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Helioseismology is the basic tool for the study of the solar interior, which is impos-
sible to explore using the traditional optical methods. The solar interior is accessible
to the modern helioseismic methods almost entirely except for the innermost regions
of the solar core, where the helioseismology is perfectly complemented by the
neutrino astronomy. The main product of helioseismic observations of the Sun is
the solar eigenmode spectrum. At present, we can observe reliably the spectrum of
acoustic-type oscillations with a period of �5 min called p-modes. The accuracy
of determining the solar eigenmode frequencies depends on the signal-to-noise
ratio and the duration of continuous observations. To ensure round-the-clock
observations, networks of observing stations have been set up all round the world.
Besides, space-born helioseismic experiments have been carried out. One of them
was the DIFOS experiment on board the CORONAS-F spacecraft aimed at the
observation of global oscillations of the Sun in the solar irradiance in the wavelength
range from 350 to 1,500 nm. At present, data for a period of more than 10 years have
been accumulated. However, the accuracy of a few thousandth of a �Hz, which
corresponds to the 10-year observation period, was not achieved in determining the
p-mode frequencies. This is because the p-mode spectral line is split into many
components, which makes it difficult to determine the mean frequency. The complex
structure of the spectrum is the result of stochastic excitation of oscillations.

Continuous and Discrete Oscillation Spectra

When solar eigenmodes are observed by measuring the brightness or radial veloc-
ity fluctuations, the signal is always sampled. On one hand, this improves the
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Fig. 1 The spectral density of a model signal corrected for interruptions of observation due to
the shadow entries of the satellite and telemetry problems is shown for three different processing
methods. The squares indicate the discrete spectrum obtained using the fast Fourier transform; the
circles show the discrete spectrum obtained likewise, but for a model signal, whose duration was
increased by a factor of 14.5 by adding zero points; and the solid line indicates the continuous
spectrum plotted with the use of the integral Fourier transform. From [14, p. 329]

signal-to-noise ratio through accumulation and, on the other hand, makes it possible
to use the fast Fourier transform, thus reducing the data processing time. The
discussion of this problem below is largely based on the material of paper [14].

In order to demonstrate the problems arising in the standard data processing
method, let us first consider a model signal that reproduces in idealized form
the actual observation data obtained during the CORONAS-F/DIFOS experiment,
which are processed below. The model signal simulates observations for 7 days
50 min. The signal is interrupted every 94 min for about 40 min to imitate the shadow
entries of the satellite. The interruptions due to the telemetry failures are also taken
into account.

The sampling rate is 33.55 s. The squares in Fig. 1 indicate the discrete amplitude
spectrum of the model signal obtained using the Hamming window, which is good
at removing the effect of the realization ends. This is a typical situation where
the true oscillation frequency falls somewhere in between the harmonics of the
discrete spectrum, which makes it difficult to specify the true oscillation frequency.
If instead of the model signal under consideration we take the corresponding analog
continuous signal (even with the interruptions mentioned above), we can readily
obtain the continuous spectrum using the integral Fourier transform. The continuous
spectrum or, to be more precise, the spectral density is represented by the solid
line in Fig. 1. For the continuous spectrum, the frequency of the spectral density
maximum matches closely the frequency of the model signal.
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In our case, it was easy to find the continuous spectrum, because we knew
the continuous analog signal. The true spectrum of solar eigenmodes is difficult
to determine, since the discrete spectrum recorded in the observations is used to
obtain the discrete spectrum. This raises a natural question: How can the continuous
spectrum of a signal be found from its values at discrete times? According to
the Kotelnikov–Shannon theorem, a signal with the spectrum between the Nyquist
frequency and the lowest frequency in the discrete spectrum can be fully restored
from the values of the continuous signal at discrete times. The continuous signal
s.t/ can be restored from its values at times k �t using the Kotelnikov–Shannon
series:

s.t/ D
1X

kD�1
s.k �t/

sin.t=�t � k/

t=�t � k
: (1)

As follows from this formula, an arbitrary continuous function s.t/ can be
represented without loss of information by a sequence of discrete values k �t , k D
0; 1; 2; : : : and can be unambiguously restored from this sequence if the highest
frequency in spectrum of the function does not exceed its sampling frequency. This
is the essence of the Kotelnikov–Shannon sampling theorem. Once the continuous
signal corresponding to the discrete sequence is restored, its continuous spectrum
can be found in principle by using the integral Fourier transform.

However, the integral Fourier transform for an actual signal is very difficult
to perform. It takes much more computational time than obtaining the discrete
spectrum by means of the fast Fourier transform. We are not aware of any attempts to
restore the continuous analog signal and to obtain the continuous p-mode spectrum
by using the scheme described above. Instead, the mean or maximum frequency
of the p-mode lines in the solar eigenmode spectrum was found using various
interpolations of the discrete spectrum based, for example, on the assumption of
a Lorentz line profile.

It is quite clear that interpolation of the discrete spectrum cannot be used
to find the spectral line profile without making additional assumptions, while
passing to the continuous spectrum does not require additional hypothesis and is
unambiguous. As a matter of fact, the continuous spectrum for a discrete signal
can be readily found by a different method without passing to the analog signal via
the Kotelnikov–Shannon series. Moreover, this can be done using the fast Fourier
transform, which reduces the computational time essentially. The gradual passage
from the discrete to continuous spectrum is performed through the increase of
the realization length by adding points with zero signal values. When zeros are
added, the number of harmonics in the spectrum increases. To eliminate the effect
of decrease of the harmonic amplitude in the spectrum with increasing realization
length T , the factor 1=T must be excluded from the discrete Fourier transform.
Besides, factor 2 must be taken into account, because, unlike the discrete spectrum,
the continuous one contains only positive frequencies. Given these corrections,
the spectral density will be determined using the fast Fourier transform. Note that
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the increase of the realization length by adding zero points does not increase the
frequency resolution; i.e., the spectrum width of the segment of a sine curve remains
constant, while the number of harmonics in the spectrum increases.

The circles in Fig. 1 represent the discrete spectrum of our model signal extended
in time by adding zero points up to the duration of 101 days and 19.38 h. One can see
that the additional harmonics shown with the circles fall perfectly well on the profile
of the continuous spectrum of the model signal, and the spectral line profile is well
defined. Besides, it is evident from Fig. 1 that no increase of the realization length to
infinity is required to find the continuous spectrum with a finite accuracy, but it will
suffice to have a finite number of harmonics in the discrete spectrum. In principle,
the continuous signal can also be restored if necessary using the inverse integral
Fourier transform of the continuous signal found in this way. In the case of actual
observations, this is absolutely unnecessary, since our goal is to study the individual
p-modes that can be easily separated from the spectrum and only afterward can the
inverse Fourier transform be applied to each of the modes separately. As a result,
the analog signals will be isolated from the total signal for each of the oscillation
modes of interest.

Below, the continuous spectrum will be used to construct the analytical signals
for each of the oscillation modes. Thus, we pass to the continuous spectrum to be
able to single out the continuous spectra for each of the oscillation modes present
in the signal. By the way, the spectrum in Fig. 1, too, is only a part of the total
spectrum of the model signal, which involves the side frequencies due to periodic
interruptions of the signal when the satellite enters the Earth’s shadow. Since the
side harmonics are far enough from the central line, the spectrum of the “carrier
frequency” can be isolated and studied separately. The inverse Fourier transform
of the part of the total spectrum shown in Fig. 1 yields a continuous signal without
interruptions due to the satellite shadow entries. This differs fundamentally from the
restoration of the total signal including all p-modes and noise with the use of the
Shannon–Kotelnikov series.

Of course, after the signal restoration according to the Shannon–Kotelnikov
scheme and the subsequent determination of the continuous spectrum of the entire
signal, one can, theoretically, also isolate individual spectral lines and find the
continuous signal corresponding to each line by means of the inverse Fourier
transform (Fourier inversion). However, this scheme for finding the continuous
signal corresponding to an individual spectral line in the signal spectrum is very
difficult to realize in practice. Our scheme, where the continuous spectrum is found
by extending the realization through the addition of zeros, is very simple and does
not take much computational time owing to the use of the fast Fourier transform.

Passing to the continuous spectrum makes the procedure of determining the
maximum and mean spectrum frequency unambiguous and simple. As noted above,
an assumption about the shape of the spectral line has to be made to find the
spectral line maximum in the case of a discrete p-mode spectrum. For example, the
hypothesis of Lorentzian shape is often used, though we are not quite sure that it is
valid; moreover, the p-mode spectral lines were found to be asymmetric. Problems
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associated with the use of the discrete spectrum arise when the line in the spectrum
is at the resolution limit.

In this case, only a few harmonics of the discrete spectrum fall within the line
band as shown for our model signal in Fig. 1. One would think that it will suffice
to use a longer realization, which will ensure higher spectral resolution; i.e., more
harmonics will fall within the line band. However, in the case under consideration,
the lines of the p-modes split as the resolution increases, and each of the resulting
components again is at the resolution limit; i.e., the same problem arises.

The model signal was constructed taking into account the interruptions in
observation in order to find out how much the latter affect the oscillation spectrum.
For this purpose, we constructed the second model signal of the same duration,
but without interruptions. Its spectrum turned out to differ insignificantly from that
of the signal with interruptions. The continuous spectrum of the second signal is
also shown in Fig. 1. However, it is difficult to distinguish in the plot because of
insignificant difference between both spectra with the exception of the line wings,
which lie below and virtually coincide with the abscissa axis for the signal without
interruptions.

Analytical Signal and the Instantaneous Frequency

At first sight, the oscillation frequency, amplitude, and phase are trivial notions that
do not require special explanation. Actually, however, they were much discussed
mainly among radio physicists, since the demands of radio physics prompted a deep
insight into the subject.

The frequency of oscillations, in particular, the p-mode frequency is usually
thought of as the spectral frequency determined by the spectral analysis. How-
ever, besides the spectral frequency, there also exists the so-called instantaneous
frequency, which is a function of time. It may be suggested that this is one of
those frequencies that are determined by the wavelet analysis. But this is not the
case, because the wavelet analysis determines the frequency of the wave trains of
finite duration. The notions of the instantaneous frequency, amplitude, and phase of
oscillations cannot be defined without introducing the so-called analytical signal. It
is well known that, in the case of monochromatic oscillations, all calculations are
simplified significantly by passing to a complex signal A exp.i!t C ˆ/. The real
part of the complex signal is the physical signal, which is observed, measured, and
subjected to other procedures. A natural desire arises to use the complex signal in
the case of non-monochromatic signal, too, especially as all actual physical signals
are not monochromatic. The monochromatic signal is a convenient idealization that
is used to simplify the theoretical analysis.

It has been established [2, 8, 9] that the only consistent method for passing
from the real signal u.t/ to the complex one !.t/ is to introduce the so-called
analytical signal, which can be obtained through the inverse Fourier transform of
the continuous signal spectrum by the method described in the previous section.
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The analytical signal is

w.t/ D u.t/ C i�.t/ D A.t/eiˆ.t/ 1

�

1Z

0

W.!/ei!t d!; !.t/ D dˆ.t/

dt
; (2)

where the imaginary and real parts of the analytical signal are related by the Hilbert
transform:

�.t/ D H.�.t// D 1

�

1Z

�1

u.s/ ds

t � s
: (3)

Here, the integration is performed according to the Cauchy principal value; A.t/,
F.t/, and w.t/ are the instantaneous amplitude, phase, and frequency of oscillations;
and W.!/ is the spectral density. The analytical signal was first defined by
Gabor [4]. The use of the analytical signal runs into certain difficulties [2, 8, 9]
when broadband signals and fast amplitude variations are dealt with. But in the
case of p-modes, no difficulties arise, since their bandwidth is small compared to
their frequency, and the timescale of their amplitude variations is longer than the
period by many orders of magnitude. To find the analytical signal of an individual
oscillation mode, the integration in (3) is performed only within the frequency range
that involves the selected spectral line. For our model signal, the integral was taken
within the range indicated in Fig. 1.

Passing to the analytical signal, we shall be able to study the time evolution of
the signal amplitude and frequency separately. Obviously, the instantaneous and
spectral frequencies differ. Only their mean values !.t/ and Q! obtained by the time
and spectral averaging are equal. The averaging is performed as follows:

!.t/ D

1R
�1

!.t/A.t/2 dt

1R
�1

A.t/2 dt
D

1R
�1

!jW.!/j2 d!

1R
�1

jW.!/j2 d!

D Q!: (4)

Besides, there is a very important relationship between the second moments of
the instantaneous and spectral frequency that is reduced to:

!.t/2 C
�

dA.t/

dt

�2

D

1R
�1

!.t/2A.t/2 dt

1R
�1

A.t/2 dt
C

1R
�1

�
dA.t/

dt

�2

dt

1R
�1

A.t/2 dt

D

1R
0

!2jW.!/j2 d!

1R

0

jW.!/j2 d!

D f!2: (5)
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Fig. 2 Relative variations of the instantaneous frequency (a) and amplitude (b) as a function of
time for the continuous (dotted curve) and discontinuous (solid curve) model signals. The right-
hand panel shows also the time dependence of the instantaneous amplitude of the two model
signals corrected for the Hamming window function (7). In the latter case, the amplitude changes
insignificantly, except for the ends of the time interval. From [14, p. 329]

As follows from this formula, the relationship between the deviations .ı!/2 and
.�!/2 of the instantaneous and spectral frequency is:

.ı!/2 D !.t/2 � .!.t//2; .�!/2 D f!2 � . Q!/2;

.�!/2 D .ı!/2 C
�

dA.t/

dt

�2

: (6)

This formula reflects the important physical fact that the effective spectral width
determined by the deviation of the spectral frequency is the sum of the broadenings
caused by the frequency and amplitude modulations, which are equal, respectively,
to the instantaneous frequency deviation and r.m.s. fluctuation of the time derivative
of the instantaneous signal amplitude.

Thus, the introduction of the analytical signal allows us to separate two effects
that influence the spectral width. The formulas given above were first derived by
Fink [2, 3] for an analytical signal. It should be noted, however, that, long before
Gabor [4] introduced the analytical signal, the same formulas had been derived by
Rytov [6] for periodic signals.

Figure 2 shows the instantaneous frequency and amplitude of two model signals
described in the previous section. The relative (with respect to the exact frequency
� D 2899:775626 �Hz) variations of the instantaneous frequency of the continuous
model signal proved to be of the order of or smaller than 3 �10�8 outside the zones of
influence of the realization ends. The Hamming window used to analyze both model
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signals is rather efficient still it does not fully suppress the Gibbs effect, which gives
rise to spurious fluctuations of the instantaneous frequency and amplitude.

The somewhat stronger fluctuations of the instantaneous frequency of the
discontinuous model signal (solid curve in Fig. 2a) occur, probably, as a result of
the Gibbs effect due to the presence of unsmoothed interruption ends in the signal
that simulates the interruption in the DIFOS photometric observations because of
the telemetry failure in the second half of the observation period. This interruption
also manifests itself in the time dependence of the amplitude of the discontinuous
model signal. This becomes obvious only after the amplitude dependence has been
corrected by division by the Hamming window function, which equals to

H.t/ D 0:54 � 0:46 cos

�
2�t

T

�
; (7)

where T is the realization length.
As seen in Fig. 2b, the amplitude of the interrupted signal corrected by the

Hamming window function has a minimum in the second half of the interval.
It should be noted that the amplitude by no means drops to zero as might be
expected. This is because, actually, the instantaneous amplitude and frequency are
not instantaneous, but are rather the means for a certain time interval. The Gibbs
effect might, probably, be reduced by smoothing the ends of long interruptions in
observations; however, we did not do it, since the accuracy achieved in reproducing
the constant instantaneous frequency of the model signal proved to be very high.
This manifests itself particularly clearly in the relative accuracy of the mean
instantaneous frequencies .�.t/ � �0/=�0, which are, respectively, �1; 06 � 10�7

and �1; 03 � 10�9 for the continuous and interrupted signal; i.e., the mean instanta-
neous frequency is somewhat smaller than the true frequency of the periodic signal
used to construct the model signals. Thus, the accuracy of the signal frequency
was extremely high. This justifies the use of the method of analytical signal for
the analysis of actual observations. The deviation of the instantaneous frequency
ı� of both signals was zero. This suggests that using the analytical signal allowed
us to establish that both model signals are exactly harmonic, which could not be
established using the ordinary harmonic analysis of the signal.

Thus, introducing the Hamming window resulted in an insignificant shift of
the mean frequency and did not lead to a broadening of the signal spectrum due
to the spurious modulation caused by the Gibbs effect. Consequently, the analysis
of the instantaneous frequency deviation shows that the spectral line width of the
model signal is determined only by amplitude fluctuations. This agrees with the
fact, since the model signals are segments of a sine wave. The use of the Hamming
window introduces an additional amplitude modulation, which leads to a broadening
of the spectrum: the widths of the spectra calculated with the analytical signal are
1.714 and 1:722 �Hz for the continuous and interrupted model signals, respectively.
The spectrum width of both model signals found by calculating the second moment
of the continuous spectrum turned is 1:726 �Hz; i.e., equality (5) holds to within
the third decimal place. The correction of the analytical signal amplitude through
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division by the function H.t/ reduced the spectrum widths of the two model signals
to 1.458 and 1:442 �Hz, respectively, owing to the decrease of the signal amplitude
fluctuations. The suggested amplitude correction does not cause undesirable effects,
such as the Gibbs effect, which restricts significantly the capabilities of the spectral
analysis.

In the next section, the analytical signal is used to analyze the observations of
p-modes within the frames of the CORONAS-F/DIFOS experiment.

Observation of the Solar Brightness Fluctuations

The DIFOS experiment on board the CORONAS-F satellite [5] was designed to
observe the global oscillations of the Sun and to study its interior structure. The
observations were made with a multi-channel photometer, DIFOS, which measured
the intensity fluctuations of the solar radiation from the ultraviolet to near infrared
range simultaneously in six optical bands. Two measuring channels (for 650 and
850 nm) were dubbed to estimate the proper noise contribution of the device.
Figure 3 illustrates the functional diagram of the DIFOS photometer. Only three
of the eight spectral measuring channels are represented for simplicity.

The CORONAS-F/DIFOS photometer was measuring the emission intensity
simultaneously in six spectral channels: 350, 500, 650, 850, 1,100, and 1,500 nm
with a bandwidth of 10 % of the central frequency covering a broad spectral range
from the near ultraviolet to infrared radiation.

The relative intensity resolution of the photometer was 2 � 10�6 of the total solar
irradiance; the intensity sampling rate was 33.554 s; the spatial resolution was absent
(accessible to observation were the lower-order oscillation modes with l 6 3); the
field of view of the photometer was 2ı; the orientation of the photometer optical axis
to the center of the Sun was no worse than 100 (controlled by the satellite navigation
system).

The CORONAS-F satellite was launched on 31 July 2001 to the high-latitude
.82:5ı/ circular orbit at a height of about 500 km. The DIFOS photometer was
brought into operation on 15 August 2001 and was functioning without interruption
until the end of the CORONAS-F mission on 3 December 2005. During this period,
the solar radiation intensity was measured in the vicinity of and after the maximum
of Cycle 23. The total length of the records obtained amounts to 4 years, 3 months,
and 11 days.

Figure 4 shows the relative position of the spectral channels of the
CORONAS-F/DIFOS photometer and the SOHO instruments.

The DIFOS photometer started measurements on 22 August 2001. The data on
radiation intensity were transmitted from the satellite via two independent telemetry
systems. This allowed us to restore by comparison the data lost as a result of
the failure in one of the systems. The analysis showed a good quality of the
data obtained. The losses did not exceed 10 % of the photometer operation time
and were associated mainly with the quality of reception of the telemetry at the
receiving points.



36 Yu.D. Zhugzhda et al.

PHOTO RECEIVER UNIT ELECTRONICS UNIT

   Photo receiver
calibration system

   Current-
to-frequency 
  converter

Thermostat 
control system

Control and 
 synchroniz. 
   scheme

RTS 
interface

   SSNI
interface

  Secondary 
power supply 
       unit

    Data 
acquisition 
  system

Fig. 3 The functional diagram of the multi-channel photometer. From [5, pp. 871–875]

DIFOS
nm

Fig. 4 The relative position of the spectral channels of the DIFOS photometer and the SOHO
helioseismic instruments (MDI Michelson Doppler Imaging of solar oscillations, GOLF Global
low-degree velocity, LOI Luminosity Oscillation Imager, and SPM SunPhotoMeter). From
[5, pp. 871–875]

Figure 5 represents a record obtained in one of the photometer measuring
channels along the sunlit part of the satellite trajectory. The trend observed is
attributed to the scattering of light reflected from the Earth surface that gets inside
the instrument. The figure shows the analytical curve that approximates the trend.

After cleaning the record shown in Fig. 5 (subtracting the photo receiver dark
currents and trends, normalizing, etc.), we obtained the variation of the solar
emission intensity represented in Fig. 6. The intensity variation in this figure does
not exceed 0.02 % of the total flux. The time series of the required length composed
of such one-rotation records was used to obtain the amplitude spectra in the spectral
range of 0–5 �Hz.
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Fig. 5 The intensity of solar radiation as measured in the 350 nm channel along the sunlit part
of the satellite trajectory. The trend is due to the light scattered and reflected from the Earth’s
atmosphere. The analytical fitting curve is presented. From [5, pp. 871–875]
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Fig. 6 Variations of the solar emission intensity as measured in the 350 nm channel. From
[5, pp. 871–875]

The Instantaneous Amplitude, Frequency, and Phase
of p-Modes at Various Levels in the Photosphere

The analytical signal method was used to analyze the solar brightness fluctuations
observed within the frames of the CORONAS-F/DIFOS experiment.

The eight-channel photometer, DIFOS, was designed to observe the Sun as a star
in six optical bands, namely, 350, 500, 650, 850, 1,100, and 1,500 nm. DIFOS had
two independent photometers in each of the 650 and 850-nm bands, which enabled
us to estimate the noise by comparing the signals in the parallel channels.
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The data from the 1,100-nm channel will not be used because, unfortunately, they
contain much noise, which is, apparently, due to the glare associated with reflections
from the surrounding equipment.

The series of observations used for the analysis is a bit longer than a week,
which is very short by today’s standards. Nevertheless, it was not only sufficient
to demonstrate the efficiency of the method based on the use of an analytical signal,
but also provided some new results essential to helioseismology. Two modes with
l D 0 and n D 20, 21 were chosen for the analysis. The modes with l D 0

were taken because they are not subject to splitting due to the solar rotation,
which complicates the analysis significantly. The analytical signal for the chosen
realization was constructed by exactly the same method as that used for the model
signal with interruptions considered above.

Figure 7 illustrates the time dependence of the instantaneous amplitude. The
instantaneous amplitude is corrected for the Hamming window. The amplitude
variations differ in character for the two chosen modes. The amplitude for the
n D 20 mode changes more smoothly than that for n D 21. The time variations
of the instantaneous frequency of both modes also differ essentially. Compared to a
smooth frequency variation of the n D 20 mode, the n D 21 mode displays narrow
peaks of the instantaneous frequency. Particularly prominent are the instantaneous
frequency maxima recorded in the 1,500-nm channel, which measures emission
from the deepest photospheric layers. The maxima of the instantaneous frequency
correspond to the minima of the instantaneous amplitude. This is particularly well
pronounced in the 1,500-nm channel, whose amplitude is smaller than that of the
other channels and is located in the lowest part of Fig. 7. The variations in the phase
shift also correlate closely with the instantaneous frequency fluctuations: the phase
variations are fastest at the instantaneous frequency maxima. It seems that the
instantaneous frequency of the n D 20 mode also tends to reach the maximum
immediately outside the time interval under examination; however, one cannot rule
out that this is merely the effect of the realization ends. On the whole, the behavior
of the analytical signal for the two chosen modes is different.

Figure 8 represents the results of calculation of the mean oscillation frequencies,
dispersions, and phase shifts using both the oscillation spectra and the analytical
signal. The left column illustrates the oscillation phase shifts with respect to the
1,500 nm channel. The phase shift between the channels was determined by two
methods. The circles in Fig. 8 show the phase shifts determined from the spectra
constructed for each channel. The phase shifts for the parallel channels do not
always coincide perfectly. This can be attributed to the influence of noise or scattered
light, which may differ in the parallel channels. The lines in Fig. 8 were plotted using
the mean values in the parallel channels. The phases were also determined by time
averaging of the phase difference between the analytical signals of the channels.
In this case, the phase differences in the parallel channels did not always coincide
either.

The phase differences determined by two methods proved to agree perfectly well.
They clearly revealed the delay of oscillations in the 500-nm channel relative to



Brightness Fluctuations and Global Oscillations of the Sun (DIFOS Experiment) 39

Ph
as

e,
 ra

d.

(µ
H

z)

A
m

pl
itu

de
A

m
pl

itu
de

(µ
H

z)

Ph
as

e,
 ra

d.
Time, day Time, day Time, day

Time, day Time, day Time, day

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 7 The instantaneous amplitude (in units 10�5 of the mean solar flux in the corresponding
photometer channel), the excess of the instantaneous frequency .�Hz/ above 2,896 and 3,029, and
the phase shifts (rad) in the optical channels of 350, 500, 650, and 850 nm relative to the 1,500-nm
channel. The upper row of plots was constructed for the mode with l D 0, n D 20 and the lower
one, for l D 0, n D 21. From [14, p. 329]

those in the 350- and 1,500-nm channels by �30 s, which corresponds to the phase
velocities of �3 km/s.

The emissions at 350 and 1,500 nm come, respectively, from the uppermost
and the deepest photospheric layers, while the emissions at 500, 650, and 850 nm
originate in the middle photosphere. Hence, the waves from the upper and lower
layers travel to the middle photosphere. A seemingly odd behavior of the waves
can be naturally explained in terms of the nonadiabatic wave theory, which we shall
consider in detail when discussing our results.

The middle column in Fig. 8 presents the frequencies of the two chosen modes
determined both directly from the continuous spectrum and by averaging the
instantaneous frequency. The frequencies obtained by two different methods differ.
Being insignificant for the n D 20 mode, this difference can no longer be attributed
to inaccurate calculation for the n D 21 mode. This is because the signal is not
a single-component one as will be shown in the following section. Anticipating
that discussion, we should emphasize that equality (4) is only valid for a single-
component signal, i.e., for a quasi-monochromatic signal with smoothly varying
frequency and amplitude.

It should also be noted that the p-mode frequencies change from channel to
channel. The knowledge of the cause of this variation is essential to helioseismology,
since the main objective of the latter is to determine the solar eigenmode spectrum
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Fig. 8 Mean parameters of the l D 0, n D 20 (upper row) and l D 0, n D 21 (lower row) modes.
The left column represents the phase differences between the 350, 500, 650, and 850-nm channels
and the 1,500-nm channel. The squares denote the differences of the time-averaged instantaneous
phases ˆ.t/. The crosses show the phase differences at the maxima of the continuous spectra
in the corresponding channels. The middle column represents the mean instantaneous frequency
!.t/ (squares) and spectrum-averaged frequency Q! (crosses). The circles denote the frequencies at
the maxima of the continuous spectra in the corresponding channels. The right column represents
the full line widths determined directly from the spectrum (circles) and by using the analytical
signal (crosses), as well as the contribution to the full line width from the amplitude (squares) and
frequency (circled crosses) modulation. From [14, p. 329]

as accurate as possible. Generally speaking, the instantaneous frequency of a signal
can change when passing through linear systems, while the spectral frequency must
remain constant.

The true spectral frequency can only be found by averaging over a sufficiently
long time interval. In other words, averaging over a short time interval will yield
but a smoothed instantaneous frequency. How long the averaging interval must be
for obtaining the spectral frequency depends on the stability of the signal. We shall
return to this question when discussing the observation results. Note, however, that
the useful signal can be affected by various noise components, including those of
solar origin. The first thing that calls our attention is a significant difference between
the properties of the n D 20 and n D 21 modes as we noted above when analyzing
the behavior of the instantaneous frequencies and amplitudes of oscillations. The
range of channel-to-channel variations of the mean frequencies is much larger for
the n D 21 mode. As shown in the next section, this is due to the presence of a
signal close in frequency.
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The right column in Fig. 8 shows the full line widths obtained both directly from
the spectrum and with the use of the analytical signal, as well as the contribution to
the spectrum width from the frequency and amplitude fluctuations. The full spectral
widths determined by both methods virtually coincide as they should do according
to the theory (5). The contributions to the line width from the amplitude and
frequency fluctuations cannot be separated unless we use the analytical signal (5).
Again, an essential difference can be noted between the parameters of the two
modes.

The spectral width for the n D 20 mode is at the resolution limit depending on the
realization length and does not virtually change throughout the photosphere, which
is covered completely owing to the choice of frequencies of the optical channels.
The line width is determined, primarily, by the amplitude modulation, while the
contribution of the frequency modulation is insignificant. The spectral width for the
n D 21 mode is much larger, although the contribution of the frequency modulation
is also small. An important factor is that the spectral width is determined by the
amplitude modulation rather than the realization length as is, apparently, the case
for the n D 20 mode.

Indeed, in the latter case, the difference between the line widths determined by
two different methods, as well as the width values themselves differ little from those
found above for the model signals. This implies that the n D 20 line width may be
even smaller, which can be revealed if longer observation series are processed. The
analysis of the n D 21 mode will be continued in the next section where we shall
propose another method for studying oscillations based on the analytical signal.

The relationship between the effects of amplitude and frequency fluctuations is
of particular interest in the context of determining precise p-mode frequencies.
At present, it is believed that the full line width is the measure of accuracy
of the oscillation frequency. This follows from the assurance that the amplitude
and frequency fluctuation effects responsible for the p-mode line broadening are
impossible to separate.

True enough, these effects cannot be separated using the classical spectral
methods. Actually, it is not the full line width .�!/2 but the instantaneous
frequency deviation .ı!/2 resulting only from the frequency fluctuations that must
be considered the true accuracy measure of the oscillation frequency. This obvious
fact is not questioned, for example, when the methods for measuring the frequency
of quantum frequency standards are developed. However, when applied to the results
of our analysis, this approach runs into some fundamental difficulties associated
with rather small frequency fluctuations of the p-modes under examination. For
example, if the spectral line width for the n D 20 mode were determined by the
frequency fluctuations alone, it would not exceed 0:4 �Hz. This value is much
smaller than the uncertainty in the frequency determination, 1:65 �Hz, which
follows from the uncertainty relation �! �t 6 1.

On the other hand, with the model signal as an example, we could make sure
that the accuracy of determining the frequency using the analytical signal is actually
limited by the accuracy of our calculations. At the same time, the frequency of
the maximum of the continuous spectrum of the model signal also coincides with
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the frequency of the model signal within the calculation accuracy. Likewise, the
frequencies of the spectral maxima and the mean instantaneous frequencies of both
modes under discussion are very close in all optical bands as is readily seen in Fig. 8
(middle column). However, it also follows from Fig. 8 that the difference between
the spectrum-averaged frequencies and the time-averaged instantaneous frequencies
is much larger because of the amplitude modulation.

We believe that the goal of the helioseismology must be determining the
mean instantaneous frequency over long time intervals. These mean frequencies
must, in principle, coincide with the frequencies of the maxima of spectral lines
in the continuous spectrum. However, as noted above, the latter are difficult to
determine because of the jaggedness of spectral lines in the spectra obtained by
long-term observations. We hope that the use of the analytical signal will help us
overcome this difficulty. An important advantage of using an analytical signal is the
possibility to determine the instantaneous frequency deviation, which is the measure
of stability and accuracy of the solar eigenmode frequency. It is to be emphasized
that the reasoning above suggests implicitly that the signal under examination is
monochromatic. Of course, this assumption is not always valid. In the next section,
we show that using an analytical signal helps us overcome this difficulty in the data
analysis.

The Analytical Signal and Separation of a Two-Component
Signal

In numerous applications of the method of analytical signal (the analysis of
radio engineering circuits, nonlinear oscillations, random processes, parametric
oscillations, etc.), it is always emphasized that the method is suitable, primarily, for
the study of narrow-band monochromatic signals. The effects related to the influence
of various types of noise were also considered, but it was specially noted that the
presence of other narrow-band signals involves serious problems making the use of
the analytical signal inefficient [1, 6].

Let us show that this opinion is erroneous, and the use of an analytical signal is
quite efficient in the particular case of a two-component signal. This approach can
also be applied to a three-component signal.

Let us consider the simplest two-component real signal

u.t/ D A1 cos.!1t C '1/ C A2 cos.!2t C '2/; !1;2 D 2��1;2;

A1; A2 > 0; !1 > !2: (8)

The imaginary part of the analytical signal for this real signal is

�.t/ D A1 sin.!1t C '1/ C A2 sin.!2t C '2/; (9)
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and its instantaneous frequency and squared instantaneous amplitude are, respec-
tively,

!.t/ D A2
1!1 C A2

2!2 C A1A2.!1 C !2/ cos..!1 � !2/t C '1 � '2/

A2.t/
; (10)

A2.t/ D A2
1 C A2

2 C 2A1A2 cos..!1 � !2/t C '1 � '2/: (11)

The amplitude and frequency of the analytical signal are periodic functions with
a period T D 2�=.!1 � !2/ D 1=.�1 � �2/.

The frequency and amplitude extrema of the analytical signal occur at the times

Text D .n � �'/T; n D 0; 1; 2; : : : ; �' D '1 � '2 (rad), (12)

and the frequency and amplitude values at the extremum are, respectively

�max 1 D A1�1 C A2�2

A1 C A2

; �max 2 D
ˇ̌
ˇ̌A1 � �1 � A2�2

A1 � A2

ˇ̌
ˇ̌ ; (13)

Amax 1 D A1 C A2; Amax 2 D jA1 � A2j: (14)

If the instantaneous frequency at its extrema and the distance T between its
maxima or minima are known, then the harmonic frequencies of the two-component
signal can be derived from the above formulas:

�
.1;2/
2 D 1

2

 
�max 1 C �max 2 � 1

T
C
r

.�max 1 � �max 2/2 C 1

T 2

!
;

�
.1;2/
1 D �

.1;2/
2 C 1

T
: (15)

Naturally, the harmonic frequencies of the signal do not depend on the amplitudes
of the constituent harmonics. The first pair of frequencies �

.1/
1 , �

.1/
2 corresponds to

the case when the higher-frequency harmonic has smaller amplitude. In this case, the
minima of the instantaneous frequency are sharper than the maxima. The other pair
of frequencies corresponds to the case when the amplitude of the higher-frequency
harmonic exceeds that of the lower-frequency one. In this case, the maxima of the
instantaneous frequency are sharper than the minima as shown in Fig. 9 analyzed
below.

Knowing only �max 1, �max 2, and T , we can obtain the harmonic amplitude ratio

A1

A2

D
ˇ̌
ˇ̌�max 1 � �2

�max 1 � �1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌�max 2 � �2

�max 2 � �1

ˇ̌
ˇ̌ : (16)

In order to find the absolute values of the constituent harmonic amplitudes of a two-
component signal, it is necessary to determine additionally the variation range of the
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Fig. 9 The instantaneous frequency vs. time (panel a, solid line) and the oscillation spectrum
(panel b) in one of the 850 nm channels. The dotted line shows the calculated instantaneous
frequency. From [14, p. 329]

instantaneous amplitude Amax 1 �Amax 2, which is twice the amplitude of the smaller
harmonics

jA1 � A2j D 2 min.A1; A2/: (17)

Figure 9a illustrates the time dependence of the instantaneous frequency for
the n D 21 mode in one of the 850 nm channels of the DIFOS photometer. The
same picture represents the instantaneous frequency calculated for a two-component
signal with the frequencies �1 D 3033:23 �Hz and �2 D 3030:93 �Hz and the
harmonic amplitude ratio A1=A2 D 3:02. The harmonic frequencies and their ratio
were found from (15) and (16), and the maxima of the observed and calculated
signals were matched by choosing the phase '1 � '2, whose variation makes the
instantaneous frequency maxima shift along the time axis. The coincidence of the
observed and calculated signals is nearly perfect. Thus, it can be established reliably
that, apart from the principal harmonic, the signal contains a second harmonic with
an amplitude three times smaller than that of the principal harmonic and a frequency
differing by only 2:3 �Hz.

In order to demonstrate an exceptional sensitivity of the instantaneous frequency
to the presence of additional signal components, Fig. 9 (right-hand panel) shows the
spectrum of the n D 21 mode for the 850 nm channel. It is clear that not only is such
a weak additional component in the spectrum of the n D 21 mode impossible to
isolate by any methods of the classical spectral analysis, but one cannot assert with
confidence that the oscillation consists of two harmonics rather than being a single
mode with an asymmetric spectrum. The signal separation into harmonics with the
aid of an analytical signal is very efficient and allows us to establish reliably that
the spectrum asymmetry of the n D 21 mode is due precisely to the presence of the
second harmonic with a factor of three smaller amplitude.
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Fig. 10 Panel a: crosses are the mean frequencies !.t/ and Q! of the n D 21 mode before the
harmonic separation, squares and crossed squares stand for the high- and low-frequency harmonics
of the two-component signal, and circles indicate the frequencies corresponding to the maxima of
the continuous oscillation spectra in each channel. Panel b: the harmonic amplitude ratio as a
function of wavelength. From [14, p. 329]

The separation into components for the n D 21 mode was performed for the
brightness fluctuations in all optical channels of the DIFOS photometer. Not in
all channels, the choice of the two-component signal was so ideal because of
the slow, smooth frequency variations with time, which made the interaction of
two modes differ from the ideal case of a two-component signal with constant
harmonic amplitudes. As a result of slow variations of the instantaneous frequency,
the maxima differ in height as seen, for example, in Fig. 7 (the lower middle panel).
However, some uncertainty in choosing the height of the maxima turned out to have
little effect on the frequencies and amplitudes of the components of the complex
signal. Besides, a double maximum is sometimes observed suggesting the presence
of a third component.

Figure 10 illustrates the results of harmonic separation for the n D 21 mode for
all optical channels of the DIFOS photometer. The squares in Fig. 10a denote the
frequencies of the n D 21 mode after the harmonic separation.

After the effect of the spurious harmonic has been removed, the n D 21 mode
frequencies turned out to be similar to those determined from the position of the
spectral line maximum and denoted by circles in the figure. For comparison, the n D
21 mode frequencies determined before the harmonic separation both by averaging
the instantaneous frequency and by averaging over the spectrum are plotted in the
same figure with crosses. The frequencies of the spurious harmonic indicated with
crossed squares are seen to be, on average, lower than the n D 21 mode frequency
by 3 �Hz. Figure 10b shows the ratio of the spurious harmonic amplitude to the
amplitude of the n D 21 mode. The relative amplitude of the spurious harmonic
increases from 0.3 to 0.7 as we pass from the 350 nm to the 1,500 nm channel, which
corresponds to the transition from the topmost to the deepest photospheric layers.
Accordingly, the effect of the spurious harmonic on the frequency of the signal not
separated into components increased with the increase of its amplitude.
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The relationship between the mean frequency of the two-component signal !.t/

and the frequencies of its components !1.t/, !2.t/ is expressed by a simple formula

!.t/ D .A1.t//2

.A.t//2
!1.t/C .A2.t//2

.A.t//2
!2.t/; .A.t//2 D .A1.t//2 C.A2.t//2: (18)

The mean frequency of the two-component signal can be easily calculated from this
equation using the harmonic separation scheme described above.

Thus, it was established that the difference between the n D 20 and n D 21

modes is associated with the effect of the spurious signal. After the latter was elim-
inated, the channel-to-channel variation of the n D 21 mode frequency decreased
significantly reaching approximately ˙0:25 �Hz. However, this amplitude of the
channel-to-channel frequency variation is twice the variation amplitude of the
n D 20 mode. This difference between the modes is due to the presence of another,
higher-frequency spurious harmonic that distorts the n D 21 mode spectrum. The
presence of such harmonic is suggested by the double maxima of the instantaneous
frequency. The effect of this harmonic on the n D 21 mode frequency can also be
eliminated, but we will not go into this problem here.

Discussion of the p-Mode Properties

The channel-to-channel phase variations revealed for the n D 20 and n D 21

modes suggest that phase shifts exist between the oscillations at different depths
in the photosphere. This oscillation property could only be established on the
basis of data from the DIFOS experiment—the only helioseismic experiment that
allows the solar eigenmodes to be observed simultaneously in various bands of the
continuous spectrum formed at all levels in the photosphere from the temperature
minimum to the deepest layers where the �1,500 nm emission originates. The phase
shift is the result of nonadiabatic nature of the oscillations. The 5-min oscillations
in the photosphere are evanescent waves. The evanescent waves occur due to
the total internal reflection in a medium in which the reflection takes place. In
homogeneous media, they decrease exponentially with increasing distance from
the boundary between the media where the reflection occurs. This is why they
are called “evanescent.” In contrast to the homogeneous media, in a stratified solar
atmosphere, in which the density decreases with height, the amplitude of evanescent
waves increases with height as we move away from the site where the total internal
reflection of the waves coming from the resonance layers under the photosphere
takes place. However, the energy density of evanescent waves in the photosphere
decreases rapidly with height.

The phase of nonadiabatic evanescent waves must remain constant; i.e., the
evanescent waves can only propagate along the surface from which the total internal
reflection takes place.
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The phase shifts between the evanescent oscillations at different distances arise
only if the oscillations are nonadiabatic. The cause of the phase shifts between the
oscillations at different distances from the site of the total internal reflection and,
accordingly, the appearance of traveling evanescent waves is the wave absorption
due to the nonadiabaticity of oscillations.

The traveling waves transport energy to the places where the absorption is the
fastest. In the photosphere, the efficiency of the radiative heat transfer responsible
for the nonadiabaticity changes with depth. It is for this reason that the waves at
different photospheric depths do not coincide in phase as revealed from DIFOS
data. There are no other reasons that could lead to such effect. It should be noted that
the theory of nonadiabatic waves in the photosphere encounters serious difficulties
associated with the dependence of the radiative heat transfer on depth and the effect
of temperature waves in the photosphere that interact with the p-modes [11–13].

A more detailed comparison of theory and observations requires both further
development of the theory and analysis of the effect under discussion using a larger
set of data from the DIFOS experiment.

As noted in introduction, despite the availability of very long-term observations,
the accuracy of determining the oscillation frequencies corresponding to so long
data series could not be achieved. This is explained by the jaggedness of the
p-mode spectra. The method of analytical signal must help us resolve this problem,
since it allows the separation of fluctuations of the amplitude and instantaneous
frequency. The following procedure can be suggested. Comparing the amplitude
and instantaneous frequency fluctuations, we can determine which of the amplitude
fluctuations are associated with the spurious signals or with the signal splitting
into components. These amplitude fluctuations are accompanied by frequency
fluctuations. After that, the spurious signals and the additional components of the
main signal can be singled out and eliminated (the latter procedure is not described
in this section). After such signal cleaning, the jaggedness of the spectral line must
disappear, and its width will correspond to the true line width of the p-modes.
The accuracy of the frequency determination must increase accordingly and, in our
opinion, it will be determined by frequency fluctuations alone rather than by the full
half-width of the spectrum, which involves amplitude fluctuations.

The study of the p-mode properties described above has revealed a high
stability of the oscillation frequency. The line broadening on account of frequency
fluctuations turned out to be no more than 0:4 �Hz, which corresponds to the
relative stability of the oscillation frequency of 10�4 or to a typical frequency
variation timescale of the order of a month. This is in a certain conflict with the
idea of stochastic excitation of oscillations, which is bound to lead to dephasing
at every exciting “impact.” This must be reflected in short-term variations of the
instantaneous frequency, since the latter is a time derivative of the phase. Besides,
there must be fluctuations of the instantaneous amplitude synchronized with the
dramatic changes in the instantaneous frequency.

The method of analytical signal seems to be perfectly suitable for studying the
stochastic excitation of oscillations. However, nothing of the kind is observed in the
above results. This is, probably, due to the fact that the characteristic timescale of
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the stochastic fluctuations is of the order of 1 or 2 days. As a result, side frequencies
must appear outside the main, central p-mode line. As emphasized repeatedly, the
suggested method must be used to analyze long series of observation data, which
will be done in the future.

The analytical signal concept described above differs from the method proposed
by White and Cha [10] and applied later by Stebbins and Goode [7].

These authors found the analytical signal for the entire realization and not for a
separate oscillation mode as we did. As a result, they determined the instantaneous
frequency of the multi-component signal comprising all oscillation modes and the
noise. Such a complex signal is, virtually, impossible to deal with. There are no
methods for isolating the amplitudes and frequencies of individual modes from such
a complex, multi-component analytical signal. Besides, because of an elementary
mathematical error, the authors arrived at a conclusion that the purely amplitude
modulation of the harmonic signal must be accompanied by the appearance of
maxima of the instantaneous frequency. This is entirely in contradiction with the
principle of separating the amplitude and frequency modulations.

Dependence of the Oscillation Amplitude on the Observation
Wavelength

One of the scientific problems that had to be approached in the course of the DIFOS
experiment was the relationship between the p-mode amplitude and the observation
wavelength. It is known that the solar radiation at different wavelengths originates
at different subphotospheric levels, the 1,500 nm emission coming from the deepest
layers.

The “amplitude–wavelength” relation was determined by two methods. The first
one was as follows. We plotted the oscillation spectra for each of the spectral bands.
The length of the data set was chosen such that it did not exceed the p-mode
characteristic lifetime (from 3 to 10 days) but was sufficient for the individual p-
modes to be reliably resolved and identified. The optimal length of the data set was,
in our opinion, about 2 days, which corresponded to 30 orbital revolutions of the
satellite. In order to increase the signal-to-noise ratio, we summed up these 2-day
spectra over a sufficiently long time interval. An example of such summary spectrum
for one of the observation channels is represented in Fig. 11.

The amplitudes of about ten reliably identified p-modes, the same for all
observation channels, were derived from the spectra for each spectral band, and
the results obtained were used to plot the “amplitude–wavelength” relation.

In the second method, the amplitude spectra were plotted using the time series
corresponding to each particular orbital revolution. These spectra were summed
up for the same time interval as in the first method. In this case, the individual
oscillation modes could not be resolved, but the envelope of the 5-min oscillation
spectrum was obtained for each observation band (Fig. 12).
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Fig. 11 Amplitude spectrum of the 5-min solar oscillations in the 650 nm spectral band based
on the 2-day series of CORONAS-F/DIFOS data (orbits 1831–1920, 144 h, 29 November to
5 December 2001). From [5, pp. 871–875]
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Fig. 12 Amplitude spectrum of the 5-min solar oscillations based on the series of one-revolution
CORONAS-F/DIFOS data (orbital revolutions 1831–1920, 29 November to 5 December 2001).
The fitting curves for the noise component are presented

The “amplitude–wavelength” relation was plotted using the amplitude ratios that
correspond to the maximum of the spectrum envelope .3;000 �Hz/.

The plots obtained by both methods are shown in Fig. 13.
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Fig. 13 The p-mode amplitudes vs. the observation wavelength for individual oscillation modes
and for the spectrum envelope

.

.

.

.

.

.

.

.

A
m

pl
itu

de
, r

el
at

iv
e 

un
its

Wavelength, nm

Oscillations+noise
Oscillations
Noise
SPM SOHO
Jimenez

Fig. 14 The amplitude of p-modes, solar noise, and total signal (oscillations C noise) as a
function of the observation wavelength

One can see that the two curves agree perfectly well. A minor difference in the
long-wave range is, apparently, due to the fact that the first method was applied to
the range of 2,500–3,500 �Hz and the second one, only to 3,000 �Hz.

The spectral curves in Fig. 12 show that the p-mode amplitude can be separated
from the solar noise by approximating the noise component to the 5-min oscillation
range and, then, subtracting it from the total signal. The result of such calculation is
represented in Fig. 14.
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To interpret the results obtained, we need a theory of solar brightness fluctuations
under the effect of the p-modes. It is necessary to find out how the oscillation ampli-
tude and phase depend on the wavelength band the fluctuations are measured in.

Since the brightness fluctuations caused by the p-modes have small amplitudes,
we can use the linear approximation and expand the expression for the solar
radiation flux into minor disturbances of temperature and density. This yields the
following expression for the brightness fluctuations at a frequency �:

ıF� D
1Z

0

dB�.��/

d ln T

ıT .��/
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where �� is the optical depth at the frequency �, B�.��/ is the Planck function as
a function of optical depth, E2.��/ is the integral exponential function, ��.��/ is
the absorption coefficient at a given frequency, ıT and ı� are the temperature and
density fluctuations caused, in our case, by the p-modes, and T0 and �0 are the
undisturbed temperature and density values at a given optical depth.

This formula takes into account two effects responsible for fluctuations of the
solar radiation at a given frequency. The first integral in the formula accounts for the
temperature dependence of the Planck function and appears as a result of expansion
of the latter into minor temperature disturbances with allowance for the linear term
alone. The other terms appear because the absorption coefficient depends on both
temperature and density. In the linear approximation, this can be expressed as:

ı�� D
�

@��
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�

�
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�

@��

@�

�

T

ı�: (20)

If the absorption coefficient increases as a result of temperature and density
fluctuations, the flux emerging from the photosphere decreases and vice versa. In
order to simplify the general formula, we assumed that the p-modes do not differ
significantly from adiabatic oscillations. In this case, the density fluctuations are
expressed in terms of the temperature fluctuations as follows:

ı�

�0

D ıT

.	 � 1/T0

: (21)
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Fig. 15 The dependence of the p-mode amplitude and the theoretical dependence of the solar
brightness fluctuations on the observation wavelength

Using this formula, we can obtain an expression for the solar brightness,
which depends only on brightness fluctuations. However, to calculate this integral
expression, we need to know how the temperature fluctuations depend on depth.
It may be assumed that ıT=T0 D const, i.e., is independent of depth. In this special
case, we can remove ıT=T0 from under the integral sign and perform integration.
Such calculations were made using the photosphere models [15]. The results are
represented in Fig. 15.

A certain discrepancy between the theory and observations may be due to the
assumption of nonadiabaticity of oscillations and ıT=T0 D const, as well as to
the use of the mean inhomogeneous atmosphere model that takes no account of the
granulation.
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