
Chapter 2
Optimization Techniques: An Overview

Since the fabric of the universe is most perfect, and is the work
of a most wise Creator, nothing whatsoever takes place in the
universe in which some form of maximum or minimum does not
appear.

Leonhard Euler

It is an undeniable fact that all of us are optimizers as we all make decisions for the
sole purpose of maximizing our quality of life, productivity in time, as well as our
welfare in some way or another. Since this is an ongoing struggle for creating the
best possible among many inferior designs, optimization was, is, and will always
be the core requirement of human life and this fact yields the development of a
massive number of techniques in this area, starting from the early ages of civili-
zation until now. The efforts and lives behind this aim dedicated by many brilliant
philosophers, mathematicians, scientists, and engineers have brought the high level
of civilization we enjoy today. Therefore, we find it imperative to get to know first
those major optimization techniques along with the philosophy and long history
behind them before going into the details of the method detailed in this book. This
chapter begins with a detailed history of optimization, covering the major
achievements in time along with the people behind them. The rest of the chapter
then draws the focus on major optimization techniques, while briefly explaining
the mathematical theory and foundations over some sample problems.

2.1 History of Optimization

In its most basic terms, Optimization is a mathematical discipline that concerns the
finding of the extreme (minima and maxima) of numbers, functions, or systems.
The great ancient philosophers and mathematicians created its foundations by
defining the optimum (as an extreme, maximum, or minimum) over several fun-
damental domains such as numbers, geometrical shapes optics, physics, astron-
omy, the quality of human life and state government, and several others. This era
started with Pythagoras of Samos (569 BC to 475 BC), a Greek philosopher who
made important developments in mathematics, astronomy, and the theory of
music. He is often described as the first pure mathematician. His most important
philosophical foundation is [1]: ‘‘that at its deepest level, reality is mathematical in
nature.’’
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Zeno of Elea (490 BC to 425 BC) who was a Greek philosopher famous for
posing so-called paradoxes was the first to conceptualize the notion of extremes in
numbers, or infinitely small or large quantities. He took a controversial point of
view in mathematical philosophy, arguing that any motion is impossible by per-
forming infinite subdivisions described by Zeno’s Dichotomy. Accordingly, one
cannot even start moving at all. Probably, Zeno was enjoying the challenging
concept of ‘‘infinity’’ with his contemporaries without the proper formulation of
the limit theory and calculus at the time.

Later, Plato (427 BC to 347 BC) who is one of the most important Greek
philosophers and mathematicians, gained from the disciples of Pythagoras, and
formed his idea [2], … ‘‘that the reality which scientific thought is seeking must be
expressible in mathematical terms, mathematics being the most precise and defi-
nite kind of thinking of which we are capable. The significance of this idea for the
development of science from the first beginnings to the present day has been
immense.’’ About 75 years earlier, Euclid wrote The Elements, Plato wrote The
Republic around 375 BC, where he was setting his ideas on education: In that, one
must study the five mathematical disciplines, namely arithmetic, plane geometry,
solid geometry, astronomy, and harmonics. After mastering mathematics, one can
proceed to the study of philosophy. The following dialog is a part of the argument
he made:

‘‘…But when it is combined with the perception of its opposite, and seems to involve the
conception of plurality as much as unity, then thought begins to be aroused within us, and
the soul perplexed and wanting to arrive at a decision asks ‘‘What is absolute unity?’’ This
is the way in which the study of the one has a power of drawing and converting the mind
to the contemplation of reality.’’

‘‘And surely,’’ he said, ‘‘this characteristic occurs in the case of one; for we see the same
thing to be both one and infinite in multitude?’’

‘‘Yes,’’ I said, ‘‘and this being true of one, it must be equally true of all number?’’
‘‘Certainly’’

Aristotle (384 BC to 322 BC), who was one of the most influential Greek
philosophers and thinkers of all times, made important contributions by system-
atizing deductive logic. He is perhaps best described by the authors of [3] as,
‘‘Aristotle, more than any other thinker, determined the orientation and the content
of Western intellectual history. He was the author of a philosophical and scientific
system that through the centuries became the support and vehicle for both medi-
eval Christian and Islamic scholastic thought: until the end of the seventeenth
century, Western culture was Aristotelian. And, even after the intellectual revo-
lutions of centuries to follow, Aristotelian concepts and ideas remained embedded
in Western thinking. ‘‘He introduced the well-known principle,’’ The whole is
more than the sum of its parts.’’ Both the Greek philosophers, Plato and Aristotle,
used their ‘‘powers of reasoning’’ to determine the best style of human life. Their
goal was to develop the systematic knowledge of how the behavior of both
individuals and society could be optimized. They particularly focused on questions
of ethics (for optimizing the lifestyle of an individual) and politics (for optimizing
the functioning of the state). At the end, both Plato and Aristotle recognized that
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the knowledge of how the members of society could optimize their lives was
crucial. Both believed that the proper development of an individual’s character
traits was the key to living an optimal lifestyle.

As a follower of Plato’s philosophy, Euclid of Alexandria (325 BC to 265 BC)
was the most prominent antique Greek mathematician best known for his work on
geometry, The Elements, which not only makes him the leading mathematician of
all times but also one who influenced the development of Western mathematics for
more than 2,000 years [4]. It is probable that no results in The Elements were first
proved by Euclid but the organization of the material and its exposition are cer-
tainly due to him. He solved some of the earliest optimization problems in
Geometry, e.g., in the third book, there is a proof that the greatest and least straight
lines can be drawn from a point to the circumference of a circle; in the sixth book
it is proven that a square has the maximum area among all rectangles with given
total length of the edges.

Archimedes of Syracuse (287 BC to 212 BC) is considered by most historians of
mathematics as one of the greatest mathematicians of all times [5]. He was the
inventor of the water pump, the so-called Archimedes’ screw that consists of a pipe
in the shape of a helix with its lower end dipped in the water. As the device is
rotated the water rises up the pipe. This device is still in use in many places in the
world. Although he achieved great fame due to his mechanical inventions, he
believed that pure mathematics was the only worthy pursuit. His achievements in
calculus were outstanding. He perfected a method of integration which allowed
him to find areas, volumes, and surface areas of many bodies by using the method
of exhaustion, i.e., one can calculate the area under a curve by approximating it by
the areas of a sequence of polygons. In Heath [6], it is stated that ‘‘Archimedes
gave birth to the calculus of the infinite conceived and brought to perfection by
Kepler, Cavalieri, Fermat, Leibniz and Newton.’’ Unlike Zeno and other Greek
philosophers, he and Euclid were the first mathematicians who were not troubled
by the apparent contradiction of the infinite concept. For instance, they contrived
the method of exhaustion technique to find the area of a circle without knowing the
exact value of p.

Heron of Alexandria (*10 AC to *75 AC) who was an important geometer
and worker in mechanics wrote several books on mathematics, mechanics, and
even optics. He wrote the book, Catoptrica, which is attributed by some historians
to Ptolemy although most now seem to believe that this was his genuine work
indeed. In this book, Heron states that vision occurs as a result of light emissions
by the eyes with infinite velocity. He has also shown that light travels between two
points through the path of the shortest length.

Pappus of Alexandria (*290 AC to *350 AC) is the last of the great Greek
geometers and made substantial contributions on many geometrical optimization
problems. He proved what is known as the ‘‘honeycomb conjecture’’ that the
familiar honeycomb shape, which is a repeating hexagonal pattern (volumetric
hexagonal-shaped cylinders, stacked one against the other in an endless array) was
the optimal way of storing honey. Pappus introduces this problem with one of the
most charming essays in the history of mathematics, one that has frequently been
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excerpted under the title: On the Sagacity of Bees. In that, he speaks poetically of the
divine mission of bees to bring from heaven the wonderful nectar known as honey,
and says that in keeping with this mission they must make their honeycombs without
any cracks through which honey could be lost. Having also a divine sense of sym-
metry, the bees had to choose among the regular shapes that could fulfill this con-
dition, (e.g. triangles, squares, and hexagons). At the end they naturally chose the
hexagon because a hexagonal prism required the minimum amount of material to
enclose a given volume. He collected these ideas in his Book V and states his aim
that [7], ‘‘Bees, then, know just this fact which is useful to them, that the hexagon is
greater than the square and the triangle and will hold more honey for the same
expenditure of material in constructing each. But we, claiming a greater share in
wisdom than the bees, will investigate a somewhat wider problem, namely that, of
all equilateral and equiangular plane figures having an equal perimeter, that which
has the greater number of angles is always the greater, and the greatest of then all is
the circle having its perimeter equal to them.’’

Also in Book V, Pappus discusses the 13 semi-regular solids discovered by
Archimedes and solves other isoperimetric problems which were apparently dis-
cussed by the Athenian mathematician Zenodorus (200 BC to 140 BC). He
compares the areas of figures with equal perimeters and volumes of solids with
equal surface areas, proving that the sphere has the maximum volume among
regular solids with equal surface area. He also proves that, for two regular solids
with equal surface area, the one with the greater number of faces has the greater
volume. In Book VII, Pappus defines the two basic elements of analytical problem
solving, the analysis and synthesis [7] as, … ‘‘in analysis we suppose that which is
sought to be already done, and inquire what it is from which this comes about, and
again what is the antecedent cause of the latter, and so on until, by retracing our
steps, we light upon something already known or ranking as a first principle… But
in synthesis, proceeding in the opposite way, we suppose to be already done that
which was last reached in analysis, and arranging in their natural order as con-
sequents what were formerly antecedents and linking them one with another, we
finally arrive at the construction of what was sought…’’

During the time of the ancient great Greek philosophers and thinkers, arithmetic
and geometry were the two branches of mathematics. There were some early
attempts to do algebra in those days; however, they lacked the formalization of
algebra, namely the arithmetic operators that we take for granted today, such as
‘‘+, -, 9, 7’’ and of course, ‘‘=’’. Much of the world, including Europe, also
lacked an efficient numeric system like the one developed in the Hindu and Arabic
cultures. Al’Khwarizmi (790–850) was a Muslim Persian mathematician who
wrote on Hindu–Arabic numerals and was among the first to use the number zero
as a place holder in positional base notation. Algebra as a branch of mathematics
can be said to date to around the year 825 when Al’Khwarizmi wrote the earliest
known algebra treatise, Hisab al-jabr w’al-muqabala. The word ‘‘algebra’’ comes
from the Persian word al’jabr (that means ‘‘to restore’’) in the title. Moreover, the
English term ‘‘algorithm,’’ was derived from Al’Khwarizmi ‘s name as the way of a
Latin translation and pronunciation: Algoritmi.
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Ibn Sahl (940–1000) was a Persian mathematician, physicist, and optics engi-
neer who was credited for first discovering the law of refraction, later called as the
Snell’s law. By means of this law, he computed the optimum shapes for lenses and
curved mirrors. This was probably the first application of optimization in an
engineering problem.

Further developments in algebra were made by the Arabic mathematician
Al-Karaji (953–1029) in his treatise Al-Fakhri, where he extends the methodology
to incorporate integer powers and integer roots of unknown quantities. Something
close to a proof by mathematical induction appears in a book written by Al-Karaji
who used it to prove the binomial theorem, Pascal’s triangle, and the sum of
integral cubes. The historian of mathematics, Woepcke in [8], credits him as the
first who introduced the theory of algebraic calculus. This was truly one of the
cornerstone developments for the area of optimization as it is one of the uses of
calculus in the real world.

René Descartes (1596–1650) was a French mathematician and philosopher and
his major work, La Géométrie, includes his linkage of algebra to geometry from
which we now have the Cartesian geometry. He had a profound breakthrough
when he realized he could describe any position on a 2D plane using a pair of
numbers associated with a horizontal axis and a vertical axis—what we call today
as ‘‘coordinates.’’ By assigning the horizontal measurement with x’s and the
vertical measurement with y’s, Descartes was the first to define any geometric
object such as a line or circle in terms of algebraic equations. Scott in [9] praises
his work for four crucial contributions:

1. He makes the first step toward a theory of invariants, which at later stages
derelativises the system of reference and removes arbitrariness.

2. Algebra makes it possible to recognize the typical problems in geometry and to
bring together problems which in geometrical dress would not appear to be
related at all.

3. Algebra imports into geometry the most natural principles of division and the
most natural hierarchy of method.

4. Not only can questions of solvability and geometrical possibility be decided
elegantly, quickly, and fully from the parallel algebra, without it they cannot be
decided at all.

The seminal construction of what we call graphs was obviously the cornerstone
achievement without which any formulation of optimization would not be possi-
ble. In that, Descartes united the analytical power of algebra with the descriptive
power of geometry into the new branch of mathematics, he named as analytic
geometry, a term which is sometimes called as Calculus with Analytic Geometry.
He was one of the first to solve the tangent line problem (i.e., the slope or the
derivative) for certain functions. This was the first step toward finding the maxima
or minima of any function or surface, the foundation of all analytical optimization
solutions. On the other hand, when Descartes published his book, La Géometrie in
1637, his contemporary Pierre de Fermat (1601–1665) was already working on
analytic geometry for about 6 years and he also solved the tangent line problem
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with a different approach, which is based on the approximation of the slope,
converging to the exact value on the limit. This is the pioneer work for finding the
derivative and henceforth calculating the optimum point when the slope is zero.
Due to this fact, Lagrange stated clearly that he considers Fermat to be the
inventor of the calculus. But at that time, such an approximation-based approach
was perhaps why Fermat did not get the full credit for his work. There was an
ongoing dispute between the two because Descartes thought that Fermat’s work
was reducing the importance of his own work La Géometrie. Fermat initiated the
technique for solving df(x)/dx = 0 to find the local optimum point of the function
f(x) and this is perhaps the basis in applied mathematics and its use in optimiza-
tion. Another reason for the dispute between them might be that Fermat found a
mistake in a book by Descartes and corrected it. Descartes attacked Fermat’s
method of maxima, minima, and tangents but in turn, Fermat proved correct and
eventually Descartes accepted his mistake. Fermat’s most famous work, called
Fermat’s Last Theorem, was the proof for the statement, xn þ yn ¼ zn, has no
integer solutions for n [ 2. His proof remains a mystery till today since Fermat
wrote it as, ‘‘I have discovered a truly remarkable proof which this margin is too
small to contain.’’ He also deduced the most fundamental optimization phenom-
enon in the optics, ‘‘the light always follows the shortest possible path’’, (or
similarly, ‘‘the light follows the path which takes the shortest time’’).

Like most developments, the calculus too was the culmination of centuries of
work. After these pioneers, the two most recognized discoverers of calculus are
Isaac Newton of England (1643–1727) and a German, Gottfried Wilhelm Leibniz
(1646–1716). Both deserve equal credit for independently coming up with cal-
culus; however, at that time a similar rivalry and dispute occurred between the two
as each accused the other of plagiarism for the rest of their lives. The mathematics
community today has largely adopted Leibniz’s calculus symbols but on the other
hand, the calculus he discovered allowed Newton to establish the well-known
physics laws which are sufficient in macro scale to explain many physical phe-
nomena in nature to a remarkable accuracy. Their approach to calculus was also
totally different, i.e., Newton considered functions changing in time, whereas
Leibniz thought of variables x, y as ranging over sequences of infinitely close
values, dx and dy; however, he never thought of the derivative as a limit. In 1666,
Newton found out the slope of a function by the derivative and solved the inverse
problem by taking the integral, which he used to calculate the area under any
function. Therefore, this work contains the first clear statement of the Fundamental
Theorem of Calculus. As Newton did not publish his findings until 1687, unaware
that he had discovered similar methods, Leibniz developed his calculus in Paris
between 1673 and 1676. In November 1675, he wrote a manuscript using the
common integral notation,

R
f xð Þ dx; for the first time. The following year, he

discovered the power law of differentiation, d xnð Þ ¼ nxn�1dx for both integer and
fractional n. He published the first account of differential calculus in 1684 and then
published the explanation of integral calculus in 1686. There were rumors that
Leibniz was following Newton’s studies from their common colleagues and

18 2 Optimization Techniques: An Overview



occasional discussion letters between the two, but despite of all his correspon-
dences with Newton, he had already come to his own conclusions about calculus.
In 1686 Leibniz published a paper, in Acta Eruditorum, dealing with the integral
calculus with the first appearance of the integral notation in print. Newton’s
famous work, Philosophiae Naturalis Principia Mathematica, surely the greatest
scientific book ever written, appeared in the following year. The notion that the
Earth rotated around the Sun was already known by ancient Greek philosophers,
but it was Newton who explained why, and henceforth, the great scientific revo-
lution began with it.

During his last years, Leibniz published Théodicée claiming that the universe is
in the best possible form but imperfect; otherwise, it would not be distinct from
God. He invented more mathematical terms than anyone else, including ‘‘func-
tion,’’ ‘‘analysis situ,’’ ‘‘variable,’’ ‘‘abscissa,’’ ‘‘parameter,’’ and ‘‘coordinate.’’
His childhood IQ has been estimated as the second-highest in all of history, behind
only Goethe [5]. Descriptions that have been applied to Leibniz include ‘‘one of the
two greatest universal geniuses’’ (da Vinci was the other) and the ‘‘Father of the
Applied Science.’’ On the other hand, Newton is the genius who began revolu-
tionary advances on calculus, optics, dynamics, thermodynamics, acoustics, and
physics; it is easy to overlook that he too was one of the greatest geometers for he
calculated the optimum shape of the bullet earlier than his invention of calculus.
Among many brilliant works in mathematics and especially in calculus, he also
discovered the Binomial Theorem, the polar coordinates, and power series for
exponential and trigonometric functions. For instance, his equation, ex ¼

P
xk= k!,

has been called as ‘‘the most important series in mathematics.’’ Another optimi-
zation problem he solved is the brachistochrone, which is the curve of fastest
descent between two points by a point-like body with a zero velocity while the
gravity is the only force (with no friction). This problem had defeated the best
mathematicians in Europe but it took Newton only a few hours to solve it. He
published the solution anonymously, yet upon seeing the solution, Jacob Bernoulli
immediately stated ‘‘I recognize the lion by his footprint.’’

After the era of Newton and Leibniz, the development of the calculus was
continued by the Swiss mathematicians, Bernoulli brothers, Jacob Bernoulli
(1654–1705), and Johann Bernoulli (1667–1748). Jacob was the first mathemati-
cian who applied separation of variables in the solution of a first-order nonlinear
differential equation. His paper of 1690 was indeed a milestone in the history of
calculus since the term integral appears for the first time with its integration
meaning. Jacob liked to pose and solve physical optimization problems such as the
catenary (which is the curve that an idealized hanging chain assumes under its own
weight when supported only at its ends) problem. He was a pioneer in the field of
calculus of variations, and particularly differential equations, with which he
developed new techniques to many optimization problems. In 1697, he posed and
partially solved the isoperimetric problem, which is a class of problems of the
calculus of variations. The simplest of them is the following: among all curves of
given length, find the curve for which some quantity (e.g., area) dependent on the
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curve reaches a minimum or maximum. Other optimization problems he solved
include isochronous curves and curves of fastest descent. Johann Bernoulli on the
other hand, followed a similar path like his brother. He mostly learned from him
and also from Leibniz, and later on he alone supported Leibniz for the Newton–
Leibniz controversy. He showed Leibniz’s calculus can solve certain problems
where Newton had failed. He also became the principle teacher of Leonhard Euler.
He developed the exponential calculus and together with his brother Jacob,
founded the calculus of variations. Although their work of line was pretty similar,
there were no common papers published, because after a while a bitter jealousy led
to another famous rivalry, this time between the Bernoulli brothers, who—espe-
cially Johann—began claiming each other’s work. Later, a similar jealousy arose
between Johann and his son, Daniel Bernoulli (1700–1782), where this time
Johann started to compete with him on his most important work, Hydrodynamica
in 1734 which Daniel published in 1738 at about the same time as Johann pub-
lished a similar version of it, Hydraulica. However, he discovered L’Hôpital’s
Rule 50 years before Guillaume de L’Hôpital (1661–1704) did, and according to
some mathematics historians, he solved the catenary problem before his brother
did, although he used ideas that Jacob had given when he posed the problem. He
attained great fame in his life and made outstanding contributions in calculus and
physics for solving many real optimization problems, e.g., about vibrations, elastic
bodies, optics, tides, and ship sails.

Calculus of variations is an area of calculus that deals with the optimization of
functionals, which are mappings from a set of functions to real numbers and are
often expressed as definite integrals involving functions and their derivatives. A
physical system can be modeled by functionals, with which their variables can be
optimized considering the constraints. Calculus of variations and the use of dif-
ferential equations for the general solution of many optimization problems may
not be possible without the Swiss mathematician, Leonhard Euler (1701–1783)
who is probably the most influential mathematician ever lived. He is the father of
mathematical analysis and his work in mathematics is so vast that we shall only
name the few crucial developments herein for calculus and optimization. He took
marvelous advantage of the analysis of Fermat, Newton, Leibniz, and the Bernoulli
family members, extending their work to marvelous heights. To start with, many
fundamental calculus and mathematical foundations that are used today were
created by Euler, i.e., in 1734, he proposed the notation f (x) for a function, along
with three of the most important constant symbols in mathematics: e for the base
of natural logs (in 1727), i for the square root of -1 (in 1777), p for pi, and several
mathematical notations such as ‘‘

P
’’ for summation (in 1755), finite differences

Dx, D2x, and many others. In 1748, he published his major work, Introductio in
analysin infinitorum in which he presented that mathematical analysis was the
study of functions. This was the pioneer work, which bases the foundations of
calculus on the theory of elementary functions rather than on geometric curves, as
had been done earlier. Also in this work, he unifies the trigonometric and expo-
nential functions by his famous formula: eix ¼ cos x þ isin x. (The particular
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setting of x = p yields eip þ 1 ¼ 0 that fits the three most important constants in a
single equation.)

Euler was first partially and later totally blind during a long period of his life.
From the French Academy in 1735, he received a problem in celestial mechanics,
which had required several months to solve by other mathematicians. Euler, using
his improved methods solved it in 3 days (later, with his superior methods, Gauss
solved the same problem within an hour!). However, the strain of the effort
induced a fever that caused him the loss of sight in his right eye. Stoically
accepting the misfortune, he said, ‘‘Now I will have less distraction.’’ For a period
of 17 years, he was almost totally blind after a cataract developed in his left eye in
1766. Yet he possessed a phenomenal memory, which served him well during his
blind years as he calculated long and difficult problems on the blackboard of his
mind, sometimes carrying out arithmetical operations to over 50 decimal places.
The calculus of variations was created and named by Euler and in that he made
several fundamental discoveries. His first work in 1740, Methodus inveniendi
lineas curvas initiated the first studies in the calculus of variations. However, his
contributions already began in 1733, and his treaty, Elementa Calculi Variationum
in 1766 gave its name. The idea was already born with the brachistochrone curve
problem raised by Johann Bernoulli in 1696. This problem basically deals with the
following: Let a point particle of mass m on a string whose endpoints are at
a = (0,0) and b = (x,y), where y \ 0. If gravity acts on the particle with force
F = mg, what path of string minimizes its travel time from a to b, assuming no
friction? The solution of this problem was one of the first accomplishments of the
calculus of variations using which many optimization problems can be solved.
Besides Euler, by the end of 1754, Joseph-Louis Lagrange (1736–1813) had also
made crucial discoveries on the tautochrone that is the curve on which a weighted
particle will always arrive at a fixed point in a fixed amount of time independent of
its initial position. This problem too contributed substantially to the calculus of
variations. Lagrange sent Euler his results on the tautochrone containing his
method of maxima and minima in a letter dated 12 August 1755, and Euler replied
on 6 September saying how impressed he was with Lagrange’s new ideas (he was
19 years old at the time). In 1756, Lagrange sent Euler results that he had obtained
on applying the calculus of variations to mechanics. These results generalized
results which Euler had himself obtained. This work led to the famous Euler–
Lagrange equation, the solution of which is applied on many optimization prob-
lems to date. For example using this equation, one can easily show that the closed
curve of a given perimeter for which the area is a maximum, is a circle, the shortest
distance between two fixed points is a line, etc. Moreover, Lagrange considered
optimizing a functional with an added constraint and he turned the problem using
the method of Lagrange multipliers to a single optimization equation that can then
be solved by the Euler–Lagrange equation.

Euler made substantial contributions to differential geometry, investigating the
theory of surfaces and curvature of surfaces. Many unpublished results by Euler in
this area were rediscovered by Carl Friedrich Gauss (1777–1855). In 1737, Euler
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wrote the book, Mechanica which provided a major advance in mechanics. He
analyzed the motion of a point mass both in a vacuum, in a resisting medium,
under a central force, and also on a surface. In this latter topic, he solved various
problems of differential geometry and geodesics. He then addressed the problem of
ship propulsion using both theoretical and applied mechanics. He discovered the
optimal ship design and first established the principles of hydrostatics.

Based on these pioneers’ works, during the nineteenth century, the first opti-
mization algorithms were developed. During this era, many brilliant mathemati-
cians including Jakob Steiner (1796–1863), Karl Theodor Wilhelm Weierstrass
(1815–1897), William Rowan Hamilton (1805–1865), and Carl Gustav Jacob
Jacobi (1804–1851) made significant contributions to the field of calculus of
variations. The first iterative optimization technique that is known as Newton’s
method or Newton–Raphson method was indeed developed by four mathemati-
cians: Isaac Newton, Joseph Raphson (1648–1715), Thomas Simpson
(1710–1761), and Jean-Baptiste-Joseph Fourier (1768–1830). Newton in 1664
found a non-iterative algebraic method of root finding of a polynomial and in
1687, he described an application of his procedure to a non-polynomial equation in
his treaty Principia Mathematica where this was originated from Kepler’s equa-
tion. Note that this was a purely algebraic and non-iterative method. In 1690,
Raphson turned Newton’s method into an iterative one, applying it to the solution
of polynomial equations of degree up to 10. However, the method is still not based
on calculus; rather explicit polynomial expressions are used in function form,
f(x) and its derivative, f 0 xð Þ. Simpson in 1740 was the first to formulate the
Newton–Raphson method on the basis of calculus, extending it to an iterative
solver for the multivariate minimization. Fourier in 1831 brought the method as
we know of it today and published in his famous book, Analyse des équations
déterminées. The method finds the root of a scalar function, f (x) = 0, iteratively
by the following equation using only the first-order derivative, f 0 xð Þ.

xkþ1 ¼ xk � f xkð Þ=f 0 xkð Þ; k ¼ 0; 1; 2; . . . ð2:1Þ

where the initial guess, x0, is usually chosen randomly. Similarly, finding the root
of f 0, which is equivalent to the optimum (or stationary) point of the function, f(x),
can similarly be expressed as,

xkþ1 ¼ xk � f 0 xkð Þ=f 00 xkð Þ; k ¼ 0; 1; 2; . . . ð2:2Þ

Augustin-Louis Cauchy (1789–1857) did important work on differential equa-
tions and applications to mathematical physics. The four-volume series, Exercices
d’analyse et de physique mathématique published during 1840–1847 was a major
work in this area in which he proposed the method of the steepest descent (also
called as gradient descent) in 1847. This method is perhaps one of the most
fundamental and basic derivative-based iterative procedures for unconstrained
minimization of a differentiable function. Given a differentiable function in N-D,
f ð�xÞ, the gradient method in each step moves along the direction that minimizes
rf , that is, the direction of steepest descent and thus perpendicular to the slope of
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the curve at that point. The method stops when it reaches to a local minimum
(maximum) where rf = 0 and thus no move is possible. Therefore, the update
equation is as follows:

�xkþ1 ¼ �xk � kkrf �xkð Þ; k ¼ 0; 1; 2; . . . ð2:3Þ

where �x0 is the initial starting point in the N-D space. An advantage of gradient
descent compared to Newton–Raphson method is that it only utilizes first-order
derivative information about the function when determining the direction of
movement. However, it is usually slower than Newton–Raphson to converge and it
tends to suffer from very slow convergence especially as a stationary point is
approached.

A crucial optimization application is the least-square approximation, which
finds the approximate solution of sets of equations in which there are more
equations than unknowns. At the age of 18, Carl Friedrich Gauss who was widely
agreed to be the most brilliant and productive mathematician ever lived, invented a
solution to this problem in 1795, although it was first published by Lagrange in
1806. This method basically minimizes the sum of the squares of the residual
errors, that is, the overall solution minimizes the sum of the squares of the errors
made in the results of every single equation. The most important application is in
data fitting and the first powerful demonstration of it was made by Gauss, at the
age of 24 when he used it to predict the future location of the newly discovered
asteroid, Ceres. In June 1801, Zach, an astronomer whom Gauss had come to
know two or three years earlier, published the orbital positions of Ceres, which
was discovered by an Italian astronomer Giuseppe Piazzi in January, 1801. Zach
was able to track its path for 40 days before it was lost in the glare of the sun.
Based on this data, astronomers attempted to determine the location of Ceres after
it emerged from behind the sun without solving the complicated Kepler’s non-
linear equations of planetary motion. Zach published several predictions of its
position, including one by Gauss which differed greatly from the others. When
Ceres was rediscovered by Zach on 7 December 1801, it was almost exactly where
Gauss had predicted using the least-squares method, which was not published at
the time.

The twentieth century brought the proliferation of several optimization tech-
niques. Calculus of variations was further developed by several mathematicians
including Oskar Bolza (1857–1942) and Gilbert Bliss (1876–1951). Harris Han-
cock (1867–1944) in 1917 published the first book on optimization, Theory of
Maxima and Minima. One of the crucial techniques of the optimization, Linear
Programming (LP), was developed in 1939 by the Russian mathematician, Leonid
Vitaliyevich Kantorovich (1912–1986); however, the method was kept secret until
the time the American scientist, George Bernard Dantzig (1914–2005) published
the Simplex method in 1947. LP, sometimes called linear optimization, is a
mathematical method for determining a way to achieve the optimal outcome in a
given mathematical model according to a list of requirements that are predefined
by some linear relationships. More formally, LP is a technique for the optimization

2.1 History of Optimization 23



of a linear objective function, subject to constraints expressed by linear
(in)equalities. In an LP, the variables are continuous while the objective function
and constraints must be linear expressions. An expression is linear if it can be
expressed in the form, c1x1 þ c2x2 þ . . .þ cnxn for some constants c1, c2,…,cn.
The solution space corresponds to a convex polyhedron, which is a set defined as
the intersection of finitely many half spaces, each of which is defined by a linear
inequality. Its objective function that is to be optimized (under the given con-
straints) is a real-valued affine function defined on this polyhedron. In short, the LP
method finds an optimum point in the polyhedron—if it exists. The Simplex
method, on the other hand, is an efficient method for finding the optimal solution in
one of the corners of the N-D polyhedron where N is the number of linear
(in)equalities each intersecting to yield a corner. The Simplex method iteratively
searches each corner to find the optimum one, which corresponds to the optimum
solution. Finding each of the N corners is a matter of solving a system of N
equations that can be done by Gaussian elimination method.

John Von Neumann (1903–1957) developed the theory of duality as an LP
solution, and applied it in the field of game theory. If an LP exists in the maxi-
mization linear form, which is called the primal LP, its dual is formed by having
one variable for each constraint of the primal (not counting the non-negativity
constraints of the primal variables), and having one constraint for each variable of
the primal (plus the non-negative constraints of the dual variables); then the
maximization can be switched to minimization, the coefficients of the objective
function are also switched with the right-hand sides of the inequalities, and the
matrix of coefficients of the left-hand side of the inequalities are transposed. In
1928, Von Neumann proved the minimax theorem in the game theory, which
indicates that there exists a pair of strategies for both players that allows each one
to minimize his maximum losses. Each player examines every possible strategy
and must consider all the possible responses of his adversary. He then plays out the
strategy which will result in the minimization of his maximum loss. Such a
strategy, which minimizes the maximum loss for each player is called the optimal
minmax solution. Alternatively, the theorem can also be thought of as maximizing
the minimum gain (maximin).

In 1939, Nonlinear Programming (NLP or Nonlinear Optimization) was first
developed by a graduate student William Karush (1917–1997), who was also the
first to publish the necessary conditions for the inequality constrained problem in
his Master’s thesis, Minima of Functions of Several Variables with Inequalities as
Side Constraints. The optimal solution by the NLP was only widely recognized
after a seminal conference paper in 1951 by Harold William Kuhn (born in 1925)
and Albert William Tucker (1905–1995). Thus the theory behind NLP was called
the Karush–Kuhn–Tucker (KKT) Theory, which provided necessary and sufficient
conditions for the existence of an optimal solution to an NLP. NLP has a particular
importance in optimal control theory and applications since optimal control
problems are optimization problems in (infinite-dimensional) functional spaces,
while NLP deals with the optimization problems in Euclidean spaces; optimal
control can indeed be seen as a generalization of NLP.
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In 1952, Richard Bellman (1920–1984) made the first publication on dynamic
programming (DP), which is a commonly used method of optimally solving
complex problems by breaking them down into simpler problems. DP is basically
an algorithmic technique, which uses a recurrent formula along with one or more
starting states. A subsolution of the problem is constructed from those previously
found. DP solutions have a polynomial complexity, which assures a much faster
running time than other techniques such as backtracking and brute-force. The
problem is first divided into ‘‘states,’’ each of which represents a sub-solution of
the problem. The state variables chosen at any given point in time are often called
the ‘‘control’’ variables. Finally, the optimal decision rule is the one that achieves
the best possible value from the objective function, which is written as a function
of the state, called the ‘‘value’’ function. Bellman showed that a DP problem in
discrete time can be stated in a recursive form by writing down the relationship
between the value function in one period and the value in the next period. The
relationship between these two value functions is called the Bellman equation. In
other words, the Bellman equation, also known as a DP equation, is a necessary
condition for optimality. The Bellman equation can be solved by backwards
induction, either analytically in a few special cases, or numerically on a computer.
Numerical backwards induction is applicable to a wide variety of problems, but
may be infeasible when there are many state variables, due to the ‘‘Curse of
Dimensionality,’’ which is a term coined by Bellman to describe the problem
caused by the exponential increase in volume associated with adding extra
dimensions to the (search) space. One implication of the curse of dimensionality is
that some methods for numerical solution of the Bellman equation require vastly
more computer time when there are more state variables in the value function.

All of the optimization methods described till now have been developed for
deterministic processes applied over known differentiable (and double differen-
tiable) functions. Optimization by Stochastic Approximation (SA) aims at finding
the minima or maxima of an unknown function with unknown derivatives, both of
which can be confounded by random error. Therefore, SA methods belong to the
family of iterative stochastic optimization algorithms, which converge to the
optimum points of such functions that cannot be computed directly, but only
estimated via noisy observations. SA is a part of the stochastic optimization (SO)
methods that generate and use random variables, which appear in the formulation
of the optimization problem itself, along with the random objective functions or
random constraints. Stochastic approximation was introduced in 1951 by the
American mathematicians Herbert Ellis Robbins (1915–2001) and his student,
Sutton Monro (1919–1995) [10]. This algorithm is a root finder of the equation,
h xð Þ ¼ 0 which has a unique root at x ¼ a. It is assumed that one cannot observe
directly the function, h xð Þ, rather we have the noisy measurements of it, N Xð Þ,
where E N Xð Þð Þ ¼ h xð Þ (E(.) is the mathematical expectation operation). The
algorithm then iterates toward the root in the form: xkþ1 ¼ xk þ ck a� NðxÞð Þ
where c1; c2; . . .is a sequence of positive step sizes. They suggested the form of
ck ¼ c=k and proved that under certain conditions, xk converges to the root, a.
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Motivated by the publication of the Robbins-Monro algorithm in 1951, the
Kiefer-Wolfowitz algorithm [11] was introduced in 1952 by the Polish mathemati-
cian, Jacob Wolfowitz (1910–1981) and the American statistician, Jack Kiefer
(1924–1981). This is the first stochastic optimization method which seeks the
maximum point of a function. This method suffers from heavy function computa-
tions since it requires 2(d ? 1) function computations for each gradient computa-
tion, where d is the dimension of the search space. This is a particularly a significant
drawback in high dimensions. To address this drawback, James Spall in [12], pro-
posed the use of simultaneous perturbations to estimate the gradient. This method
would require only two function computations per iteration, regardless of the
dimension. For any SA method, applied over unimodal functions, it can be shown
that the method can converge to the local optimum point with probability one.

However, for multimodal functions, SA methods, as all other gradient-based
deterministic algorithms may be stuck on a local optimum. The convergence to the
global optimum point is a crucial issue, yet most likely infeasible by any of these
gradient-based methods. This brought the era of probabilistic metaheuristics. The
American physicist Nicholas Metropolis (1915–1999) in 1953 co-authored the
paper, Equation of State Calculations by Fast Computing Machines, a technique
that was going to lead to the first probabilistic metaheuristics method, now known
as simulated annealing. After this landmark publication, Keith Hastings (born in
1930) extended it to a more general case in 1970, by developing the Metropolis–
Hastings algorithm, which is a Markov chain Monte-Carlo method for creating a
series of random numbers from a known probability density function. In 1983, the
adaptation of this method led to the simulated annealing method [13], which is a
generic probabilistic metaheuristics for the global optimization problem so as to
converge to the global optimum of any function in a large search space. The name
annealing basically mimics the process undergone by misplaced atoms in a metal
when it is first heated and then slowly cooled. With a similar analogy, each step of
the simulated annealing attempts to replace the current solution with a new
solution chosen randomly according to a certain probability distribution. This new
solution may then be accepted with a probability that depends both on the dif-
ference between the corresponding function values and also on a global parameter
T (called the temperature) that is gradually decreased during the process
(annealing). When T is large, the choice between the new and the previous
solution becomes almost purely random and as T goes to zero; it consistently
selects the best solution between the two, mimicking a steepest descent (or ascent)
method. Therefore, especially when T is large (during the early stages of simulated
annealing’s iterative algorithm), it prevents the early trappings to a local minima
and then yields the convergence to the optimum point as T goes to zero. While this
technique cannot guarantee finding the optimum solution, it can often find a
suboptimum point in the close vicinity of it, even in the presence of noisy data.

The 1950s and early 1960s were the times when the use of the computers
became popular for a wide range of optimization problems. During this era, direct
search methods first appeared, whereas the name ‘‘direct search’’ was introduced
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in 1961 by Robert Hooke and T. A. Jeeves. This was a pattern search method,
which is better than a random search due to its search directions by exploration in
the search space. After this key accomplishment, in 1962 the first simplex-based
direct search method was proposed by W. Spendley, G. R. Hext, and F. R. Hims-
worth in their paper, Sequential Application of Simplex Designs in Optimisation
and Evolutionary Operation. Note that this is an entirely different algorithm than
the Simplex method for LP as discussed earlier. It uses only two types of trans-
formations to form a new simplex (e.g., vertices of a triangle in 2D) in each step:
reflection away from the worst vertex (the one with the highest function value), or
shrinking toward the best vertex (the one with the lowest function value). For each
iteration, the angles between simplex edges remain constant during both opera-
tions, so the working simplex can change in size, but not in shape. In 1965, this
method was modified by John Ashworth Nelder (1924–2010) and Roger Mead
who added two more operators: expansion and contraction (in and out), which
allow the simplex to change not only its size, but also its shape [14]. Their
modified simplex method, known as Nelder-Mead (or simplex) method, became
immediately famous due to its simplicity and low storage requirements, which
makes it an ideal optimization technique especially for the primitive computers at
that time. During the 1970s and 1980s, it was used by several software packages
while its popularity grew even more. It is now a standard method in MATLAB�
where it can be applied by the command: fminsearch. Nowadays, despite its long
past history, the simplex method, is still one of the most popular heuristic opti-
mization techniques in use.

During the 1950s and 1960s, the concept of artificial intelligence (AI) was also
born. Along with the AI, a new family of metaheuristic optimization algorithms in
stochastic nature was created: evolutionary algorithms (EAs). An EA uses
mechanisms inspired by biological evolution such as reproduction, mutation,
recombination, and selection. It is also a stochastic method as in simulated
annealing; however, it is based on the collective behavior of a population. A
potential solution of the optimization problem plays the role of a member in the
population, and the fitness function determines the search space within which the
solutions lie. The earliest instances of EAs appeared during the 1950s and early
1960s, simulated on computers by evolutionary biologists who were explicitly
seeking to model aspects of natural evolution. At first, it did not occur to any of
them that this approach might be generally applicable to optimization problems.
The EAs were first used by a Norwegian-Italian mathematician; Nils Aall Barri-
celli (1912–1993) who applied to evolutionary simulations. By 1962, several
researchers developed evolution-inspired algorithms for function optimization and
machine learning, but at the time their work only attracted little attention. The first
development in this field for optimization came in 1965, when the German sci-
entist Ingo Rechenberg (born in 1934), developed a technique called evolution
strategy (ES), which uses natural problem-dependent representations, and pri-
marily mutation and selection, as search operators in a loop where each iteration is
called generation. The sequence of generations is continued until a termination
criterion is met.
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The next EA member came in 1966, when an American aerospace engineer,
Lawrence Fogel (1928–2007) developed evolutionary programming (EP) where a
potential solution of a given problem in hand is represented by simple finite-state
machines as predictors. Similar to evolution strategies, EP performs random
mutation of a simulated machine and keeps the best one. However, both EAs still
lack a crucial evolutionary operator, the crossover. As early as 1962, John Holland
(born in 1929) performed the pioneer work on adaptive systems, which laid the
foundation for a new EA, genetic algorithms (GAs). Holland was also the first to
explicitly propose crossover and other recombination operators. In 1975 he wrote
the ground-breaking book on GA, ‘‘Adaptation in Natural and Artificial Systems.’’
Based on earlier work on EAs by himself and by colleagues at the University of
Michigan, this book was the first to systematically and rigorously present the
concept of adaptive digital systems using evolutionary operators such as mutation,
selection and crossover, simulating processes of natural evolution. In a GA, a
population of strings (called chromosomes), which encodes potential solutions
(called individuals, creatures, or phenotypes) of an optimization problem, evolves
toward better solutions using these operators in an iterative way. Traditionally,
solutions are represented in binary strings of 0s and 1s, but other encodings are
also possible. The evolution usually starts from a population of randomly gener-
ated individuals and in each generation, the fitness of every individual in the
population is evaluated, multiple individuals are stochastically selected from the
current population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new generation, and so on. The GA process is
terminated either when a successful solution or a maximum number of generations
is reached. These foundational works established more widespread interest in
evolutionary computation. By the early to mid-1980s, GAs were being applied to a
broad range of fields, from abstract mathematical problems to many engineering
problems such as pipeline flow control, pattern recognition and classification, and
structural optimization.

In 1995, differential evolution (DE) as the most recent EA was developed by
Rainer Storn and Kenneth Price. Similar to GA and many other EAs, DE is a
population-based technique, which performs evolutionary operators, mutation,
crossover, and selection in a certain way and the candidate solutions are repre-
sented by agents based on floating point number arrays (or vectors). As any other
EA, it is a generic optimization method that can be used on optimization problems
that are noisy, dynamic, or not even continuous. In each generation, it creates new
candidate solutions by combining existing ones according to its simple expression,
and then keeping whichever candidate solution has the best score or fitness. This is
a typical process of an EA, especially resembling GA; however, DE has a distinct
property of interaction among individuals, that is, each individual (agent) is
mutated with respect to three others. A similar concept of interaction became the
basis and the key element in one of the latest and the most successful methods in
the era of probabilistic metaheuristics, the Particle Swarm Optimization (PSO),
which was proposed in 1995 by Russell C. Eberhart and James Kennedy. PSO was
first intended as a simulation program for the social behavior and stylized
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representation of the movement of organisms in a bird flock or fish school. The
algorithm was simplified and it was observed to be performing optimization. We
shall cover the details and the philosophy behind the PSO in Chap. 3 and,
therefore, in the forthcoming sections in this chapter, we shall now detail the major
optimization methods prior to PSO.

2.2 Deterministic and Analytic Methods

Assume an unconstrained optimization problem, such as min
x2<n

f xð Þ, where the

objective function f : <n ! < is sufficiently smooth with continuous second
derivative. It is well known from the theory of functions from Calculus that the
necessary and sufficient conditions for x* to be a local minimum are (1) gradient
f 0 x�ð Þ ¼ 0 and (2) Hessian H x�ð Þ (¼ r2f xð Þ) is positively definite. For some
problems, the solution can be obtained analytically by determining the zeros of the
gradient and verifying positive definiteness of the Hessian matrix at these points.
One particularly interesting property of an objective function is convexity. If f is a
convex function, satisfying f axþ 1� að Þyð Þ� af ðxÞ þ 1� að Þf yð Þ; a 2 ½0; 1�,
then it has only one (global) minimum. There are effective methods for solving
convex optimization problems [15].

For one-dimensional (and possibly multi-dimensional) unconstrained optimi-
zation problems, such as min

x2<n
f xð Þ, search methods explore the parameter space

iteratively by adjusting the search direction and the search range in every iteration
in order to find lower values of the objective function. Search methods are gen-
erally classified into three groups based on their use of (1) objective function
evaluations, (2) gradient of the objective function, and (3) Hessian of the objective
function. There are several iterative search methods, usually called ‘‘line search
methods’’ and designed to solve one-dimensional, unimodal unconstrained opti-
mization problems [16]. Some of these methods can be analogously applied to
multi-dimensional unconstrained problems. The generic pseudo-code for a line
search method is given in Table 2.1, where the steps 2.1 and 2.2 will differ for a
specific search method.

2.2.1 Gradient Descent Method

When the search direction is chosen as the gradient descent direction,�rf ðxÞ, the
corresponding iterative search is called the method of gradient descent (also
known as steepest descent or Cauchy’s method). The direction of the negative
gradient along which the objective function decreases fastest is the most natural
choice. This simple algorithm for continuous optimization uses gradient of the
objective function in addition to the function value itself, hence f must be a

2.1 History of Optimization 29

http://dx.doi.org/10.1007/978-3-642-37846-1_3


differentiable function. The principle of the gradient descent algorithm can be
obtained by setting the search direction as dðkÞ ¼ �rf xð Þ in step 2.1 and the
optimum step size as a kð Þ ¼ arg min

a2<þ
f x kð Þ � a k � 1ð ÞDf xð Þð Þ, in step 2.2 of the

generic line search method, resulting in the position update as

x k þ 1ð Þ ¼ xðkÞ � arg min
a2<þ

f x kð Þ � arf xð Þð Þ
� �

rf xð Þ ð2:4Þ

By using the optimum a kð Þ the gradient descent technique is guaranteed to
converge to a local minimum from any starting point x(0). Additionally, for the
exact line search version of the algorithm described, it can be shown that the next
step will be taken in the direction of the negative gradient at this new point and the
step size will be chosen such that the successive search directions are orthogonal.
In practice, there are inexact line search methods that use different criteria to find a
suitable step size avoiding too long or too short steps to improve efficiency. The
termination criterion is usually of the form rf ðxÞk k� g where g is small (1e� 6)
and positive. However, the gradient method requires a large number of iterations
for convergence when the Hessian of f near minima has a large condition number
(linear dependence). The plots of the gradient descent method with the fixed
aðkÞ ¼ 0:001ð Þ and the exact (optimal a kð Þ) step size over Rosenbrock (banana)

function,f x; yð Þ ¼ 100 y� x2ð Þ2þ 1� xð Þ2;are illustrated in Fig. 2.1. The total
numbers of iterations for the corresponding plots are 26093 and 6423, respectively.

2.2.2 Newton–Raphson Method

Assuming the objective function f(x) is a twice differentiable function, Newton–
Raphson method is based on the second order Taylor series expansion of the
function f around the point x:

Table 2.1 Pseudo-code for generic line search method
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f xþ dð Þ ffi f ðxÞ þ Df ðxÞdþ 1
2
dTHf ðxÞd ð2:5Þ

where the Hessian matrix Hf xð Þ ¼ r2f xð Þ is assumed to be positive definite near
local minimum x*. Therefore, Newton–Raphson method utilizes both the first and
the second partial derivatives of the objective function to find its minimum.
Similar to the gradient descent method, it can be implemented as an iterative line

search algorithm using d kð Þ ¼ �Hf xð Þ�1rf xð Þ as the search direction (Newton
direction or the direction of the curvature) in 2.1 yielding the position update:

x k þ 1ð Þ ¼ x kð Þ � aðkÞHf xð Þ�1rf xð Þ ð2:6Þ

At each iteration, Newton–Raphson method approximates the objective func-
tion by a quadratic function around x(k) and moves toward its minima. In the
original algorithm, the step size, aðkÞ, is fixed to 1. While the convergence of
Newton–Raphson method is fast in general, being quadratic near x*, the compu-
tation and the storage of the inverse Hessian is costly. Quasi-Newton methods,
which compute the search direction (through inverse Hessian approximation) with
less computation can be alternatively employed. In the left plot in Fig. 2.2, iter-
ations of the Quasi-Newton method over the Rosenbrock function are shown. Note
that the convergence to the optimum point, (1, 1) is impressively faster than of
gradient descent as shown in Fig. 2.1 (33 iterations versus 6,423 iterations with the
optimal F x; yð Þ ¼ 2y2 þ x2). In the right plot, iterations of both gradient descent
and Quasi-Newton methods over a quadratic objective function,
F x; yð Þ ¼ 2y2 þ x2, are shown. It took 6 iterations for Quasi-Newton and 13
iterations for gradient descent to converge (að0Þ ¼ 0:05 for both methods).

Fig. 2.1 Iterations of the fixed (left) and optimum aðkÞ (right) line search versions of gradient
descent algorithm plotted over the Rosenbrock objective function, x(0) = [-0.5, 1.0]
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2.2.3 Nelder–Mead Search Method

Nelder–Mead or downhill simplex method [14], is a heuristic algorithm for mul-
tidimensional unconstrained optimization problems. The Nelder–Mead algorithm
falls in the more general class of direct search algorithms which use only the
function values, thus it depends on neither the first nor the second order gradients.
This heuristic search method depends on the comparison of the objective function
values at the (n ? 1) vertices of a general simplex, followed by replacement of the
vertex with the highest function value by another point. It is, therefore, based on an
iterative simplex search, keeping track of n ? 1 points in n dimensions as vertices
of a simplex (i.e., a triangle in 2 dimensions, a tetrahedron in 3 dimensions, and so
on). It includes features, which enable the simplex to adapt to the local landscape
of the cost function, i.e., at each iteration, the simplex moves toward the minimum
by performing one of reflection, expansion, and contraction (in and out) opera-
tions. The stopping criterion is based on the standard deviation of the function
value over the simplex. This is indeed a ‘‘greedy’’ method in the sense that the
expansion point is kept if it improves the best function value in the current sim-
plex. The convergence of a Nelder–Mead operation over the Rosenbrock’s func-
tion is shown in the left plot of Fig. 2.3 and the right plot demonstrates the
consecutive simplex operations during iterations 3–30 where the total number of
iterations is 94. Note that the four operations are annotated in the plot.

Fig. 2.2 (Left) Iterations of the Quasi-Newton method plotted over Rosenbrock function,
x0 = [-0.5, 1.0]. (Right) Iterations of the gradient descent (red) versus Quasi-Newton (black)
methods plotted over a quadratic objective function, x(0) = [10, 5]
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2.3 Stochastic Methods

2.3.1 Simulated Annealing

Metropolis in his groundbreaking paper, Equation of State Calculations by Fast
Computing Machines in 1953 introduced the algorithm which simulates the evo-
lution of a solid in a heat bath to thermal equilibrium. In physics, a thermal process
for obtaining low energy states of a solid in a heat bath consists of the following
two steps:

1. Increase the temperature of the heat bath to a maximum value at which the solid
melts;

2. Slowly decrease the temperature until the particles arrange themselves in the
ground state of the solid.

In the liquid phase, all particles are distributed randomly, whereas in the ground
state of the solid the particles are arranged in a highly structured lattice, for which
the corresponding energy is minimal. The ground state of the solid is obtained only
if the maximum value of the temperature is sufficiently high and the cooling is
performed slowly. Otherwise, the solid will be obtained in a meta-stable state
rather than in the true ground state. This is the key for achieving the optimal
ground state, which is the basis of the annealing as an optimization method. The
simulated annealing method is a Monte Carlo-based technique and generates a
sequence of states of the solid. Let i and j be the current and the subsequent state of
the solid and ei and ej their energy levels. The state j is generated by applying a
perturbation mechanism, which transforms the state i into j by a little distortion,
such as a mere displacement of a particle. If ej� ei, the state j is accepted as the
current state; otherwise, the state j may still be accepted as the current state with a
probability

Fig. 2.3 Left Iterations of the Nelder–Mead method plotted over Rosenbrock function with
x(0) = [-0.5, 1.0]. The vertices with the minimum function values are only plotted. Right
consecutive simplex operations during the iterations 3–30
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P i) jð Þ ¼ exp
ei � ej

kBT

� �

ð2:7Þ

where kB is a physical constant called the Boltzmann constant; recall from the
earlier discussion that T is the temperature of the state. This rule of acceptance is
known as Metropolis criterion. According to this rule, the Metropolis–Hastings
algorithm generates a sequence of solutions to an optimization problem by
assuming: (1) solutions of the optimization problem are equivalent to the state of
this physical system, and (2) the cost (fitness) of the solution is equivalent to the
energy of a state. Recall from the earlier discussion that the temperature is used as
the control parameter that is gradually (iteratively) decreased during the process
(annealing). Simulated annealing can thus be viewed as an iterative Metropolis–
Hastings algorithm, executed with the gradually decreasing values of T. With a
given cost (fitness) function, f, let w be the continuously decreasing temperature
function, T0 is the initial temperature, N is the neighborhood function, which
changes the state (candidate solution) with respect to the previous state in an
appropriate way, eC is the minimum fitness score aimed, and x is the variable to be
optimized in N-D search space. Accordingly, the pseudo-code of the simulated
annealing algorithm is given in Table 2.2.

Note that a typical characteristic of the simulated annealing is that it accepts
deteriorations to a limited extent. Initially, at large values of temperature, T, large
deteriorations may be accepted; as T gradually decreases, the amount of deterio-
rations possibly accepted goes down and finally, when the temperature reaches
absolute zero, deteriorations cannot happen at all—only improvements. This is
why it mimicks the family of steepest descent methods as T goes to zero. On the
other hand, recall that simulated annealing and the family of Evolutionary

Table 2.2 Pseudo-code of the simulated annealing algorithm
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Algorithms (EAs) are sometimes called meta-heuristics, which make few or no
assumptions about the problem being optimized and can thus search for the global
optimum over a large set of candidate solutions. However, besides the population-
based nature of EAs, this particular property is another major difference between
them since EAs are all based on the ‘‘survival of the fittest’’ philosophy, whereas
for the simulated annealing, worse solutions (generations in GA or particle posi-
tions in PSO) can still be ‘‘tolerated’’ for the sake of avoiding a local optimum.

Figure 2.4 shows the simulated annealing iterations plotted over the Rosen-
brock function. The parameters and functions (for the temperature and neighbor-
hood) used are: eC ¼ 10�3, T0 ¼ 1, w Tð Þ ¼ 0:95T , N x0ð Þ ¼ x0 þ 0:01xranger
where r 2 N 0; 1ð Þ, and xrangeis the dimensional range, i.e., xrange ¼ 2� ð�2Þ ¼ 4.
Note that as T ? 0, it mimics the gradient descent method and hence took a longer
time to converge to the global optimum.

2.3.2 Stochastic Approximation

Recall that the goal of deterministic optimization methods is to minimize a loss
function L : Rp ! R1, which is a differentiable function of h and the minimum (or
maximum) point h� corresponds to zero-gradient point, i.e.,

g hð Þ � oL hð Þ
oh

�
�
�
� h ¼ h�

¼ 0 ð2:8Þ

As mentioned earlier, in cases where more than one point satisfies this equation
(e.g., a multi-modal problem), then such algorithms may only converge to a local
minimum. Moreover, in many practical problems, the exact gradient value, g, is

Fig. 2.4 The plot of 1,532
iterations of the simulated
annealing method over
Rosenbrock function with
x(0) = [-0.5, 1.0],
eC ¼ 10�3, T0 ¼ 1,
wðTÞ ¼ 0:95T , N x0ð Þ ¼ x0 þ
0:01xranger where
r 2 N 0; 1ð Þ, and xrange is the
dimensional range, i.e.,
xrange ¼ 2� ð�2Þ ¼ 4
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not readily available. This makes the stochastic approximation (SA) algorithms
quite popular. The general SA takes the following form:

h
_

kþ1 ¼ h
_

k � akg
_

k h
_

k

� �
ð2:9Þ

where g
_

k h
_

k

� �
is the estimate of the gradient g hð Þ at iteration k and akis a scalar

gain sequence satisfying certain conditions. Unlike any steepest (gradient) descent
method, SA assumes no direct knowledge of the gradient. To estimate the gradient,
there are two common SA methods: finite difference stochastic approximation
(FDSA) and simultaneous perturbation SA (SPSA) [17]. FDSA adopts the tradi-
tional Kiefer-Wolfowitz approach to approximate gradient vectors as a vector of
p partial derivatives where p is the dimension of the loss (fitness) function.
Accordingly, the estimate of the gradient can be expressed as follows:

g
_

k h
_

k

� �
¼

L h
_

kþckD1

� �
�L h

_

k�ckD1

� �

2ck

L h
_

kþckD2

� �
�L h

_

k�ckD2

� �

2ck

:
:
:

L h
_

kþckDp

� �
�L h

_

k�ckDp

� �

2ck

2

6
6
6
6
6
6
6
6
6
6
6
6
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3

7
7
7
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7
7
7
7
7
7
7
7
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ð2:10Þ

where Dk is the unit vector with a 1 in the kth place and ck is a small positive
number that gradually decreases with k. Note that separate estimates are computed
for each component of the gradient, which means that a p-dimensional problem
requires at least 2p evaluations of the loss function per iteration. The convergence
theory for the FDSA algorithm is similar to that for the root-finding SA algorithm
of Robbins and Monro. These are: ak [ 0; ck [ 0, lim

k!1
ak ¼ 0; lim

k!1
ck ¼ 0,

P1
k¼0 ak\1 and

P1
k¼0 ak=ck\1. The selection of these gain sequences is

critical to the performance of the FDSA. The common choice is the following:

ak ¼
a

k þ Aþ 1ð Þt and ck ¼
c

k þ 1ð Þs ; ð2:11Þ

where a, c, t and s are strictly positive and A� 0. They are usually selected based
on a combination of the theoretical restrictions above, trial-and-error numerical
experimentation, and basic problem knowledge.

Figure 2.5 shows the FDSA iterations plotted over the Rosenbrock function
with the following parameters: a = 20, A = 250, c = 1, t ¼ 1 and s ¼ 0:75. Note
that during the early iterations, it performs a random search due to its stochastic
nature with large ak; ck values but then it mimics the gradient descent algorithm.
The large number of iterations needed for the convergence is another commonality
with the gradient descent.
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2.4 Evolutionary Algorithms

Among the family members of EAs, this section will particularly focus on GAs
and DEs leaving out the details of both EP and ES while the next chapter will
cover the details of PSO.

2.4.1 Genetic Algorithms

In nature, every living organism has a set of rules, a blueprint so to speak,
describing how that organism is created (designed). The genes of an organism
represent these rules and they are connected together into long strings called
chromosomes. Each gene represents a specific property of the organism, such as
eye or hair color and the collective set of gene settings are usually referred to as an
organism’s genotype. The physical expression of the genotype—the organism
itself—is called the phenotype. The process of recombination occurs when two
organisms mate and the genes are shared in the resultant offspring. In a rare
occasion, a mutation occurs on a gene; however, this mutated gene will usually not
affect the creation of the phenotype. Yet in rare cases, it will be expressed in the
organism as a completely new trait. The ongoing cycle of natural selection,
recombination, and mutation brought the evolution of the life on earth in addition
to all such variations among the living organisms and of course their adaptation
and survival instincts. The gene mutation plays a crucial role in the famous
Darwinian rule of evolution, ‘‘the survival of the fittest.’’ Genetic Algorithms
(GAs) which are all inspired from the Darwinian evolution mimic all these natural
evolutionary processes so as to search and find the optimum solution of the
problem in hand.

Fig. 2.5 The plot of 25,000
iterations of the FDSA
method over Rosenbrock
function with x(0) = [-0.5,
1.0], eC ¼ 10�3, a = 20,
A = 250, c = 1, t ¼ 1; and
s ¼ 0:75
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In order to accomplish this, the first step is the encoding of the problem
variables into genes in a way of strings. This can be a string of real numbers but
more typically a binary bit string (series of 0s and 1s). This is the genetic repre-
sentation of a potential solution. For instance, consider the problem with two
variables, a and b 3 0� a; b\256. A sample chromosome representation for the
ith chromosome, gi a; bð Þ, is shown in Fig. 2.6 where both a and b are encoded with
8-bits, therefore, the chromosome contains 16 bits. Note that examining the
chromosome string alone yields no information about the optimization problem.
It is only with the decoding of the chromosome into its phenotypic (real) values
that any meaning can be extracted for the representation. In this case, as described
below, the GA search process will operate on these bits (chromosomes), rather
than the real-valued variables themselves, except, of course, where real-valued
chromosomes are used.

The second requirement is a proper fitness function which calculates the fitness
score of any potential solution (the one encoded in the chromosome). This is
indeed the function to be optimized by finding the optimum set of parameters of
the system or the problem in hand. The fitness function is always problem
dependent. In nature, this corresponds to the organism’s ability to operate and to
survive in its present environment. Thus, the objective function establishes the
basis for the proper selection of certain organism pairs for mating during the
reproduction phase. In other words, the probability of selection is proportional to
the chromosome’s fitness. The GA process will then operate according to the
following steps:

1. Initialization: The initial population is created while all chromosomes are
(usually) randomly generated so as to yield an entire range of possible solutions
(the search space). Occasionally, the solutions may be ‘‘seeded’’ in areas where
optimal solutions are likely to be found. The population size depends on the
nature of the problem, but typically contains several hundreds of potential
solutions encoded into chromosomes.

2. Selection: For each successive generation, first the selection of a certain pro-
portion of the existing population is performed to breed a new generation. As
mentioned earlier, the selection process is random, however, favors the chro-
mosomes with higher fitness scores. Certain selection methods rate the fitness
of each solution and preferentially select the best solutions.

3. Reproduction: For each successive generation, the second step is to generate
the next generation chromosomes from those selected through genetic operators
such as crossover and mutation. These genetic operators ultimately result in the
child (next generation) population of chromosomes that is different from the
initial generation but typically shares many of the characteristics of its parents.

01001001 10001010
a b

),( bagi

Fig. 2.6 A sample
chromosome representation
for the two problem variables,
a and b
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4. Evaluation: The child chromosomes are first decoded and then evaluated using
the fitness function and they replace the least-fit individuals in the population so
as to keep the population size unchanged. This is the only link between the GA
process and the problem domain.

5. Termination: During the Evaluation step, if any of the chromosomes achieves
the objective fitness score or the maximum number of generations is reached,
then the GA process is terminated. Otherwise, steps 2 to 4 are repeated to
produce the next generation.

To perform a crossover operation, an integer position, L, is selected uniformly at
random between 1 and the chromosome string length minus one, and the genetic
information exchanged between the individuals about this point, then two new off-
spring strings are produced. A sample operation for L = 10 is shown in Fig. 2.7. The
crossover operation is applied with a probability, Px, over the pairs chosen for
breeding. Crossover is a critical operator in GA due to two reasons: it greatly
accelerates the search early in the evolution of a population and it leads to effective
combination of subsolutions on different chromosomes. There is always a trade-off
when setting its value, i.e., assigning a too high Px may lead to premature conver-
gence to a local optimum and a too low value may deteriorate the rate of convergence.

The other genetic operator, mutation, is then applied to certain genes (bits) of the
child chromosomes with a probability, Pm. In the binary string representation, a
mutation will cause a single bit to change its state, i.e., 0 ) 1 or 1 ) 0. Assigning a
very low Pm leads to genetic drift (which is non-ergodic in nature) and the opposite
may lead to loss of good solutions unless there is an elitist selection. Without a
proper Pm setting, GAs may converge toward local optima or even some arbitrary
(non-optimum) points rather than the global optimum of the search space. This
indicates that a sufficiently high Pm setting should be assigned to teach the algorithm
how to ‘‘sacrifice’’ a short-term fitness in order to gain a longer term fitness. In
contrast to the binary GA, the real-valued GA uses real values in chromosomes
without any encoding and thus the fitness score of each chromosome can be com-
puted without decoding. This is a more straightforward, faster, and efficient scheme
than the binary counterpart. However, both crossover and mutation operations might

01001001 10001010ig

jg

ic

jc

10100101 00001111
X

01001001

10100101 00 001010

10 001111

L=10Fig. 2.7 A sample crossover
operation over two
chromosomes gi and gj after
L = 10 bits. The resultant
child chromosomes are ci and
cj
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be different and there are numerous variants performing different approaches for
each. A similar crossover operation as in binary GA can still be used (flipping with a
probability, Px, over the pairs chosen for breeding). Another crossover operation
common for real-valued GA is to exploit the idea of creating the child chromosome
between parents via arithmetic recombination (linear interpolation), i.e., zi = a
xi ? (1–a) yi where xi, yi ,and zi are ith parent and child chromosomes, respectively,
and a : 0 B a B 1. The parameter a can be a constant, or a variable changing
according to some function or a random number. On the other hand, the most
common mutation method is to shift by a random deviate, applied to each chro-
mosome separately, taken from Gaussian distribution N(0, r) and then curtail it to
the problem range. Note that the standard deviation, r, controls the amount of shift.
Figure 2.8 shows the distributions of a real-valued GA population for generations,
g = 1, 160, 518, and 913 over Rosenbrock function with the parameter settings as,
S = 10, Px = 0.8, and an adaptive r linearly decreasing from xrange to 0, where xrange

is the dimensional range, i.e., xrange ¼ 2� ð�2Þ ¼ 4 for the problem shown in the
figure. It took 160 generations for a GA chromosome to converge to the close
vicinity of the optimum point, (1, 1).

Fig. 2.8 The distributions of real-valued GA population for generations, g = 1, 160, 518, and
913 over Rosenbrock function with S = 10, Px = 0.8, and r linearly decreases from xrange to 0
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2.4.2 Differential Evolution

Differential Evolution (DE) is an evolutionary algorithm, showing particular
similarities to GA and hence can be called as a genetic-type method. DE has
certain differences in that it is applicable to real-valued vectors, rather than bit-
encoded strings. Accordingly, the ideas of mutation and crossover are substantially
different. Particularly, the mutation operator is entirely different in a way that it is
difficult to see why it is called mutation, except perhaps it serves the same purpose
of avoiding early local trappings. DE has a notion of population similar to PSO
rather than GA as its population members are called agents rather than
chromosomes.

Suppose we optimize a real-valued (fitness) function in N-D, having N real
variables. The ath agent in the population in the generation, g, represents the

candidate solution of this function in the following array form: xg
a ¼

xg
a;1; x

g
a;2; . . .; xg

a;N

h i
; a 2 1; S½ � where S represents the size of the population.

Then the DE process will follow the same path as GA except that the selection is
performed after the reproduction, as follows:

1. Initialization: The initial population is created with S [ 3. The range of each
agent is defined for g = 0, i.e., xmin

d \x0
a; d\xmax

d and agent vector elements are

randomly initialized within this range, xmin
d ; xmax

d

� �
.

2. Reproduction: For each successive generation, g = 1, 2,…, first mutation and
then the crossover operators are applied on each agent’s vector. To perform the
mutation over the ath agent vector, xg

a, three distinct agents, b, c, and d, are first
randomly chosen such that a 6¼ b 6¼ c 6¼ d. This is why S [ 3. The so-called
donor vector for agent a is formed as follows:

ygþ1
a ¼ xg

b � Fr xg
c � xg

d

	 

ð2:12Þ

where r	U 0; 1ð Þ is a random variable with a uniform distribution and F is a
constant, usually assigned to 2. This is the mutation operation, which adds the
weighted difference of the two of the vectors to the third, hence gives the name
‘‘differential’’ evolution. The following crossover operation then forms a trial
vector from the elements of the agent vector, xg

a, and the elements of the donor
vector, ygþ1

a , each of which enters the trial vector with probability R.

ugþ1
a;j ¼

ygþ1
a;j if r�R or j ¼ d
xg

a;j if r [ R and j 6¼ d

� �

ð2:13Þ

where 1� d\N is a random integer ensuring that ugþ1
a;j 6¼ xg

a;j. In other words, at
least one element from the donor vector is ensured into the trial vector.
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3. Selection (with Evaluation): For each successive generation once the trial

vector is generated, the agent vector, xg
a, is compared with the trail vector, ugþ1

a;j ,
and the one with the better fitness is admitted to the next generation.

xgþ1
a ¼ ugþ1

a if f ugþ1
a

	 

� f xg

a

	 


xg
a else

� �

ð2:14Þ

4. Termination: During the previous step, if any agent achieves the objective
fitness score or the maximum number of generations is reached, then the DE
process is terminated. Otherwise, steps 2 and 3 are repeated to produce the next
generation.

Figure 2.9 illustrates the generation of the trial vector on a sample 2-D function.

Note that the trial vector, ugþ1
a , gathers the first-dimensional element ugþ1

a;1

� �
from

the agent vector, xg
a; 1 and the second-dimensional element ugþ1

a;2

� �
from the donor

vector, ygþ1
a;2 .

The choice of DE parameters F, S, and R can have a large impact on the
optimization performance and how to select good parameters that yield good
performance has therefore been subject to much research, e.g., see Price et al. [18]
and Storn [19]. Figure 2.10 shows the distributions of DE population for gener-
ations, g = 1, 20, 60, and 86 over Rosenbrock function with the parameter settings
as, S = 10, F = 0.8, and R ¼ 0:1. Note that as early as 20th generations, a
member of DE population already converged to the close vicinity of the optimum
point, (1, 1).

1x
Global

gx
g
ax

g
cx

gxdx

1+gy

1+gu

2x
g
bx

ay

Minimum

x
Trial

Vector

a

Fig. 2.9 A sample 2-D
fitness function and the DE
process forming the trial
vector
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