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Abstract A classical kinematical model of sedimentation of small equal-sized
particles dispersed in a viscous fluid leads to a scalar conservation law with a
nonlinear flux. Several extensions of this model are reviewed, with a strong focus on
recently developed numerical methods. These extensions include a one-dimensional
clarifier-thickener model giving rise to a conservation law with discontinuous flux,
a conservation law with nonlocal flux, systems of nonlinear conservation modelling
the sedimentation of polydisperse suspensions, and sedimentation-flow models
consisting of a conservation law coupled with the Stokes or Navier-Stokes system
in two space dimensions. Numerical examples are presented.
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1 Introduction

1.1 Scope

The sedimentation of small particles dispersed in a viscous fluid under the influence
of a (mostly gravitational) body force is a process of theoretical and practical
interest that appears as a controlled unit operation in mineral processing, wastewater
treatment, the pulp-and-paper and chemical industry, medicine, volcanology, and
other areas where a suspension must be separated into a clarified liquid and
concentrated sediment. The particles are small compared with typical length scales
(diameter and depth) of the settling vessel. Moreover, sedimentation models for
these applications should be able to predict the behaviour of a given unit on rela-
tively large temporal and spatial scales, while microscopical information such as,
for instance, the position of a given particle is of little interest. These considerations
justify representing the liquid and the solid particles as superimposed continuous
phases, namely a liquid phase and one or several solid phases.

The most widely used sedimentation model goes back to Kynch [64], who
postulated that (under idealizing circumstances) the settling velocity v of a single
particle in a batch column is a given function of the local solids volume fraction u
only, vy = vs(u). Inserting this assumption into the one-dimensional solids
continuity equation, written in differential form as

ur + (uv)x =0, ey
where ¢ is time and x is depth, yields the first-order scalar conservation law
u +bw), =0, bu) := uv(u), (2)

which is supplied with suitable initial and boundary conditions.

If we assume (for simplicity, but without loss of generality) that u varies between
u = 0, the clear-liquid limit, and u = uyax With un,x = 1 for a packed bed, then a
common approach is

vs(u) = vV (u), 3

where vg; is the Stokes velocity, that is, the settling velocity of a single particle in
an unbounded fluid, and the so-called hindered settling factor V' = V(u) can, for
instance, be the one given by Richardson and Zaki [75]

V() = (1 —u)"™, ngz >1, 4)
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so that b(u) = u(l — u)"®2. For ngz > 1, this function has an inflection point
uinn = 2/(1 + ngrz) € (0, 1). Thus, the basic mathematical model is a nonlinear,
scalar conservation law with non-convex flux. The precise algebraic form of the
batch flux density function b = b(u) is a specific property of the material under
consideration.

As it stands, (2) only applies to batch settling of a suspension of small equal-
sized (monodisperse) spherical particles. Extensions of (2) have been made, for
instance, to include continuously operated so-called clarifier-thickener units, to
handle suspensions of particles forming compressible sediments, and to describe
polydisperse suspensions with particles having different sizes and densities. More-
over, the dependence of vs on the spot value u# = u(x,t) has been replaced
by a non-local one, and multi-dimensional versions of (2) have been formulated,
which require the solution of additional equations for the motion of the mixture.
These extensions give rise to conservation laws with a flux that depends discon-
tinuously on x, strongly degenerate parabolic equations, strongly coupled systems
of nonlinear, first-order conservation laws, conservation laws with non-local flux,
and multi-dimensional conservation laws coupled with the Stokes or Navier-Stokes
system. Thus, the mathematical framework for many sedimentation models relevant
to applications includes the well-posedness and numerical analysis of nonlinear
hyperbolic conservation laws and related equations. The resulting models have
some intriguing non-standard properties that make them interesting objects of study
for the well-posedness and numerical analysis of conservation laws and related
equations. On the other hand, a thorough understanding of the properties of these
models is necessary for the design of reliable numerical simulation tools. This is a
particular challenge for clarifier-thickener units. It is the purpose of this contribution
to review recent advances in this area.

1.2  Some Historical Remarks and Motivation

To put the original research problem into the proper historical perspective of the
engineering application, we first mention that extensive historical accounts are
provided in [17, 33]. The exploitation of the difference in density between solid
particles and fluid for operations of washing ores can be traced back at least
to the ancient Egyptians [94]. The use of settling tanks, operated in a batch or
semi-continuous manner, for processes that can now be identified as classification,
clarification and thickening, was described in detail in Georgius Agricola’s book
De Re Metallica, first published in 1556 [17,33]. The most important technological
invention that would rationalize the settling process is the continuous thickener,
introduced by J.V.N. Dorr, a chemist, cyanide mill owner, consulting engineer
and plant designer, in the early twentieth century [44]. A continuous thickener is
essentially a cylindrical settling tank into which the feed suspension to be separated
is fed continuously, the sediment forming by settling of particles is removed
continuously, and the clear liquid produced is removed by a circumferential launder,
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continuous inflow of feed suspension (Qp, up)

continuous overflow
of clarified liquid (Qy,)

continuous discharge of sediment (Qg)

Fig. 1 Schematic view of a clarifier-thickener (CT). Technical details are omitted

see Fig. 1. This design is widely used today in mineral processing and in secondary
settling tanks in wastewater treatment.

The invention of the clarifier-thickener was soon followed by efforts to math-
ematically model its operation. It was recognized early [35] that understanding
the dynamics of the batch settling process of a suspension at different solids
concentrations is fundamental for effective thickener design and control.

The starting point of the mathematical modelling of sedimentation is the
well-known Stokes formula, which states that the settling velocity of a sphere of
size (diameter) d and density ps in an unbounded fluid of density pf and viscosity
s 1s given by

_ gd’(ps—po)

18701 &)

Vst

where g denotes acceleration of gravity. The settling velocity of a particle in a
concentrated suspension is, however, smaller than (5) due to the hindrance exerted
by the presence of other particles. This effect can be expressed as an increase
in viscosity of the suspension. Explicit formulas describing the phenomenon of
hindered settling of the type (3), where the hindered settling factor V = V(u)
should satisfy V(0) = 1, V(uz) < V(uy) for uy < uy and V(umax) = O,
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were derived in the dilute limit u/upn,x < 1 more than a century ago by A.
Einstein [45], and in the 1940s for both dilute and concentrated suspensions
(see, e.g., [55,84,89]). It was in Kynch'’s specific contribution [64] that he explicitly
solved the governing equation (1) under the assumption vy = vsV (1), for initially
constant concentrations. In mathematical terms, if the function b has support on
the interval (0, up,y), then the settling of an initially homogeneous suspension of
concentration ug € (0, unmax) in a column of depth L can be described by the initial-
value problem for (2) defined by the piecewise constant initial datum

0 for x <0,
u(x,0) =quy for0<x <L, (6)

Umax forx > L

corresponding to two adjacent Riemann problems. Kynch [64] applied the method
of characteristics and resolving cases of intersection by discontinuities based on
physical principles that agree with theoretically motivated entropy conditions to be
introduced much later. One piece of insight these constructions could provide is
the explanation why fairly dilute and concentrated suspensions would settle with a
sharp interface and a zone of continuous transition of concentration separating the
growing sediment from the bulk suspension; namely, the former situation gives rise
to a kinematic shock (in ) and the latter to a rarefaction.

Kynch’s efforts were followed by systematic classifications of qualitatively
different solutions to (2) and (6) [51, 90]. Based on work by Ballou [3],
K.S. Cheng [34] and Liu [67] (see [33]), Bustos and Concha [32] and Diehl [40]
appropiately embedded these constructions into the theory of entropy solutions
of a scalar conservation law with non-convex flux. The interest Kynch’s theory
immediately caused in mineral processing, wastewater treatment (where it has
become known as the solids flux theory) and other applicative areas has been widely
discussed in some reviews (e.g., [17,42]). Clearly, to make this theory applicable
to the settling of a given suspension one must assume that the factor V = V(u)
is known. The reliable identification of this factor or equivalently, of the function
b = b(u), from experimental data is a current research problem in itself [37,41,50].

The model is very similar to the well-known Lighthill-Whitham-Richards (LWR)
model for traffic flow. In fact, in textbooks on hyperbolic conservations, the LWR
model forms the preferred example, since the typical flux b(u) = u(1 — u) arising
in that model is convex and allows for simpler construction of solutions, and the
initial value problem (Riemann problem) for such an equation is easier to handle,
than for the problem (2) and (6) with b non-convex. The construction of solutions
for the direct problem of (2) with piecewise constant initial data and constant g (6)
is in any case well understood and for decades has formed standard material for
engineering textbooks including [74, 91]. The extensions mentioned in Sect. 1.1
do, however, give rise to research problems centering around the well-posedness
and numerical analysis and efficient numerical simulation of the corresponding
model.
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1.3 Outline of This Contribution

The model for continuous sedimentation was later improved to the configuration
of a so-called clarifier-thickener. The basic idea is to replace boundary conditions
that would describe feed and discharge operations in a continuously operated unit
by changes of the definition of the convective flux. This results in a flux with
discontinuities with respect to spatial position, which reflect the injection of feed
suspension at a certain level of height into an idealized unit, and the split of the feed
flow into upward- and downward-directed bulk flows of the mixture. If sediment
compressibility is ignored for the moment, then the resulting model can be expressed
as a conservation law with a discontinuous flux:

u + f(y(x),u)x =0, (x,0)ellr:=R,x(0,T], (7)
u(x,0) = up(x), x R, (8)

where p(x) is a given vector of discontinuous parameters. The basic associated
difficulty is that well-posedness for (7) is ensured [62] for smooth functions y =
¥ (x), but the theory for discontinuous y = y(x) does not emerge as a “limit case”
for smooth parameter vectors that approximate a discontinuous one. It turns out that
one has to explicitly specify which discontinuities of the solution u are considered
to be admissible across the jumps in y.

The model was later extended to include the effect of sediment compressibility;
the governing equation can then be expressed as

w4 f(y(x).u), = (n(x0)AW:;) . ©)

where y = (y1, ¥2) and y, are now discontinuous vectorial and scalar functions,
respectively, of x, and A(-) typically has the behaviour

A) = /ua(s) ds, a(u) {Z 0 foru<ue o (10)
0

>0 foru> u,

where u, is a critical concentration above which the solid particles touch each other.

The well-posedness analysis of the model (7) or (9), together with (8), has
been a small part of the tremendous interest and activity conservation laws and
related equations with dicontinuous flux have seen in recent years. Partial overviews
are given in [16, 23], while a comprehensive and unifying treatment is provided
by Andreianov, Karlsen, and Risebro [2]. While some of the previous existence
results are based on the convergence of suitable monotone, and therefore first-
order, finite difference schemes (cf., e.g., [19-21, 23, 25,59, 88] and [60] for the
underlying L' stability theory), it is desirable for practical purposes to construct
higher order schemes, for examples analogues to second-order TVD schemes for
standard conservation laws, for which one would be able to prove convergence
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at least to a weak solution. In Sect.2, which summarizes results of [25], two
different methodologies to construct a simple TVD scheme and a flux-TVD scheme,
respectively, are illustrated, along with an outline of the convergence analysis for the
flux-TVD scheme that is based on a nonlocal flux limiter algorithm.

In Sect. 3 we study the family of conservation laws with nonlocal flux

w4 (w1 —w)*V(K, xu)), =0, x€eR, 1€(0,T], (11)
together with the initial datum
u(0,x) = up(x), 0=<up(x) <1, xeR, (12)

where either « = 0 or ¢ > 1. Usually, one defines a kernel K = K(x) with support
on [—2,2] and sets K,(x) := a~'K(a~'x) with support on [—2a, 2a]. The basic
motivation of the nonlocal dependence (34) lies in the observation that Kynch’s
theory, despite being a useful approximation, sharply contrasts with the theoretical
result that the velocity of each particle is determined by the size and position of all
spheres and the nature of possible boundaries. The convolution of u with a weighting
function, an assumption that eventually leads to (34) (see [12]), is a compromise.

In [12] the well-posedness of (11) and (12) is studied. The main results are the
uniqueness and existence of entropy solutions. This is done by proving convergence
of a difference-quadrature scheme based on the standard Lax-Friedrichs scheme.
It turns out that for « = 0, solutions are bounded by a constant that depends on the
final time T, and are Lipschitz continuous if ug is Lipschitz continuous. In contrast,
for « > 1 solutions are in general discontinuous even if 1, is smooth, but assume
values within the interval [0, 1] for all times. Some numerical examples illustrate
the solution behaviour, in particular the so-called effect of layering in sedimenting
suspensions and the differences between the cases « = 0 and o > 1. These results
are summarized in Sect. 3.

Next, in Sect.4, we will consider models of sedimentation of polydisperse
suspensions. These mixtures consist of small solid particles that belong to a
number N of species that may differ in size or density, and which are dispersed
in a viscous fluid. Here we only consider particles of the same density. If ¢; denotes
the volume fraction of particle species i having diameter D;, where we assume that
Dy > D, >---> Dy, and v; is the phase velocity of species i, then the continuity
equations of the N species are d;¢; + 0x(¢;v;) = 0, where ¢ is time and x is
depth. (In this section any statement involving a free index i is supposed to hold for
i = 1,...,N.) The velocities v; are assumed to be given functions of the vector
® = ®(x,t) = (¢1(x,1),...,¢n(x,1))T of local concentrations. This yields
nonlinear, strongly coupled systems of conservation laws of the type

YO+ 0 f(®) =0, f(D):= (fi(®),.... n(®) . [i(®):= (D).
(13)



30 F. Betancourt et al.

We seek solutions ® = ®(x, ¢) that take values in the closure of the set

Dgo = {PERY 1 1 >0,....0x >0, 0 :=¢1 + -+ Py < Pmax-

The parameter 0 < ¢max < 1 is a given maximum solids concentration. For batch
settling in a column of height L, (13) is defined on Q7 := {(x,t) € R?|0 < x <
L, 0 <t < T} fora given final time 7" > 0 along with the initial condition

T -
D(x,0) = ®°(x) = (¢)(x),.... % (x)) ., @°(x) € Dy,... x€][0,L]
and the zero-flux boundary conditions

[li=0o = flx=1 = 0. (14)

Several choices of v; (“models™) as functions of @, and depending on the vector
of normalized particle sizes d := (di,...,dy)T, where d; := D;/Dy, have been
proposed [96]. We here discuss the models due to Masliyah [68] and Lockett and
Bassoon [65] (the “MLB model”) and Héfler and Schwarzer [56] (the “HS model”),
respectively. Both models are strictly hyperbolic for all ® € Dy, , for arbitrary N,
and under certain restrictions on model parameters and dy [24]. We mention here
that hyperbolicity for a large range of parameter values is a desirable property for
polydisperse sedimentation models with equal-density particles, since such mixtures
have been observed to always settle stably, i.e., under the formation of horizontal
layers and interfaces. Instabilities, such as the formation of blobs and columns, have
been observed with particles having different densities only [93], and their ocurrence
is predicted by a criterion equivalent to loss of hyperbolicity [6, 18].

In Sect. 4 the main results of [26] are summarized. Specifically, the results in [24]
provide a good estimate of the viscosity coefficient in a Lax-Friedrichs-type flux
splitting. This allows one to construct high-resolution component-wise weighted
essentially non-oscillatory (WENO) schemes (cf. [79] and its references) for
the numerical solution of (13)-(14). In addition, the full spectral decomposition
of Jr(®), which can now be computed numerically, can be used to obtain
characteristic-based WENO schemes, for which the WENO reconstruction proce-
dure is applied to the local characteristic variables and fluxes at each cell-interface.
When combined with a strong stability preserving (SSP) Runge-Kutta-type time
discretization (see [49]), the resulting SSP-WENO-SPEC schemes turn out to be
extremely robust. Here we summarize results related to the hyperbolicity analysis
and the construction of the aforementioned schemes, and present some numerical
examples.

In Sect.5 we are concerned with the simulation of sedimentation of monodis-
perse suspensions in several space dimensions. In fact, for the realistic description of
the sedimentation of suspensions in two- or three-dimensional (2D, 3D) domains the
governing system of PDEs is a (possibly degenerate) convection-diffusion equation
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coupled with a version of the Stokes or Navier-Stokes system, supplied with suitable
initial and boundary conditions.
A prototype model of this kind is given by the following system, where the local
solids concentration u, the mixture velocity v and the pressure p are sought:
w+ V(v + fwk)=AAw), xe€QCR! te(T], (15
v(psu + pe(1 —u)) (v, +v - Vv) = V- (u(u)Vv) + AV p = Luk,
V.ov=0,

(16)

where d = 2 or 3, f(u) = uV(u), k is the upwards-pointing unit vector, the
term A A(u) accounts for sediment compressibility where the integrated diffusion
coefficient A(-) has the behaviour (10), w(u) is a viscosity function,and v > 0, ¢ >
0 and A > 0 are constants. Note that the convection-diffusion equation (15) involves
the linear transport term uv, while v (and p) are determined by the Navier-Stokes
or Stokes (for v > 0 and v = 0, respectively) system (16). This strong coupling
of (15) and (16) is the main challenge for solving this sedimentation-flow model.
The equations (16) do not have to be solved in a 1D setting, since then v, = 0, so in
absence of sources or sinks, v = v(t) becomes controllable. We present numerical
results for two-dimensional subcases of (15) and (16) discretized either by finite
volume schemes combinded with an adaptive multiresolution technique or by a
finite volume element scheme.
Some open research problems and alternate treatments are discussed in Sect. 6.

2 TVD and Flux-TVD Schemes for Clarifier-Thickener
Models

2.1 Clarifier-Thickener Models

The basic principle of operation of a clarifier-thickener can be inferred from Fig. 1.
The feed suspension, which is to be separated into a concentrated sediment and a
clarified liquid, is fed into a cylindrical vessel at depth level x = 0, at a volume rate
QOr > 0 and with a feed solids volume fraction up > 0. The feed flow immediately
spreads over the whole cross section, and is separated into upward- and downward-
directed bulk flows forming the so-called clarification and thickening zones x; <
x < 0and 0 < x < xg, respectively. The solid particles settle downward, forming a
concentrated sediment at the bottom which is continuously removed at a controllable
discharge volume rate Or > 0, while the overflowing supernatant liquid is collected
in a circumferential launder. The (signed) liquid overflow rate is Q. < 0, such that
Or = Or — Or. We assume that solid-liquid separation takes place within the unit
only, but not in the overflow and discharge flows, where both phases move with the
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Fig. 2 One-dimensional

idealized clarifier-thickener

model 1l Qu="5q
clarification zone

SR [ S S

o 0
Qr = Qr— Q1 * * *

thickening zone

sediment
level

TR

@r =5 ar Y

same speed. In applications, real-world units usually have a gently sloped bottom;
however in this review we assume that the cross-sectional area S is constant.

If we assume that all flow variables are horizontally constant and wall effects are
negligible, then the conceptual model reduces to the setup shown in Fig. 2. To derive
the final mathematical model, we replace the solids and fluid phase velocities v
and v¢ by the volume average velocity of the mixture, ¢ := wuvs + (1 — u)v¢ and
the solid-fluid relative velocity v, = vy — vs. One then always has g, = 0, i.e.
g = q(t) in the absence of sources and sinks, and vy = g + (1 — u)v;. In particular,
q = 0 for settling in a closed column. For the clarifier-thickener model of Fig. 2, the
velocities gr, gL and gr are related to the signed volume bulk flows by gr = Qr/S,
qL = Qr/S and gr = Qg/S. Moreover, stating the constitutive assumption as

_ b
A=)

we obtain the governing equation (7), where

f(r().u) = y1()b ) + y2(x) (u — ug).

The parameters y; and y, are defined as follows, and discriminate between the
interior and exterior of the unit and the directions of the bulk flows, respectively:

for x € (x., xr), qr forx <0,

=1 ya(x) = (17)

0 forx & (x.,xr), gr forx > 0.
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If we include the effect of sediment compressibility, then the governing equation is
given by (9), where y; and y; are still given by (17).

By a solution to the hyperbolic problem (7) and (8) we understand the following,
where BV, denotes the space of locally integrable functions on I17 for which u, (but
not u,) is a locally bounded measure, which is a superset of BV.

Definition 1 (BV, weak solution). A measurable function # : IIy — Ris a BV,
weak solution of (7) and (8) if u € (L°° N BV,) (Il7), and if for all test functions
¢ € DR x[0,T)),

//11T<M¢t +f()’(x),u)¢x) dxdt+/Ru0¢(x,o)dx: 0.

2.2 TVD and Flux-TVD (FTVD) Schemes

We start with a description of the scheme under study in general form, and identify
terms that ensure that the resulting scheme has second order accuracy. To this end
we consider the case A = 0 and select Ax > 0 and set x; := jAX, y; ), =
y(xj41/2+) and U](.) ‘= uo(x;j+) for j € Z.Here xj 11/ := x; + Ax/2. Lett, :=
nAt and let " denote the characteristic function of [t,,#,+1), x; the characteristic
function of [x;_1/2, Xj+1/2), and x ;412 the characteristic function of the interval
[xj,x;+1). Our difference algorithm will produce an approximation U ' associated
with (x;,t,). We then define

W) =Y Y UM ). yRE) =)y pptina®). (18)

n>0 j €7 jez

We recall the definition of the standard difference operators A_V; := V; — V;_;
and A V; := V;41 — V;. Then our algorithm is defined by

A At
n+1 n n n .
U = U = AA- (Wi + Flup). A= J €20 n=0.12....
(19)

Here h;’,+1/2 = h(yj+1/2,Uj’7+l,U;’), where h is the Engquist-Osher (EO)
flux [46]:

hrvo) = 3 () + frm) - %[ furow|de.  Q0)

and F J" 12 is a correction term that is required in order to achieve second-order
accuracy. Without those terms, (19) is the first-order scheme analyzed in [20].
Finally, we keep A constant as we refine the mesh.
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Focusing on the difference scheme (19) for (7), we now define second-order
correction terms d ]” 41720 e;? 4172 that are appropriate if p is piecewise constant. We
are seeking formal second-order accuracy at points (x,¢) where the solution u is
smooth. At jumps in p, u will generally be discontinuous, so for the purpose of
defining correction terms, we concentrate on points located away from the jumps
in y. In light of our (temporary) assumption that y is piecewise constant we obtain
the following Lax-Wendroff type correction terms that are well known to provide
for formal second-order accuracy in both space and time (see e.g. [86]):

Xit12

+
MESTEYTR PR

j+1/2)A+U’-’, €ifip= (1+ka;+1/2)A+U]’-’.

21

df+1/2 =

Here the quantities aij 41/2 Are the positive and negative wave speeds associated with
the cell boundary located at x 41/5:

1 /U}7+1 f(yj+l/25 U{Il+1)_hn'+1/2
+ . J J
o =— max (0, fu(yi11/2,Ww))dw = >0,
j+1/2 A+Uj'»1 ur ( ullj+1/ ) A.:,_U]’-l
1 Ui Wivip = @ jt1/2.U7)
N =— i 0, : N d = S 0
(XJ‘H/Z A+U]’»1 /(‘/j" mln( fu(}’]+1/2 W)) w A+U]’»1

The scheme defined by (19) and (20), and with the flux correction terms not in
effect, i.e., F J’? v = 0 for all j and n, is only first-order accurate. We now set out
to find second-order correction terms that are required when x — y (x) is piecewise
C?, and start by identifying the truncation error of the first-order scheme. For the
case f,(y,u) > 0 the first-order version of the scheme (19) simplifies to

n+1 n ny __
Inserting a smooth solution u(x, 7) into this scheme, using '} to denote u(x;,1"),
substituting u;, = — f(y, u), into the resulting expression (as well as differentiated

versions of this identity) and applying Taylor expansions, we get (see [25] for
details)

1 1
TEY — —Ax'a [Efu(l A fu - Exfufyyx} + o).
Similarly, when f, < 0, we arrive at the following formula for the truncation error:

TE~ = Ax?A B Lol + Afuy + %/\ £ fyyxi| +O(AY).
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So, when y is piecewise smooth (not piecewise constant), we see from these
expressions that appropriate second-order correction terms are given by the follow-
ing modified versions of (21):

Fivi2:= Djip = Ejgips
n . n 1 + n
Dilip=diyn— EA“Hl/zfy (}’j+l/2’ Uj+1/2)A+yj’ (22)
L, _
E;'l+1/2 = e?+1/z + EA“j+1/zfy(7’j+1/2v U;+1/2)A+7j'
For the values f), (¥ 11/, U ]" 1 /2) appearing in (22), we use the approximation

1
Fr @12 Ujgy)0) & ‘(fr(7j+1/z» U+ fy @y U;+1))- (23)

2
Even without the jumps in p, the solution will generally develop discontinuities.
If we use the correction terms above without further processing, the solution
will develop spurious oscillations near these discontinuities. To damp out the
oscillations, we apply so-called flux limiters, resulting in the flux-limited quantities
Fjt12.
A simple limiter that enforces the TVD property when y is constant is

Ff+1/2 = D?+l/2 - E?+1/2’
DA;?_H/Z = minmod(D} ., »,2D_, ), 24

E;?-I—I/Z = miand(E?-i-l/Z’ 2E?+3/2)’

where we recall that the m-variable minmod function is defined by

min{py,...,pmy ifp1>0,...,pn >0,
minmod(p1, ..., pm) = {max{pi,....pm} ifp1 <0,...,pm <0,

0 otherwise.

When p is not constant, the actual solution u is not TVD, but numerical experi-
ments [25] indicate that (24) is an effective method of damping oscillations even in
the variable-y context considered here. The only negative practical aspect that we
have observed is a small amount of overshoot in certain cases when a shock collides
with a stationary discontinuity at a jump in y, see Fig.4.

Next, we wish to eliminate the non-physical overshoot observed with the simple
TVD limiter (24), and also put the resulting difference scheme on a firm theoretical
basis. For a conservation law having a flux with a discontinuous spatial dependency,
it is natural to expect not the conserved variable, but the flux, to be TVD [88].
Consequently, we require that
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DIAGHEL S DA o, n=0.1,.
jez jez

We call this property flux-TVD, or FTVD. We will see that under an appropriate
CFL condition, the FTVD property (along with a bound on the solution) holds if

ALFl | < AR | €2, n=0.12,.... (25)

It is reasonable to also impose the condition
0<F'y p/Fly <1, jeZ, n=012,.... (26)

in addition to (25), so that after we have applied the correction terms, the numerical
flux lies somewhere between the first-order flux and the pre-limiter version of the
second-order flux.

We can view (25) and (26) as a system of inequalities, and ask if it is possible to
find a solution that keeps the ratio F j’? 12 /F j" 12 appearing in (26) close enough to
unity that we still have formal second-order accuracy. This leads us to propose the
nonlocal limiter algorithm that we describe in Algorithm 1.

For the case of piecewise constant y, the results produced by the two algorithms
(namely the “simple TVD scheme” (STVD) and the “flux-TVD scheme” (FTVD))
usually differ by only a small amount. However, we have observed one situation
where there is a discernable difference—the case of a shock impinging on a
discontinuity in y. As mentioned above, the STVD limiter sometimes allows
overshoots by a small amount in this situation. We have not observed any such
overshoot with the FTVD limiter, see Example 2 in Sect. 2.3.

Finally, we mention that at a steady sonic rarefaction, both the Engquist-Osher
(EO) scheme and the Godunov scheme are slightly overcompressive, leading to a
so-called dogleg feature in the solution. This feature vanishes as the mesh size tends
to zero, but it is distracting. This dogleg artifact is present in certain situations with
both the STVD and the FTVD versions of our second-order schemes. It turns out
that if the corrections (21) are replaced by

1 O‘j'L+1/2

_ + J +

;'1+1/2— Eaj+l/2 <—(x+ - —Aaj_H/z) ALUY,
j+1/2 j+1/2

1 _ U112 _
i = 5% | o F A | A+ UT
2 o —o
ja12 — %41

the scheme only changes near sonic points, but the dogleg feature diminishes
noticeably. We have implemented this refinement in Examples 1-3.

Next, we describe a method for solving the system of inequalities (25) and (26)
while trying to maximize F J’? 12 /F J" 12 t0 maintain formal second-order accuracy
wherever possible. We set z; := Fin+1/2’ 0; = |A+h?+l/2| and Z; := Fin+1/2’ and
then restate the system of inequalities (25) and (26) in the form
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1Zi41 — 2| <6;, 0<Z/z <1. 27)

The unknowns are Z;, and the data are z;, 6; > 0. Moreover, there are indices iy, i *

such that z; = 0 fori < i, andi > i* since uy has compact support. Thus we may
s i . . ] ;

always assume that U} and F 12 vanish for sufficiently; large ;.

Algorithm 1 (Nonlocal limiter algorithm).

Input:dataz; > 0,0; > 0,0 = ix,...,i%

Output: a vector Z = {Zins- .., 2i*} such that (27) is satisfied, where z; denotes the
data before application of the algorithm.

Initialization: The sequence {; > 0, 0; > 0,1 = ix,...,1* is initialized to the input
dataz; >0,0; >0, = iy,...,i"

1. Preprocessor step:
doi =iy, ix+1,...,i*—1
if §iv18i < Oand [§i1 — §;| > 0; then

i < sgn(&;) mind|¢; ], 0; /2}
Cit1 < sgn($i41) ming|; 41|, 0;/2}

endif
enddo
2. Forward sweep:
doi =is,ix+1,...,i%=1
if |Siv1] > || then
Git1 < & + sgn(iy1 — &) min|G41 — &i[, 0;}
endif
enddo
3. Backward sweep:
doi =i*i*—1,...,ix+1
if [Si—1] > |Si| then
Gio1 <= & + sgn(§i—1 — &) min{| &1 — &, 61}
endif
enddo
Generate output:
doi =i ix+1,...,i"
i <G

enddo
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Here the left arrow <« is the replacement operator. Algorithm 1 can be
written compactly as Z = ®(Z,0) = > (d1(Z,0), ), where Z = Pre(Z, ©).
Here ®* and ® represent the forward and backward sweeps, Pre represents the
preprocessor step, and Z = {%;}, Z = {%}, Z = {z;} and © = {6;}. In [25] it is
shown that the output of Algorithm 1 solves the system of inequalities (27), and
that the limiter @ is consistent with formal second-order accuracy in the following
sense.

Lemma 1. Let u and y be C? in a neighborhood of the point X where

f(r().u®), #0. (28)
Assume that u(£x) = Utoo for x suﬁ‘iciently large, so that the limiter ® is well-
defined on the flux corrections F 2 2 = Fivi Let
A A A
F= = CD({F]‘H/Z}]'EZ’{iA+hJ+1/2i}jeZ)' (29

Then there is a mesh size Ag = Ao(X) > 0 and a §(X) > 0 such that for A < A,
we have
F;+1/2 = FJ»A+1/2 forallx; € {x : |x —x| < §}.

_ Consequently, the scheme defined by (18)—~(23), including the flux corrections
F ]” 12 produced by (29) will have formal second-order accuracy at any point
where u andy are smooth, and where (28) is satisfied. Thus, the resulting FTVD
scheme is given by U’H'l = U]n AA (h”+1/2 + F}yy))- In [20] the first-order
version of this scheme U; T —AA_RS i +1/2> Was analyzed. Clearly, this
scheme results by setting F it = O forall j and n. Moreover in [20] we assumed
that y is piecewise constant while in [19] we dealt with a piecewise smooth
coefficient function y. The convergence analysis for the FTVD scheme strongly
relies on results from [19] and [20]. We assume that the following CFL condition is
satisfied:

1
M (maxt—gu.qe} + Ind]) < 5. (30)
where ||y1b'|| := max{|y1(x)b'(u)| : x € [xL, Xr], u € [0, Umax]}-

Our theorem concerning convergence is the following.

Theorem 1 (Convergence of the FTVD scheme). Let u® be defined by (18)—(23).
Assume that the flux corrections F ]” 41/p are produced by applying Algorithm 1
to the non-limited flux corrections F ;’ 4120 Let A — 0 with A constant and the
CFL condition (30) be satisfied. Then u® converges along a subsequence in

loc(HT) and boundedly a.e. in Tl to a BV, weak solution of the CT model (7)
and (8).

The proof of Theorem 1 amounts to checking that Lemmas 1-7, along with the
relevant portion of Theorem 1, of [19] remain valid in the present context. See [25]
for details. We resume the essential steps of the proof.
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One first shows that under the CFL condition (30) we get a uniform bound on
U ;’, specifically U ]” € [0, 1], and that the flux-TVD property is satisfied, i.e.,

Z|h’}.fl/2 —hE | < Z|h’}'+1/z — Wil n=0,12,....
jEZ J€Z

The proof of these properties follows that of [19, Lemma 1].

The flux-TVD property is the ingredient that allows us to maintain time
continuity even though the present scheme, as a second-order scheme, is no longer
monotone. Thus, there exists a constant C, independent of A and n, such that

Ax )Y UM —Ur| < Ax Y |US - UP| < CAL
JEZ JEZ

As in [19], to prove that the difference scheme converges, one needs to establish
compactness for the transformed quantity z* that emerges from the numerical
solution by a singular mapping W also known as the Temple functional [87]. The
critical ingredient is a bound on its total variation. We then derive compactness for
u® by appealing to the monotonicity and continuity of the mapping u + ¥ (y, u). To
show that z2 has bounded variation it then suffices to invoke Lemmas 2—7 of [19],
making modifications where necessary to account for the addition of the second-
order correction terms. See [25].

We now use the notation O(Ay ;) to denote terms which sum (over j) to
O(]y|sv), and employ the Kruzkov entropy-entropy flux pair indexed by c, i.e.
q() := |u—c| and n(y,u) := sgn(u — c)(f(y,u) — f(p,c)). One then obtains
that for each ¢ € R, the following inequality holds:

q(an-H) = q(U]n) _A[H(yj+l/h’ Uj}jl+1’ U]n) - H(yj+1/h’ an, U]n_l)]

+AALR | +A0(AY). jEZ, n=0.12...,

(€19

where the EO numerical entropy flux is given by

1 1 [
Hv = 5 (0070 + 1) = 5 [ senow= o) £y aw:

It is now possible to repeat the proofs of Lemmas 3—7 of [19], the only change being
the contribution of the term A| A_h’;. 41 /2| appearing in (31).

2.3 Numerical Examples (Examples 1 and 2)

Consider a suspension characterized by b(u) = vsuV (1), where vs, = 107*m/s
and V(u) is given by (4) with ngz = 5 and uyx = 1. We assume that A = 0
and consider a cylindrical CT with x = —1m and xg = 1m with (nominal)
interior cross-sectional area S = 1 m?. The CT is assumed to initially contain no
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Fig. 3 Example 1: numerical solution at (a, b) t = 150,000s with (a) J = 40, (b) J = 200
(enlarged view around x = 0.6), at (c) t = 250,000s with J = 40, and at (d—f) r = 500,000s
with (d) J = 40, (e) J = 200, (f) J = 400 ((e, f): enlarged view around x = —0.61). The solid
line is the reference solution

solids (19 = 0), is operated with a feed concentration ur = 0.3 in Example 1 and
up = 0.5 in Example 2, and the flow velocities are g = —1.0 x 107> m/s and
qgr = 2.5 % 1076 m/s. In these examples, the solution is clearly not TVD, since
TV(up) = 0. Figure 3 shows the numerical solution for Example 1 calculated by
the first-order scheme of [21] (BKT), the scheme described herein that uses the
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Fig. 4 Example 2: numerical solution at # = 272,760 s with (a, b) J = 100, (¢) J = 200 and (d)
J =400 ((b—d): enlarged views around x = —1). The solid line is the reference solution

simple TVD (STVD) limiter (in short, STVD scheme), and the FTVD scheme. All
calculations were performed with A = 2,000 s/m, and results are compared against
a reference solution calculated by the first-order scheme of [22] with J = 100,00,
where J = 1/Ax (in meters). Example 2 illustrates the overshoot mentioned
in Sect.2.2, see Fig.4. We observe that Fig.4 illustrates how the “overshoot”
phenomenon diminishes as Ax — 0.

The numerical solutions of Examples 1 and 2 indicate that the STVD and FTVD
schemes are significantly more accurate than their first-order counterpart. It seems
that both schemes STVD and FTVD, have comparable accuracy. A significant
difference in solution behaviour between both schemes becomes visible in Fig. 4.

2.4 A Note on Second-Order Degenerate Parabolic Equations
(Example 3)

The model (9) with a degenerate diffusion term can be handled by a Strang-
type operator splitting scheme [85]. To describe it, let U" denote the approximate
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solution at time level n, and write the scheme (19) in operator notation via
U"t! = H(At)U". Then the proposed operator splitting scheme for (9) is

U™ = [H(At/2) o P(Ar) o H(AL/2)]U", n=0,1,2,.... (32)
Here P(At) represents a second-order scheme for u, = (y;(x)A(u)y), written

as U"T! = P(At)U". If we employ the Crank-Nicolson (CN) scheme, which has
second-order accuracy in space and time, then P(A¢) is defined by

At
n+1 __ n

At (sym128-47) + Ay (sjm128-ar¥)] . 33)

Here s; /> denotes our discretization of the parameter y;(x). The CN scheme is
stable with linear stability analysis. For our nonlinear problem, we generally need a
very strong type of stability, both from a practical and theoretical point of view. It
seems that it is impossible to get this type of strong stability for implicit schemes of
accuracy greater than one [49]. On the other hand, the solution u is continuous in
the regions where the parabolic operator is in effect (cf., e.g., [21]), which seems to
stabilize the numerical approximation. The CN scheme leads to a nonlinear system
of equations, which are solved here iteratively; each step of iteration requires solving
a tridiagonal linear system (see [25]). These iterations have turned out to converge
rather quickly.

Since each of the parabolic and hyperbolic operators has formal second-order
accuracy in both space and time, we will maintain overall second order accuracy
with the Strang splitting [85]. This is a well-known result, see, e.g., [48].

Next, we include the strongly degenerate diffusion term (10) with

b(u)o; ()
a(u) = ——=—1
(ps — pr)gu

where the so-called effective solid stress function a (1) is given by

0 for u < u,

O (u) = ao((bl/l/lc)k — 1) for u > u.,

where we use 0p = 1Pa, uc = 0.1 and k = 6 along with Ap = 1,500kg/m? and
g = 9.81m/s? [21]. The vessel and control variables are the same as in Example 1,
and we again set up = 0. Figure 5 shows the numerical solution calculated by
the semi-implicit scheme described in [21] (BKT-SI), the operator splitting scheme
described herein (BKT-OS), the operator splitting scheme (32) and (33) including
the simple TVD limiter (STVD-OS), and the analogue scheme involving the non-
local limiter (FTVD-OS). All calculations were performed with A = 2,000 s/m.
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Fig. 5 Example 3: numerical solution at + = 25,000s with (a) J = 50, (b) J = 100,
(c) att = 25,000s with J = 50, (d) atz = 100,000 s with J = 50

3 A Conservation Law with Nonlocal Flux Modeling
Sedimentation

When diffusion is negligible, the one-dimensional continuity equation is (1), and
the solids phase velocity v; is given by (3) and (5). Assume now that V' is given by
(4) but depends on  in the nonlocal form
2a
V=V(Ks*u), (Kq*u)(x,1) = Ka(y)u(x +y.0)dy,  (34)

—2a

where K, is a symmetric, non-negative piecewise smooth kernel with support on
[—2a, 2a] for a parameter a > 0 and [, K,(x)dx = 1. Then (1) takes the form

u; + vst(u(l — K, % u)"Rz)x =0. (35)

On the other hand, starting from the relation vy = (1 — u)v, valid for batch
settling, we obtain the alternative governing equation u, + (u(1 — u)v;), = 0.
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If v; (instead of vs) has a nonlocal behaviour and the local versions based on
specifying either v or v, should coincide, then the constitutive assumption for v,
becomes v, = V(K, * u)/(1 — u). For instance, (4) leads to the conservation law

u + VSt(u(l —u)(1 — K % u)"Rz_l) =0. (36)

X

Both (35) and (36) are special cases of (11).

3.1 Properties of the Nonlocal Equation

Insight into properties of (11) can be gained by analyzing an approximate local PDE
(the “effective” local PDE [99]) obtained from the Taylor expansion of K, * u. If
2M, denotes the second moment of K, then we obtain the approximate diffusive-
dispersive local PDE

u + (u(1 — u)”‘V(u)) = —azMz(V/(u)u(l — u)“uxx)

X

. (37)
(see [12] for details). For « > 1 the factor u(1 — u) in the right-hand side and in
the flux has a “saturating” effect; it prevents solution values from leaving [0, 1].
Thus, we should expect that the nonlocal PDE (11) also satisfies an invariant region
principle for & > 1. This is indeed the case, as will be shown below.

We mention that Zumbrun [99] studied an equation equivalent to (11) in the case
a = 0and V(w) = vg(1 — Bw), namely

u; + (uKa * u)x =0, (38)

where K,(x) := a~'K(a"'x) and K is the truncated parabola given by
3 x? ,
K(x) = 3 1-— T for |x| <2; K(x) = 0 otherwise. 39

He showed global existence of weak solutions for (12) and (38) in L°° and
uniqueness in the class BV, and derived the effective local, dispersive, KdV-
like PDE

U + (%) = —Mya® (uityy) . (40)

He showed by analyzing (40) that (38) supports travelling waves, but not viscous
shocks. This result is based on the symmetry of K, which makes (38) completely
dispersive. Moreover, an L? stability argument is invoked to conclude that smooth
solutions of the Burgers-like first-order conservation law u, + (u?), = 0 arise from
smooth solutions of (38) as @ — 0. Zumbrun [99] also studied the effect of artificial
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diffusion added to (38), and showed that for the corresponding effective local PDE,
solutions of shock initial data converge to a stable, oscillatory travelling wave.

For o = 0, the notion of weak solution is sufficient for uniqueness and stability
(at least in the Wasserstein distance, see [11,66]), since the convolution introduces
sufficient regularization to ensure that the advective velocity is Lipschitz continuous.
This is true even with discontinuous data. For the case « = 0, the analysis of
[12] based on a quadrature-difference scheme comes to a corresponding Lipschitz
continuity result for Lipschitz continuous initial data, as will be discussed below.

3.2 Numerical Scheme and Well-Posedness Analysis

We discretize (11) on a fixed grid given by x; = jAx for j € Z and
t, = nAt forn < N := T/At, where T is the finite final time. As usual,
u’} approximates the cell average of u(-,#,) on (x;_1/2,X;4+1/2), and we define
U= (.ol iy, .)T. The initial datum u is discretized accordingly.
We define the second spatial difference operator Azu;’» = AL AU

We assume that K, is a positive symmetric kernel, has compact support on
[-2a,2a], K, € C*' (R) N C?([-2a,2a]) and f_zga K,(y)dy = 1. (The same
analysis remains valid for more general kernels [12].) The integral in (34) is
approximated by the quadrature formula

B ! Xi+1/2 2a

(Ko *u) & ity ;= ‘ZI yiuj_;, wherey; = /Xim K.(y)dy,l = [A_x—‘ + 1.

i—
Due to the properties of K, y—; + - -+ y; = 1. Furthermore, we require that u has
compact support, ug(x) > 0 for x € R and uy € BV(R). The function u + V(u)
and its derivatives are locally Lipschitz continuous for # > 0 (which occurs, for
example, if V(-) is a polynomial). When we send Ax, Az | O then it is understood
that A := Ar¢/Ax is kept constant. Moreover, for the case @ > 1 we suppose that
up(x) < 1forall x € R.

From now on we let the function u® be defined by

ut(x,0) = U for (x.1) € [jAx,(j + 1)Ax) x [nAt, (n + 1)Ab).

Definition 2. A measurable, non-negative function u is an entropy solution of the
initial value problem (11) and (12) if it satisfies the following conditions:

1. We have u € L>®(T17) N L'(ITy) N BV(I17).
2. The initial condition (12) is satisfied in the following sense:

lim/ |u(x, t) — uo(x)| dx =0.
40 JRr
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3. For all non-negative test functions ¢ € C°(Ilr), the following Kruzkov-type
[62] entropy inequality is satisfied, where we define f(u) := u(1 — u)*:

vkeR: [ =Ko+ sente= (7@ - £00)V (K, g,
r @

—sgn(u—k) f)V'(Kq % u)(3x Ko * u)(p} dxdr > 0.
An entropy solution is, in particular, a weak solution of (11) and (12), which is

defined by (1) and (2) of Definition 2, and the following equality, which must hold
forall ¢ € Cy°(Ilr):

// {ug+ FQOVE, * 1)~ F@V (K, % 1), Ky 0} dxdr = 0.
nr

Suitable Rankine-Hugoniot and entropy jump conditions can be derived from (41).

The uniqueness of entropy solutions follows from a result proved in [58]
regarding continuous dependence of entropy solutions with respect to the flux
function:

Theorem 2. If u and v are entropy solutions of (11) and (12) with initial data ug
and vy, respectively, then for T > 0 there exists a constant C| such that

. ) =96, aggy = €1 llao = voll 1y V2 € (0,71

In particular, an entropy solution of (11) and (12) is unique.

Finally, let us briefly address the convergence analysis and the related result of
existence of entropy solutions. To this end, let V' := V(uy ;). Then the marching
formula for the approximation of solutions of (11) and (12) reads

wi_ +ul A 2
+1 _ -l Jj+1 a o
it = U 5”3’+1(1 —uf ) Vi + 5”’}—1(1 — i) Vi

We assume that A = Ar/Ax satisfies the following CFL condition:
Amax|V(u)| < 1fora =0, u* := || Kalloolluoll1;
u<u*

A max |V(u)| < l1lfora >1.
0<u<l

The convergence proof of the numerical scheme is based on the usual L*°, BV
and L' Lipschitz continuity in time bounds, where the latter two depend on T and
adversely on a. The L* bound is as follows:
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C; ifa=0,
0<ul < 13 ?f“ | forjeZad0snsN. (43)
Ha =1,

where the constant C3 is independent of Ax and At but depends on 7. This bound
represents the most important estimate of the convergence analysis [12, Lemma 5.3].
In view of (37), one should expect an “invariant region” principle to hold for (11),
(12) with @ > 1. The estimate (43) shows that this property indeed holds.

Invoking the bounds established so far and applying a Lax-Wendroff-type
argument to the discrete entropy inequality

| — | = |y — k| + G = G+ sgn(uf T - )f(k)( = Vi) <0

satisfied by the scheme, where we define

A
o =3 |:(f(u}}':|:1 vk)— f(u] Ujtg /\k)) T AAi ( u

-]

we can conclude by Helly’s theorem that #” converges to a functionu € L (IT17)N
L'(I17) NBV(I17) as Ax, At — 0, and prove the following theorem.

Theorem 3. The numerical solution generated by (42) converges to the unique
entropy solution of (11) and (12).

As an additional regularity result for « = 0, it can be shown that for 7 > 0,
u® converges to a Lipschitz continuous function u provided u is also Lipschitz
continuous. This result is as expected since in the simplest case, V' constant, (11)
becomes a linear advection equation, whose solution has a regularity that is the same
as that of uy. Moreover, as a Lipschitz continuous weak solution of (11) and (12),

u will automatically be an entropy solution.

3.3 Numerical Examples

We illustrate in Example 4 how the value of a affects the numerical solution of
(I1) and (12) for¢ = 0 and @« = 1. We use (4) with ngz = 5 for o = 0 and,
correspondingly, (4) with ngz = 4 for@ = 1. In both cases, K is given by (39) with
a =04,0.2,0.1, and 0.01. The initial datum is

) 0.0 forx <0.2, and ) 0.0 forx <0.2,
up(Xx) = up(X) =
0.6 forx > 0.2, 0.01 forx > 0.2,

for the two cases of a concentrated and a dilute suspension with Ax = 0.0005 and
A = 0.2. Figure 6 shows the numerical results. The case a = 0.01 was calculated
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a=0, t=10 1 o=1, t=10
— a=0.4
- a=0.2
-- a=0.1
a=0.01
> =
. 2 25
X X

Fig. 6 Example 4: numerical solutions of (11) and (12) (top) for an initially concentrated
suspension at t = 10 and (bottom) for an initially dilute suspension at t = 7

a=0.025, Uy constant and concentrated a=0.025, g constant and dilute
10 1

& | 0.53

6

- 05 ~

4

2 / | 0.47

0 0

0 0.2 0.4 0.6 0.8 1
X X

Fig. 7 Example 5: numerical solution of (11) and (12) with @ = 1 and initial data (44)

with Ax = 0.0002 since otherwise the stencil of the convolution includes just a few
points. We observe a more strongly oscillatory behaviour with @ = 0.4, 0.2 and 0.1
than with @ = 0.01, and that the period of the oscillation is proportional to a.

In Example 5 we attempt to reproduce the layering phenomenon observed by
Siano [81] for batch settling. In Fig. 7 we show the numerical results for ¢ = 1,
with V(x) = (1 — u)*, K asin (39), a = 0.025, Ax = 0.00025, 1 = 0.5 and the
initial datum for the respective concentrated and dilute case
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0 forx <0, 0 forx <0,
up(x) =405 for0<x <1, and up(x) =4005 for0<x <1, (44)
1 forx >1 1 for x > 1.

We observe layers of concentrations smaller or larger than the initial value uy.
These “stripes” are initially close to parallel to the supernate-suspension inter-
face. However, stripes are obliterated as soon as interaction with concentration
information travelling upwards from the vessel bottom takes place.

4 Kinematic Models of Polydisperse Sedimentation

Polydisperse sedimentation models belong to the wider class of multi-species
kinematic flow models given by (13) with explicit velocity functions v;, including
the multi-class Lighthill-Whitham-Richards (MCLWR) kinematic traffic model
[8,95]. The basic phenomenon of interest in these models, the segregation of species,
is usually associated with the formation of discontinuities in ®, so-called kinematic
shocks. Other multi-species kinematic flow models also include the settling of
oil-in-water dispersions [76] and of emulsions (cf., e.g., [22,47]).

For many multi-species kinematic flow models, the velocities v; do not depend on
each of the N components of ® in an individual way, but are functions of m <« N
(m < 4 for all models of interest) scalar functions of @, i.e.,

vi=vi(p1,..., pm), pr=p(®), [ =1,...,m. (45)

Thus, J¢ (®) is a rank-m perturbation of D := diag(vi, ..., vy) of the form

B := (By) = (¢ 0vi/dp;),

Jr=D+BA",
A = (Ay) = (0p1/99;),

The analysis in [24] also provides sharp bounds of the eigenvalues of J¢(®).
This information permits to numerically calculate the eigenvalues and correspond-
ing eigenvectors of Jr (®) with acceptable effort. This characteristic (or spectral)
information can be exploited for the implementation of high-resolution schemes.

High-resolution shock capturing schemes can be applied to systems of conserva-
tion laws either in a component-wise or in a characteristic-wise (spectral) fashion.
The latter requires a detailed knowledge of the spectral decomposition of the
Jacobian matrix of the system. For multi-species kinematic flow models, however,
eigenvalues are not available in closed form. Nevertheless, it has been possible to
prove strict hyperbolicity of some of these models by an explicit representation of
the characteristic polynomial [10,76,97], as well as to obtain an interlacing property
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of the (unknown) eigenvalues A; of the Jacobian with the (known) velocities v;,
which provide excellent starting values for a root finder. For the MCLWR model,
these results can be found in [97,98] and in references cited in these papers.

Donat and Mulet [43] showed that the hyperbolicity calculus of multi-species
kinematic flow models satisfying (45) can be greatly simplified by using the so-
called secular equation [1], which provides a systematic algebraic framework to
determine the eigenvalues, and eventually the eigenvectors, but avoids the explicit
representation of the characteristic polynomial. The hyperbolicity analysis for the
MCLWR model becomes very simple. Via the secular approach, hyperbolicity of
the MLB model for equal-density spheres (a case of m = 2) can be proved in
a few lines [43], which contrasts with several pages of computation necessary to
exhibit the characteristic polynomial in [10]. In [24] the secular approach was used
to estimate the region of hyperbolicity of the HS model, for whichm = 3 orm = 4.
In [26] the results of [24] are employed to implement characteristic-wise WENO
schemes for the polydisperse sedimentation model. On the other hand, there are
also other polydisperse sedimentation models (besides the MLB and HS models)
for which the flux Jacobian is a rank-m perturbation of a diagonal, and to which a
version of the present numerical technique can be applied [27,38,72].

4.1 Hyperbolicity Analysis

The hyperbolicity analysis of (13) under the assumption (45) is then based on the
following theorem.

Theorem 4 (The secular equation, [1,43]). Assume thatv; > v; fori < j, and
that A and B have the formats specified in (46). We denote by S} the set of all
(ordered) subsets of r elements taken from a set of p elements. If X is an m x N
matrix, I = {i; < --- < iy} € SN and J = {j} < -+ < j;} € S, then we

denote by XI T the k x 1 submamx of X given by (X! J)M Xi, j,- Let A # v
fori =1,...,N. Then A is an eigenvalue of D + B AT if and only if
R(A) :=det(I + AT(D —AI)"'B) =1+ Z =0, 47)

— v,—A

min{N,m}

det A" det B/

h e E E _

e n/eli;éi(vl — Vi)
= ieleSN Jesn ’

The relation R(X) = 0, (47), is known as the secular equation [1].

Assuming that m < N, with A and B defined in (46) we can write
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vy aps
=¢; VYris Vri = dt( )dt( )
Z zegwlell_l[;é Vi Vi Jgs:;n ops 9¢1

When m < 2, these quantities can be easily computed and the hyperbolicity
analysis via Theorem 4 is much less involved than explicitly deriving and discussing
det(Jy (®)—AlT). Form = 3 orm = 4, the computations are more involved [24,27],
but provide at least partial results concerning hyperbolicity, where the theoretical
analysis of det(Jy (P) — AT) is essentially out of reach.

The following corollary follows from Theorem 4 by a discussion of the poles of
R(A) and its asymptotic behaviour as A — Foc0.

Corollary 1 ([24D). If vi -y; > O fori,j = 1,...,N, then D + BAT s
diagonalizable with real eigenvalues A;. If y1,...,yn < 0, then the interlacing
property

M, =VvW+yYi+--+ YN </\N < VN <AN_1 <"'<Al <V
holds, while for y,, ...,yn > 0, the following analogous property holds:
VN <AN <VNo <Ay < < <A <Mp:=vi+y1+--+yn.

The analysis of (47) also leads to an explicit spectral decomposition of Jr
required for spectral schemes. Assume A is an eigenvalue of J that satisfies 1 # v;
foralli = 1,...,N. Then § = ATx is a solution of M ;& = 0, where the
m x m matrix M; := I + AT(D — AI)™' B can easily be computed. In fact, given
g.h € RYif we use the notation

N
- gihi
lg.h]:=[g.h:=g"(D-AD)"'h = m
k=

then My =1+ ([a;,b;])1<i j<m, Where a; and b; are the columns of A
and B, respectively. If & # 0 solves M;& = 0, then we can use
x+ (D —-AI)"'"B(A"x) =0 to compute a right eigenvector of Jr as
x = —(D —AI)"'B§. The same procedure may be employed to calculate the
left eigenvectors of J .

The MLB model arises from the mass and linear momentum balance equations
for the solid species and the fluid [10]. For equal-density particles, its final form is

m=1

D
yi(®) = YWMLB() 1= %(1 ¢>)V(¢)<a’2 Z% )

where ur is the fluid viscosity, and ¢ = ¢; + -+ + ¢y is the total solids volume
fraction. Here V(¢) is assumed to satisfy V(0) = 1, V(¢max) = 0 and V'(¢p) < 0
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for ¢ € [0, Pmax], Wwhere the maximum total solids concentration is assumed to be
given by the constant ¢n,«. A standard choice for V(¢) is the equation

V() =

l— ¢y ifdeD
(() ¢) HPE S > 2, (48)

otherwise,

(This formula is consistent with (4) for N = 1, ie., V(¢) = (1 — ¢)*V($).)
We may write the components of the flux vector f (®) of the MLB model as

N
fi(@) = fME (@) := WP 0)¢i (1 - 9)V(9) (d? -y md,ﬁ) . (49)

m=1

The present version of the MLB model corresponds to m = 2, where p; = ¢ and
p2 = V(p)(dip1 + -+ + d% ). For this model, we have:

Lemma 2 ([24]). The MLB model (13) and (49) is strictly hyperbolic on Dy, .. The
eigenvalues A; = A;(®) of Ty (®) = J pwun (P) satisfy the interlacing property

Ml(CD) < AN(q)) < VN(CD) < AN_l(q)) < VN_l(q)) < e < Al(q)) < Vl(CD),

(50)
N
M (@) = /"(0) (d}v V(@) + (1= @)V (¢) —2V($) > ¢md,,%) :
m=1
Furthermore, if A & {vi,...,vn} is an eigenvalue of Jr(P), then the discussion

following Corollary 1 allows us to express the corresponding eigenvector in closed
algebraic form (not detailed here).

The Hofler and Schwarzer (HS) model is motivated by the following expression
for v; by Batchelor and Wen [5, 7], valid for a dilute suspension (i.e., ¢ <K @max):

(ps — p)gD?

vi(®) = 1810

d?(1 +sT®). (51)

Here, sl-T = (Sis,...,Sin) is the i-th row of the matrix § = (Sy)i<ij<n
of dimensionless sedimentation coefficients S;;, which are negative functions of
Aj = d;j/d; and depend on certain other parameters. They can be reasonably

approximated by

3 I
d:
Sij = E Bi (d_j) , 1 <i,j <N withcoefficients By,..., 83 <0. (52)
1=0 !

Some authors set 3 = 0 a priori; for example, Hofler and Schwarzer [56] obtained
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BT = (Bo.....B3) = (=3.52,—1.04,—1.03,0) (53)

by fitting data from [7] to a second-order polynomial. For simplicity, we also
consider §3 = 0 in this work.

To overcome the limitation of (51) to dilute suspensions, Hofler and Schwarzer
[56] extended (51) to the whole range of concentrations by the formula

(os — pr)gD?

vi(®) = viB(®) = o0,

d? exp(s]® +ng)(1—¢)", n >0,

The corresponding flux vector of the HS model is given by

[i(®) = f15(@) := WS (0) ¢ d? exp(s] © + ng) (1 — ¢)".

For the HS model it is straightforward to verify strict hyperbolicity on D; for
N = 2, arbitrary non-positive Batchelor matrices S and arbitrarily small values
of d,. The analysis of [24] ensures hyperbolicity for arbitrary N and in the case
of the coefficients (53) under the fairly mild restriction dy > 0.0078595.

For the hyperbolicity analysis of the HS model, we define

a,:=d)_ = (d!"dy7dyTY), pei=ald, v=1,.. 4,

and taking into account that 83 = 0, we obtain from (51) and (52)

Bi B>
vi(®) = Vi*(0)d? exp ((ﬂo +mpi+ e+ 25ps ) (1= )"
i i
Thus, the hyperbolicity of the HS model can be analyzed by Theorem 4, where
m = 3if B3 = 0and m = 4 if B3 # 0. The calculations become involved, but still
lead to estimates of the hyperbolicity region. A typical result is the following.

Lemma 3. Assume that B, ¢max, and the width of the particle size distribution
characterized by the value of dy < (0, 1] satisfy

H(p,B.dy) = —Bo(Brdn + Bo(1 + dy)?) = BaBrdy — (1 — dy)*BopiBa < 0

for all ¢ € (0, pmax). Then the HS model is strictly hyperbolic for ® € Dy, .
The eigenvalues satisfy the interlacing property (50). (The fairly involved algebraic
expression for y; for this model is not written out here for brevity. We refer to [24]
and [27] for the respective cases B3 = 0 and B3 < 0.)

For B given by (53) the region of hyperbolicity for the HS model ensured
by Lemma 3 is illustrated in Fig. 8. The spectral decomposition of J¢(®), i.e.,
the eigenvectors corresponding to the eigenvalues A;(®), is easy to obtain from
Theorem 4, see [26] for details. Similar estimates of the hyperbolicity region for
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Fig. 8 Region of dy
hyperbolicity 1 T T 7
(H(¢, B,dyn) < 0) for the HS
model for the coefficients
(53) [24]

b, B, dn) < 0

0 0.005 dy 0.01

the original model by Batchelor and Wen [5, 7], which is not discussed in this
contribution, and for the HS model can be obtained by the same method for the
case B3 < 0, which gives rise to a perturbation rank of m = 4 [27].

4.2 Spectral and Component-Wise Numerical Schemes

For grid points x; = jAx, t, = n/At, a conservative scheme for ®! ~ ®(x;,1,) is
given by

At

n+l _ gn _ 20
q)j _q)j Ax

(prj+l/2_prj—1/2), .}‘j+1/2 = ]A" (‘P’}_SH,...,(I)’}_,’_S), j ez

The resulting scheme should be (at least second-order) accurate and stable. The most
common design of numerical fluxes f ;/, is to solve Riemann problems, either
exactly (as in the original Godunov scheme, which is very costly), or approximately
(e.g., as in the Roe scheme). For polydisperse sedimentation, exact Riemann solvers
are out of reach, since the eigenstructure of J is hard to compute.

In [26] Shu-Osher’s technique [80] is used along with the information provided
by the secular equation to get efficient schemes for the MLB and HS models. This
scheme is based on the method of lines, that is, on applying an ODE solver to spa-
tially semi-discretized equations. For the discretization of the flux derivative we use
local characteristic projections. Local characteristic information to compute f ;1
is provided by the eigenstructure of Jy (®;11/2), where @115 = 3(®; + ®;41),
given by the right and left eigenvectors that form the respective matrices

Rjvijp=1[rjs1j21 - rjt12n] (R;-II—I/Z)T =[lj41/20 - Ljv12n]-
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From a local flux-splitting f £k (we omit its dependency on j + 1/2) given by
f 4+ fT* = f, where :i:)kk(in,k (®)) > 0, ® ~ ;12 and A is the k-th
eigenvalue, k = 1,..., N, we can define the k-th characteristic flux as

+.k +k
g = l}+l/2,k D).
If R and R~ denote upwind-based reconstructions, then

5 (K koL " k.
gi+126k =R (gj_sﬂ,---,gj+5_1,xj+1/2)+R (gj—5+25---7gj+57x]+1/2)7

n
Fivn=Ritip i =Y &it1/2kT j41/2k-
k=1

If we do not want to use local characteristic information, we can use the pre-
vious formula with R;y;» = Iy, where Iy denotes the N x N identity
matrix, and a global flux spliting f~ 4+ f = f, where +X; (in (®)) >0
for all k. With this choice, and denoting by e, the kth unit vector, we get
gf’k = egfi(dDj) = fki(cbj), ie., g]j.t’k are the components of the split fluxes,
and the numerical flux is computed component by component by reconstructing the
split fluxes component by component, i.e., f ;115 = (fj+1/2.1,---, fivr2m)7,
where

; ik ko
fitij2k = R+(g]‘—5+]s .. vgj+_g_17xj+l/2)
Sy k.
+R (gj'_s+2,...,gj+b,,xj+1/2), k=1,...,N.

This scheme will be referred to as COMP-GLF and it is a high-order extension of

the Lax-Friedrichs scheme.
We now explain the SPEC-INT scheme. If A, (Jy (P)) > O (respectively, < 0)

forall ® € [®;, ®; 4], where [®;, ;4] C RY denotes the segment joining both
states, then we upwind (since then there is no need for flux splitting):

fH = f o =0 i Tp@) >0, £ =0, f =f if (T, (@) <0.

On the other hand, if Ax(Jr(®)) changes sign on [®;, ®;,], then we use a
Local Lax-Friedrichs flux splitting given by f k(@) = f(®) £+ a; P, where the
numerical viscosity parameter o should satisfy

i q)e[gjl_%mlkk(@ (@))]. (54)

The following usual choice of a; produces oscillations in the numerical solution
indicating that the amount of numerical viscosity is insufficient:

o = max{[Ac (T (@), |2k (Tr (@;41)) |}
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The right-hand side of (54) can usually cannot be evaluated exactly in closed form.
However, for the present class of models, Corollary 1 generates a fairly sharp bound
for that expression. In the case of the MLB model, we have y; < 0 and the
interlacing property leads to the efficiently computable bounds [26]

max  |[Ax(P)| < ax := max max |vk(<I>) , m
PE[D; D/ 41] PE[D;, D) 41] De[d;

k=1,...,N.

ax  |veg1(@)],
@ 41]

(55)

(This property also holds for other models, under appropriate circumstances [24,
27].) “SPEC-INT” denotes the scheme for which ¢y, ..., ay are defined by (55).

4.3 Numerical Examples

The zero-flux boundary conditions (14) are implemented by setting
jA”_l = jAr m—1/2 = 0. We recall that a WENOS scheme requires the consideration
of two additional ghost cells on each boundary of the computational domain. To
guarantee that all the interpolatory stencils remain inside the computational domain
we set large values for the concentrations in the ghost cells, which produce large
variations, so that the WENO procedure avoids the use of any stencil involving
the ghost cells. The time discretization employs the well-known optimal third-
order, three-stage Runge-Kutta method named SSPRK(3,3). SSP time discretization
methods are widely used for hyperbolic PDE because they preserve the nonlinear
stability properties which are necessary for problems with non-smooth solutions.
To satisfy the CFL condition, the value of At is computed adaptively for each step
v. More precisely, the solution "' at 7,,.; = #, + At is calculated from " by
using the time step At = CFL* Ax/p;,.., where p;, s an estimate of the maximal
characteristic velocity for ®".

From [26] we select the case N = 4 for the MLB and HS models (Examples 6
and 7, respectively). We consider d; = 1,d, = 0.8, d; = 0.6 and dy = 04,
Pmax = 0.6, and ¢? =0.05fori =1,...,4. We furthermore choose D; = 4.96 x
107*m, a settling vessel of (unnormalized) depth L = 0.3 m and ¢na.x = 0.68. We
employ (48) with ngz = 4.7. The remaining parameters are g = 9.81 m/s?, yuf =
0.02416Pas and pr = 1,208 kg/m>. Moreover, the spatial coordinate x € [0, 1]
refers to normalized depth. In this section, we take CFL = 0.5 throughout.

Figures 9a and 10a display the reference solution obtained with SPEC-INT and
Mt = 6,400 for ¢t = 50s and ¢ = 300 s respectively, while plots (b—d) of both
figures are enlarged views of the corresponding numerical solutions obtained with
SPEC-INT and COMP-GLF with M = 400. Figure 11 shows the corresponding
results for Example 7. Both series of plots show that at M = 400 the quality of
approximation of piecewise constant portions of the solution and the resolution of
kinematic shocks by SPEC-INT is superior to that of COMP-GLF. For the times
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Fig. 9 Example 6: reference solution for ¢y, ..., ¢4 computed by SPEC-INT with M,y = 6,400
(a), and details of numerical solutions with M = 400 (b-d) at = 50s

considered the average convergence rate using SPEC-INT is close to one. On the
other hand, as time increases, the errors increase considerably. Of course, for a
given value of M, COMP-GLF is faster than SPEC-INT. Nevertheless, if we seek a
fixed level of resolution in the numerical simulation, then SPEC-INT turns out to be
computationally more efficient, see [26].

As in the case of the MCLWR kinematic traffic models, the characteristic-based
schemes, which use the full spectral decomposition of J at each cell-interface, are
more robust and lead to numerical solutions which are essentially oscillation free.
This situation is similar to what is observed for the Euler equations for gas dynamics,
where the superiority of characteristic-based schemes is well known. For gas
dynamics, the spectral decomposition of the Jacobian matrix is given in closed form,
hence characteristic-based schemes pose no special difficulties. For polydisperse
models, the spectral decomposition can only be computed numerically. In addition,
the characteristic fields are neither genuinely nonlinear nor linearly degenerate,
hence the determination of the viscosity coefficients in flux-vector splitting schemes
becomes a non-trivial task. In any case we have shown that SPEC-INT gives a
good resolution on the numerical approximation with a relative small number of
mesh points, hence it is competitive with respect to the simpler component-wise
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Fig. 10 Example 6: reference solution for ¢y, . .

., ¢4 and ¢ computed by SPEC-INT with M,¢s =

6,400 (a, b), and details of numerical solutions with M = 400 (c—f), at# = 300s.

schemes. In recent work [30] it is shown that SPEC-INT is even more competitive
than cheaper component-wise schemes, such as COMP-GLEF, in an Adaptive Mesh
Refinement (AMR) framework, since its non-oscillatory properties will help to
avoid unnecessary refinement in regions of constant concentration.

5 Multidimensional Models

5.1 Adaptive Multiresolution (MR) Techniques

Adaptive multiresolution (MR) techniques are naturally fitted for FV schemes
[13, 54,69, 77]. They are based on representing the numerical solution on a fine
grid by values on a much coarser grid plus a series of differences at different
levels of nested dyadic grids. These differences are small in regions where the
solution is smooth. Therefore, by discarding small details (the so-called “thresh-
olding” operation), data compression can be achieved [13]. This automatic grid
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Fig. 11 Example 7: numerical solution for ¢;,...,¢s with M = 400: at t+ = 250s (a) and
enlarged views (b—d), where the reference solution is computed using SPEC-INT with M,y =
6,400

refinement allows for memory and CPU time reductions while the approximation
error remains controlled. The governing equations, in the present case (15) and
(16), are discretized with a classical FV discretization. This approach has been
implemented in [28] for (15) and (16) with A = 0 and v = 0 to simulate the
settling of a monodisperse suspension in a tilted narrow channel, which gives rise
to the so-called “Boycott effect” [14], namely an increase of settling rates compared
with a vertical channel. This effect is related to the formation of discontinuities in u
and a boundary layer beneath a downward-facing inclined wall, occurs in vessels
of simple geometry, and is therefore suitable for testing the capability of adaptive
methods to concentrate computational effort on zones of strong variation such as
discontinuities in # and boundary layers. In [28] the MR technique indeed produced
a significant gain in efficiency.

Figure 12 (Example 8) shows an example from [28] with L = 8 resolution levels
in total, corresponding to a finest grid of 256 x 256 cells on which (16) (with v = 0,
A =1,k = (cosb,sinf), ¢ = 0.67 and u(u) = (1—u)~? and pressure stabilization
[15]) is solved by a finite volume scheme, while (16) (with f(«) = u(1 — u)* and
A = 0) is solved on an adaptive grid by the first-order Godunov scheme.
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Fig. 12 Example 8: simulation of the settling of a suspension of constant initial concentration
up = 0.2 in a channel inclined by 6 = 45° [28]. Top: concentration u, middle: leaves of the
adaptive tree, bottom: velocity v, at times t = 1.5 (left), t = 3.75 (middle), and t = 11.25 (right).
We have ||v(1.5)]| = 11.84, |[»(3.75)|| = 3.72 and |[v(11.25)| = 2.7 X 1072
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5.2 Finite Volume Element (FVE) Methods

If A # 0 and A(-) has the behaviour (10), then (15) becomes strongly degen-
erate parabolic. Usually the type-change interface u = u. is associated with
a discontinuity in the solution. An open problem of interest in applications is
the development of numerical methods for (15) and (16) under the assumption
of strong degeneracy. While FV methods are the best choice to discretize (15)
(due to its convection-dominated nature along with the strong gradients in the
solution), they are outperformed by finite element (FE) methods for what concerns
the discretizations of the momentum and continuity equations forming the Stokes
equations [31]. This observation motivated the FVE method (cf. [73] and the
references cited in that paper) as a “hybrid” methodology, which is intermediate
between FV and FE methods: the method is locally conservative (like a classical
FV method) while it allows for L? estimates in a rather natural way (as in classical
FE methods). The basic idea is to reformulate the FE scheme as a FV scheme on a
dual mesh (see [4, 73] for details). The FVE methodology permits treating the full
system (15) and (16) by a unified approach.

This method is implemented in [29] for a 2D section of an axisymmetric vessel
(which requires cylindrical coordinates, cf., e.g., [9,52]), v = 0 (the Stokes system),
and pointwise degeneracy (a(u) = O at u = 0 and u = upyax only). The last
restriction was found necessary since the particular Galerkin discretization used in
[29] relies on formulas like AA(u) = V - (a(u)Vu) which are not valid in general
in the strongly degenerate case. However, numerical solutions behave reasonably in
both the pointwise and strongly degenerate cases.

As a numerical example, we consider the fill-up of a cylindrical set-
tling tank with a so-called skirt baffle and circumferential suction lifts
introduced in [61, 92]. The essential parameters are ps — pf = 1,562kg/ m3,
f) =22x1073u(1 —u/0.9%m/s, uiy = 0.1, g = 9.81m/s?, V.ou = VWoiin,
Viofl = 95_—2”vz,in, vrein = 0.019m/s and At = 55s. The primal mesh 7 is composed
of 7,410 elements and 4,206 interior nodes. The boundary conditions for velocity at
the suction lifts are given by v = (0, —u, out/4), Where v, e = Vv, See Figs. 13
and 14 for numerical results.

6 Alternate Treatments and Some Open Problems

Concerning the analysis of TVD and FTVD schemes of Sect.2, we mention that
in [20] an entropy inequality similar to (31) was used to prove that the first-order
version of our scheme converges to a unique entropy solution of the conservation
law. Although our numerical experiments indicate that the second-order schemes
STVD and FTVD also converge to the unique entropy solution, the entropy
inequality (31) is not quite in a form that allows us to repeat the uniqueness argument
in [20]. We leave this as an open problem.
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Fig. 13 Numerical simulation of the fill-up of a settling basin with skirt baffle (fop) showing the
solids concentration u at t = 500 s (middle) and 1,000 s (bottom)

Let us mention some of the works that analyze problems related to the con-
servation law with discontinuous flux (11) analyzed in Sect.3. Another spatially
one-dimensional, nonlocal sedimentation model was studied by Sjogreen et al.
[82], who consider a hyperbolic-elliptic model problem given by (1) coupled with
—n(vs)xx + vs = u, where n > 0 is a viscosity parameter. Clearly, at any fixed
position xg, vs(xo, ) will depend on u(-,¢) as a whole; the nonlocal dependence
is not limited to a neighborhood, as in [99] and herein. They prove that their
model has a smooth solution, and present numerical solutions obtained by a high-
order difference scheme. Furthermore, the (local) kinematic model of sedimentation
(2) is similar to the well-known Lighthill-Whitham-Richards (LWR) model of
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Fig. 14 Continuation of Fig. 13 showing the solids concentration u at t = 2,000s (top) and
7,500 s (bottom)

vehicular traffic. Sopasakis and Katsoulakis [83] extended the LWR model to a
nonlocal version by a “look-ahead” rule, i.e. drivers choose their velocity taking
account the density on a stretch of road ahead of them. Kurganov and Polizzi
[63] showed that an extension of the well-known Nesshayu-Tadmor (NT) central
nonoscillatory scheme [71] is suitable for the nonlocal model of [83], which can
be written as (11) for « = 1 and V(w) = exp(—w), and if we replace K, by
a particular non-symmetric kernel function with compact support. Related models
with a nonlocal convective flux that have been analyzed within an entropy solution
framework (as done herein and in [12]) include the continuum model for the flow of
pedestrians by Hughes [57], which gives rise to a multi-dimensional conservation
law with a nonlocal flux; see also [36,39]. See [12] for further applications.

As another open research problem, a systematic travelling wave analysis of (11),
which would extend the results of [99], is still lacking. Such an analysis could
explain whether new phenomena, e.g. nonclassical shocks, should be expected when
one considers the formal limit a — 0 of entropy solutions of (11), especially in the
case @ > 1. Unfortunately, most of the constants appearing in the compactness
estimates of [12] are not uniform, i.e. they blow up when @ — 0. It is therefore not
clear whether a sequence of entropy solutions converges to a meaningful limit as
a — 0. This problem should at first be explored numerically.
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Related to the multiresolution (MR) method for tackling the multi-dimensional
system (15) and (16) outlined in Sect.5, we mention that in [28] MR was applied
to the solution of (15) (with A = 0) only, but the more involved Stokes system
was always solved on the finest grid. The MR approach of [28] should be extended
to a method that solves both (15) and (16) (first, for the Stokes system (v = 0),
and then for the Navier-Stokes case) on an adaptively refined grid. Further speed-
up of adaptive methods is achieved using local time stepping strategies [70]. The
central tasks are the implementation and numerical analysis of pressure stabilization
techniques and of projection schemes to take into account the incompressibility
of v (cf., e.g., [53,78]). Further research will concern the polydisperse case, for
which (15) will be replaced by a system of conservation laws. Finally, concerning
the FVE method described in Sect. 5.2, besides incorporating the full Navier-Stokes
terms, one should modify the FVE scheme so that its formulation from the onset
also covers the strongly degenerate case. Thus, discretizations alternative to the
Discontinuous Galerkin (DG) formulation employed in [29] should be tested by
adequately choosing the numerical flux associated with (15), and we intend to
investigate whether the choice of a diamond mesh (one of the dual meshes) made in
[29] will in general capture the hyperbolic-parabolic transition.
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