
Fundamentals of Persistence 2

Abstract

This chapter is the heart of the book. It explains algorithms, technical details and

programming tricks of various approaches to implementation of persistent

data—binary and ASCII serialization, memory paging, disk paging and smart

pointers. The last section presents QSP (Quasi-Single-Page), a new design of

persistent data which, besides other languages, also works in Objective-C and

with iPhone applications.

Keywords

Algorithm • Hidden pointer • Object graph • Pointer mask • Regular pointer •

Reference • Smart pointer • Swizzling pointers • Traversing objects

This chapter describes several different approaches to the implementation
of persistent objects, including algorithms and implementation techniques
some of which may not have been published. We start with the concept of
pointer mask which, for each class, stores the information about the
location of its pointers.

Some algorithms and implementation techniques presented in this chapter have

never been published. All the examples in this Chapter are coded in C++, yet many

of these ideas are also applicable to other languages. We’ll start with the concept of

the pointer mask which, for each class, stores the information about the location of

its pointers.

Pointer Mask is an object that is used to capture the structure of a class, focusing

specifically on where its pointer members are located. You can think of it as a

singleton instance of the class which is first filled out with zeros and then all its

pointers are set to small positive integers, either 1 (just to identify the pointer

location) or to a number specifying the pointer type.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_2, # Springer-Verlag Berlin Heidelberg 2014

37

Pointer masks have many uses and advantages:

– They tell us instantly (both in code and visually) where we have all the pointers.

– They make it easier to code and debug algorithms.

– They are easy to generate automatically.

– Other representation such as the list of pointers and their offsets within the object

can be easily derived from the mask.

– By comparing the masks, we can see whether the old/new classes are different.

Another way of looking at the pointer mask is to start with the fact that, within any

object, pointers always start on a 4-byte boundary.1 Imagine any object broken down

into 4-byte sections of potential pointer locations. Instead of some valid pointer, the

mask stores an integer in each of these four bytes, so naturally it has the same size as

any instance of this class. These integers are 0 for those object members that represent

just numbers or text, and are set to non-zero value for pointers.

When constructing a pointer mask, it is important to know that, at the setup time,

just before the program starts to run, the persistent system assigns to each class an

integer index. It is the same code as if you wanted to find out how many application

classes are involved:

class Utill {
static int classesCount;

};
class Library {

static int classIndex;
};
class Book {

static classIndex;
);
class Author {

static classIndex;
};

int Util::classCount=0;
int Library:classIndex=classCount++;
int Book:classIndex=classCount++;
int Author:classIndex=classCount++;

1 On a 64-bit architecture, it is 8-bytes.

38 2 Fundamentals of Persistence

POINTER MASK (Example)

class Book { class Author {
int numPages; ...
char *title; ...
char category static int classIndex;
Author *authors; };
Book *next;
static int classIndex;

};

The compiler may keep internal table that looks like this

Book [int char* char Author* Book*]

where each of these members takes 4 bytes of the object, 8 bytes on a 64-bit

architecture. Pointers, integers and floats all start on a 4-byte boundary, and

even the single character takes 4 bytes including the 3 bytes of padding the

compiler inserts. Note that the static members (here classIndex) are not

stored inside these objects.

In the persistence systems which store pages of objects as blocks of bytes,

we are interested only in the locations of pointers, but if we want to traverse the

object graph - as in a typical serialization, we need to know the pointer types.

For this purpose, we create a mask, specific for each class, which has

exactly the same number of bytes as one instance of that class. Each 4-byte

location which is a potential location of a pointer is treated as an integer,

which is 0 for locations that do not store pointers. For pointer locations, it

stores the pointer type as the classIndex of its target object. Pointers to built-in

types have fixed numbers, for example char* may be recorded as -1. If we

assign Book::classIndex¼17 and to Author::classIndex¼18, then the masks

are:

17180-10Book mask with types

110-10Book mask without types

2 Fundamentals of Persistence 39

Pointer masks will get more interesting when we will discuss composite objects

involving structure-members, inheritance (especially multiple inheritance) and

hidden pointers inserted by the compiler.

2.1 Algorithms and Techniques

This chapter describes how to add, automatically and transparently,
members and methods to a class. It discusses regular pointers, hidden
pointers inserted by the compiler, smart pointers, references, and pointer
swizzling. discusses two algorithms (recursive and stack based) which
traverse the pointer network and collect all active objects – the critical step
in every serialization.

2.1.1 Adding Members and Methods to a Class

Both when making objects persistent and when building intrusive data structures

(see Chap. 3), we need to add capabilities to the existing classes. That implies

additional methods and members to support these capabilities. There are four ways

to do it: from below, from above, inserting them inside, and using a linked storage.

Examples in this book mostly inside the required methods and members, but keep in

mind that this is not the only way. In some situations one of the other options may

be a better solution.

2.1.1.1 Adding from Below
If we want to add certain methods and members to every allocated object, we can

derive all application classes (and all library classes) from the same base class. For

example

class PersistBase {
int counter;
int mySize(); // ??? see Note1
static int mode; // ??? see Note2

};
class Employee : public PersistBase {

int ID;
Employee *next;

};

Note1: Unless mySize() could reach into the allocation record, which may depend

on the compiler and OS, or unless counter keeps the size from the time the object

was allocated, this would not work.

40 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Note2: This value would be the same for all classes and all objects, an interesting

implementation of “global” variable—see bk\chap2\fromBelow.cpp.

2.1.1.2 Inserting Inside
If we want to add more than one member or method to a class,2 we can insert them

with a macro. In the following example each class has an index, and even from the

base class we can determine the size of the allocated object. The program prints

size¼16 which is the size of Manager.3

#define Persist(T) \
public: \

virtual int mySize(){ return sizeof(T); } \
static int classIndex

class Employee {
Persist(Employee);
int ID;
Employee *next;

};
class Manager : public Employee {

Persist(Manager);
Employee *secretary;

};
int main(){

Manager *m=new Manager;
Employee *e=m;
printf(“size=%d\n”,e->mySize());

Useful Trick No. 2

Macros, especially long ones, complicate debugging, because compilers and

debuggers treat each macro as a single line, but sometimes there is no other

choice. The way to minimize the negative impact of a long macro is to insert,

with a macro, a short function which calls another function outside of the

class.4 For example, in Listing 2.9 - far below, p.60, macro INH_REC(T)
inserts a line with a call to Util::iRep(). This does two things: (1) it

allows us to insert the function yet code it, or most of it, as normal code, not as

a macro and (2) it allows the outside function to use class parameters which

are private and normally not available outside.

2 The difference from adding to an object from below becomes apparent when inheritance is

involved.
3 Two 4-byte members in Employee, one in Manager plus one hidden pointer as will be explained

in Sect. 2.1.2.
4 This coding style was recommended by Sean Yixiang when coding the Objective-C persistence

in Chap. 7.

2.1 Algorithms and Techniques 41

http://dx.doi.org/10.1007/978-3-642-39323-5_7

Here is a simpler example, where we are adding a long function foo() to class

Book. The function needs the value of member ISDN, which is private. We can do it

with a long macro, which is not nice and is difficult to debug:

#define FOO \
void foo(){ \

.. long code using value of ISDN \
}

class Book {
private:

int ISBN;
public:

FOO
};

Instead of using a long macro, we can code the main part of foo() outside of

Book, either as a plain C function, or as a static function of some utility class:

class Utility {
friend class Book;

static void foox(int isbn){
... bulk of the function, using the private Book::ISDN

}
}

#define FOO \
void foo(){Book::foox(ISBN);}

class Book {
private:

int ISBN;
public:

FOO
};

2.1.1.3 Adding from Above
As from below, this method allows one to expand object, not class. We derive a

special class from the class we want to expand and add the members and methods

there. The disadvantage is that in calls to new() and possibly other methods you

have to cast to the expanded class (starting with Exp_. . .). For example:

42 2 Fundamentals of Persistence

class Employee {
int ID;
Employee *next;

};

class Exp_Employee : public Employee {
public:

Exp_Employee *nextFreeList;
static Exp_Employee *freeListStart;
static void addFreeList(Employee *e){

Exp_Employee *ee=(Exp_Employee*)e;
ee->nextFreeList=freeListStart;
freeListStart=ee;

}
static void delFreeList(Exp_Employee *e){...}

};
Exp_Employee* Exp_Employee::freeListStart=NULL;

int main(){
Employee* e=new Exp_Employee;
Exp_Employee::addFreeList(e);

2.1.2 Hidden Pointers

The first step to implementing any style of persistence is to understand the internal

representation of objects. In the early years of C++ there was a multitude of

compilers, each with its own quirks and representation of objects. Writing portable

C++ persistence used to be a pain.5

The C++ standard does not specify the internal implementation of objects, but

most compilers today use the model shown in Fig. 2.1.6 If neither the class itself nor

the classes from which it inherits have virtual functions, the memory image consists

of all the members (fields) in the same order as they are hierarchically listed in the

class definition.7 If there are virtual functions, then there is a hidden pointer at the
beginning of the object.8 In the case of multiple inheritances, there are additional

hidden pointers inside the object. Hidden pointers point into the internal table of

virtual functions, and are identical for all instances9 of the same class. Application

programmers have no access to these hidden pointers and tables, and often are not

even aware of their existence.

5 The code of DOL library (Data Object Library 2013) still has ifdef statements for Borland,

Watcom, Microsoft, Mac, Linux, Zortec, DEC, VMS, Sun, Lucid, GNU, IBM, Solaris, Liant,

Amdahl, Coherent, Apollo, Saber and HP compilers.
6 For the program which generates this information, go online to bk/chap2/dispPtrs
7 As in plain C.
8 In most OO languages including Java and C# the internal object representation is probably

similar.
9 Terms object of classA, A-object, or instance of A mean the same thing.

2.1 Algorithms and Techniques 43

On a 32-bit architecture, pointers and 4-byte numbers always start on a 4-byte

boundary. On 64-bit architecture, pointers and 8-byte numbers usually start on an

8-byte boundary.10 The sizeof() function returns the true size of the object,

including the hidden pointers.

A convenient tool for detecting and manipulating these pointers is operator new
()which can be controlled by an outside variable, static pointer objBuf, to do

three things11:

(1) When objBuf¼NULL, new()allocates a new object as usual.

(2) When objBuf points to a block of memory, new() adds hidden pointers to

it, thus turning it into a valid object.

(3) When objBuf¼(char *)(1), new() allocates a 0-filled object, then sets

the hidden pointers to

Case (1) is used for allocation of objects during the program run.

Case (2) is useful when retrieving persistent objects from the disk.

Case (3) creates a mask similar to Fig. 2.1.

The algorithm recognizes a valid pointer by having a value which is amultiple of 4.

class C {...};
class B : public C {...};
class D : public C {...};
class A : public B, public D {…};
class E : public B {…};

B-members E-members

H-ptr C-members B-members E-members

E-object, with virt.func�ons

H-ptr C-members B-members H-ptr C-members D-members A-members

A-object, with virt.func�ons

C-members

E-object, no virt.func�ons.

Fig. 2.1 Examples of hidden pointers in C++ objects (Visual Studio 2010). Note that an A-object

includes two different instances of the C-class

10 The lowest two bits of any pointer are always 0 and, temporarily, they may store flags or other

information during some algorithms.
11 See Listing 2.1.

44 2 Fundamentals of Persistence

Listing 2.1 Overloaded operator new() which works in three different modes:

normal, updating hidden pointers, and generating a mask. [For the explanation of

how this relates to so called “placement new”, see the Note after the listing.]

class A {
... private members, no pointers

public:
static void *objBuf; // controls what new() does
static void *mask; // for
void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;
if(u==0) return malloc(size); // normal operation
else if(u&3) return mask=calloc(1,size); // create mask
else return(objBuf); // insert hidden pointers

}
};
void* A::objBuf=NULL;

Note:

Placement new gets a section of memory and turns it into a valid object by filling

in the hidden pointers. For example for class Book,

void *v=calloc(sizeof(Book),1);
Book *bp=new Book(v);

or on one line

Book *bp=new Book(calloc(sizeof(Book),1));

If we wanted to control the allocation of objects by calloc or some custom

allocation function the application would have to change all the calls to new() to

this ugly and potentially error-prone syntax.12

Overloading new() as we did in Listing 2.1 hides all this, and the application can

create objects as usual. No change of calls to new() is required:

Book *bp=new Book();

However, the last line of operator new in Listing 2.1

else return(objBuf); // insert hidden pointers

is really nothing else than placement new, which we use in a special case when we

just want to set or update hidden pointers. The difference from the normal place-

ment new is that the memory is not supplied as the function parameter, but as the

static class member objBuf.

12 Note that this is similar to what you have to do when using ObjectStore (c) PSE Pro for C++.

2.1 Algorithms and Techniques 45

2.1.3 Regular Pointers

Regular pointers are the pointers the application inserts into classes. After you write
objects to disk and then read them back to memory, the new objects are in different

locations, and all the regular pointers must be replaced (swizzled) to the new

addresses of their target objects. If you read the object back within the same

program run, hidden pointers are the same, but for a different run even hidden

pointers usually change.

How to detect all these pointers is one of the key tasks every persistent system

must tackle.

For example, if a company hierarchy is described by classes Manager and

Employee, we can represent the internal structure of each class by a mask—see

Listing 2.2 and Fig. 2.2. Such masks are useful when planning algorithms or

debugging code, and we will use them extensively throughout this book.

Note that it is reasonably fast to traverse a mask when swizzling pointers.

However, a small performance improvement can be achieved by keeping, in

addition to the mask, a list of non-zero entries in the mask. Note that mask in

Fig. 2.2 does not have any hidden pointers because the two classes have no virtual

functions.

Listing 2.2 Another version of Manager/Employee classes (online listed only as

list2_2.txt)

template< class T> class Ring {
T *tail;
int colSZ;

};
class Employee {

float salary;
char *name;
Employee *next;

};
class Manager : public Employee {

int deptID;
Employee *secretary;
Ring<Employee> myPeople;

};

0 2 10 0 10 10 0

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

MASK:

LIST FOR FAST TRAVERSAL: 1,2,4,5,-1

Fig. 2.2 Mask for the

Manager class from

Listing 2.2. Each box

corresponds to a potential

pointer location (4B or 8B

depending on the system

architecture). Pointer

locations are marked by the

index of the target class, here

2 ¼ text string,

10 ¼ Employee

46 2 Fundamentals of Persistence

2.1.3.1 Detecting Pointers with Reflection
When reflection is available, we don’t need a mask. And even if we had one it

would not help much. Languages with reflection usually work with references, and

objects and their parts cannot be accessed by their memory addresses.

When we need to traverse references of an object, the reflection allows us to

traverse members and, for each member, it tells us whether the member is a

reference and what is the type of its target. Listing 2.3 shows how this is done in

Java, and Listing 2.4 shows the C# implementation.

It may not be obvious from this code, but it traverses pointers all through the

inheritance hierarchy, e.g. for the Manager object from Listing 2.2, the code visits

Employee::name,
Employee::next,
Ring::tail,
Manager::secretary.

Listing 2.3 Using Java reflection to traverse references13

import java.lang.*;
import java.lang.reflect.*;

Field[] fields = cls.getDeclaredFields();
Object val; Class targetClass;

for(Field field : fields){
if(field.getType().isPrimitive())continue;
val=field.get(this);
if(field.getType() == String.class){

... // create or find new val
field.set(this,val);

}
else {

targetClass=field.getType();
... // create or find new val
field.set(this,val);

}
}

13 For full source, see bk/chap2/reflectJava.

2.1 Algorithms and Techniques 47

Listing 2.4 Using C# reflection to traverse references14

//flags: which members we want to enumerate
System.Reflection.BindingFlags flags =

System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.NonPublic |
System.Reflection.BindingFlags.Instance;

Object val; Type targetClass;
foreach (System.Reflection.FieldInfo field in

this.GetType().GetFields(flags)){

if(!field.FieldType.IsClass)continue; // not a reference
val=field.GetValue(this);
if(val==null)continue; // no conversion for null references
if(field.FieldType == typeof(string)){ // string

... // create or find new val
field.SetValue(this,val);
}
else {

targetClass=field.FieldType;
... // create or find new val
field.SetValue(this,val);

}
}

2.1.3.2 References Registered for Each Class
All C++ and Objective-C persistent systems must get the information about

pointers externally, and one possibility is to assume that the user registers all

persistent classes by listing their pointers.

In C++, our favourite method is to use macros PTR and STR15 in the default

constructor. It has the advantage that it automatically traverses the inheritance

hierarchy, and the result is a mask which is a flat view of even highly composite

object. Here is an example of how to use these macros:

class Employee {
static void **mask; // not persistent
float salary;
char *name;
Employee *next;

public:
Employee(){

salary=0.0;
STR(name); PTR(next,Employee);

}
};

Listing 2.5 shows how this syntax can generate the mask. The listing may appear

long, but note that there is a lot of repetition: the same functions and static variables

are added to all three classes.

14 For full source, see bk/chap2/reflectCs.
15 A similar method to register pointers is also used by POST++.

48 2 Fundamentals of Persistence

At the setup time, before the program starts to run, each class gets its unique

index. Automatic assignment of class indexes happens at the setup time, before the

application program even starts to run—look at the last line just before main().

Inside createMask(), the call to new() with objBuf¼1 creates a 0-filled instance

of Manager and inserts hidden pointers. Then, through PTR() and STR(), the default

constructor Manager() marks the pointer locations in the mask.

Figure 2.3 has two numbers in the box for the hidden pointer: 1 or 6054. In most

environments, hidden pointers are large numbers which are easy to distinguish from

the class index stored for regular pointers. In environments, where the system stores

index(!) into the virtual function table, we mark hidden pointers by using 1 in the

mask, and storing the value of the hidden pointer in a separate, additional mask.

objBuf must be either a global variable or a static variable of a special Utility

class.

0 2 10 0 10 10 0

sizeof(Manager) = 8x4 = 32 bytes

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

0 5 21 0 21 21 06054 phase 1

phase 2 1
or

6054

Fig. 2.3 Generating mask for the Manager class. Listing 2.5 produces directly the phase2 mask

with true value of the hidden pointer (6054). The online version at bk/chap2/list2_5.cpp generates

first the phase1 mask and then converts it to phase2 with 1 marking positions of hidden pointers.

Mask codes: 0 ¼ invariable members, 1 ¼ hidden pointer, 2 ¼ char*, 10 ¼ Employee*

2.1 Algorithms and Techniques 49

Listing 2.5 Generating mask with both hidden and regular pointers (for full,

slightly modified source, see bk/chap2/list2_5.cpp)

#define PTR_SZ sizeof(char*)
int totIndex=9; // index of application classes will start from 10
void *objBuf=NULL; // global allocation control

#define PTR(P,T) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(T*)(T::getIndex())

#define STR(P) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(char*)(2)

class Employee {
float salary;
char *name;
Employee *next;

public:
// ... static members and methods, new()as for Manager
Employee(){STR(name); PTR(next,Employee);}

int virtual trueClass(){return classIndex;}
};
// ... initialize static members as for Manager

class Ring {
Employee *tail;
int colSZ;

public:
// ... static members and methods,new()as for Manager
Ring(){PTR(tail,Employee);}
int virtual trueClass(){return classIndex;}

};
// ... initialize static members as for Manager

class Manager : public Employee {
static void *mask;
static int classIndex; // app.classes start from 10
static int mySize;
int deptID;
Employee *secretary;

public:
Ring myGroup;
static int getIndex(){return classIndex;}
void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;
if(u==0) return malloc(size); // normal operation
else if(u&3){ return mask=calloc(1,size); } // mask
else return(objBuf); // insert hidden pointers

}
static void createMask(){

int i; char *s; int *ip;
objBuf=(void*)1;
new Manager; // phase one of setting the mask

}
static void prtMask(){ ... }
Manager(){PTR(secretary,Employee);}
int virtual trueClass(){return classIndex;}

};
void* Manager::mask=NULL;
int Manager::mySize=sizeof(Manager);
int Manager::classIndex=totIndex=totIndex+1;

int main() {
Manager::createMask();
Manager::prtMask();

50 2 Fundamentals of Persistence

When we replace the statements that repeat for every class by macro

PERSIST(T), this complex code turns into nice and crisp Listing 2.6.

Macro INIT_STAT(T) initializes static variables for each class, and macros

PTR(P,T) and STR(P) are as before. The parameters of all these macros are

types; they are just like templates/generics except that they represent a block of

code—not a class or a function.

Listing 2.6 Code from Listing 2.5, where generic-like macros replace code that

repeats for every class

class Employee {
PERSIST(Employee);

public:
float salary;
char *name;
Employee *next;
Employee(){ STR(name); PTR(next,Employee); }

};
INIT_STAT(Employee);

class Ring {
PERSIST(Ring);

public:
Employee *tail;
int colSZ;
Ring(){ PTR(tail,Employee); }

};
INIT_STAT(Ring);

class Manager : public Employee {
PERSIST(Manager);

public:
int deptID;
Employee *secretary;
Ring myGroup;
Manager(){ PTR(secretary,Employee); }

};
INIT_STAT(Manager);

int main() {
Manager::createMask();
Manager::prtMask();
printf(
"classIndex: Employee=%d Ring=%d Manager=%d\n",
Employee::getIndex(),Ring::getIndex(),
Manager::getIndex());

return 0;
}

Useful Trick No. 3

Macro PTR(P,T) can set member pointer to 1, or generate the pointer name

and type as text strings.

2.1 Algorithms and Techniques 51

#define PTR(P,T) \
(P)=(T *)1; \
printf(“pointer name=%s targetType-%s\n”, #P, #T);

For the strings, the macro could be replaced by a method, possibly static method

of the class; setting the pointer to a value must be through a macro if you want this

simple interface.

2.1.3.3 Smart Pointer that Registers Itself
Another way to generate the mask is to replace pointer members that we want to be

persistent by an instance of a special smart-pointer class, see Listing 2.7. Such a

smart pointer does not take more space than a normal pointer and is used just as a

normal pointer, but it can record itself in the mask.

Listing 2.7 Mask generation with smart pointer (code sketch only, no program

online)

template<class T> PersistPtr {
T *ptr;

public:
PersistPtr(){

ptr=NULL;
... // mark the mask at the position of ‘this’

}
T* operator->() const{ return ptr; }
... // other operators

};

class Employee {
PERSIST(Employee);

public:
float salary;
PersistPtr<char> name; // <<<<<<
PersistPtr<Employee> next; // <<<<<<
Employee(){}

};
INIT_STAT(Employee);

/* similar syntax for classes Ring and Manager */

int main() { // remaing exactly as before
Manager::createMask();
Manager::prtMask();
return 0;

}

So far we have been working with pointers leading to a single object or to a

single text string. However, there can also be pointers to various types of arrays:

52 2 Fundamentals of Persistence

class B;
class C {

B *bArr; // to array of B objects
B **bpArr; // to array of (B*)
int *iArr; // to array of int
char *cArr; // to array of characters
char **cpArr; // to array of (char*)
int aSize; // assume all arrays have this size

};

To register all these situations, calls to PTR() and STR() are not sufficient. We

also need to register the size of the array which in most cases is already a member of

the class which stores the pointer. If it is not, we always can set up special macros

for such situations: ARR() for an array of objects and ARP() for an array of

pointers are handy to register such situations. For example, the pointers used

by class C in the last example can be registered by the following default

constructor:

class C(){ARR(bArr,A,aSize); ARP(bpArr,B,aSize); ARR(iArr,int,aSize);
ARR(cArr,char,aSize); ARP(cpArr,char,aSize);

}

Note that aSize is the name of the member, not a numerical value!

2.1.3.4 Smart Library Registering Pointers
The problem with registering pointers is that if you miss even a single one, it will

not be swizzled,16 and your program will crash on loading the data from disk. Also,

as will be explained in Sect. 2.1.6, if a pointer is missing in the mask, the object to

which it leads and perhaps many other objects may be missing on the disk file.

Registering pointers is not something application programmers should do in their

everyday work.

The idea of registering pointers opens another Pandora’s box. What is the true

purpose of these dangerous pointers inhabiting our classes, and why are they

allowed to live there with all the mischief they can cause? And could we hide

and isolate them in some place where they would be under better control?

That goes far beyond persistence, but the problem with registration of pointers

only adds to the many reasons why we should avoid raw-pointer members in

application classes.

The purpose of pointers is to implement data structures and relations. For

example, instead of using raw pointers tail and next in Listing 2.6, it is better

to replace these pointers by a generic data structure consisting of classes Ring<T>
and RingPart<T> that comes from a library which takes complete care of these

pointers including their registrations, and these pointers are transparent to the

application code.

16 As introduced in Chap. 1, swizzle is a commonly used term for the process of updating pointers

when the objects move to a different memory location.

2.1 Algorithms and Techniques 53

http://dx.doi.org/10.1007/978-3-642-39323-5_1

When following this strategy, we end up with no pointer-members in our

application classes. However, the necessary condition for all this is that the

library must support bi-directional data structures, which also is the prime

reason we always use DOL or InCode libraries and not the standard containers.

Compare the following three implementation of the same class:

class Project { // Code with raw pointers
char *name; // bad choice, raw pointer
Manager *mgr; // bad choice, raw pointer

};

class Project : public OneToOne<Manager>,
public String { // better code, Style 1

};

class Project { // best code, Style 2
String name; // better choice, pointer handled by library
OneToOne<Manager> mgr; // library class, better choice

};

Styles 1 and 2 remove pointers from the application code but, in more complex

situations, Style 2 ends up using multiple inheritance and, in our experience, it is

more difficult to manage.

The format in which we record pointers in the library classes does not have to be

particularly efficient or easy to use, because you register the class when you add it to

the library, and, from that moment on, many people use it but nobody is even aware

that there is any registration.

For example, Data Object Library (Data Object Library 2013) is a C++ library of

bi-directional intrusive data structures which are also persistent. Each data structure is

represented by a class which does not have any attributes, and its methods (operations

of the association) have access to pointers and other attributes of the application

classes that participate in the data structure. For an example, see Doubly Linked

Aggregate in Fig. 2.4. When you want to set up an aggregate between classes Room

and Students, you declare

Association Doubly_Linked_Aggregate<Room,Student> students;
The pointers are registered in a library files registry and zzmaster which essen-

tially contain this record17:

Doubly_Linked_Aggregate 2
1: child 2
2: next 2, prev 2, parent 1

which means that in our Room/Student example we will have

17 Line1: two participating classes, Line2: pointers in the first class with the index of their target

class, Line3: pointers in the second class with the index of their target class.

54 2 Fundamentals of Persistence

class Room {
Student *child;
. . .

}:
class Student {

Student *next;
Student *prev;
Room *parent;
. . .

};
Pointers can come only from the library, so the library can determine what the

mask of the two classes will be. All this is transparent and the user does not have to

worry about registration of pointers.

2.1.3.5 Detecting Pointers with a Code Generator
Until now we have assumed that the persistence would be added to the application

program as additional source or library. However, applying a code generator to

some of the tasks, such as detecting pointers, can significantly simplify the user

interface. It is not considered a “pure” programming technique, because it may

complicate debugging, use of debuggers and IDE, and using software designed in

this way as a part of a larger system, but it leads to a more elegant interface.

We can think of many ways to detect pointers with a code generator. Let’s

explore one possible approach which we have never used on a real application, but

which would be fairly simple to implement. Assume that for every class in the

application source, e.g. class Employee, we create a twin, Twin_Employee, which

index=1 class C {...};
index=2 class B : public C {...};
index=3 class D : public C {...};
index=4 class A : public B, public D {…};

C constructor under B1/C1/C 0 0 0 0 0

B constructor2/B2/B 2/B 0 0 0 0

C constructor under D2/B2/B 2/B 1/C 1/C 0 0

D constructor 2/B2/B 2/B 3/D 3/D 3/D 0

A constructor 4/A4/A 4/A 4/A 4/A 4/A 4/A

Fig. 2.4 Evolution of tMask when allocating a new A-object. This is a dynamic process which

takes the advantage of default constructors for all the classes being called bottom up. Any time a

non-zero location or a hidden pointer is overwritten, it is an indication of inheritance—see the

arrows

2.1 Algorithms and Techniques 55

has the same members and thus the same mask. We discard all its methods, but add

a default constructor with PTR() and STR() statements as in Listing 2.6. This allows

us to generate simple code which, for each of the Twin-. . . classes, finds it mask. If

we can link together the original class with its twin, it is as if we added the mask to

the original class without providing any information about its pointers members.

class Employee { // application class
float salary;
char *name;
Employee *next;

public:
float getSalary(){return salary;}
void setSalary(float sal);
Employee(){salary=10000;}

};

class Twin_Employee { // twin class
float salary;
char *name;
Employee *next;

public:
Employee(){STR(name); PTR(next,Employee);}

};

What we proposed includes some logical leaps, and we have to explore the idea

step by step in order to verify that it will really work. We do not have to make a

complete syntax analysis.

Let’s assume that, as the first pass, we convert the code to a stream of tokens

while implementing all the name substitutions encoded by typedef or #define
statements and removing comments and access indicators.18 We get

class Employee { float salary ; char * name ; Employee * next ;
float getSalary () { return salary ; } void setSalary (float sal)
; Employee () { salary = 10000 ; } } ;

In the second pass, we add the twin underscore (__) prefix to the class name and

monitor the depths of {}, (), [] and<> brackets (each separately) as we traverse the

tokens. We throw away any token for which the depth of {} is not 1 or the depth of

any other bracket is more than 0. That gives us

float salary ; char * name ; Employee * next ; float getSalary () {
} void setSalary () ; Employee () { }

This allows us to identify statements which end with one of three ways:

18 Public, private or protected.

56 2 Fundamentals of Persistence

{ }, or () or;or just ;

Eliminate statements that do not end just with “;” and we have the list of

members

float salary;
char * name ;
Employee * next ;

This allows the code generator to create the twin class

class Twin_Employee { // added Twin_
// next part is the list of members after pass 3
float salary ;
char * name ;
Employee * next ;
// remaining part is all generated, using members with *

public:
Employee(){STR(name); PTR(next,Employee);}

};

This allows us to generate mask for class Twin_Employee as described in

Sect. 2.1.3.2. The last missing piece of this puzzle is how, for an object of class

Employee, we could quickly find the mask of Twin_Employee.

Let’s assume that the code generator also creates class derived from class

Employee, which adds methods and possibly members.19 We will use prefix

Exp_ for this class in order to show that it is an expansion of the original class.

If we do not add any non-static members, the class will have the same original size.

class Exp_Employee : public Employee {
void *getMask(){ return Twin_Employee::mask;}

};

The result is elegant. If you want to make any application code or library

persistent you run the code generator on their classes and the only change you

have to make in the code is to replace all calls to the new() operator:

int main() {
Employee *e12, *e2; void *mask;
e1=new Exp_Employee;
e2=new Exp_Employee;
mask=(Exp_Employee*)e1->getMask();
// otherwise use e1 and e2 as if there is no persistence

This is not necessarily better than using PTR() and STR() in your application

classes. You may have many new() statements spread through your code, while

PTR() and STR() statements are localized in the class definitions and may be much

fewer. However, making an existing class library persistent with a code generator

19 This is the method of adding from above as described in Sect. 2.1.1.3. It adds to each allocated

object, not to the class.

2.1 Algorithms and Techniques 57

may be easier, since a typical container library may not have many, if any, new()

statements.

All this works even when some application classes inherit from other classes,

assuming that the code generator converts all the classes to their twin classes. For

example, if we have

class Employee {
...

};
class Manager : public Employee {

...
};

it converts it to

class Twin_Employee {
...

};
class Twin_Manager : public Twin_Employee {

...
};

58 2 Fundamentals of Persistence

http://www.springer.com/978-3-642-39322-8

	2: Fundamentals of Persistence
	2.1 Algorithms and Techniques
	2.1.1 Adding Members and Methods to a Class
	2.1.1.1 Adding from Below
	2.1.1.2 Inserting Inside
	2.1.1.3 Adding from Above

	2.1.2 Hidden Pointers
	2.1.3 Regular Pointers
	2.1.3.1 Detecting Pointers with Reflection
	2.1.3.2 References Registered for Each Class
	2.1.3.3 Smart Pointer that Registers Itself
	2.1.3.4 Smart Library Registering Pointers
	2.1.3.5 Detecting Pointers with a Code Generator

		2014-04-07T09:32:49+0530
	Certified PDF 2 Signature

