Pattern-of-Zeros Approach to Fractional
Quantum Hall States and a Classification
of Symmetric Polynomial of Infinite Variables

Xiao-Gang Wen and Zhenghan Wang

Abstract Some purely chiral fractional quantum Hall states are described by sym-
metric or anti-symmetric polynomials of infinite variables. In this article, we review
a systematic construction and classification of those fractional quantum Hall states
and the corresponding polynomials of infinite variables, using the pattern-of-zeros
approach. We discuss how to use patterns of zeros to label different fractional quan-
tum Hall states and the corresponding polynomials. We also discuss how to calcu-
late various universal properties (i.e. the quantum topological invariants) from the
pattern of zeros.

1 Introduction

To readers who are interested in physics, this is a review article on the pattern-of-
zeros approach to fractional quantum Hall (FQH) states. To readers who are inter-
ested in mathematics, this is an attempt to classify symmetric polynomials of infinite
variables and Z, vertex algebra. To those interested in mathematical physics, this
article tries to provide a way to systematically study pure chiral topological quantum
field theories that can be realized by interacting bosons. In the next two subsections,
we will review briefly the definition of quantum many-boson systems, and the def-
inition of quantum phase for non-physicists. Then, we will give an introduction of
the problems studied in this paper.
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1.1 What Is a Quantum Many-Boson System

The fermionic FQH states [1, 2] are described by anti-symmetric wave functions,
while the bosonic FQH states are described by symmetric wave functions. Since
there is an one-to-one correspondence between the anti-symmetric wave functions
and the symmetric wave functions, in this article, we will only discuss bosonic FQH
states and their symmetric wave functions.

Bosonic FQH systems are quantum many-boson systems. Let us first define
mathematically what is a quantum many-boson system, using an N-boson system
in two spatial dimensions as an example. A many-body state of N bosons is a sym-
metric complex function of N variables

W(ri,.... iy...,Fj,...,TN)
=¥(ri,...,rj,...,¢ i,...,FN) (D

where the i variable r; = (xi, y;i) describes the coordinates of the i th hoson. All
such symmetric functions form a Hilbert space where the normal is defined as

<W|W>=/]"[dx,-dy,~¢f*w )

A quantum system of N bosons is described by a Hamiltonian, which is a Her-
mitian operator in the above Hilbert space. It may have a form

N

1

Hgi ) =) =5 (05 +05) + 3 Varoo(ri = 7)) 3)
i=1 i<j

Here Vy, 4, (r; —r ) is the interaction potential between two bosons. We require the

interaction potential to be short ranged:

Vg (x, ) =0, if \/x2 +y2> &, “4)

where & describes the interaction range. Hamiltonians with short-ranged interactions
are called local Hamiltonians.
The ground state of the N boson system is an eigenvector of H:

H(g]’gz)l‘[/gl,gz(rla --~arN):Egrnd(glagZ)lpgl,gz(rla---arN) (5)

with the minimal eigenvalue Egnq(g1, g2). The eigenvalues of the Hamiltonian are
called energies.

Here we assume that the interaction potential may depend on some parameters
81, 2. As we change g1, g2, the ground states Wy, ,, for different g1, g2’s can some
times have similar properties. We say that those states belong to the same phase.
Some other times, they may have very different properties. Then we regard those
states to belong to the different phases.
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Fig. 1 The curves mark the position of singularities in functions Egma(g1, g2)/N and (O)(g1, g2)-
They also represent phase transitions. The regions, A, B, and C, separated by phase transitions
correspond to different phases

1.2 What Are Quantum Phases

More precisely, quantum phases are defined through quantum phase transitions. So
we first need to define what quantum phase transitions are.

As we change the parameters g1, g» in the Hamiltonian H (g1, g2), if the average
of ground state energy per particle Egnd(g1,g2)/N has a singularity in N — o0
limit, then the system has a phase transition. More generally, if the average of any
local operator O on the ground state

(0)(g1,82) = / [ [dxidyi¥;, o, 0%, ., (6)
i

has a singularity in N — oo limit as we change g1, g», then the system has a phase
transition (see Fig. 1).

Using the quantum phase transition, we can define an equivalence relation be-
tween quantum ground states ¥, ., in N — 0o limit: Two quantum ground states
Wy, g, and lI/gi’ g, are equivalent if we can find a path that connect (g1, g2) and
(g}- g5) such that we can change Wy, ,, into Y, o without encountering a phase
transition. The quantum phases are nothing but the equivalent classes of such an
equivalence relation [3]. In short, the quantum phases are regions of (g1, g2) space
which are separated by phase transitions (see Fig. 1).

1.3 How to Classify Quantum Phases of Matter

One of the most important questions in condensed matter physics is how to classify
the many different quantum phases of matter. One attempt is the theory of symmetry
breaking [4—6], which tells us that we should classify various phases based on the
symmetries of the ground state wave function. Yet with the discovery of the FQH
states [1, 2] came also the understanding that there are many distinct and fascinating
quantum phases of matter, called topologically ordered phases [7, 8], whose char-
acterization has nothing at all to do with symmetry. How should we systematically
classify the different possible topological phases that may occur in a FQH system?
In this paper, we will try to address this issue.
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We know that the FQH states contain topology-dependent degenerate ground
states, which are topologically stable (i.e. robust against any local perturbations
of the Hamiltonians). This allows us to introduce the concept of topological order
in FQH states [9, 10]. Such topology-dependent degenerate ground states suggest
that the low energy theories describing the FQH states are topological quantum
field theories [11-13], which take a form of pure Chern-Simons theory in 2 4 1
dimensions [14-19]. So one possibility is that we may try to classify the different
FQH phases by classifying all of the different possible pure Chern-Simons theories.
Although such a line of thinking leads to a classification of Abelian FQH states
in terms of integer K-matrices [15-20], it is not a satisfactory approach for non-
Abelian FQH states [21, 22] because we do not have a good way of knowing which
pure Chern-Simons theories can possibly correspond to a physical system made of
bosons and which cannot.

Another way to classify FQH states is through the connection between FQH
wave functions and conformal field theory (CFT). It was discovered around 1990
that correlation functions in certain two-dimensional conformal field theories may
serve as good model wave functions for FQH states [21, 23, 24]. Thus perhaps
we may classify FQH states by classifying all of the different CFTs. However, the
relation between CFTs and FQH states is not one-to-one. If a CFT produces a FQH
wave function, then any other CFTs that contain the first CFT can also produce the
FQH wave function [24].

Following the ideas of CFT and in an attempt to obtain a systematic classifica-
tion of FQH states without using conformal invariance, it was shown recently that
a wide class of FQH states and their topological excitations can be classified by
their patterns of zeros, which describe the way ideal FQH wave functions go to
zero when various clusters of particles are brought together [25-28]. (We would
like to point out that the “1D charge-density-wave” characterization of FQH states
[29-34] is closely related to the pattern-of-zeros approach.) This analysis led to the
discovery of some new non-Abelian FQH states whose corresponding CFT has not
yet been identified. It also helped to elucidate the role of CFT in constructing FQH
wave functions: The CFT encodes the way the wave function goes to zero as various
clusters of bosons are brought together. The order of these zeros must satisfy certain
conditions and the solutions to these conditions correspond to particular CFTs. Thus
in classifying and characterizing FQH states, one can bypass the CFT altogether
and proceed directly to classifying the different allowed pattern of zeros and subse-
quently obtaining the topological properties of the quasiparticles from the pattern of
zeros [26-28]. This construction can then even be thought of as a classification of
the allowed CFTs that can be used to construct FQH states [35]. Furthermore, these
considerations give a natural notion of which pattern of zeros solutions are simpler
than other ones. In this sense, then, one can see that the Moore-Read Pfaffian quan-
tum Hall state [21] is the “simplest” non-Abelian generalization of the Laughlin
state.

We would like to point that in the pattern-of-zeros classification of FQH states,
we do not try to study the phase transition and equivalence classes. Instead, we just
try to classify some special complex functions of infinite variables. We hope those
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Fig. 2 The black dots
represent the ideal wave
functions that can represent
each quantum phase

special complex functions can represent each equivalence class (i.e. represent each
quantum phase) (see Fig. 2).

2 Examples of Fractional Quantum Hall States

Before trying to classify a type of quantum phases—FQH phases, let us study some
examples of ideal FQH wave functions to gain some intuitions.

2.1 The Hamiltonian for FQH Systems

A FQH state of N-bosons is described by the following Hamiltonian:

N

. N . N
H(gi,g) = Z(laz,. — 1sz) (181; + 1Zz,-) + Z Vei.60(i —2;) 7

i=1 i<j

where the two dimensional plane is parametrized by z = x +iy. When V, ., =0,
there are many wave functions

N Lk
W(z1,..2n) =P, ..., zy)e” WD Limas 8)

P = a symmetric polynomial

that all have the minimal zero eigenvalue (or energy) for any P:

N
1 1 L
[Z(ia“ iy > <“’z; +izﬂ>}” Grezie WOTLET —0, (@)
i=1

since
(19 LY (i its Yo — (19 —il.%);
e 181—1Zz 1BZ*+1ZZ e = 18Z—1§z 10 (10)

For small non-zero Vg, ,, there is only one minimal energy wave function de-
scribed by a particular polynomial P whose form is determined by V,, ,,. In gen-
eral, it is very hard to calculate this unique ground state wave function. In the fol-
lowing, we will show that for some special interaction potential Vg, ,, the ground
state wave function can be obtained exactly.
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2.2 Three Ideal FQH States: The Exact Zero-Energy Ground
States

For interaction
Vij2(z1,22) = 8(z1 — 22), (11)

N
the wave function Py (21, ..., zy)e” 1/ Li=1 44 with

Py = H(Z[ —zj)? (12)
i<j
is the only zero energy state with minimal total power of z;’s. This is because
— sz 2 —_ . z: 2
/ndzz;e /43 1] 1*/2 [Z Vi(zi, Zj):| P14 Lililt =0, (13)
i i<j

Such a state is called v = 1/2 Laughlin state.
For interaction

Vija(zr, 22) = v0d (@1 — 22) + 12038 (21 — 22)97, (14)
i —/HYL 7 i
the wave function Py/4(z1,...,2n)e i=1%i%; with
Pia=]]Gi-z)* (15)
i<j
is the only zero energy state with minimal total power of z;’s, since
_ 22 _ o2
/ndZZie (1/9 3 Izl 1*/4 |:Z Via(zi, Z./):| Pyjse /4317 — . (16)
i i<j

Such a state is called v = 1/4 Laughlin state.
Now let us consider interaction [36, 37]

Vpt(z1, 22, 23) = S[v0d (21 — 22)8(z2 — 23) — v18(21 — 22)07:8(22 — 23)0;] (A7)

where S symmetrizes among 71, z2, z3 to make Vpg(z1, 22, z3) a symmetric function.
. — N . .
Then the wave function Ppe(z, ..., zn)e” /4 2i=1%% with

1 1 1
PPf=A< ) (zi —zj)
71 —2233— 24 IN—-1 —2N E ’ !

=Pf< ! )l_[(Zi_Zj) (18)

=2/
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is the only zero energy state with minimal total power of z;’s, where A anti-

symmetrizes among 71, ..., zy. This is because
_ 12 _ 2
/l—[dzzie /43 1zl P}:kf|: Z Vee(zi, 2, Zk)] Ppre /411" . (19)
i i<j<k

Such a state is called the Pfaffian state [21].

3 The Universal Properties of FQH Phases

The three many-body wave functions Pl/ze_(l/‘” 2 |Z1|2, P1/4e_(1/4) 2 ‘Z”z, and
Ppre~ /DL lzi” have some amazing exact properties in N — oo limit. We believe
that those properties do not depend on any local deformations of the wave func-
tions.! In other words, those properties are shared by all the wave functions in the
same phase. We call such kind of properties universal properties.

The universal properties can be viewed as quantum topological invariants in
mathematics, since they do not change under any perturbations of the local Hamilto-
nian. Thus, from mathematical point of view, the symmetric polynomials of infinite
variables, such as Py/3, P12, and Ppg, can have many quantum topological invari-
ants (i.e. the universal properties) once we define their norm to be

N
(P|P)=/l—[d2zi|P(zl,...,ZN)|26_(1/2)Z|Z"2. (20)

i=1

Since the three wave functions have different universal properties, this implies
that the three wave functions belong to three different quantum phases. In this sec-
tion, we will discuss some of the universal properties, by first listing them in bold-
face. Then we will give an understanding of them from physics point of view. Those
conjectured universal properties are exact, but not rigorously proven to be true.

3.1 The Filling Fractions of FQH Phases

The density profile of a FQH wave function is given by

[d?z---d*zn|P(z, 22, . ) Pem DXl
fd2z1d212 cd?zN|P(z1, 22, - ZN)|26*(1/2)Z|Z"|2

p(z) = 2L

I'A local deformation of a many-body wave function ¥ is generated as ¥ — ¥’ = e®# ¥ where
8 H is a hermitian operator that can be viewed as an local Hamiltonian.
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Fig. 3 The shape of the
density profile p(z)

Fig. 4 a The density profile
of the I™ orbital. b The filling
of the orbitals gives rise to a
disk-like density profile in ¢

(a) (b) (c)
We believe that

v=2mp(0) (22)

is a rational number in N — oo limit. v is called the filling fraction of the corre-
sponding FQH state. We find that

P1=l_[(Zi—Zj)—>V=1, P1/2=H(Zi—2j)2—>v=1/2,

p1/4=1‘[(z,. —z))* > v=1/4, (23)

pr=Pf( : )H(Zi—zj)—M):l.

i —Zj

Note that P is anti-symmetric and describe a many-fermion state, while Py 2, Py/4,
and Ppr are symmetric and describe many-boson states.

We also believe that the density profile p(z) has disk shape (see Fig. 3) in large N
limit: p(z) is almost a constant v/2x for |z| < /2N /v and quickly drop to almost

zero for |z| > 4/2N /v.

3.1.1 Why v =1 for State ¥ =[], _; (zi —z)e” = l2il*/4
We note that the one-particle eigenstates (the orbitals) for one-particle Hamiltonian
Hy=-> (3, — %z*)(&z* + (1/4)z) can be labeled by the angular momentum /,

which is given by zle=(!/ DIzl The one-particle eigenstate has a ring-like shape
with maximum at |z| = r; = v/2[ (see Fig. 4a). The v = 1 many-fermion state is
obtained by filling the orbitals (see Fig. 4b):

v — H(Zi _ Zj)e—(1/4)2|z,~|2 _ A[(m)O(Zz)l _._]e—(1/4)2|2i|2 (24)
i<j

We see that there are / fermions within radius 7;. So there is one fermion per
nrlz/l = 2m area, and thus v = 1 (see Fig. 4c).
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3.1.2 Why v = 1/m for the Laughlin State W1/, = [];_; (zi —z;)"e” LIil*/4
Let us consider the joint probability distribution of boson positions, which is given

by the absolute-value-square of the ground state wave function:

2
pzi--zn) o [Wiym (21 zw)|

— e Y Inlzi—zl=m/) X [P _ =BV (z1zw) (25)

Choosing T = F =2, we can view e AV 1) a5 the probablllty distribution for
N particles with potential energy V(z; - - - zy) at temperature 7 = 5. The potential

has a form

V=-m?Y Injz — 2|+ Z i (26)

i<j

which is the potential for a two-dimensional plasma of ‘charge’ m particles [2]. The
two-body term —m? In |z — 7’| represents the interaction between two particles and
the one-body term 7 |z|? represents the interaction of a particle with the background
“charge”.

For a uniform background “charge” distribution with charge density py, a charge
m particle at z feel a force, F' = (7 |z|2,o¢)(m) /|z|. The corresponding background
potential energy is —pgm 5 |z|>. We see that to produce the one-body potential en-
ergy 71 |z|*> we need to set Py = —1/2m. Since the plasma must be “charge” neutral:

mp + py =0, weﬁndthatp——— Sov=1/m.

3.2 Quasiparticle and Fractional Charge in v =1/m Laughlin
States

If we remove a boson at position & from the Laughlin wave function [[,;_;(z j

zj)"e” Ylzil?/ 4 we create a hole-like excitation described by the wave function
lphole( )
§ Zly+e-+9yZN)-

wgole(m,...,z,v)oc]_[(g—z,) [T —zyme Xt/ @7)

i<j

Despite the hole-like excitation has a charge = 1, the minimal value for non-zero in-
tegers, it is not the minimally charged excitation. The minimally charged excitation
corresponds to a quasi-hole excitation, which is described by the wave function

asi-hol
lpqucm 0. e(

, ,...,zN)ocl_[(E—zl)l_[(zl—z yre= Xlal*/4 (28)

i<j
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0
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g

Fig. 5 The density profile of a many-boson wave function with a quasi-hole excitation at &

The density profile for the quasi-hole wave function lllgquaSi—hOle (z1,...,2N) 1S given
by
N 2 quasi-hole 2
e d7z; | (z,22, ..., 2N)|
P (Z) = f H[i] . 2 l juasi—hole 2 (29)
STTZ,d zi| ¥ (21,225 -+, 2ZN)]
pe(2) has a shape as in Fig. 5. The quasi-particle charge is defined as
v
0= d2z<— — pg (z)) (30)
Ds 2

in the N — oo limit, where D¢ is a big disk covering &. (Note that, away from the
quasi-hole, pz (z) = 5-.) We believe that the quasi-hole charge is a rational number
0=1/m[2].
One way to understand the above result is to note that m quasi-holes correspond
to a missing boson: [[[;(§ —z;)]" =[];(§ — z;)™. So a quasi-hole excitation has a
fractional charge 1/m although the FQH state is formed by particles of charge 1!
We can also calculate the quasi-hole charge directly. Note that, for the Laughlin

quasi-hole
11/‘E (

state 71, - - -, 2N ) With a quasi-hole at &, the corresponding joint probabil-

ity distribution of boson positions is given by p({z;}) o |lI/§uaSi'h°]e({z,-})| =e PV

with
m
Vi=—m?) Injz =zl —m) Injz =&+ 7 ) Jal? 31)
l

i<j i

Now, the one-body potential term —m In|z — &[4+ 7 |z|? is produced by background
charge density: py = — % +38(&). The “charge” neutral condition mpg (z) + pg (z) ~
0 allows us to show that pg(z) has a shape as in Fig. 5 and satisfies Eq. (30) with
O0=1/m.

3.3 The Concept of Quasiparticle Type

We would like to point out that the wave function llléqua“'ho}e @1senozn) < [ (E —

Zi) ]_[,-<j (zi —zj)™e” 2 Izi1°/4 just describes a particular kind of quasiparticle exci-
tation. More general quasiparticle excitations can be constructed as

uasi-hole- m.— 12
wéq hol k(zl,...,zN)ocl_[(S—Zi)kH(Zi—Zj) e— 2 lzil?/4 (32)

i<j
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which can be viewed as a bound state of k charge-1/m quasi-holes. So it appears
that different types of quasiparticles are labeled by integer k.

Here we would like to introduce a concept of quasiparticle type: two quasipar-
ticles belong to the same type if they only differ by a number of bosons that form
the FQH state. Since the quasiparticle labeled by k = m correspond to a boson,
so the different types of quasiparticles in the v = 1/m Laughlin state are labeled
by k mod m. There are m types of quasiparticles in the v =1/m Laughlin state
(including the trivial type labeled by k = 0).

There is an amazing relation between the number of quasiparticle type and the
ground state degeneracy of the FQH state on torus: the number of quasiparticle type
always equal to the ground state degeneracy on torus, in the N — oo limit.

3.4 Fractional Statistics in Laughlin States

We note that the normalized state with a quasi-hole at £ is described by an N-boson
wave function parameterized by &:

lllgquaSi_hOle _ [N(%.’S —-1/2 H(E —2) H(Zz _ Z])2 - lzl*/4 (33)

i<j

where N (&, &™) is the normalization factor. The normalized two quasi-hole wave
function is given by

qugz}mhole [ (Ef 5 S,*)]—1/2
x]"[(s—zl)l"[s — ) [J@ —zpPe TR 34

i<j

We conjecture that the above two normalization factors are given by
N (£, £%) = eV/@mER  Const, (35)
and
N(E, €%, &, &™) = (/@) (EP+E)+/m)InE—E' o Conet. (36)

in the N — oo limit, where & and &' are hold fixed in the limit.

The quasi-holes in the Laughlin states also have fractional statistics [38—41]. We
can calculate the fractional statistics by calculating the Berry phase [42] of moving
the quasi-holes. It turns out that the Berry phase of moving the quasi-holes can
be calculated from the above normalization factors. Let us first calculate the Berry

phase for one quasi-hole and the normalization factor N (¢, §*). The Berry’s phase

iAg _ (lpquam -hole | tIlquam -hole

Ag induced by moving £ is defined as e tras -1t is given by

A =agdé +ag+dE*, az = (‘Psl W),  agr = —i(We|— W), (37)

3 35*
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where ag and ag+ are Berry connections. Since the unnormalized state [;(§ —
Zi) ]_[i<j (zi — zj)ze_2|zi‘2/4 has a special property that it only depends only on
& (holomorphic), the Berry connection (ag, ag+) can be calculated from the normal-
ization N (&, £*) of the holomorphic state:

id . i «

Now let us calculate N (&, &%). Let us guess that N (&, £*) is given by Eq. (35).

To show the guess to be right, we need to show that the norm of |l1/gluaSI'hOIe)

not depend on £. We note that |l.l’;uaSl'h°le |2 =e A with

does

Vg(zl,...,zN)——mZZInk, —z,l—lenIzl &|

i<j
2, m 2
+Z"3' +ZZ|Z,~| : (39)
1

Here Vg can be viewed as the total energy of a plasma of N ‘charge’-m particles at
z; and one ‘charge’-1 particle hold fixed at &. Both particles interact with the same

background charge. Note that the norm (W;mi'hde|W;uaSi'hOIC) is given by
(lpg]uasi—ho]e lpquaSI hole /Hdzz e —BVe (40)

Due to the screening of the plasma, we argue that [ [] d?z;e=#V¢ does not depend

on £ in N — oo limit, which implies that ( EquaSI hOle|lI/quaSl hOIe)

on &. Thus N (&, £*) is indeed given by Eq. (35).
This allows us to find

does not depend

1 £* 1 & 41
ag = —1—¢&%, agr =1—
§ 4m § dm

Using such a Berry connection, let us calculate the Berry’s phase for moving &
around a circle C of radius r center at z = 0:

Ap = ﬁ(a;d%‘ +a5*dé*)

2
A 1
=27Tr_ )= rea enclosed by C
4m 2mm
= 27 x number of enclosed bosons by C. 42)

We see that the Berry connection describes a uniform ‘magnetic’ field. The above
result can also be understood directly from the wave function [ [;(§ —z) [ ], - ;i

zj)2e Lk /4.
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Similarly, we can calculate the Berry connection for two quasi-holes. Let us guess
that N (§, E* &', &%) is given by Eq. (36). For such a normalization factor, we find

that |qj§q§z/ls1 hole| — —f}VE ¢ with

Vee(zi,....zn)=—m Y _[In|z; —&|+1n|z; — &[]

1
+ L6+ & ]~ mle —&]

—m*Y Inlzi —zj|+ Z|z,| (43)

i<j

Such a Vg g can be viewed as the total energy of a plasma of N ‘charge’-m
particles at z; and two ‘charge’-1 particles at & and &’. Due to the screening,

f ]_[dzz,-e_’3 Ves' does not depend on £ and £’ in N — oo limit, which implies that

(llféql;l§1 hOle|11/qua“'lwle) does not depend on & and &’. So our guess is correct. Using

the normalization factor (36), we find the Berry connection to be
ag:—iié*jtiL, agx —1—%‘— 1 (44)
_ 2m EX — /%

Using such a Berry connection, we can calculate the fractional statistics of the
quasi-holes in the v = 1/m Laughlin state. Moving a quasi-hole around another, we
find the Berry phase to be Ag — enclosedarea _ 27” (see Eq. (42) for comparison). If
we only look at the sub-leading term —2m/m, we find that exchanging two quasi-
holes give rise to phase & = —x/m, since exchanging two quasi-holes correspond
to moving a quasi-hole half way around another and we get the half of —2m/m.
We find that quasi-holes in the v = 1/m Laughlin state have a fractional statistics
described by the phase factor e~ 7/™ [40, 41].

The term W implies that the quasi-holes sees a uniform magnetic field.
So the quasi-holes in the v = 1/m Laughlin state are anyons in magnetic field.

3.5 Quasi-holes in the v = 1 Pfaffian State

3.5.1 Charge-1 and Charge-1/2 Quasi-holes

Ground state wave function for the v = 1 Pfaffian state is given by

1 1 1 1
lI/Pf — A . l]ll =Pf WI (45)
71 —222323 — 24 IN-1—2N Zi — I

where ¥ is given by [];
by

i<j(@i— Z.,')e_(l/“) Yilal A simple quasi-hole state is given
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harge-1
W =& — z0)Wer

ZA((s—m)(s—zz) (5—13)(S—Z4)m>wl

71 — 22 73 — 24
:Pf<w)lpl (46)
Zi—Zj

which is created by multiplying the factor [ [(§ — z;) to the ground state wave func-
tion. Such a quasi-hole has a charge 1. The above quasi-hole can be splitted into
two fractionalized quasi-holes. A state with two fractionalized quasi-holes at & and
&’ is given by

lIlgclgrge—llz _ A((f )¢ -+ (1) E-n3)E - +CB <9 . ..)l]/l
, 21— 22 i3 — 24

:Pf<($—2i)($/—Zj)+(§—Zj)(é/—Zi)>wl @7

i —Zj
Such a fractionalized quasi-hole has a charge 1/2. We note that combining two

v charge-1/2 x W charge-1
§.§ :

charge-1/2 quasi-holes gives us one charge-1 quasi-hole: p

3.5.2 How Many States with Four Charge-1/2 Quasi-holes?

One of the state with four charge-1/2 quasi-holes at &1, &2, &3, and &4 is given by

Petayiss) = Pf<(€1 —zi)(& - Zi)(éz—_zé‘)'(& —zj)+ (< j))lpl
i =%

[12,34];;;.
=Pf<7’)11/1 (48)

Zi —Zj

The other two are P(13)(14), P(14)(23)- But only two of them are linearly independent
[43]. Using the relation

[12.34];,;; — [13.24];,; = (2 — 2))* (1 — E) (&2 — &3) = 7, E1abs (49)
we find (with z12 =21 — 22, 10 = &1 — &>, etc.)

(12,3412, — Z%2§14$23 [12,34];;;, — Z§4§14€23 )11/
.2
212 234

P13)24) = A(

[12, 34]
= Pa2)i4) — NpmA(zlzsmsBT““ = ~)w1 (50)
So

[12,34]
P24y — Pazye) = Npair€14Sz3A(leTm S 'J (51)



Pattern-of-Zeros Approach to Fractional Quantum Hall States 47

Similarly

[12,34]
P24y — Paay2s) = 1\’1;70”'@13524«4(leTZ3Z4 S L2 (52)

Thus

Pa2iay) — Pasesy  Pa2ycs) — Paayes)
&14623 &13624

We find that there are two states for four charge-1/2 quasi-holes, even if we fixed
their positions. The two states are topologically degenerate (have the same energy
in N — oo limit) [43]. The appearance of the topological degeneracy even with
fixed quasi-hole positions is a defining property of the non-Abelian statistics. In
the presence of the topological degeneracy, as we exchange quasi-holes, we will
generate non-Abelian Berry phases which also describe non-Abelian statistics.

More generally we find that there are D, = %(ﬁ)" topologically degenerate
states for n charge-1/2 quasi-holes, even if we fixed their positions [43]. We see
that there are +/2 states per charge-1/2 quasi-hole! The /2 is called the quantum
dimension for the charge-1/2 quasi-hole. We see that the charge-1/2 quasi-hole has
a non-Abelian statistics, since for Abelian anyons, the quantum dimension is al-
ways 1.

(33)

3.6 Edge Excitations and Conformal Field Theory

Under the z — ¢z transformation, the N-particle v = 1/2 Laughlin wave function
W =Pip@l,... 2v)e” = lal?/4 = [li<icj<nGi —zj)%e" = 1%i1°/4 transforms as
Vi — elSno W12, with Sy = N(N —1). We call Sy the angular momentum of the
Laughlin wave function (which is also the total power of z;’s of the polynomial

P12(z1, ..., zn). For interaction V2 =) 8(z; — z;), the v = 1/2 Laughlin wave
function is the only zero energy state with angular momentum N(N — 1) since
¥12(z1, ..., zN) vanishes as z; — z;. There are no zero energy states with angular

momentum less than Sy. In fact, we believe that, for wave functions ¥ with angular
momentum less then Sy,

[T1ziVipl® i, ... zn)l?
STz ¥ (z1, ..o zw)?

(Vi) = > A (54)

for a positive A and any N. The maximal A is called the energy gap for the inter-
action Vy .

On the other hand, there are many zero energy states ({V1,2) = 0) with angular
momentum bigger than Sy . We call those zero energy states edge states, and denote

them as Wegge. We can introduce a sequence of integers Dzdge to denote the number
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of zero energy states with angular momentum Sy + L. We will call D‘:LClge
spectrum.

To obtain the edge spectrum for the v = 1/2 Laughlin state with interaction V3,
we note that the zero-energy edge states can be obtained by multiplying the Laughlin
wave function by a symmetric polynomial which does not reduce the order of zeros:

the edge

Wedge = Psym ({Zi})lpl/l (55)

Since the number of the symmetric polynomials with the total power of z;’s equal

to L is given by the partition number p;, we find Didge = pr. Such an argument
applies to any Laughlin states. So we believe that for v = 1/m Laughlin the edge

spectrum is given by the partition numbers: Didge = pr [44]:

L 0 1 2 3 4 5 6
edge
DIl 2 3 s 7 (56)
Psym IZZZ' (ZZ[)
>z

In large L limit, Dzdge ~ ﬁe”vuﬁ ~ V2L,

For the v = 1 Pfaffian state with the ideal Hamiltonian S[vgd(z; — 22)8(z2 —
23) —v18(21 — 22)9:58 (22 — 23) 0z, ], Wpr = A(—L .. -)]_[i<j(zi —zj), is the

21—22 3324
zero-energy state with the minimal total angular momentum Sy . Other zero-energy

states with higher angular momenta are given by

Wedge = A<Pany({zi}) e ) v, (57)

21 —<2223— 24

where P,y is any polynomial. Now the counting is much more difficult, since lin-
early independent Pany’s may generate linearly dependent wave functions. We find,
for large even total boson number N, the edge spectrum is given by [45]

L 0123 4 5 6

58
DS*™ 11 35 10 16 28 8

We believe that, for the v = 1 Pfaffian state, the edge spectrum in large L limit is
given by Dzdge ~ e™V2LB3VE ith ¢ = 3/2,if N—>ooand L K N.

It turns out that the edge spectrum for v = 1/m Laughlin state can be produced
by a central charge ¢ = 1 CFT and the edge spectrum for v = 1 Pfaffian state can be
produced by a central charge ¢ = 3/2 CFT [44, 45]. This allows us to connect the
edge excitations of a FQH state to a CFT.

Using the quasi-hole wave function yJuasi-hole (z1, .- ., zn) that describes a quasi-
hole at &, we can even calculate the correlation function of the quasi-hole operator.
We know that the circular quantum Hall droplet has a radius R = /2N /v. The
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quasi-hole correlation function on the edge of the droplet is given by

unasi—hole (9/ _ 9)

/ Hd2 ‘pquail hOIe(Zl, L ZN)]*

< lIlsquasi»hole(Zl 7N ) (59)
g=Rei? £’ =Rei?’
We find that G9"3-hole (g _ 9%y has a form
I - 1 2h
unasl—hole 0) elQU INog (1 — e_i0> (60)

where Q is the quasi-hole charge and h is a rational number. We will call h the
scaling dimension of the quasi-hole. For the v = 1/m Laughlin state, we find that
h= ﬁ for the charge Q = 1/m quasi-hole. For the v = 1 Pfaffian state, we find
that h = % for the charge-1 quasi-hole, and h = 13—6 for the charge-1/2 quasi-hole,
all in N — oo limit [45, 46].

4 Pattern-of-Zeros Approach to FQH States and Symmetric
Polynomials

Using P12, Pi/4, and Ppr as examples, we have seen that symmetric polynomials
with infinite variables can have some amazing universal properties, once we defined
the norm of the infinite-variable polynomials to be

(P|P) /Hdz PRIl 1)

This suggests that it may be possible to come up with a definition of “infinite-
variable symmetric polynomials”. Such properly defined infinite-variable symmet-
ric polynomials should have those amazing universal properties. The proper defi-
nition also allow us to classify infinite-variable symmetric polynomials, which will
lead to a classification of FQH phases.

In this section, we will first discuss an attempt to define infinite-variable symmet-
ric polynomials through pattern of zeros. Then, we will try to provide a classification
of patterns of zeros. After that, we will use the patterns of zeros to calculate the uni-
versal properties of the corresponding infinite-variable symmetric polynomials.

4.1 What Is Infinite-Variable Symmetric Polynomial

The main difficulty to define symmetric polynomial with infinite variables is that the
number of the variables is not fixed. To overcome this difficulty, we will characterize
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the symmetric polynomials through their “local properties” that do not depend on
the number of the variables. One such “local property” is pattern of zeros.

4.1.1 What Is Pattern of Zeros?

We have seen that the different short-range interactions V (z; — z;) in Hamiltonian

N
B B
H = Z—(&Zi - ZZ,'*) (8Zi* + ZZ[) + Z V(Zi _Zj) (62)
i=1

i<j

leads to different FQH states P(zy, ..., zN)e_(1/4) Y ‘Zi|2, which in turn leads to
different symmetric polynomials P(zy,...,zN).

One of the resulting polynomial Py/; = Hl.<j (zi — Zj)2 has a property that as
71 A 22, it has a second-order zero Py/2 o (z1 — 12)2. Another resulting polynomial
Pijy = ]_[l-<j (zi — zj)4 has a property that as z; & z3, it has a fourth-order zero
P14 o (z1 — 12)4. The third resulting polynomial

1 1 1
Ppr = A( . ) H(Zi —zj) (63)

i1 —322373 — 24 IN—-1—2ZN/ ;=
i<j

has a property that as z; & zp, Pps has no zero, while as z; & zp & z3, Ppr has a
second-order zero. We see that different polynomials can be characterized by differ-
ent patterns of zeros.

The above examples suggest the following general definition of pattern of zeros
for a symmetric polynomial P({z;}). Let z; = An; + 7@, i =1,2,...,a. In the
small A limit, we have

P({zi}) =2%P(n1, ..., 0a: 2, Zas1, Zas2s - .) + O (A5 TT) (64)

The sequence of integers {S,} characterizes the symmetric polynomial P ({z;}) and
is called the pattern of zeros of P. We note that Sy happen to be the total power of
z; (or the total angular momentum) of P if the polynomial has N variables.

4.1.2 The Unique Fusion Condition

If the above induced P ({n;}; 7@, Za+1>Za+2s - - -), does not depend on the “shape”

{ni}
P(ni}; 29 zat1, Za2s - -) < P (2 2at1, 2av2, ), (65)

we then say that the symmetric polynomial P ({z;}) satisfy the unique fusion condi-
tion.
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4.1.3 Different Encodings of Pattern of Zeros S,

There are many different ways to encode the sequence of integers S,. For example,
we may use

lu=Ss—Sa_1, a=1,2,3,... (66)

toencode S;,a=1,2,3,...:

Sa=3 1. (67)

Here we have assumed that Sop = 0. It turns out that [; > 0 and [; </;1;.
We may alsouse n;, [ =0, 1,2, ... toencode S,. Here n; is the number of times
that the value / appears in the sequence /;:

o0
n;= Zﬁl,li' (68)
i=1

Let us list the pattern of zeros for some simple polynomials. For the v = 1 integer
quantum Hall state P; =[], _ j(zi —zj), the pattern of zeros is given by

S1,8,...:0,1,3,6,10, 15, ...
Ii,lp,...:0,1,2,3,4,5,... (69)
noniny---: 11111111 ---

We see that we can view [ in n; as the label for the orbital z/e~(1/ 4)|Z|2, and n; as the

occupation number on the /™ orbital (see Sect. 3.1.1 and Fig. 4b).
The pattern of zeros of v = 1/2 Laughlin state P;/; is described by

S1, 82,...:0,2,6,12,20, 30,...
l,0,...:0,2,4,6,8,10,... (70)
nonny---:1010101010101010- - -

We see that n; has a periodic structure. Each unit cell (each cluster) has 1 particle
and 2 orbitals.
The pattern of zeros of v = 1/4 Laughlin state P;,4 is described by

S1, 82,...:0,4,12,24, 40,60, 84, ...
l,0,...:0,4,8,12, 16,20, ... 71
nonny ---:100010001000100010001 - - -

Again, n; has a periodic structure. Each unit cell (each cluster) has 1 particle and 4
orbitals.
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For the v = 1 Pfaffian state Ppr = A(ﬁ Z3lz4 = ')l_[,'<j(Zi — z;j), the pattern
of zeros is given by

S1,85,...:0,0,2,4,8,12,18,24, . ..
I,l,...:0,0,2,2,4,4,6,6, ... (72)
noning - - : 2020202020202020202 - - -

Now a cluster (unit cell) has 2 particles and 2 orbitals.

4.1.4 The Cluster Condition

Motivated by the above examples, here we would like to introduce a cluster condi-
tion for symmetric polynomials: an symmetric polynomial satisfies a cluster condi-
tion if n; is periodic. Let each unit cell contains n particles and m orbitals. In this
case, S, has a form

Suthn = Sa + kS, + M +kma (73)
Since S1 = 0, we see that we can use a finite sequence (%; S2,...,8,) to describe
the pattern of zeros for symmetric polynomial satisfying the cluster condition.
We note that the filling fraction v is given by the average number of particles per
orbital. Thus v =n/m. We also call the cluster condition with n particles per unit
cell an n-cluster condition.

4.1.5 A Definition of Infinite-Variable Symmetric Polynomial

Now, we are ready to define the infinite-variable symmetric polynomial as a sym-
metric polynomial of infinite variables that satisfy the unique fusion condition and
the cluster condition. The cluster condition makes the N — oo limit possible. [Or
more precisely, the infinite-variable symmetric polynomial is a sequence of sym-
metric polynomials of N variables (with N — 00), and those N -variable symmetric
polynomials each has the minimal total power of the variables that satisfy the unique
fusion condition and the cluster condition. We will loosely refer such a sequence of
N -variable symmetric polynomials as an infinite-variable symmetric polynomial.]
From the above discussions, we see that an infinite-variable symmetric poly-
nomial can be described by a finite amount of data (%; S$2,...,8,). Thev=1/2
Laughlin state, Py 2, satisfies the unique fusion condition and cluster condition. So
Py 7 is an infinite-variable symmetric polynomial described by a pattern of zero:
(%; S, ..., 8) = (%; ). Once we define the norm of those infinite-variable sym-
metric polynomials as Eq. (61), infinite-variable symmetric polynomials may have
some very interesting universal properties discussed in Sect. 3. We like to mention
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that the infinite-variable symmetric polynomials (also referred as symmetric func-
tions) are studied in mathematics in various contexts, such as representation theory,
combinatorics and algebraic topology [47, 48]. It is not clear if there is a relation
between our pattern-of-zeros point of view and those previous studies. But we like
to point out in our pattern-of-zeros approach, we only interested in symmetric poly-
nomials of N — oo variables, and with the total power of the variables of order
O(N?). We are not interested in the infinite-variable symmetric polynomials with
all possible total power of the variables.

4.2 A Classification of Infinite-Variable Symmetric Polynomials

We have seen that each infinite-variable symmetric polynomial P({z;}) has a se-
quence of integers {S,}—a pattern of zeros. But each sequence of integers {S,} may
not correspond to an infinite-variable symmetric polynomial P ({z;}). In this subsec-
tion, we will try to find all the conditions that a sequence {S,} must satisfy, such that
{S.} describes a infinite-variable symmetric polynomial. This may lead to a classi-
fication of infinite-variable symmetric polynomials (or FQH states) through pattern
of zeros.

4.2.1 Derived Polynomials

To find the conditions on {S,}, it is very helpful to introduce the derived polynomi-
als. Let z1, ..., za = 2@ in an infinite-variable symmetric polynomial P ({z;}) and
use the unique fusion condition:

P({zi}) = 25 Paerived (29, Zat1, Zas2, - .) + O (A5 F1), (74)

we obtain a derived polynomial Pyerived (Y, Zat1, Za42, - - -) from the original poly-
nomial P. Repeating the process on other variables, we get a more general derived
polynomial Paerived (2@, z® 2O ), where 7@, z(®) | etc. are fusions of a vari-
ables, b variables, etc.

The zeros in derived polynomials are described by Dy, p:

(@)

Perived (Z @) @

Lz, Z(C), . ) ~ (Z(a) _ Z(b))Da.b Péerived(z(u+b) B ) +.. (75)

where z@1+0) = @ + z(b)) /2. Dgp = Dp 4 also characterize the pattern of zeros.
In effect, D, ;, and S, encode the same information:

a—1

Duyp=Satp—Sa—Sp, Sa= ZDh,l- (76)
b=1
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Fig. 6 W, . obtained by moving z® along a large loop around z® and z(©) counts the total
numbers of zeros of f (@) in the loop. The crosses mark the off-particle zeros of f (z®@) not at
z® and 7©

4.2.2 The Concave Conditions on Pattern of Zeros

Since D, , > 0, we obtain the first concave condition:
Ao(a,b) = Satp — Sa — Sp 2 0. 77

Such a condition comes from the fusion of two clusters. We also have a second
concave condition:

As(a,b,c) = Savpre — Satd — Sbte — Sate +Sa + Sp+ S =>0 (78)

from the fusion of three clusters.

To derive the second concave condition, let us fix all variables z®, z(©, ...
except z@ in the derived polynomial Paerived (29, z(b),z(c),...). Then the de-
rived polynomial Paerived (2@, 7® @ . .) can be viewed as a complex function
f (z(“)), which has isolated on-particle zeros at z® z© . and possibly some
other off-particle zeros.

Let us move z® around both points z») and z(). The phase of the complex
function f (z(“)) will change by 27 W, . where W, . is an integer (see Fig. 6).
Since f(z (@) has an order D, zero at z® and an order D, zero at 79, the integer
Wa be satisfy

Wa,bc > Dup + Dqc

because f(z“)) may also have off-particle zeros. Now let z” — z(©) to fuse into
7% n this limit W, . becomes the order of zeros between z(¥) and z(**+:
Wa.be = Da p+c- Thus we obtain the following condition on Dyp: D4 ptc = Dap +
D,., which gives us the second concave condition (78).

We like to point out that the n-cluster condition has a very simple meaning in the
derived polynomial: f (z'?) has no off-particle zeros if a =0 mod n. So Dyypn =
Dg.n + Dp » which leads to the cluster condition (73).

4.2.3 Some Additional Conditions

The two concave conditions are the main conditions on {S,}. We also have another
condition

Aj(a,a) =even (79)
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since the polynomial is a symmetric polynomial. It turns out that we need yet an-
other a condition

As(a, b, c) =even. (80)

It is hard to prove this mysterious condition using elementary methods. Using the
connection between the symmetry polynomial and CFT (or vertex algebra), we
find that the condition As(a, b, ¢) = even is directly related to the requirement that
the fermionic operators have half-integer scaling dimensions and bosonic operators
have integer scaling dimensions [35].

We conjecture that the patterns of zeros (5 Sa, ..., S,) that satisfy the above
conditions describe infinite-variable symmetric polynomials [25]. Those (%-; Sz,
..., Sp) “classify” infinite-variable symmetric polynomials and FQH states with fill-
ing fraction v =n/m.

4.2.4 Primitive Solutions for Pattern of Zeros

Let us list some patterns of zeros, (%; S5, ..., Sp), that satisfy the above conditions.
We note that the conditions are semi-linear in (75 S, ..., Sp). So,if (55 S2, ..., Sy)
and (%/; S5, ..., S,) are solutions, then (’r':—,/,/; Sy, 8 = (B8, ..., 8) +
(”"1—,’; Sé, e S,;) is also a solution. Such a result has the following meaning: Let
P({zi}), P'({zi}), and P"({z;}) are three symmetric polynomials described by pat-
tern of zeros (% S2, ..., Sp), (’,':—,/; S5, ..., S,), and (’Z—,/,/; Sy, ..., S)) respectively,

we then have P”({z;}) = P({z;}) P’ ({z;}). Such a property allow us to introduce the
notion of primitive pattern of zeros as the patterns of zeros that cannot to written as
the sum of two other patterns of zeros. In this section, we will only list the primitive
patterns of zeros.

1-cluster state: v = 1/k Laughlin state

i (5)-()
ve\n )T\ ) 81)
(no,...,np—1)=0,0,...,0).

2-cluster state: Pfaffian state (Z, parafermion state)

ponas (%) = (39)
2/2,Zy - ;’ 2 )= 55 ) (82)
(no, ...,nm—1) =(2,0)

3-cluster state: Z3 parafermion state

m 2
P3p.zyi| —:182.83)=(5:0,0),
n 3 (83)

(n()v ce nm—l) = (37 0)
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4-cluster state: Z4 parafermion state

m 2
Papriz,: ;;Sz,---,&x ={7:0.0.0). )
(n07 e 7nm—1) = (4’0)5

5-cluster states (we have two of them): Z5 (generalized) parafermion states

m 2

P5/2,Z5 : (;; 527 LR} SS) = (g;()’ 0’ 07 O)a (85)
(n()v"'vnm—l):(sso)

P (2. ss)=(2.0.2.6.10

5520 (7382085 ) =(5:0,2,6,10), )

(n05 "‘5”}7[71) = (2705 1’072705070)

6-cluster state:

m 2
Psy: 74 ;;SZ,...,S{, = 8;0,0,0,0,0 , &

(ng, ...,nu—1)=1(6,0)

7-cluster states (we have four of them):

2
P7/2,Z7 : <ﬂ; SZ’ cees S7) = <_; 0907 Os Os 07 O)v
n 7 (88)

(no,...,np—1)=1(7,0)

8
.,S7> = (—; 0,0,2,6, 10, 14),
7 (89)
(n()?" nm—l):(37071,013707050)

m 18
@ - .,57) = (—; 0,4, 10, 18, 30, 42),
7/18 VA < 7 (90)

7/8 z® -

(no,...,nm-1)=1(2,0,0,0,0,1,0,0,0,2,0,0,0,0,0)

m 14
Prjger | =3 82,...,87 ) = 7;0,2,6, 12, 20,28 |,

oD
(n()’ "'1nm—l) = (27 01 1907 1’01 1?07 21 O! 07 O’ 01 O)

4.2.5 How Good Is the Pattern-of-Zeros Classification?

How good is the pattern-of-zeros classification? Not so good, and not so bad.
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Clearly, every symmetric polynomial P corresponds to a unique pattern of zeros
{S,}. But only some patterns of zeros correspond to a unique symmetric polynomial.
So the pattern-of-zeros classification is not so good. It appears that all the primitive
pattern of zeros correspond to a unique a unique symmetric polynomial. Therefore,
the pattern-of-zeros classification is not so bad.

We also know that some composite patterns of zeros correspond a unique sym-
metric polynomial, while other composite patterns of zeros do not correspond a
unique symmetric polynomial. Let P,; be a symmetric polynomial described by a
primitive pattern of zeros with an n;-cluster. It appear that P = [[; P,, will have
a pattern of zeros that corresponds a unique symmetric polynomial if #»;’s has no
common factor.

So only for certain patterns of zeros, the data {%; S7,...,8,} contain all the in-
formation to fix the symmetric polynomials. In general, we need more information
than {*-; S>, ..., S,} to fully characterize symmetry polynomials of infinite vari-
ables.

4.3 Topological Properties from Pattern of Zeros

For those patterns of zeros that uniquely characterize the symmetry polynomials of
infinite variables (or FQH wave functions), we should be able to calculate the uni-
versal properties of the FQH states from the data (7'; S2, ..., S,). Those universal
properties include:

The filling fraction v.

Topological degeneracy on torus and other Riemann surfaces
Number of quasiparticle types

Quasiparticle charges

Quasiparticle scaling dimensions

Quasiparticle fusion algebra

Quasiparticle statistics (Abelian and non-Abelian)

The counting of edge excitations (central charge ¢ and spectrum)

At moment, we can calculate many of the above universal properties from the
pattern-of-zeros data (%; $2,...,8,). For example, the filling fraction v is given by
v =n/m. But we still do not know how to calculate scaling dimensions and statistics
for some of the quasiparticles.

In this subsection, we develop a pattern-of-zeros description of the quasiparticle
excitations in FQH states. This will allow us to calculate many universal properties
from the pattern of zeros.

4.3.1 Pattern of Zeros of Quasiparticle Excitations

A quasiparticle is a defect in the ground state wave function P ({z;}). It is a place
where we have more power of zeros. For example, the ground state wave function
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Fig. 7 The graphic picture of

the pattern of zeros for a
quasiparticle

Sy:a

of v = 1/2 Laughlin state is given by [ [, _ j@i—z j)z. The state with a quasiparticle
at & is given by [ [;(z; — &) ]_[l-<j (zi — zj)2 (see Sect. 3.2). As we bring several z;’s
to &, [[;(zi —&) l_[i<j (zi — z./)2 vanishes according to a pattern of zeros. In general,
each quasiparticle labeled by y in a FQH state can be quantitatively characterized
by distinct pattern of zeros (see Fig. 7).

Let P, (§; {z;}) be the wave function with a quasiparticle y at z = . To describe
the structure of the zeros as we bring bosons to the quasiparticle, we set z; = An; +&,
i=1,2,...,aand let A — O:

Py(&:{zi)) =A% Py (2 =€, 2441 2042, . .) + O (A% ) 92)

Sy.a is the order of zeros of P, (§; z;) when we bring a bosons to &. The sequence of
integers {Sy.4} is the quasiparticle pattern of zeros that characterizes the quasipar-
ticle y. We note that the ground-state pattern of zeros {S,} correspond to the trivial
quasiparticle y = 0: {So.q} = {S4}-

To find the allowed quasiparticles, we simply need to find (i) the conditions that
Sy must satisfy and (ii) all the S, that satisfy those conditions.

4.3.2 Conditions on Quasiparticle Pattern of Zeros S, .,

The quasiparticle pattern of zeros also satisfy two concave conditions

Sy.a+b — Sy:a — Sp > 0, (93)
Sy:atbte = Sysatd — Sy:ate = Sbte + Sy;a +Sp+ S =0 94)
and a cluster condition
Sy:atkn = Sy;a +k(Sy;n +ma) + mn@ 95)
The cluster condition implies that a finite sequence (Sy.1, ..., Sy;,) determines the

infinity sequence {S,,,}.

We can also use the sequence /)., = Sy 4 — Sya—1 0rnyy =3 ;i 81,1,.; to de-
scrib.e the .quasiparticle sequence Sy.,. The n,.; description is simpler and reveals
physical picture more clearly than S,,.,.

4.3.3 The Solutions for the Quasiparticle Patterns of Zeros

We can find all (Sy.1, ..., Sy;,) that satisfy the above concave and cluster conditions
through numerical calculations. This allow us to obtain all the quasiparticles.
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For the v = 1 Pfaffian state (n = 2 and m = 2) described by
S1,82,...:0,0,2,4,8,12, 18,24, ...
noniny ---:2020202020202020202 - - - ,

(96)

we find that the quasiparticle patterns of zeros are given by (expressed in terms of
ny,l)

My 1My - - : 2020202020202020202 -+ Q,, =0
My0y:1ny:2 - - - 0202020202020202020 -+ O, =1 97)
yonyany. -+ T - Q, =1/2

The above three pattern of zeros are not all the solutions of the quasiparticle
conditions. However, all other quasiparticle solutions can be obtained from the
above three by removing some bosons. Those quasiparticle solutions are equiva-
lent to one of the above three solutions. For example n,,0n,.1 - - - = 102020202 - - -,
ny.0ny:1 - - = 002020202 - - -, etc. are also quasiparticle solutions which are equiv-
alent to ny;on,; - -- = 202020202 - - - . Therefore, we find that the v = 1 Pfaffian
state has three types of quasiparticles.

We note that the ground state degeneracy on torus is equal to the number of
quasiparticle types. So the v = 1 Pfaffian state has a three-fold degeneracy on a
torus. The charge of quasiparticles can be also calculated from the quasiparticle
pattern of zeros:

1« 1
Oy = m Z(l)/;a —lg) = E(S)/;n = Sn)- ©8)
a=1

Let us list the number of quasiparticle types calculated from pattern of zeros for
various FQH states. For the parafermion states P,—;/2;z, (m =2),

Prizy, Pajoizy Pajaizy Psjpizs Pejnize Pr2izy Psjizg Pojrize Prog2:7y

3 4 5 6 7 8 9 10 11

For the parafermion states P,—/242n);z, (m =2+ 2n)

Pyj6;z, Passizs Pajno;zy Pspi2:zs Pojia;ze Prez; Psjisizs Poj20;ze Proj22;2y

9 16 25 36 49 64 81 100 121

For the generalized parafermion states p_ i 2

P5/8;z§2) P5/18;z_§2) P7/8;z§2> P7/22;z§2’ P7/18;z§3) P7/32;z§3> P8/18;z§3) P9/8;z;2)

24 54 32 88 72 128 81 40

where k and n are co-prime.
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For the composite parafermion states P ) P ) obtained as prod-
P p nl/ml:Zr(l,z) nz/mzzzr(zzz) P

ucts of two parafermion wave functions

P2z, P3j2,zy P3jozi Paj2ize Pay2:2,P5)2,25 P2/2222P5/8;z§2’

30 70 63 117

where 71 and nz are co prime. The inverse filling fractions of the above composite
states are , = - —|— S=t ’:;—22 More results can be found in [26].

All those results from the pattern of zeros agree with the results from parafermion
CFT [27]:

_— Iy ni(ni +1)
# of ticles=— | | ———— 99
of quasiparticles 5 1_[ 5 99)
for the generalized composite parafermion state
P = l_[ P (L ), {m;}co-prime, (k;, n;) co-prime. (100)

The filling fraction for such generalized composite parafermion state is given by

v=_; ’Zl'

4.3.4 Quasiparticle Fusion Algebra: y;y; = Zm N},’f‘yz 73

When we fuse quasiparticles y; and y» together, we can get a third quasiparticle
y3. However, for non-Abelian quasiparticles, the fusion can be more complicated.
Fusing y; and y, may produce several kind of quasiparticles. Such kind of fusion is
described by quasiparticle fusion algebra (see Fig. 8): y1y2 = Z)@ N;,/fyz y3, where
N. )),/13,,2 are non-negative integers.

To calculate the fusion coefficients N}},/f,,z from the pattern of zeros, let us put the
quasiparticle y; at z = 0. Far away from z = 0, such a quasiparticle has a pattern of
zeros ny,;; (in the occupation representation). We then insert a quasiparticle y; at
z =R for alarge R. At z=r > R, the occupation becomes the occupation of the
quasiparticle y3: n,.;. We see that the fusion of y» changes the occupation pattern
fromny,.; t0ny,.:

Nys0Tys31 * Ny V2)Mygsat 1Mgsas -
2 C ° (101)
Y2 V3

So the quasiparticle y; becomes a “domain wall” between the | occupation pattern
and the y3 occupation pattern [49].

From the above domain wall structure, we can see only n,,;; and n,,,;, but we
cannot see n,,;;. But this is enough for us. We are able to find a condition on n,,;
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~END,

Syisa Sy Sysia

Fig. 8 The graphic picture of the fusion of two quasiparticles. Each box represent a many-boson
wave function. In the left box, we have quasiparticle y; and y, described by patterns of zeros Sy, .4
and S,,.,. Far away from the two quasiparticles, the wave function may contain several different
patterns of zeros S,,., that correspond to several different quasiparticle types y3. So we say that y;
and y» may fuse into several different types of quasiparticles labeled by y3

so that it can induce a domain wall between n,,;; and n,.; [27]:

b b

D e ) = D e T 1Y) (102)
j=l1 j=l1

for any a, b, c € Z, where lSC 0 =lya— w

Solving the above equatlon allows us to determine when N}? »» can be non-zero.
If we further assume that Ny1 »» =0, 1, then the fusion algebra can be determined.
Knowing N}?,, allows us to determine the ground state degeneracies of FQH state
on any closed Riemann surfaces.

We like to mention that for the generalized composite parafermion states which
have a CFT description, the pattern-of-zeros approach and the CFT approach give
rise to the same fusion algebra. However, the pattern-of-zeros approach applies to

other FQH states whose CFT may not be known.

5 The Vertex-Algebra + Pattern-of-Zeros Approach

5.1 Z-Graded Vertex Algebra

The symmetric polynomial P({z;}) and the corresponding derived polynomial
Pderived({zl(“" ) }) can be expressed as correlation functions in a vertex algebra:

{Zl <1_[ V(zi) > Pderlved <1_[ Va (a) >

Va(z) = ve, VoV = Vayp.

(103)

The vertex algebra is generated by vertex operator V(z) and is described by the
following operator product expansion:

Cap
(Z — w)ha+hb*ha+b

Va(@)Vp(w) = Varp(w) +--- (104)
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where A, is the scaling dimension of V, and C,, the structure constant of the vertex
algebra. Such a vertex algebra is a Z-graded vertex algebra.
The pattern of zeros S, discuss before is directly related to h,:

havp —ha —hp = Dap = Savp — Sa — Sp (105)

The n-cluster condition implies that /, o a® if a = 0 mod n. This allows us to ob-
tain

S,
Don (106)

hg =S84 — >

We see that the pattern of zeros S, only describe the scaling dimensions of the
vertex operators. It does not describe the structure constants C, 5. So a more com-
plete characterization of FQH wave functions (symmetric polynomials) is given by

™5 8as Cap, - ..). But (55 Sq; Cap, . . .) may be an overkill. We like to find out what
is the minimal set of date that can completely characterize the FQH wave functions
(or the symmetric polynomials).

5.2 Z,-Vertex Algebra

If the above Z-graded vertex algebra satisfies the n-cluster condition, then it can be
viewed a Z,-vertex algebra ® a U (1) current algebra:

Va(2) = Y (g)e1®@vmin (107)

where j = d¢ generates the U (1) current algebra and 1, generates the Z,-vertex
algebra:

Cq
‘ﬁa (Z)Wb(w) = ( )hsci/’lchhsc , wd-ﬁ-b(w) + - (108)
Z—w a a+

where ¥, =1 as the result of the n-cluster condition. The scaling dimension of

Ya(z) is

2 2
am alS, am a‘m
hi=ha= 5 =SS r 5 =5, ha=he, (109
The two sets of data (%; S>,...,8,) and (%; hi, ..., k" ;) completely determine

each other:

ala—1)m

Sa = hf —ahf + ——

(110)

So we can also use (%3 A1, ..., h} ) to describe the pattern of zeros.
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From the pattern-of-zeros consideration, we find that /5% must satisfy

—1
Sa =hy —ah{ + a@—Dm _ integer > 0
2n
b
s — b — b+ % = D,y = integer > 0 (111)
n

sc sc sc sc sc sc sc
a+b+c ha+b “ %hte T ha-i—c + ha + hh + hc

= Asz(a, b, c) = even integer > 0 (112)

But the above conditions are only on /5°. To get the conditions on C,p, We can
use the generalized Jacobi identity [50] to obtain a set a non-linear equations for
(h3f, Cap, . ..) [35]. Those conditions may be sufficient and necessary which may
lead to a classification of Z,-vertex algebra.

For some simple pattern of zeros i;°, we are able to build a closed set of non-
linear equations for (A%, Cqp, . ..), which lead to a well defined Z,-vertex algebra.
This allows us to calculate quasiparticle scaling dimensions, quasiparticle statistics,
central charge (edge spectrum) [35], ... We would like to point out that in [32] and
[34], a very interesting approach based the pattern of zeros and modular transforma-
tion of torus is proposed, that allows us to calculate the fractional statistics of some
quasiparticles directly from the pattern-of-zeros data. We also like to point out that
finding valid (A}°, Cpp, . ..) corresponds to finding a well defined Z,, vertex algebra.
Finding the quasiparticle patterns of zeros corresponds to finding the representations
of the Z,, vertex algebra.

But at moment, we cannot handle more general pattern of zeros /5, in the sense
that we have some difficulties to obtain a closed set of non-linear algebraic equations
for (h}°, Cap, ...). We hope that, after some further research, the pattern-of-zeros
approach may lead to a classification of Z,-vertex algebra, which in turn lead to a
classification of symmetric polynomials and FQH states.

6 Summary

Although still incomplete, the pattern-of-zeros approach provides quite a power-
ful way to study symmetric polynomials with infinite variables and FQH states. It
connects several very different fields, such as strongly correlated electron systems,
topological quantum field theory, CFT (for the edge states), modular tensor category
theory (for the quasiparticle statistics), and maybe a new field of infinite-variable
symmetric polynomial. This article only reviews the first step in this very exciting
direction. More exciting results are yet to come.
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