2
From Riemann Manifolds to Euclidean Manifolds

Mapping from a left two-dimensional Riemann manifold to a right two-dimensional Euclidean
manifold, Cauchy—Green and Euler-Lagrange deformation tensors, equivalence theorem for
equiareal mappings, conformeomorphism and areomorphism, Korn-Lichtenstein equations
and Cauchy—Riemann equations, Mollweide projection, canonical criteria for (conformal,
equiareal, isometric, equidistant) mappings, polar decomposition and simultaneous diago-
nalization for more than two matrices.

Let there be given the left two-dimensional Riemann manifold {M?, Gx} as well as the right two-
dimensional Euclidean manifold {MZ, g,,} = {R?, §,,} = E?. In many applications, the choice
of {R?, 4,,} is the “plane manifold”, for instance, (i) the equatorial plane of the sphere or the
ellipsoid, (ii) the meta-equatorial, also called oblique equatorial plane of the sphere or the ellipsoid,
(iii) the plane generated by developing the cylinder, the cone, a ruled surface (namely surfaces
which are “Gauss flat”), (iv) the tangent space Ty,M? of the left two-dimensional Riemann man-
ifold fixed to the point Uy := {U}, U2} being covered by Cartesian coordinates. (Refer to all pre-
vious examples.) We shall not repeat the various deformation measures of type multiplicative and
additive for the special case of the right two-dimensional Euclidean manifold {R?, §,, }. Instead, we
present to you (i) the left and right eigenspace analysis and synthesis of the Cauchy—Green defor-
mation tensor, special case {M?, g,,,} = {R?, 4,,}, (ii) the left and right eigenspace analysis and
synthesis of the Euler-Lagrange deformation tensor, special case {M?, g,,} = {R?, §,,}. (iii) Con-
formeomorphism, conformal mapping, special case {M?, g,,} = {R?, §,,}; Korn-Lichtenstein
equations, special case Cauchy—Riemann equations (d’Alembert—Euler equations).

2-1 Eigenspace Analysis, Cauchy—Green Deformation Tensor

Left and right eigenspace analysis and synthesis of the Cauchy—Green deformation tensor,
special case {MZ, g,.,} = {R?, 0, }.

First, let us confront you with Lemma 2.1, where we present detailed results of the left and right
eigenspace analysis and synthesis of the Cauchy-Green deformation tensor for the special case of

E.W. Grafarend et al., Map Projections, DOI 10.1007/978-3-642-36494-5_2, 111
(©) Springer-Verlag Berlin Heidelberg 2014



112 2 From Riemann Manifolds to Euclidean Manifolds

a right Euclidean manifold. Second, we focus on an interpretation of the results and additionally
discuss a short example.

Lemma 2.1 (Left and right eigenspace analysis and synthesis of the Cauchy—Green deformation
tensor, special case {M?, g,,} = {R? 6, }).
(i) Synthesis.

For the matrix pair of positive-definite and symmetric matrices {C;, G;} or {C,, G, }, a simulta-
neous diagonalization is (the right Frobenius matrix F, is an orthonormal matrix)

Cl = JlTJl, FlTClFl = dlag[/lf, Ag], FlTGlFl
= Iversus FC,F, = diag[\?, \3], F'F, = 1. (2.1)

(i) Analysis.

Left eigenvalues or left principal stretches:

|C; — A2Gy| =0,

(tr[ClGll] /(]G )2 - 4det[ClGl1]) . (2.2)

1
A2, = A2 ==
1,2 2

Left eigencolumns:

[FH] _ 1 y
I \/G11(022 — N3G92)? — 2Gh2(c12 — A3Gha) (a2 — A2Ga) + Goa(cr2 — A2Gha)?

[+(c22 — A?ng)] |

—(c12 — A7G12) (2:3)

F12} 1
pr— X
{Fm \/G22(C11 — A2G11)? — 2G12(c11 — A3Gh1)(c1a — A3G12) + Gri(cia — A3G12)?

—(012 - A%Gu)
+(011 — A%GH) ’

Right eigenvalues or right principal stretches

(the right general eigenvalue problem reduces to the right special eigenvalue problem):

|G — X2G,| = |C, — M| = 0Vi € {1,2},

1
My=M = (tr[crc;;l] + /tr[C,G-1])? — 4det [cre;l]) — (2.4)

(Cn + Oy 4+ /(O + 022)2(2012)2> .

N —
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Right eigencolumns:

(1| _ 1 Chs — M
fa1 (Co2-2)24CE, | —Chp |’
f11 f12 - - - -
F, = 2.5
{fm fa2 - q - . (2:5)
fi2 _ 1 —Cha
| /22 (C11=23)+Ct, | Cpy — A3

Since the right Frobenius matrix F, is an orthonormal matrix, it can be represented by

F, = {COS.SO smgo} Vo € [0, 27],
—sin @ cos p

o Cl2 20 — 2012
taHW—m, tan (p—m

End of Lemma.

The proof of Lemma 2.1 is straightforward from Lemma 1.6 as soon as we specialize G, = [;. Of
special interest is the right eigenspace analysis. Here, the right Frobenius matrix F, is orthonor-
mal. As an orthonormal matrix (also called “proper rotation matrix”), it can be parameterized
by a rotation angle . Such an angle of rotation orientates the right eigenvectors {f,, f,|O}
with respect to {ey, es|O}, R? = span{ey, es}. Indeed, the “tan2yp identity” leads to an easy
computation of the orientation of the right eigenvectors. We proceed to a short example.

Example 2.1 (Orthogonal projection of points of the sphere S%, onto the equatorial plane
P% through the origin O).

In Example 1.6, we presented already to you the special map projection of the hemisphere S%, onto
the central equatorial plane P4 by computing its characteristic right Cauchy—Green deformation
tensor as well as its right eigenspace. Here, we aim at testing the right Frobenius matrix F, on
orthonormality. Let us transfer the right eigencolumns to build up

| fu e _ 1 r oy
Fr_{fmfm}_ m{y—x]' 27)

Is this Frobenius matrix of integrating factors an orthonormal matrix? Please test FiF, = I, to
convince yourself. Here, we generate

Fo|cose sing | 1 Ty (2.8)
"losinpcose| a2 g2 |y T '
Y 2tan « 2y
tang = —2, tan2p = = 2.9
Ay 2 T hanta 2 —y?’ (2.9)
2 _ 2
Ty r =Yy
Cro = , O —Cy = ) 2.10
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tan 20 — 2012 o 2.Ty
v Cii—Cy 22 —y*
If x =y, then tanp = —1, tan2p — +oo, ¢ = F45°.

(2.11)

End of Example.

2-2 Eigenspace Analysis, Euler—-Lagrange Deformation Tensor

Left and right eigenspace analysis and synthesis of the Euler-Lagrange deformation tensor,
special case {M2, g, } = {R?, d,.}.

First, let us confront you with Lemma 2.2, where we present detailed results of the left and right
eigenspace analysis and synthesis of the Euler-Lagrange deformation tensor for the special case
of a right Euclidean manifold. Second, we focus on an interpretation of the results.

Lemma 2.2 (Left and right eigenspace analysis and synthesis of the Euler-Lagrange deformation
tensor, special case {M?, g,,} = {R?, d,,}).
(i) Synthesis.

For the pair of symmetric matrices {E;, G;} or {E;, G,}, where the matrices {G;, G,} are posi-
tive definite, a simultaneous diagonalization is (the right Frobenius matrix F, is an orthonormal
matrix)

FIEF, = diag[K,, Ks|, F/G;F, =1 versus FIEF, = diag [r1, s,

FI'F, =1L (2.12)
(ii) Analysis.
Left eigenvalues:
E, — KiG)| =0, K=K,
1
=3 (tr[ElGll] + \/(tr[Elelw — 4det [ElGll]> : (2.13)

Left eigencolumns:

F11} 1
= X
{Fﬂ \/G11(€22 - K1G22)2 - 2G12(€12 - K1G12)(€22 - K1G22) + G22(€12 - K1G12)2

e — K1Ga
2.14
8 [—(612 - K1G12)] ’ (2.14)
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F12} 1
= X
{FQQ \/G22(€11 - K2G11)2 - 2G12(€11 - K2G11)(€12 - K2G12) + G11(€12 - K2G12)2

% —(612 - K2G12)
enn — KoGiy '

Right eigenvalues

(the right general eigenvalue problem reduces to the right special eigenvalue problem):

|Er - Hi]:r| = 07

Fia — ha — % (1] & /(] — 4det [B]) = (2.15)

1

5 <E11 + By £ \/(En + En)? + (2E12)2) .

Right eigencolumns:

( Juu _ 1 Ey — Ky
I, J21 V(E2—k)2+EL | —FE, |
R AR D S ) ) 2.16
{fm Jfo2 S - . ( )
f12 _ 1 _E12
[ | S22 (Br1—k2)?+E7, | By — ko

Since the right Frobenius matrix F, is an orthonormal matrix, it can be represented by

F - {cosgb singb] Vo € [0, 27,

— sin ¢ cos ¢ (2.17)

End of Lemma.

Lemma 1.7 is the basis of the proof if we specialize G, = I;. Again, we emphasize that within the
right eigenspace analysis the right Frobenius matrix is orthonormal. As an orthonormal matrix,
ie. F, € SO(2) := {F, € R¥*?|F!F, = I, and det [F,] = +1}, it can be properly parameterized
by a rotation angle ¢. Such an angle of rotation orientates the right eigenvectors {f,, f,|O}
with respect to {e1, e3|O}, R? = span{e;, ey}. Indeed, the “tan2¢ identity” leads to an easy
computation of the orientation of the right eigenvectors.
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2-3 The Equivalence Theorem for Conformal Mappings

The equivalence theorem for conformal mappings from the left two-dimensional Riemann
manifold to the right two-dimensional Euclidean manifold (conformeomorphism), Korn—
Lichtenstein equations and Cauchy—Riemann equations (d’Alembert-Euler equations).

The previous equivalence theorem for a conformeomorphism is specialized for the case of the
two-dimensional right Euclidean manifold {M2, g,,,} = {R?, §,,} =: E In many applications,
the choice of {R?, 4§, } is the planar manifold, for instance, the tangent space Ty M7 of the left
two-dimensional Riemann manifold fixed to the point Uy = {U], U2}, being covered by Cartesian
or polar coordinates. For an illustration of such a setup of a “planar manifold”, go back to our
previous examples.

2-31 Conformeomorphism

First, let us confront you with Lemma 2.3. The proof based upon Theorem 1.11 is straightforward.
Examples are given in the following chapters.

Lemma 2.3 (Conformeomorphism, conformal mapping, special case {M2, g,,} = {R?, 0,,}).

Let f : M? — {R%4,,} be an orientation preserving conformal mapping. Then the following

conditions are equivalent. o
(1) YU, Uz) = (0, i2) (2.18)

for all tangent vectors Uy, Us and their images 1, i, respectively.

(i) C; = M (Uy)G; versus Cp = ANy, C7 =1, /)%,
CH = 022 = )\2, Clz = 021 = 0, CH = 022 = )\72, 012 = Czl = 0;

(2.19)
E = K(Uy)G versus E,=«kly, E!'=I/x,
Ey = By = K, FEiy = FEy = 0, EH = E22 = /?_17 E12 = E21 =0.
o | K= (A2=1)/2 N -1)/2=k
(iii) [ A2 — 2K +1 versus b l— A2 |
Ay = Ay = A(Uy) versus A\; = Ay = A(uy), (2.20)

Ky =Ky, =K(U,) versus Ky = ke = Kk(uyp),
A2(Up) = tr[CG; /2 versus A2 (wg) = tr[C,]/2;
(left dilatation) K = tr[E;G;']/2 versus (right dilatation)x = tr[E,]/2,

tr[C;G Y] = 24/det [C,G; Y] versus  tr[C Gy Y] = 24/det [C], (2.21)
tr[E,G; ] = 24/det [E,G; ] versus  tr[E,] = 2¢/det [E,].
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(iv) (Generalized Korn—Lichtenstein equations, Cauchy—Riemann equations, subject to the
integrability conditions uyy = uyy and vyy = vyy)

Uy 1 —G12 Gy Uy
= . 2.22
{UV] VG11Ga — G3, {_Gm Gl?] [uV} (2.22)

End of Lemma.

2-32 Higher-Dimensional Conformal Mapping

In order to develop the theory of a higher-dimensional conformal diffeomorphism (in Gauss’s
words: “in kleinsten Teilen dhnlich”), we first derive the Korn-Lichtenstein equations of a two-
dimensional conformal mapping M? — M? := {R?4,,} = E? by means of exterior calculus,
namely by means of the Hodge star operator. With such an experience built up, second, we derive
the Zund equations of a three-dimensional conformal mapping M} — M? := {R®, ¢,} = E?
by means of exterior calculus taking advantage of the Hodge star operator in R3. Note that the
Hodge star operator generalizes the vector product, also called cross product or outer product, to
any dimension. Indeed, the classical vector product serves us only in R3. Box 2.1 summarizes
the various steps to produce a conformal diffeomorphism M? — M? = {R? 4, } = E? in terms
of exterior calculus. First, we introduce the left Jacobi map {dz, dy} — {dU, dV} and the
right Jacobi map {dU, dV'} — {dx, dy}. Second, we compute the right Cauchy—Green matrix C,
subject to its conformal structure C, = \2I, and C7! = A72I,. We are led to a representation of the
conformal right Cauchy—Green matrix C, = J?GlJr = N1, or C71 = JFG;IJI = A2, in terms
of the Jacobi matrices J; and J,. The rows of the left Jacobi matrix can be interpreted as “G;*
orthogonal”, while the right Jacobi matrix can be interpreted as “G; orthogonal”. Third, this result
of conformal geometry is used by the Hodge star operator. One-by-one, we define dz, x1, =5, and
dy*. Here, we make use of the two-dimensional permutation symbol ez, € R***(L, M € {1,2}).
Fourth, we explicitly represent the exterior form dz = dy* of the Korn—Lichtenstein equations:
compare with Lemma 2.4.

Lemma 2.4 (Grafarend and Syffus (1998d, p. 292), conformeomorphism M7 — M? := {R? 4, },
Korn—Lichtenstein equations).

The following formulations of the Korn—Lichtenstein equations producing a conformal diffeomor-
phism M? — M? := {R?§,, } are equivalent.

Formulation (i):

dz = xdy. (2.23)
Formulation (ii):
ox Jy
_aUL = CeLM det [GI]GMN—aUN . (224>
Formulation (iii):
1 1

(—Gioyv + Gryv), v =
VG| ! ! VG|

_ o Gll G12 1 G22 —G12
G = [Gun] = {Glz GZJ [—Glz G

Ty = (_G22yU + GlZyV)7 (225)

re ] — [G"M] = G/, (2.26)
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subject to the integrability conditions
Px O« Py D%y

ouov — ovou’ oUudvV  ovoU’ (2:27)
End of Lemma.
Box 2.1 (Conformal diffeomorphism M7 — M? = {R?,§,,,} = E?, exterior calculus).
Diffeomorphism :
[dx} _ 3, [dU} or [dU} _J {dz}
dy dv dv " ldy
=
Jy =711 (2.28)
<~
J,=J"
Right Cauchy—Green matrix for a conformal diffeomorphism:
C, = JIG, = N, (2.29)
=
Col=JG 1 = 2L,
The rows of the left Jacobi matrix are G; ' orthogonal :
2
dz = 2pdU + xqydV = Z ey dUM, = Dyx =zy, 3:= Dy =axy. (2.30)

M=1
Hodge star operator:
2

sdy == Y epay/det [G]GMNyndU”, (2.31)

L,M,N=1
subject to
y1:=Dyy =yu, y2:= Dy, =yv.
Permutation symbol:

+1 for an even permutation of the indices L, M € {1,2}
erm = {4 —1 for an odd permutation of the indices L, M € {1,2}. (2.32)
0 otherwise

Korn—Lichtenstein equations in exterior calculus:

2 2
de =) aydUM= > epy/det [G]GMNyydU" = dy*

M=1 L,M,N=1

& (2.33)
dy x
0 —eLM\/det GMNaUN’ dx = dy*.
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Box 2.2 summarizes the operational procedure for generating a conformal diffeomorphism, also
called conformeomorphism, M} — MZ? = {R?4,,} = E?, again in terms of exterior calculus. First,
we introduce the differential one-forms, the differential two-forms, and the differential three-
forms. Second, we apply the Hodge star operator (i) to xdz etc., (ii) to *(dy A dz) etc., and
(iii) to *(dy A dy A dz). The columns [z1, 2, 3], [y1, vo, wys]*, and [z1, 22, 23]T may be
considered orthogonal. Third, we represent the expression *(dy A dz) as an example explicitly.
Again, the three-dimensional permutation symbol ez, € R¥>33(L, My, M, € {1,2}) as a
three-dimensional array is defined. Fourth, we explicitly compute the expression dx = x(dy Ad)z,
the Zund equations of a three-dimensional conformal mapping M; — M? = E?: compare with
Lemma 2.5.

Box 2.2 (Conformal diffeomorphism M} — M2 = {R?, 6, } = E*, exterior calculus).

Differential frame:

dz = {L'ldU + xng + l‘gdW
(i) dy = y1dU + yodV + y3dW | (one-forms), (2.34)
dz = 20dU + 29dV + z3dW
(ii)dy Adz, dzAdz, dzAdy, (two-forms),
(iii) dz A dy A dz (three-form).

Hodge star operator:
(i) xdez =dy Adz, xdy=dzAdz, *xd=dz Ady;
(i) * (dy Adz) =dz, =*(dzAdz)=dy, =(dzAdy)=dz; (2.35)
(iii) * (dz Ady Adz) = 1.

Example :
\ L, Ml, MQ, Nl, Ny € {1,2,3} :
’ Oy 0z
#(dy A dz) = > ern i/ |G| GMN GM2N: TITD du’t. (2.36)

L,M1,M2,N1,N2=1

Permutation symbol:

+1 for an even permutation of the indices L, My, M € {1,2,3}
ermym, = & —1 for an odd permutation of the indices L, My, M, € {1, 2, 3}. (2.37)
0 otherwise

Zund equations of a two-dimensional conformal diffeomorphism

in exterior calculus:

3
do = Z xy dUM =
M=1
3

dy 0z
= Z LM Ms\/ |GI|GM1N1GM2N2W8UN2 dUL = *(dy N dZ) (238)
L,M1,M2,N1,Na=1
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=

ox My Ny Mo No 8y 0z
m = €LM; M, det [G]G G 8UN1 8UN2
dz = *(dy A dz).

Lemma 2.5 (Zund (1987), Grafarend and Syffus (1998d, p. 292), the Zund equations of a three-
dimensional conformeomorphism M} — M? = {R3 §,,} = E?).

Equivalent formulations of the equations producing a conformal mapping M; — M? = E? are
provided by the following formulations.

Formulation (i):

dzr = *(dy A dz). (2.39)
Formulation (ii):

dr 1 dy 9z
VI oy Ki Ko € {123} o0y = Sennn /GGG 8sz€1 S (2.40)

Formulation (iii):

[(G21G32 G31G12)_y8_ 4 (G21G33 G31G23)§g 881/?/_'_

ov
or 1
o0 = 3 VIGIHGPGH — GPC R B + (G767 — GRG») g i+ (2.41)
—I—(G23G31 — GG )g_vz{/ 9z + (G23G32 _ G33G22)§_é{/g—é} ’
[(G31G12 G11G32)8_[yja_v (G31G13 G11G33)gg 68‘/2[/
g_é = % |Gl| +(G32G11 —G2get )8_58_[] (G32G13 G12G33) Jdy 381;/ (2_42)
+(G33G11 _ G13G31)ﬂ8_ (G33G12 G13G3 ) 66_\2/} ,
[(GHGQZ G21G12)—y—v (G11G23 G21G13) Oy a‘;_‘_
80;/ 2 |Gl| —|—(G12G21 G22G11)3_VB_U (G12G23 G22G13) 38_‘;/"' (243)
+(G13G21 G23G11>ﬂ8_ (G13G22 G23G12>ﬂ&]
oW 9 oW ov 17
subject to
Gll |Gl| (G22G33 - G23G32) G12 |Gl| (G13G32 G12G33)7
GP? = |Gl| ——(G12Ga3 — G13G2), G* = |Gl| = (G11G33 — G13G31), (2.44)
G23 |Gl| (G12G31 G11G32)7 G33 |Gl| (G11G22 - G12G21)
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Formulation (iv):

Ir 1 fo (20 Oy Oy . (O 0= Oy 0z
ou /|G| L " \avew oW av P\owoUu U oW

Oy 0z Oy 0z
*@%@W—W@ﬂ’

o0 A [, (Oy 0 Oy o\ (0y0: 0yo0:
ov /|G| L P \avow oW av 2\owoUu oUW
Oy 0z 0Oy 0z
TG <8U v oV GU)} ’ (2.45)
ox 1 Oy 0z Jy 0z oy 0z 0y 0z
= |G| a3 3057 ) TCGs | o037~ 5750
ow /1G] oV ow oW oV oW ou  oU oW
oy 0z Oy 82)}

*&%%W‘W@

; ; SF iis P _ 0%z &z  _ _92? 2r _ 0%
subject to the integrability conditions 3775 = 5725, 500 = awan: avew — awov-

End of Lemma.

Question: “Why did we bother you with the three-
dimensional conformal mapping of a three-dimensional
Riemann manifold to a three-dimensional Euclidean mani-
fold?” Answer: “One of the main reasons is the inability of
the theory of complex manifolds to work conformally with
odd-dimensional real manifolds. Only even-dimensional
real manifolds M?**(R) can be transformed to complex
manifolds M"(C)”.

Question.

Finally, Lemma 2.6 presents the partial differential equations of a conformeomorphism if it exists
from a left n-dimensional (pseudo-)Riemann manifold M} of signature [ to a right n-dimensional
(pseudo-)Riemann manifold M” = E" of signature r.

Lemma 2.6 (Grafarend and Syffus (1998d, p. 293), conformeomorphism).

Equivalent formulations of the equations producing a conformal mapping M — M = E" are
provided by the following formulations.

Formulation (i):

dz' = *(dz® A ... Ada™). (2.46)
Formulation (ii):
VL, My, ...., My, Ny, ..., N,e{l, ..., n}
(p=n —1): (2.47)

ox o 1 M1 Ny MpNy 81‘2 o
3L = HeLMl...Mp det [GI]G G oUN " gUN»’
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subject to the integrability conditions

02x! 02!
oULOUN — oUNQUL (2.48)

End of Lemma.

2-4 The Equivalence Theorem for Equiareal Mappings

The equivalence theorem for equiareal mappings from the left two-dimensional Riemann man-
ifold to the right two-dimensional Euclidean manifold (areomorphism), Mollweide projection
of the ellipsoid-of-revolution, principal stretches.

The previous equivalence theorem for an areomorphism is specialized for the case of the two-
dimensional right Euclidean manifold {M2, g¢,,} = {R?, J,,} =: E In many applications, the
choice of {R?, §,,} is the planar manifold, for instance, the tangent space Ty, M7 of the left two-
dimensional Riemann manifold fixed to the point Uy = {Uj, UZ}, being covered by Cartesian
or polar coordinates. For an illustration of such a setup of a “planar manifold”, go back to our
previous examples. Here, we focus on the equivalence theorem, namely the differential equations
which govern an equiareal mapping I\\/[[l2 — {R? O}

Theorem 2.7 (Areomorphism, M7 — {R? 4, }, equiareal mapping).

Let f : M2 := {R?, §,,} =: E? be an orientation preserving equiareal mapping. Then the following
conditions are equivalent.

Condition (i):

Vdet [Gi]dU A dV = du A dv. (2.49)
Condition (ii):
det [C)] = 1and det [(;,G; 1] =1, (2.50)

det [I, — 2E;] = 1 and det [2E; + G;] = det [Gy].
Condition (iii):
AiAs = Tand A\ Ay = 1. (2.51)
Condition (iv):

UV = UV = 1/4/det [G)] =
=1/4/G11Ga — G2, (2.52)
UylVy — Uyvy = \/m =
= 1/G11Gay — G2,.

End of Theorem.
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Here, we only have specialized Theorem 1.14 to M? := {R?, §,,} =: E%. One of the most popular
equiareal mappings E1241,A1,A2 — {R?, 0, } is the Mollweide projection of the ellipsoid-of-revolution
to the plane, which is presented in Example 2.2 and is illustrated in Fig.2.1.

Example 2.2 (Mollweide projection of the ellipsoid-of-revolution, with reference to Grafarend
et al. (1995a)).

Let us assume that we have found a solution of the right characteristic equation, which gen-
erates an equiareal mapping of the ellipsoid-of-revolution E%h A,.4, Darameterized by the two
coordinates {A, @} (called { Gauss surface normal longitude, Gauss surface normal latitude}) as
outlined in Box 2.3, also called generalized Mollweide projection. Such a generalized Mollweide
projection is classified as “pseudo-cylindric” and equiareal, mapping the circular equator equidis-
tantly. Its mapping equations z(A, @) and y(®), where {x,y} are Cartesian coordinates that
cover {R?, §,,} = E?, depend on cost(®) and sin¢(P). The auxiliary function ¢(®) is a solution
of the generalized Kepler equation since for relative eccentricity E? = (A? — A2)/A? — 0 the gen-
eralized Kepler equations reduces to the Kepler equation. Such a Kepler equation is known from
the classical Mollweide projection of the sphere or from solving the Kepler two-body problem in
mechanics.

End of Example.

We pose two problems. (i) Prove that the generalized Mollweide projection of the ellipsoid-of-
revolution is equiareal. For this purpose, observe the postulate det [C’lGl’l] = 1. (ii) Determine the
left principal stretches A; and Ay by setting up the characteristic equations of the left eigenvalue
problem that is presented in Box 2.4.

Solution (the first problem).

Here, we set up the test of an equiareal mapping to be based upon the postulate det [Clel] =1
First, by means of Box 2.5, we compute the left Jacobi matrix substituted by Dz, Dgx, Dy, and
Dgy. Second, we set up the left Cauchy—Green matrix C; = J*G,.J; subject to G, = I;. We have
to emphasize that C; is not a diagonal matrix. Third, we adopt the left matrix of the metric G;.
Fourth, given the left Cauchy—Green matrix, C;, and the left matrix of the metric, G;, we derive
the determinantal identity det [C;G; '] = 1. By means of implicit differentiation of the generalized
Kepler equation, we compute ('), (¢')%, (¢')?cost,a?b? and 1/G11Gs in step five. Sixth, taking
all individual terms into one, we have proven det[C;G; '] = 1.

End of Solution (the first problem).

Solution (the second problem).

First, we set up the characteristic equations of the left general eigenvalue problem of Box 2.4 in
order to compute the left principal stretches A; and A, respectively. Second, the solution of the left
characteristic equation subject to the condition of an equiareal mapping, namely det [ClGl_l] =1,
accounts for computing the first left invariant tr [ClGl_l]. Indeed, a simple form of such an invariant
is not available. Accordingly, we left tr[C;G; '] with a formula for (#)? and 1/G1;Gag, respectively.

End of Solution (the second problem).
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Fig. 2.1. Mollweide projection of an ellipsoid-of-revolution, Grafarend et al. (1995a)

Box 2.3 (The Mollweide projection of E4, 4, 4, ; the pseudo-cylindric, equiareal, equidistant
mapping of the circular equator).

Mapping equations:
(A, @) =ad cost(P),

(2.53)
y(A, @) =bsint(P).
Generalized Kepler equations:
In 1-|-Esi.nd5 + 2E2sipd25
ot 4 sin 2t = ——2ome 1P snTd (2.54)
In % +In 13%2
Scales:
a = A17
Ai(1 - E?) 1+ E 2F
b= = lnl—E+1—E2 . (2.55)

Box 2.4 ([The left principal stretches, the left eigenvalues, and the generalized Mollweide
projection of the ellipsoid-of-revolution).

Characteristic equation of the left general eigenvalue problem:
A —tr [C,G; A% + det [C;G; '] =0 subject to  det [C;G; '] =1 (2.56)
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A, = % {tr GG+ \/(tr [CGY])* — 4. (2.57)
Computation of the first invariant tr [C;G; ] :
oG = - gf Lt szé; oot
cos' t(t')? = a _E2E(;OSS;Z§¢)4 (In ﬂi o )27
1-E " 1-E?
tr [C,G; 1] = G111G22 [a*Gag cos® t + (t')?Gy(a® A% sin® t + b% cos® t)], (2.58)
1 (1—E%sin*9)*
G11Gy  AN1 — E?)2cos2 @’
A2 cos® @
Gu = 1 —1E2 sin? @’
Cay — A3 (1 — E?)?

(1 — E2sin* )3’

Box 2.5 (Left Cauchy—Green matrix, generalized Mollweide projection of the ellipsoid-of-
revolution).

Left Jacobi matrix:
3, = {DASL’ D@Z‘:| 7

Day Dey
(2.59)
Djx =a cost, Dgx = DyxDgt = —adsintt,
Dy, =0, Dg, = DyyDgt =+bcostt.
Left Cauchy—Green matrix:
Cl = J?GrJl, Gr = 12 = Cl = J?J[,
a?cos?t —a/A?costsintt
Cr = [—a/l2 costsintt’ (a?A%sin®t + b% cos? t)(t')? (2.60)
Left matrix of the metric:
N2(p 0
G, = [ O( ) Mz(@)} (N(®)and M (D) : see Example 1.3). (2.61)
det [C;G; 1] =1
a? cos?t a?A?sin®t + b2 cos? t a*/? cos? tsin? t
det [C;G 1] = t)? — t)? = 2.62
[ 1M ] Gll G22 ( ) G11G22 ( ) ( )
cos*t

_ a2D2 (12
G11Gar )
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(t') :
T
2(1 -+ cos 2t>dt = mx
1—-E " 1-E?
y 1—FEsin® FEcos® n Ecos®(1 + Esin®)
1+ Esin®1— Esin® (1 — Esin®)?
2F cos @ 4E3sin® @ cos @
+ —— + — do,
1—E?sin"® (1 — E?sin” @)?
1 +cos2t =2cos’t, (2.63)
Ecos® T
2t t/ —
o) = I awapm BE ¢ 22
E2 2 195) 2
cos* t()* = 1 E(;OS- 2 )4 1+E7T 2B \2’
(1= B2 sin @) (1n £ + 127)
1 (1 — E2sin®®)* oo _ AL (| 1+ E 2 2
— a = n
G11G22 A% cos? @A%(l - E)Z’ T2 2 1-F 1— E2
(6th) Determinantal identity:
det [C;G; 1] = 1. (2.64)

2-5 Canonical Criteria for Conformal, Equiareal, and Other Mappings

Canonical criteria for conformal, equiareal, and isometric mappings as well as equidistant
mappings M? — {R?, 4, }, Hilbert invariants.

Question: “How can we generalize those canonical crite-
ria for a conformal, an equiareal, or an isometric map-
ping M7 — M? := {R?, ¢,,} = E?* if we restrict the right
two-dimensional Riemann manifold to be two-dimensional
Euclidean?” Answer: “Let us refer to Boxes 1.46 and 1.47 in
order to formulate the answer. As it is outlined in Box 2.6,
the fundamental four Hilbert invariants I; and Is or 4; and
12 become dependent, typically called ‘syzygetic’, as soon as
we are dealing with a conformal mapping M7 — {R?, 4, }.”

Question.
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Box 2.6 (Canonical representation of Hilbert invariants, M — {R? 4,,}).

L(C) = A7+ A3 =t [C,G Y] versus  41(C,) = AT + A3 = tr [C], (2.65)
L(Cy) == AfAS = det [C,G;] versus  dp(Cy) := A3 = det [C,],
or
L(E) = K| + Ky = tr [E,G; Y versus i1 (E,) := K + kg = tr[E,] (2.66)

I(E) = K1 Ky = det [ElGl_l] versus is(E;) := Kk1ky = det [E,].
Special case: conformal mapping (syzygy).

I, =24/, versus i3 = 2v/is. (2.67)

Note that for a general diffeomorphism, namely f : {M?, Gyn} — {R?, §,,}, the first two Hilbert
invariants I1(E;) and i;(E,) are also called left and right dilatation. They measure the isotropic
part of a deformation, while the following shear components its anisotropic part:

I(C) :=Co — Cy; versus  7(C,) :=c¢

IN(E) :== Ey — Eyp versus  y(E;) := €90 — €11, (2.68)
I5(C)) :=2C12  versus  72(C;) := 2¢19,
(Er) =2

IH(E) :=2E5  versus o

2-6 Polar Decomposition and Simultaneous Diagonalization of Three
Matrices

Polar decomposition and simultaneous diagonalization of three matrices: {E;, C;, G;} versus
{E;, C,, G,}, stretch matrices.

A first remark has to be made towards the group theoretical representation of the left F; and
the right F, matrix of eigenvectors. In case of {MZ2, g,,} = {R?, §,,}, we took advantage of the
fact that the right matrix F, of eigenvectors is an orthonormal matrix R. In the general case
{M?, Gun} = {M2, g}, the left F; and right the F, matrix of eigenvectors enjoy the polar
decomposition

F; =R;S; versus F, = R3Ss
Versus VErsus ) (2.69)
F, =S3Ry versus F, =S,R4

where the matrices R; are orthonormal, R; ! = R}, while the matrices S; are by definition symmet-
ric, S; = SI. These symmetric matrices S; are sometimes called stretch matrices. or more details
including numerical examples, we refer to Marsden and Hughes (1983, pp. 51-55), Ogden (1984,
pp. 92-94), Simo and Taylor (1991), and Ting (1985). Here, we conclude with a second remark
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relating again to the simultaneous diagonalization of two matrices, e.g. the pairs of Cauchy—Green
deformation tensors {C;, G;} or {C;, G,} and the pairs of Euler-Lagrange deformation tensors
{E;, G} or {E;, G,}. respectively. Of course, we could also aim at a simultaneous diagonalization
of three matrices, e.g. the triplets

{Ei, C;, G} versus {E,, C,, G}, (2.70)

in particular
U'GX; =S < G =U;S;X; ' versus G, =U,SX ! U'G.X, =S}, (2.71)
XFCY, =S & C = (X;HSPY; ! versus C, = (X, )TS2Y ! & XIC,Y, = S2, (2.72)
Y EV, =S} & E = (Y,)'S}V] versus E, = (Y;)'S*V! « Y'E,V, = S, (2.73)

where S!, S?, and S? are certain quasi-diagonal matrices, where V and U are unitary matrices.
and non-singular matrices are X;, Y; and X,, Y,, respectively. But we are not able to diagonalize
G; and G, respectively, to unity. The diagonalization of G; and G,, respectively, to unit matrices
is by all means recommendable since accordingly all other tensors, e.g. C; and C,, respectively,
or E; and E,, alternatively, refer to unit vectors which span the local tangent space of M or
M2, respectively. Before we proceed to the next chapter, let us here additionally note that a
tree of generalization of the ordinary singular value decompositions has been developed by Chu
(1991a,b), De Moor and Zha (1991), Zha (1991), and others to which we refer.
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