−1
r ]

)
= (2.4)

=
1

2

(
C11 + C22 ±

√
(C11 + C22)2(2C12)2

)
.
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Right eigencolumns:

Fr =

[
f11 f12
f21 f22

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
f11
f21

]
= 1√

(C22−λ2
1)

2+C2
12

[
C22 − λ2

1

−C12

]
,

[
f12
f22

]
= 1√

(C11−λ2
2)

2+C2
12

[
−C12

C11 − λ2
2

]
.

(2.5)

Since the right Frobenius matrix Fr is an orthonormal matrix, it can be represented by

Fr =

[
cosϕ sinϕ
− sinϕ cosϕ

]
∀ϕ ∈ [0, 2π],

(2.6)

tanϕ =
C12

C11 − λ2−
, tan 2ϕ =

2C12

C11 − C22
.

End of Lemma.

The proof of Lemma 2.1 is straightforward from Lemma 1.6 as soon as we specialize Gr = I2. Of
special interest is the right eigenspace analysis. Here, the right Frobenius matrix Fr is orthonor-
mal. As an orthonormal matrix (also called “proper rotation matrix”), it can be parameterized
by a rotation angle ϕ. Such an angle of rotation orientates the right eigenvectors {f 1, f 2|O}
with respect to {e1, e2|O}, R2 = span{e1, e2}. Indeed, the “ tan 2ϕ identity” leads to an easy
computation of the orientation of the right eigenvectors. We proceed to a short example.

Example 2.1 (Orthogonal projection of points of the sphere S
2
R+ onto the equatorial plane

P
2
O through the origin O).

In Example 1.6, we presented already to you the special map projection of the hemisphere S2
R+ onto

the central equatorial plane P
2
O by computing its characteristic right Cauchy–Green deformation

tensor as well as its right eigenspace. Here, we aim at testing the right Frobenius matrix Fr on
orthonormality. Let us transfer the right eigencolumns to build up

Fr =

[
f11 f12
f21 f22

]
= − 1√

x2 + y2

[
x y
y −x

]
. (2.7)

Is this Frobenius matrix of integrating factors an orthonormal matrix? Please test F∗
rFr = I2 to

convince yourself. Here, we generate

Fr

[
cosϕ sinϕ
− sinϕ cosϕ

]
= − 1√

x2 + y2

[
x y
y −x

]
, (2.8)

tanϕ = −y

x
, tan 2ϕ =

2 tanα

1 − tan2 α
= − 2xy

x2 − y2
, (2.9)

C12 =
xy

R2 − (x2 + y2)
, C11 − C22 =

x2 − y2

R2 − (x2 + y2)
, (2.10)
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tan 2ϕ =
2C12

C11 − C22
=

2xy

x2 − y2
. (2.11)

If x = y, then tanϕ = −1, tan 2ϕ → ±∞, ϕ = ∓45◦.

End of Example.

2-2 Eigenspace Analysis, Euler–Lagrange Deformation Tensor

Left and right eigenspace analysis and synthesis of the Euler–Lagrange deformation tensor,
special case {M2

r, gμν} = {R2, δμν}.

First, let us confront you with Lemma 2.2, where we present detailed results of the left and right
eigenspace analysis and synthesis of the Euler–Lagrange deformation tensor for the special case
of a right Euclidean manifold. Second, we focus on an interpretation of the results.

Lemma 2.2 (Left and right eigenspace analysis and synthesis of the Euler–Lagrange deformation
tensor, special case {M2

r , gμν} = {R2, δμν}).

(i) Synthesis.

For the pair of symmetric matrices {El, Gl} or {Er, Gr}, where the matrices {Gl, Gr} are posi-
tive definite, a simultaneous diagonalization is (the right Frobenius matrix Fr is an orthonormal
matrix)

FT
l ElFl = diag[K1, K2], FT

l GiFl = I versus FT
r ErFr = diag [κ1, κ2],

FT
r F1 = I. (2.12)

(ii) Analysis.

Left eigenvalues:

|El − KiGl| = 0, K1,2 = K±

=
1

2

(
tr[ElG

−1
l ] ±

√
(tr[ElG

−1
l ])2 − 4det [ElG

−1
l ]

)
. (2.13)

Left eigencolumns:

[
F11

F21

]
=

1√
G11(e22 − K1G22)2 − 2G12(e12 − K1G12)(e22 − K1G22) +G22(e12 − K1G12)2

×

×
[

e22 − K1G22

−(e12 − K1G12)

]
, (2.14)
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[
F12

F22

]
=

1√
G22(e11 − K2G11)2 − 2G12(e11 − K2G11)(e12 − K2G12) +G11(e12 − K2G12)2

×

×
[−(e12 − K2G12)

e11 − K2G11

]
.

Right eigenvalues

(the right general eigenvalue problem reduces to the right special eigenvalue problem):

|Er − κiIr| = 0,

κ1,2 = κ± =
1

2

(
tr[Er] ±

√
(tr[Er])2 − 4det [Er]

)
= (2.15)

=
1

2

(
E11 + E22 ±

√
(E11 + E22)2 + (2E12)2

)
.

Right eigencolumns:

Fr =

[
f11 f12
f21 f22

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
f11
f21

]
= 1√

(E22−k1)2+E2
12

[
E22 − k1

−E12

]
,

[
f12

f22

]
= 1√

(E11−k2)2+E2
12

[
−E12

E11 − k2

] (2.16)

Since the right Frobenius matrix Fr is an orthonormal matrix, it can be represented by

Fr =

[
cosφ sinφ
− sinφ cosφ

]
∀φ ∈ [0, 2π],

(2.17)

tanφ =
E12

E11 − κ−
, tan 2φ =

2E12

E11 − E22
.

End of Lemma.

Lemma 1.7 is the basis of the proof if we specialize Gr = I2. Again, we emphasize that within the
right eigenspace analysis the right Frobenius matrix is orthonormal. As an orthonormal matrix,
i.e. Fr ∈ SO(2) := {Fr ∈ R

2×2 |FT
r Fr = I2 and det [Fr] = +1}, it can be properly parameterized

by a rotation angle φ. Such an angle of rotation orientates the right eigenvectors {f 1, f 2|O}
with respect to {e1, e2|O}, R

2 = span{e1, e2}. Indeed, the “ tan 2φ identity” leads to an easy
computation of the orientation of the right eigenvectors.
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2-3 The Equivalence Theorem for Conformal Mappings

The equivalence theorem for conformal mappings from the left two-dimensional Riemann
manifold to the right two-dimensional Euclidean manifold (conformeomorphism), Korn–
Lichtenstein equations and Cauchy–Riemann equations (d’Alembert–Euler equations).

The previous equivalence theorem for a conformeomorphism is specialized for the case of the
two-dimensional right Euclidean manifold {M2

r , gμν} = {R2, δμν} =: E2. In many applications,
the choice of {R2, δμν} is the planar manifold, for instance, the tangent space TU oM

2
l of the left

two-dimensional Riemann manifold fixed to the pointU 0 = {U1
0 , U

2
0}, being covered by Cartesian

or polar coordinates. For an illustration of such a setup of a “planar manifold”, go back to our
previous examples.

2-31 Conformeomorphism

First, let us confront you with Lemma 2.3. The proof based upon Theorem 1.11 is straightforward.
Examples are given in the following chapters.

Lemma 2.3 (Conformeomorphism, conformal mapping, special case {M2
r , gμν} = {R2, δμν}).

Let f : M2
l → {R2, δμν} be an orientation preserving conformal mapping. Then the following

conditions are equivalent.
(i) Ψl(U̇ 1, U̇ 2) = Ψr(u̇1, u̇2) (2.18)

for all tangent vectors U̇ 1, U̇ 2 and their images u̇1, u̇2, respectively.

(ii) Cl = λ2(U 0)Gl versus Cr = λ2I2,C
−1
r = I2/λ

2,

C11 = C22 = λ2, C12 = C21 = 0, C11 = C22 = λ−2, C12 = C21 = 0;

(2.19)

El = K(U 0)Gl versus Er = κI2, E−1
r = I2/κ,

E11 = E22 = κ, E12 = E21 = 0, E11 = E22 = κ−1, E12 = E21 = 0.

(iii)

[
K = (Λ2 − 1)/2
Λ2 = 2K + 1

]
versus

[
(λ2 − 1)/2 = κ
2κ+ 1 = λ2

]
,

Λ1 = Λ2 = Λ(U 0) versus λ1 = λ2 = λ(u0), (2.20)

K1 = K2 = K(U 0) versus κ1 = κ2 = κ(u0),

Λ2(U0) = tr[ClG
−1
l ]/2 versus λ2(u0) = tr[Cr]/2;

(left dilatation)K = tr[ElG
−1
l ]/2 versus (right dilatation)κ = tr[Er]/2,

tr[ClG
−1
l ] = 2

√
det [ClG

−1
l ] versus tr[ClG

−1
l ] = 2

√
det [Cr],

(2.21)

tr[ElG
−1
l ] = 2

√
det [ElG

−1
l ] versus tr[Er] = 2

√
det [Er].



2-3 The Equivalence Theorem for Conformal Mappings 117

(iv) (Generalized Korn–Lichtenstein equations, Cauchy–Riemann equations, subject to the
integrability conditions uUV = uVU and vUV = vVU )

[
uU

uV

]
=

1√
G11G22 − G2

12

[−G12 G11

−G22 G12

] [
uU

uV

]
. (2.22)

End of Lemma.

2-32 Higher-Dimensional Conformal Mapping

In order to develop the theory of a higher-dimensional conformal diffeomorphism (in Gauss’s
words: “in kleinsten Teilen ähnlich”), we first derive the Korn–Lichtenstein equations of a two-
dimensional conformal mapping M

2
l → M

2
r := {R2, δμν} = E

2 by means of exterior calculus,
namely by means of the Hodge star operator. With such an experience built up, second, we derive
the Zund equations of a three-dimensional conformal mapping M

3
l → M

3
r := {R3, δμν} = E

3

by means of exterior calculus taking advantage of the Hodge star operator in R
3. Note that the

Hodge star operator generalizes the vector product, also called cross product or outer product, to
any dimension. Indeed, the classical vector product serves us only in R

3. Box 2.1 summarizes
the various steps to produce a conformal diffeomorphism M

2
l → M

2
r = {R2, δμν} = E

2 in terms
of exterior calculus. First, we introduce the left Jacobi map {dx, dy} → {dU, dV } and the
right Jacobi map {dU, dV } → {dx, dy}. Second, we compute the right Cauchy–Green matrix Cr

subject to its conformal structure Cr = λ2I2 and C−1
r = λ−2I2. We are led to a representation of the

conformal right Cauchy–Green matrix Cr = JTr GlJr = λ2I2 or C−1
r = JTl G

−1
l Jl = λ−2I2 in terms

of the Jacobi matrices Jl and Jr. The rows of the left Jacobi matrix can be interpreted as “G−1
l

orthogonal”, while the right Jacobi matrix can be interpreted as “Gl orthogonal”. Third, this result
of conformal geometry is used by the Hodge star operator. One-by-one, we define dx, x1, x2, and
dy∗. Here, we make use of the two-dimensional permutation symbol eLM ∈ R

2×2(L, M ∈ {1, 2}).
Fourth, we explicitly represent the exterior form dx = dy∗ of the Korn–Lichtenstein equations:
compare with Lemma 2.4.

Lemma 2.4 (Grafarend and Syffus (1998d, p. 292), conformeomorphism M
2
l → M

2
r := {R2, δμν},

Korn–Lichtenstein equations).

The following formulations of the Korn–Lichtenstein equations producing a conformal diffeomor-
phism M

2
l → M

2
r := {R2, δμν} are equivalent.

Formulation (i):

dx = ∗dy. (2.23)

Formulation (ii):

∂x

∂UL
= eLM

√
det [Gl]G

MN ∂y

∂UN
. (2.24)

Formulation (iii):

xU =
1√|Gl|

(−G12yU +G11yV ), xV =
1√|Gl|

(−G22yU +G12yV ), (2.25)

Gl = [GMN ] =

[
G11 G12

G12 G22

]
⇔ 1

|Gl|
[

G22 −G12

−G12 G11

]
= [GLM ] = G−1

l , (2.26)
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subject to the integrability conditions

∂2x

∂U∂V
=

∂2x

∂V ∂U
,

∂2y

∂U∂V
=

∂2y

∂V ∂U
. (2.27)

End of Lemma.

Box 2.1 (Conformal diffeomorphism M
2
l → M

2
r = {R2, δμν} = E

2, exterior calculus).

Diffeomorphism :[
dx
dy

]
= Jl

[
dU
dV

]
or

[
dU
dV

]
= Jr

[
dx
dy

]

⇔
Jl = J−1

r (2.28)

⇔
Jr = J−1

l .

Right Cauchy–Green matrix for a conformal diffeomorphism:

Cr = JTr GlJr = λ2I2 (2.29)

⇔
C−1

r = JlG
−1
l JTl = λ−2I2.

The rows of the left Jacobi matrix areG−1
l orthogonal :

dx = xUdU + xdV dV =

2∑
M=1

xMdUM , x1 := DUx = xU , x2 := DV x = xV . (2.30)

Hodge star operator:

∗dy :=

2∑
L,M,N=1

eLM
√

det [Gl]G
MNyNdU

L, (2.31)

subject to

y1 := DUy = yU , y2 := DV y = yV .

Permutation symbol:

eLM =

⎧⎨
⎩

+1 for an even permutation of the indices L,M ∈ {1, 2}
−1 for an odd permutation of the indices L,M ∈ {1, 2}.
0 otherwise

(2.32)

Korn–Lichtenstein equations in exterior calculus:

dx =

2∑
M=1

xMdUM =

2∑
L,M,N=1

eLM
√
det [Gl]G

MNyNdU
L = dy∗

⇔ (2.33)

∂x

∂UL
= eLM

√
det [Gl]G

MN ∂y

∂UN
, dx = dy∗.
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Box 2.2 summarizes the operational procedure for generating a conformal diffeomorphism, also
called conformeomorphism,M2

l → M
2
r = {R2, δμν} = E

3, again in terms of exterior calculus. First,
we introduce the differential one-forms, the differential two-forms, and the differential three-
forms. Second, we apply the Hodge star operator (i) to ∗dx etc., (ii) to ∗(dy ∧ dz) etc., and
(iii) to ∗(dy ∧ dy ∧ dz). The columns [x1, x2, x3]

T, [y1, y2, y3]
T, and [z1, z2, z3]

T may be
considered orthogonal. Third, we represent the expression ∗(dy ∧ dz) as an example explicitly.
Again, the three-dimensional permutation symbol eLM1M2 ∈ R

3×3×3(L, M1,M2 ∈ {1, 2}) as a
three-dimensional array is defined. Fourth, we explicitly compute the expression dx = ∗(dy∧d)z,
the Zund equations of a three-dimensional conformal mapping M

3
l → M

3
r = E

3: compare with
Lemma 2.5.

Box 2.2 (Conformal diffeomorphism M
3
l → M

3
r = {R3, δμν} = E

3, exterior calculus).

Differential frame:

dx = x1dU + x2dV + x3dW
(i) dy = y1dU + y2dV + y3dW

dz = z1dU + z2dV + z3dW

⎤
⎦ (one-forms), (2.34)

(ii) dy ∧ dz, dz ∧ dx, dx ∧ dy, (two-forms),

(iii) dx ∧ dy ∧ dz (three-form).

Hodge star operator:

(i) ∗ dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗d = dx ∧ dy;

(ii) ∗ (dy ∧ dz) = dx, ∗(dz ∧ dx) = dy, ∗(dx ∧ dy) = dz; (2.35)

(iii) ∗ (dx ∧ dy ∧ dz) = 1.

Example :

∀ L, M1, M2, N1, N2 ∈ {1, 2, 3} :

∗(dy ∧ dz) =
3∑

L,M1,M2,N1,N2=1

eLM1M2

√
|Gl|GM1N1GM2N2

∂y

∂UN1

∂z

∂UN2
dUL. (2.36)

Permutation symbol:

eLM1M2 =

⎧⎨
⎩

+1 for an even permutation of the indices L,M1,M2 ∈ {1, 2, 3}
−1 for an odd permutation of the indices L,M1,M2 ∈ {1, 2, 3}.
0 otherwise

(2.37)

Zund equations of a two-dimensional conformal diffeomorphism

in exterior calculus:

dx =
3∑

M=1

xMdUM =

=
3∑

L,M1,M2,N1,N2=1

eLM1M2

√
|Gl|GM1N1GM2N2

∂y

∂UN1

∂z

∂UN2
dUL = ∗(dy ∧ dz) (2.38)
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⇔
∂x

∂UL
= eLM1M2

√
det [Gl]G

M1N1GM2N2
∂y

∂UN1

∂z

∂UN2
,

dx = ∗(dy ∧ dz).

Lemma 2.5 (Zund (1987), Grafarend and Syffus (1998d, p. 292), the Zund equations of a three-
dimensional conformeomorphism M

3
l → M

3
r = {R3, δμν} = E

3).

Equivalent formulations of the equations producing a conformal mapping M
3
l → M

3
r = E

3 are
provided by the following formulations.

Formulation (i):

dx = ∗(dy ∧ dz). (2.39)

Formulation (ii):

∀I, J1, J2, K1, K2 ∈ {1, 2, 3} :
∂x

∂U I
=

1

2
eIJ1J2

√
|Gl|GJ1K1GJ2K2

∂y

∂Uk1

∂z

∂UK2
. (2.40)

Formulation (iii):

∂x

∂U
=

1

2

√
|Gl|

[
(G21G32 − G31G12) ∂y

∂U
∂z
∂V

+ (G21G33 − G31G23) ∂y
∂U

∂z
∂W

+

+(G22G31 − G32G21) ∂y
∂V

∂z
∂U

+ (G22G33 − G32G23) ∂y
∂V

∂z
∂W

+

+(G23G31 − G33G21) ∂y
∂W

∂z
∂U

+ (G23G32 − G33G22) ∂y
∂W

∂z
∂V

]
,

(2.41)

∂x

∂V
=

1

2

√
|Gl|

[
(G31G12 − G11G32) ∂y

∂U
∂z
∂V

+ (G31G13 − G11G33) ∂y
∂U

∂z
∂W

+

+(G32G11 − G12G31) ∂y
∂V

∂z
∂U

+ (G32G13 − G12G33) ∂y
∂V

∂z
∂W

+

+(G33G11 − G13G31) ∂y
∂W

∂z
∂U

+ (G33G12 − G13G32) ∂y
∂W

∂z
∂V

]
,

(2.42)

∂x

∂W
=

1

2

√
|Gl|

[
(G11G22 − G21G12) ∂y

∂U
∂z
∂V

+ (G11G23 − G21G13) ∂y
∂U

∂z
∂W

+

+(G12G21 − G22G11) ∂y
∂V

∂z
∂U

+ (G12G23 − G22G13) ∂y
∂V

∂z
∂W

+

+(G13G21 − G23G11) ∂y
∂W

∂z
∂U

+ (G13G22 − G23G12) ∂y
∂W

∂z
∂V

]
,

(2.43)

subject to

G11 =
1

|Gl|(G22G33 − G23G32), G12 =
1

|Gl|(G13G32 − G12G33),

G13 =
1

|Gl|(G12G23 − G13G22), G22 =
1

|Gl|(G11G33 − G13G31), (2.44)

G23 =
1

|Gl|(G12G31 − G11G32), G33 =
1

|Gl|(G11G22 − G12G21).
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Formulation (iv):

∂x

∂U
=

1√|Gl|

[
G11

(
∂y

∂V

∂y

∂W
− ∂y

∂W

∂y

∂V

)
+G12

(
∂y

∂W

∂z

∂U
− ∂y

∂U

∂z

∂W

)

+G13

(
∂y

∂U

∂z

∂V
− ∂y

∂V

∂z

∂U

)]
,

∂x

∂V
=

1√|Gl|

[
G12

(
∂y

∂V

∂z

∂W
− ∂y

∂W

∂z

∂V

)
+G22

(
∂y

∂W

∂z

∂U
− ∂y

∂U

∂z

∂W

)

+G23

(
∂y

∂U

∂z

∂V
− ∂y

∂V

∂z

∂U

)]
, (2.45)

∂x

∂W
=

1√|Gl|

[
G13

(
∂y

∂V

∂z

∂W
− ∂y

∂W

∂z

∂V

)
+G23

(
∂y

∂W

∂z

∂U
− ∂y

∂U

∂z

∂W

)

+G33

(
∂y

∂U

∂z

∂V
− ∂y

∂V

∂z

∂U

)]
,

subject to the integrability conditions ∂2x
∂U∂V

= ∂2x
∂V ∂U

, ∂2x
∂U∂W

= ∂x2

∂W∂U
, ∂2x

∂V ∂W
= ∂2x

∂W∂V
.

End of Lemma.

Q
u
es
ti
on

.

Question: “Why did we bother you with the three-
dimensional conformal mapping of a three-dimensional
Riemann manifold to a three-dimensional Euclidean mani-
fold?” Answer: “One of the main reasons is the inability of
the theory of complex manifolds to work conformally with
odd-dimensional real manifolds. Only even-dimensional
real manifolds M

2n(R) can be transformed to complex
manifolds Mn(C)”.

Finally, Lemma 2.6 presents the partial differential equations of a conformeomorphism if it exists
from a left n-dimensional (pseudo-)Riemann manifold M

n
l of signature l to a right n-dimensional

(pseudo-)Riemann manifold M
n
r = En of signature r.

Lemma 2.6 (Grafarend and Syffus (1998d, p. 293), conformeomorphism).

Equivalent formulations of the equations producing a conformal mapping M
n
l → M

n
r = E

n are
provided by the following formulations.

Formulation (i):

dx1 = ∗(dx2 ∧ . . . ∧ dxn). (2.46)

Formulation (ii):

∀L, M1, . . . . , Mp, N1, . . . , Np ∈ {1, . . . , n}
(p = n − 1) : (2.47)

∂x

∂UL
=

1

p!
eLM1...Mp

√
det [Gl]G

M1N1 . . . GMpNp
∂x2

∂UN1
. . .

∂xn

∂UNp
,



122 2 From Riemann Manifolds to Euclidean Manifolds

subject to the integrability conditions

∂2x1

∂UL∂UN
=

∂2x1

∂UN∂UL
. (2.48)

End of Lemma.

2-4 The Equivalence Theorem for Equiareal Mappings

The equivalence theorem for equiareal mappings from the left two-dimensional Riemann man-
ifold to the right two-dimensional Euclidean manifold (areomorphism), Mollweide projection
of the ellipsoid-of-revolution, principal stretches.

The previous equivalence theorem for an areomorphism is specialized for the case of the two-
dimensional right Euclidean manifold {M2

r , gμν} = {R2, δμν} =: E2. In many applications, the
choice of {R2, δμν} is the planar manifold, for instance, the tangent space TU 0M

2
l of the left two-

dimensional Riemann manifold fixed to the point U 0 = {U1
0 , U2

0 }, being covered by Cartesian
or polar coordinates. For an illustration of such a setup of a “planar manifold”, go back to our
previous examples. Here, we focus on the equivalence theorem, namely the differential equations
which govern an equiareal mapping M

2
l → {R2, δμν}.

Theorem 2.7 (Areomorphism, M2
l → {R2, δμν}, equiareal mapping).

Let f : M2
r := {R2, δμν} =: E2 be an orientation preserving equiareal mapping. Then the following

conditions are equivalent.

Condition (i):√
det [Gl]dU ∧ dV = du ∧ dv. (2.49)

Condition (ii):

det [Cl] = 1 and det [ClG
−1
l ] = 1, (2.50)

det [I2 − 2Er] = 1 and det [2El +Gl] = det [Gl].

Condition (iii):

Λ1Λ2 = 1 andλ1λ2 = 1. (2.51)

Condition (iv):

UuVu − UvVu = 1/
√
det [Gl] =

= 1/
√
G11G22 − G2

12, (2.52)

uUvV − uV vU =
√

det [Gl] =

=
√

G11G22 − G2
12.

End of Theorem.
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Here, we only have specialized Theorem 1.14 to M
2
r := {R2, δμν} =: E2. One of the most popular

equiareal mappings E2
A1,A1,A2

→ {R2, δμν} is theMollweide projection of the ellipsoid-of-revolution
to the plane, which is presented in Example 2.2 and is illustrated in Fig. 2.1.

Example 2.2 (Mollweide projection of the ellipsoid-of-revolution, with reference to Grafarend
et al. (1995a)).

Let us assume that we have found a solution of the right characteristic equation, which gen-
erates an equiareal mapping of the ellipsoid-of-revolution E

2
A1,A1,A2

parameterized by the two
coordinates {Λ, Φ} (called {Gauss surface normal longitude,Gauss surface normal latitude}) as
outlined in Box 2.3, also called generalized Mollweide projection. Such a generalized Mollweide
projection is classified as “pseudo-cylindric” and equiareal, mapping the circular equator equidis-
tantly. Its mapping equations x(Λ, Φ) and y(Φ), where {x, y} are Cartesian coordinates that
cover {R2, δμν} = E

2, depend on cos t(Φ) and sin t(Φ). The auxiliary function t(Φ) is a solution
of the generalized Kepler equation since for relative eccentricity E2 = (A2

1 −A2
2)/A

2
1 → 0 the gen-

eralized Kepler equations reduces to the Kepler equation. Such a Kepler equation is known from
the classical Mollweide projection of the sphere or from solving the Kepler two-body problem in
mechanics.

End of Example.

We pose two problems. (i) Prove that the generalized Mollweide projection of the ellipsoid-of-
revolution is equiareal. For this purpose, observe the postulate det [ClG

−1
l ] = 1. (ii) Determine the

left principal stretches Λ1 and Λ2 by setting up the characteristic equations of the left eigenvalue
problem that is presented in Box 2.4.

Solution (the first problem).

Here, we set up the test of an equiareal mapping to be based upon the postulate det [ClG
−1
l ] = 1.

First, by means of Box 2.5, we compute the left Jacobi matrix substituted by DΛx,DΦx, DΛy, and
DΦy. Second, we set up the left Cauchy–Green matrix Cl = J∗GrJl subject to Gr = I2. We have
to emphasize that Cl is not a diagonal matrix. Third, we adopt the left matrix of the metric Gl.
Fourth, given the left Cauchy–Green matrix, Cl, and the left matrix of the metric, Gl, we derive
the determinantal identity det [ClG

−1
l ] = 1. By means of implicit differentiation of the generalized

Kepler equation, we compute (t′), (t′)2, (t′)2 cos4 t, a2b2 and 1/G11G22 in step five. Sixth, taking
all individual terms into one, we have proven det[ClG

−1
l ] = 1.

End of Solution (the first problem).

Solution (the second problem).

First, we set up the characteristic equations of the left general eigenvalue problem of Box 2.4 in
order to compute the left principal stretches Λ1 and Λ2, respectively. Second, the solution of the left
characteristic equation subject to the condition of an equiareal mapping, namely det [ClG

−1
l ] = 1,

accounts for computing the first left invariant tr [ClG
−1
l ]. Indeed, a simple form of such an invariant

is not available. Accordingly, we left tr[ClG
−1
l ] with a formula for (t′)2 and 1/G11G22, respectively.

End of Solution (the second problem).
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Fig. 2.1. Mollweide projection of an ellipsoid-of-revolution, Grafarend et al. (1995a)

Box 2.3 (The Mollweide projection of EA1,A1,A2 ; the pseudo-cylindric, equiareal, equidistant
mapping of the circular equator).

Mapping equations:

x(Λ, Φ) = aΛ cos t(Φ),

(2.53)

y(Λ, Φ) = b sin t(Φ).

Generalized Kepler equations:

2t+ sin 2t = π
ln 1+E sinΦ

1−E sinφ
+ 2E sinΦ

1−E2 sin2 Φ

ln 1+E
1−E

+ ln 2E
1−E2

. (2.54)

Scales:

a = A1,

b =
A1(1 − E2)

πE

(
ln

1 + E

1 − E
+

2E

1 − E2

)
. (2.55)

Box 2.4 ([The left principal stretches, the left eigenvalues, and the generalized Mollweide
projection of the ellipsoid-of-revolution).

Characteristic equation of the left general eigenvalue problem:

Λ4 − tr [ClG
−1
l ]Λ2 + det [ClG

−1
l ] = 0 subject to det [ClG

−1
l ] = 1 (2.56)



2-4 The Equivalence Theorem for Equiareal Mappings 125

Λ2
1, 2 =

1

2

[
tr [ClG

−1
l ] ±

√(
tr
[
ClG

−1
l

])2 − 4

]
. (2.57)

Computation of the first invariant tr [ClG
−1
l ] :

tr [ClG
−1
l ] =

a2 cos2 t

G11
+ (t′)2

a2Λ2 sin2 t+ b2 cos2 t

G22
,

cos4 t(t′)2 =
E2 cos2 Φ

(1 − E2 sin2 Φ)4
π2(

ln 1+E
1−E

+ 2E
1−E2

)2 ,
tr [ClG

−1
l ] =

1

G11G22
[a2G22 cos

2 t+ (t′)2G11(a
2Λ2 sin2 t+ b2 cos2 t)], (2.58)

1

G11G22
=

(1 − E2 sin2 Φ)4

A4
1(1 − E2)2 cos2 Φ

,

G11 =
A2

1 cos
2 Φ

1 − E2 sin2 Φ
,

G22 =
A2

1(1 − E2)2

(1 − E2 sin2 Φ)3
.

Box 2.5 (Left Cauchy–Green matrix, generalized Mollweide projection of the ellipsoid-of-
revolution).

Left Jacobi matrix:

Jl :=

[
DΛx DΦx
DΛy DΦy

]
,

(2.59)

DΛx = a cos t, DΦx = DtxDΦt = −aΛ sin t t′,
DΛy = 0, DΦy = DtyDΦt = +b cos t t′.

Left Cauchy–Green matrix:

Cl := J∗
lGrJl, Gr = I2 ⇒ Cl = J∗

l Jl,

Cl =

[
a2 cos2 t −aΛ2 cos t sin t t′

−aΛ2 cos t sin tt′ (a2Λ2 sin2 t + b2 cos2 t)(t′)2

]
. (2.60)

Left matrix of the metric:

Gl =

[
N2(Φ) 0

0 M2(Φ)

]
(N(Φ) andM(Φ) : see Example 1.3). (2.61)

det [ClG
−1
l ] = 1 :

det [ClG
−
l 1] =

a2 cos2 t

G11

a2Λ2 sin2 t + b2 cos2 t

G22
(t′)2 − a4Λ2 cos2 t sin2 t

G11G22
(t′)2 = (2.62)

=
cos4 t

G11G22
a2b2(t′)2.
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(t′) :

2(1 + cos 2t)dt =
π

ln 1+E
1−E

+ 2E
1−E2

×

×
[
1 − E sinΦ

1 + E sinΦ

E cosΦ

1 − E sinΦ
+

E cosΦ(1 + E sinΦ)

(1 − E sinΦ)2

)

+
2E cosΦ

1 − E2 sin2 Φ
+

4E3 sin2 Φ cosΦ

(1 − E2 sin2 Φ)2

]
dΦ,

1 + cos 2t = 2 cos2 t, (2.63)

cos2 t(t′) =
E cosΦ

(1 − E2 sin2 Φ)2
π

ln 1+E
1−E

+ 2E
1−E2

,

cos4 t(t′)2 =
E2 cos2 Φ

(1 − E2 sin2 Φ)4
π2(

ln 1+E
1−E

+ 2E
1−E2

)2 ,
1

G11G22
=

(1 − E2 sin2 Φ)4

A2
1 cos

2 ΦA2
1(1 − E)2

, a2b2 =
A4

1(1 − E2)2

π2E2

(
ln

1 + E

1 − E
+

2E

1 − E2

)2

.

(6th) Determinantal identity:

det [ClG
−1
l ] = 1. (2.64)

2-5 Canonical Criteria for Conformal, Equiareal, and Other Mappings

Canonical criteria for conformal, equiareal, and isometric mappings as well as equidistant
mappings M2

l → {R2, δμν}, Hilbert invariants.

Q
u
es
ti
on

.

Question: “How can we generalize those canonical crite-
ria for a conformal, an equiareal, or an isometric map-
ping M

2
l → M

2
r := {R2, δμν} = E

2 if we restrict the right
two-dimensional Riemann manifold to be two-dimensional
Euclidean?” Answer: “Let us refer to Boxes 1.46 and 1.47 in
order to formulate the answer. As it is outlined in Box 2.6,
the fundamental four Hilbert invariants I1 and I2 or i1 and
i2 become dependent, typically called ‘syzygetic’, as soon as
we are dealing with a conformal mappingM2

l → {R2, δμν}.”
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Box 2.6 (Canonical representation of Hilbert invariants, M2
l → {R2, δμν}).

I1(Cl) := Λ2
1 + Λ2

2 = tr [ClG
−1
l ] versus i1(Cr) := λ2

1 + λ2
2 = tr [Cr], (2.65)

I2(Cl) := Λ2
1Λ

2
2 = det [ClG

−1
l ] versus i2(Cr) := λ2

1λ
2
2 = det [Cr],

or

I1(El) := K1 +K2 = tr [ElG
−1
l ] versus i1(Er) := κ1 + κ2 = tr [Er], (2.66)

I2(El) := K1K2 = det [ElG
−1
l ] versus i2(Er) := κ1κ2 = det [Er].

Special case: conformal mapping (syzygy).

I1 = 2
√
I2 versus i1 = 2

√
i2. (2.67)

Note that for a general diffeomorphism, namely f : {M2, GMN} → {R2, δμν}, the first two Hilbert
invariants I1(El) and i1(Er) are also called left and right dilatation. They measure the isotropic
part of a deformation, while the following shear components its anisotropic part:

Γ1(Cl) := C22 − C11 versus γ1(Cr) := c22 − c11,

Γ1(El) := E22 − E11 versus γ1(Er) := e22 − e11, (2.68)

Γ2(Cl) := 2C12 versus γ2(Cr) := 2c12,

Γ2(El) := 2E12 versus γ2(Er) := 2e12.

2-6 Polar Decomposition and Simultaneous Diagonalization of Three

Matrices

Polar decomposition and simultaneous diagonalization of three matrices: {El, Cl, Gl} versus
{Er, Cr, Gr}, stretch matrices.

A first remark has to be made towards the group theoretical representation of the left Fl and
the right Fr matrix of eigenvectors. In case of {M2

r , gμν} = {R2, δμν}, we took advantage of the
fact that the right matrix Fr of eigenvectors is an orthonormal matrix R. In the general case
{M2

l , GMN} = {M2
r , gμν}, the left Fl and right the Fr matrix of eigenvectors enjoy the polar

decomposition

Fl = R1S1 versus Fr = R3S3

versus versus , (2.69)

Fl = S2R2 versus Fr = S4R4

where the matrices Ri are orthonormal, R−1
i = RT

i , while the matrices Si are by definition symmet-
ric, Si = ST

i . These symmetric matrices Si are sometimes called stretch matrices. or more details
including numerical examples, we refer to Marsden and Hughes (1983, pp. 51–55), Ogden (1984,
pp. 92–94), Simo and Taylor (1991), and Ting (1985). Here, we conclude with a second remark
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relating again to the simultaneous diagonalization of two matrices, e.g. the pairs of Cauchy–Green
deformation tensors {Cl, Gl} or {Cr, Gr} and the pairs of Euler–Lagrange deformation tensors
{El, Gl} or {Er, Gr}. respectively. Of course, we could also aim at a simultaneous diagonalization
of three matrices, e.g. the triplets

{El, Cl, Gl} versus {Er, Cr, Gr}, (2.70)

in particular

UT
l GlXl = S1

l ⇔ Gl = UlS
1
lX

−1
i versus Gr = UrS

1
rX

−1
r ⇔ UT

r GrXr = S1
r , (2.71)

XT
l ClYl = S2

l ⇔ Cl = (X−1
l )TS2

lY
−1
l versus Cr = (X−1

r )TS2
rY

−1
r ⇔ XT

r CrYr = S2
r , (2.72)

YT
l ElVl = S3

l ⇔ El = (Y−1
l )TS3

lV
T
l versus Er = (Y−1

r )TS3
rV

T
r ⇔ YT

r ErVr = S3
r , (2.73)

where S1, S2, and S3 are certain quasi-diagonal matrices, where V and U are unitary matrices.
and non-singular matrices are Xl, Yl and Xr, Yr, respectively. But we are not able to diagonalize
Gl and Gr, respectively, to unity. The diagonalization of Gl and Gr, respectively, to unit matrices
is by all means recommendable since accordingly all other tensors, e.g. Cl and Cr, respectively,
or El and Er, alternatively, refer to unit vectors which span the local tangent space of M2

l or
M

2
r , respectively. Before we proceed to the next chapter, let us here additionally note that a

tree of generalization of the ordinary singular value decompositions has been developed by Chu
(1991a,b), De Moor and Zha (1991), Zha (1991), and others to which we refer.
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