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Abstract Some purely chiral fractional quantum Hall states are described by sym-
metric or anti-symmetric polynomials of infinite variables. In this article, we review
a systematic construction and classification of those fractional quantum Hall states
and the corresponding polynomials of infinite variables, using the pattern-of-zeros
approach. We discuss how to use patterns of zeros to label different fractional quan-
tum Hall states and the corresponding polynomials. We also discuss how to calcu-
late various universal properties (i.e. the quantum topological invariants) from the
pattern of zeros.

1 Introduction

To readers who are interested in physics, this is a review article on the pattern-of-
zeros approach to fractional quantum Hall (FQH) states. To readers who are inter-
ested in mathematics, this is an attempt to classify symmetric polynomials of infinite
variables and Zn vertex algebra. To those interested in mathematical physics, this
article tries to provide a way to systematically study pure chiral topological quantum
field theories that can be realized by interacting bosons. In the next two subsections,
we will review briefly the definition of quantum many-boson systems, and the def-
inition of quantum phase for non-physicists. Then, we will give an introduction of
the problems studied in this paper.
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1.1 What Is a Quantum Many-Boson System

The fermionic FQH states [1, 2] are described by anti-symmetric wave functions,
while the bosonic FQH states are described by symmetric wave functions. Since
there is an one-to-one correspondence between the anti-symmetric wave functions
and the symmetric wave functions, in this article, we will only discuss bosonic FQH
states and their symmetric wave functions.

Bosonic FQH systems are quantum many-boson systems. Let us first define
mathematically what is a quantum many-boson system, using an N -boson system
in two spatial dimensions as an example. A many-body state of N bosons is a sym-
metric complex function of N variables

Ψ (r1, . . . , r i , . . . , rj , . . . , rN)

= Ψ (r1, . . . , rj , . . . , r i , . . . , rN) (1)

where the ith variable r i = (xi, yi) describes the coordinates of the ith boson. All
such symmetric functions form a Hilbert space where the normal is defined as

〈Ψ |Ψ 〉 =
∫ ∏

i

dxidyiΨ
∗Ψ (2)

A quantum system of N bosons is described by a Hamiltonian, which is a Her-
mitian operator in the above Hilbert space. It may have a form

H(g1, g2) =
N∑

i=1

−1

2

(
∂2
xi

+ ∂2
yi

) +
∑
i<j

Vg1,g2(r i − rj ) (3)

Here Vg1,g2(r i − rj ) is the interaction potential between two bosons. We require the
interaction potential to be short ranged:

Vg1,g2(x, y) = 0, if
√

x2 + y2 > ξ, (4)

where ξ describes the interaction range. Hamiltonians with short-ranged interactions
are called local Hamiltonians.

The ground state of the N boson system is an eigenvector of H :

H(g1, g2)Ψg1,g2(r1, . . . , rN) = Egrnd(g1, g2)Ψg1,g2(r1, . . . , rN) (5)

with the minimal eigenvalue Egrnd(g1, g2). The eigenvalues of the Hamiltonian are
called energies.

Here we assume that the interaction potential may depend on some parameters
g1, g2. As we change g1, g2, the ground states Ψg1,g2 for different g1, g2’s can some
times have similar properties. We say that those states belong to the same phase.
Some other times, they may have very different properties. Then we regard those
states to belong to the different phases.
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Fig. 1 The curves mark the position of singularities in functions Egrnd(g1, g2)/N and 〈O〉(g1, g2).
They also represent phase transitions. The regions, A, B, and C, separated by phase transitions
correspond to different phases

1.2 What Are Quantum Phases

More precisely, quantum phases are defined through quantum phase transitions. So
we first need to define what quantum phase transitions are.

As we change the parameters g1, g2 in the Hamiltonian H(g1, g2), if the average
of ground state energy per particle Egrnd(g1, g2)/N has a singularity in N → ∞
limit, then the system has a phase transition. More generally, if the average of any
local operator O on the ground state

〈O〉(g1, g2) =
∫ ∏

i

dxidyiΨ
∗
g1,g2

OΨg1,g2 (6)

has a singularity in N → ∞ limit as we change g1, g2, then the system has a phase
transition (see Fig. 1).

Using the quantum phase transition, we can define an equivalence relation be-
tween quantum ground states Ψg1,g2 in N → ∞ limit: Two quantum ground states
Ψg1,g2 and Ψg′

1,g
′
2

are equivalent if we can find a path that connect (g1, g2) and
(g′

1, g
′
2) such that we can change Ψg1,g2 into Ψg′

1,g
′
2

without encountering a phase
transition. The quantum phases are nothing but the equivalent classes of such an
equivalence relation [3]. In short, the quantum phases are regions of (g1, g2) space
which are separated by phase transitions (see Fig. 1).

1.3 How to Classify Quantum Phases of Matter

One of the most important questions in condensed matter physics is how to classify
the many different quantum phases of matter. One attempt is the theory of symmetry
breaking [4–6], which tells us that we should classify various phases based on the
symmetries of the ground state wave function. Yet with the discovery of the FQH
states [1, 2] came also the understanding that there are many distinct and fascinating
quantum phases of matter, called topologically ordered phases [7, 8], whose char-
acterization has nothing at all to do with symmetry. How should we systematically
classify the different possible topological phases that may occur in a FQH system?
In this paper, we will try to address this issue.
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We know that the FQH states contain topology-dependent degenerate ground
states, which are topologically stable (i.e. robust against any local perturbations
of the Hamiltonians). This allows us to introduce the concept of topological order
in FQH states [9, 10]. Such topology-dependent degenerate ground states suggest
that the low energy theories describing the FQH states are topological quantum
field theories [11–13], which take a form of pure Chern-Simons theory in 2 + 1
dimensions [14–19]. So one possibility is that we may try to classify the different
FQH phases by classifying all of the different possible pure Chern-Simons theories.
Although such a line of thinking leads to a classification of Abelian FQH states
in terms of integer K-matrices [15–20], it is not a satisfactory approach for non-
Abelian FQH states [21, 22] because we do not have a good way of knowing which
pure Chern-Simons theories can possibly correspond to a physical system made of
bosons and which cannot.

Another way to classify FQH states is through the connection between FQH
wave functions and conformal field theory (CFT). It was discovered around 1990
that correlation functions in certain two-dimensional conformal field theories may
serve as good model wave functions for FQH states [21, 23, 24]. Thus perhaps
we may classify FQH states by classifying all of the different CFTs. However, the
relation between CFTs and FQH states is not one-to-one. If a CFT produces a FQH
wave function, then any other CFTs that contain the first CFT can also produce the
FQH wave function [24].

Following the ideas of CFT and in an attempt to obtain a systematic classifica-
tion of FQH states without using conformal invariance, it was shown recently that
a wide class of FQH states and their topological excitations can be classified by
their patterns of zeros, which describe the way ideal FQH wave functions go to
zero when various clusters of particles are brought together [25–28]. (We would
like to point out that the “1D charge-density-wave” characterization of FQH states
[29–34] is closely related to the pattern-of-zeros approach.) This analysis led to the
discovery of some new non-Abelian FQH states whose corresponding CFT has not
yet been identified. It also helped to elucidate the role of CFT in constructing FQH
wave functions: The CFT encodes the way the wave function goes to zero as various
clusters of bosons are brought together. The order of these zeros must satisfy certain
conditions and the solutions to these conditions correspond to particular CFTs. Thus
in classifying and characterizing FQH states, one can bypass the CFT altogether
and proceed directly to classifying the different allowed pattern of zeros and subse-
quently obtaining the topological properties of the quasiparticles from the pattern of
zeros [26–28]. This construction can then even be thought of as a classification of
the allowed CFTs that can be used to construct FQH states [35]. Furthermore, these
considerations give a natural notion of which pattern of zeros solutions are simpler
than other ones. In this sense, then, one can see that the Moore-Read Pfaffian quan-
tum Hall state [21] is the “simplest” non-Abelian generalization of the Laughlin
state.

We would like to point that in the pattern-of-zeros classification of FQH states,
we do not try to study the phase transition and equivalence classes. Instead, we just
try to classify some special complex functions of infinite variables. We hope those
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Fig. 2 The black dots
represent the ideal wave
functions that can represent
each quantum phase

special complex functions can represent each equivalence class (i.e. represent each
quantum phase) (see Fig. 2).

2 Examples of Fractional Quantum Hall States

Before trying to classify a type of quantum phases—FQH phases, let us study some
examples of ideal FQH wave functions to gain some intuitions.

2.1 The Hamiltonian for FQH Systems

A FQH state of N -bosons is described by the following Hamiltonian:

H(g1, g2) =
N∑

i=1

(
i∂zi

− i
1

4
z∗
i

)(
i∂z∗

i
+ i

1

4
zi

)
+

∑
i<j

Vg1,g2(zi − zj ) (7)

where the two dimensional plane is parametrized by z = x + iy. When Vg1,g2 = 0,
there are many wave functions

Ψ (z1, . . . , zN) = P(z1, . . . , zN)e−(1/4)
∑N

i=1 ziz
∗
i ,

P = a symmetric polynomial
(8)

that all have the minimal zero eigenvalue (or energy) for any P :

[
N∑

i=1

(
i∂zi

− i
1

4
z∗
i

)(
i∂z∗

i
+ i

1

4
zi

)]
P(z1, . . . , zN)e−(1/4)

∑N
i=1 ziz

∗
i = 0, (9)

since

e(1/4)zz∗
(

i∂z − i
1

4
z∗

)(
i∂z∗ + i

1

4
z

)
e−(1/4)zz∗ =

(
i∂z − i

1

2
z∗

)
i∂z∗ (10)

For small non-zero Vg1,g2 , there is only one minimal energy wave function de-
scribed by a particular polynomial P whose form is determined by Vg1,g2 . In gen-
eral, it is very hard to calculate this unique ground state wave function. In the fol-
lowing, we will show that for some special interaction potential Vg1,g2 , the ground
state wave function can be obtained exactly.
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2.2 Three Ideal FQH States: The Exact Zero-Energy Ground
States

For interaction

V1/2(z1, z2) = δ(z1 − z2), (11)

the wave function P1/2(z1, . . . , zN)e−(1/4)
∑N

i=1 ziz
∗
i with

P1/2 =
∏
i<j

(zi − zj )
2 (12)

is the only zero energy state with minimal total power of zi ’s. This is because
∫ ∏

i

d2zie
−(1/4)

∑
i |zi |2P ∗

1/2

[∑
i<j

V1/2(zi, zj )

]
P1/2e

−(1/4)
∑

i |zi |2 = 0. (13)

Such a state is called ν = 1/2 Laughlin state.
For interaction

V1/4(z1, z2) = v0δ(z1 − z2) + v2∂
2
z∗

1
δ(z1 − z2)∂

2
z1

, (14)

the wave function P1/4(z1, . . . , zN)e−(1/4)
∑N

i=1 ziz
∗
i with

P1/4 =
∏
i<j

(zi − zj )
4 (15)

is the only zero energy state with minimal total power of zi ’s, since
∫ ∏

i

d2zie
−(1/4)

∑
i |zi |2P ∗

1/4

[∑
i<j

V1/4(zi, zj )

]
P1/4e

−(1/4)
∑

i |zi |2 = 0. (16)

Such a state is called ν = 1/4 Laughlin state.
Now let us consider interaction [36, 37]

VPf(z1, z2, z3) = S
[
v0δ(z1 − z2)δ(z2 − z3) − v1δ(z1 − z2)∂z∗

3
δ(z2 − z3)∂z3

]
(17)

where S symmetrizes among z1, z2, z3 to make VPf(z1, z2, z3) a symmetric function.

Then the wave function PPf(z1, . . . , zN)e−(1/4)
∑N

i=1 ziz
∗
i with

PPf = A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN

)∏
i<j

(zi − zj )

= Pf

(
1

zi − zj

)∏
i<j

(zi − zj ) (18)
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is the only zero energy state with minimal total power of zi ’s, where A anti-
symmetrizes among z1, . . . , zN . This is because

∫ ∏
i

d2zie
−(1/4)

∑
i |zi |2P ∗

Pf

[ ∑
i<j<k

VPf(zi , zj , zk)

]
PPfe

−(1/4)
∑

i |zi |2 = 0. (19)

Such a state is called the Pfaffian state [21].

3 The Universal Properties of FQH Phases

The three many-body wave functions P1/2e
−(1/4)

∑
i |zi |2 , P1/4e

−(1/4)
∑

i |zi |2 , and

PPfe
−(1/4)

∑
i |zi |2 have some amazing exact properties in N → ∞ limit. We believe

that those properties do not depend on any local deformations of the wave func-
tions.1 In other words, those properties are shared by all the wave functions in the
same phase. We call such kind of properties universal properties.

The universal properties can be viewed as quantum topological invariants in
mathematics, since they do not change under any perturbations of the local Hamilto-
nian. Thus, from mathematical point of view, the symmetric polynomials of infinite
variables, such as P1/2, P1/2, and PPf, can have many quantum topological invari-
ants (i.e. the universal properties) once we define their norm to be

〈P |P 〉 =
∫ N∏

i=1

d2zi

∣∣P(z1, . . . , zN)
∣∣2e−(1/2)

∑ |zi |2 . (20)

Since the three wave functions have different universal properties, this implies
that the three wave functions belong to three different quantum phases. In this sec-
tion, we will discuss some of the universal properties, by first listing them in bold-
face. Then we will give an understanding of them from physics point of view. Those
conjectured universal properties are exact, but not rigorously proven to be true.

3.1 The Filling Fractions of FQH Phases

The density profile of a FQH wave function is given by

ρ(z) =
∫

d2z2 · · ·d2zN |P(z, z2, . . . , zN)|2e−(1/2)
∑ |zi |2∫

d2z1d2z2 · · ·d2zN |P(z1, z2, . . . , zN)|2e−(1/2)
∑ |zi |2 (21)

1A local deformation of a many-body wave function Ψ is generated as Ψ → Ψ ′ = eiδH Ψ where
δH is a hermitian operator that can be viewed as an local Hamiltonian.
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Fig. 3 The shape of the
density profile ρ(z)

Fig. 4 a The density profile
of the lth orbital. b The filling
of the orbitals gives rise to a
disk-like density profile in c

We believe that

ν ≡ 2πρ(0) (22)

is a rational number in N → ∞ limit. ν is called the filling fraction of the corre-
sponding FQH state. We find that

P1 =
∏

(zi − zj ) → ν = 1, P1/2 =
∏

(zi − zj )
2 → ν = 1/2,

P1/4 =
∏

(zi − zj )
4 → ν = 1/4,

PPf = Pf

(
1

zi − zj

)∏
(zi − zj ) → ν = 1.

(23)

Note that P1 is anti-symmetric and describe a many-fermion state, while P1/2, P1/4,
and PPf are symmetric and describe many-boson states.

We also believe that the density profile ρ(z) has disk shape (see Fig. 3) in large N

limit: ρ(z) is almost a constant ν/2π for |z| <
√

2N/ν and quickly drop to almost
zero for |z| > √

2N/ν.

3.1.1 Why ν = 1 for State Ψ1 = ∏
i<j (zi − zj )e−∑ |zi |2/4

We note that the one-particle eigenstates (the orbitals) for one-particle Hamiltonian
H0 = −∑

(∂z − 1
4z∗)(∂z∗ + (1/4)z) can be labeled by the angular momentum l,

which is given by zle−(1/4)|z|2 . The one-particle eigenstate has a ring-like shape
with maximum at |z| = rl = √

2l (see Fig. 4a). The ν = 1 many-fermion state is
obtained by filling the orbitals (see Fig. 4b):

Ψ =
∏
i<j

(zi − zj )e
−(1/4)

∑ |zi |2 = A
[
(z1)

0(z2)
1 · · · ]e−(1/4)

∑ |zi |2 (24)

We see that there are l fermions within radius rl . So there is one fermion per
πr2

l / l = 2π area, and thus ν = 1 (see Fig. 4c).
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3.1.2 Why ν = 1/m for the Laughlin State Ψ1/m = ∏
i<j (zi − zj )me−∑ |zi |2/4

Let us consider the joint probability distribution of boson positions, which is given
by the absolute-value-square of the ground state wave function:

p(z1 · · · zN) ∝ ∣∣Ψ1/m(z1 · · · zN)
∣∣2

= e−2m
∑

i<j ln |zi−zj |−(m/2)
∑

i |zi |2 = e−βV (z1···zN ) (25)

Choosing T = 1
β

= m
2 , we can view e−βV (z1···zN ) as the probability distribution for

N particles with potential energy V (z1 · · · zN) at temperature T = m
2 . The potential

has a form

V = −m2
∑
i<j

ln |zi − zj | + m

4

∑
i

|zi |2 (26)

which is the potential for a two-dimensional plasma of ‘charge’ m particles [2]. The
two-body term −m2 ln |z − z′| represents the interaction between two particles and
the one-body term m

4 |z|2 represents the interaction of a particle with the background
“charge”.

For a uniform background “charge” distribution with charge density ρφ , a charge
m particle at z feel a force, F = (π |z|2ρφ)(m)/|z|. The corresponding background
potential energy is −ρφmπ

2 |z|2. We see that to produce the one-body potential en-
ergy m

4 |z|2 we need to set ρφ = −1/2π . Since the plasma must be “charge” neutral:
mρ + ρφ = 0, we find that ρ = 1

m
1

2π
. So ν = 1/m.

3.2 Quasiparticle and Fractional Charge in ν = 1/m Laughlin
States

If we remove a boson at position ξ from the Laughlin wave function
∏

i<j (zi −
zj )

me−∑ |zi |2/4, we create a hole-like excitation described by the wave function
Ψ hole

ξ (z1, . . . , zN):

Ψ hole
ξ (z1, . . . , zN) ∝

∏
i

(ξ − zi)
m

∏
i<j

(zi − zj )
me−∑ |zi |2/4 (27)

Despite the hole-like excitation has a charge = 1, the minimal value for non-zero in-
tegers, it is not the minimally charged excitation. The minimally charged excitation
corresponds to a quasi-hole excitation, which is described by the wave function

Ψ
quasi-hole
ξ (z1, . . . , zN) ∝

∏
i

(ξ − zi)
∏
i<j

(zi − zj )
me−∑ |zi |2/4 (28)
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Fig. 5 The density profile of a many-boson wave function with a quasi-hole excitation at ξ

The density profile for the quasi-hole wave function Ψ
quasi-hole
ξ (z1, . . . , zN) is given

by

ρξ (z) =
∫ ∏N

i=2 d2zi |Ψ quasi-hole
ξ (z, z2, . . . , zN)|2∫ ∏N

i=1 d2zi |Ψ quasi-hole
ξ (z1, z2, . . . , zN)|2

(29)

ρξ (z) has a shape as in Fig. 5. The quasi-particle charge is defined as

Q =
∫

Dξ

d2z

(
ν

2π
− ρξ (z)

)
(30)

in the N → ∞ limit, where Dξ is a big disk covering ξ . (Note that, away from the
quasi-hole, ρξ (z) = ν

2π
.) We believe that the quasi-hole charge is a rational number

Q = 1/m [2].
One way to understand the above result is to note that m quasi-holes correspond

to a missing boson: [∏i (ξ − zi)]m = ∏
i (ξ − zi)

m. So a quasi-hole excitation has a
fractional charge 1/m although the FQH state is formed by particles of charge 1!

We can also calculate the quasi-hole charge directly. Note that, for the Laughlin
state Ψ

quasi-hole
ξ (z1, . . . , zN) with a quasi-hole at ξ , the corresponding joint probabil-

ity distribution of boson positions is given by p({zi}) ∝ |Ψ quasi-hole
ξ ({zi})| = e−βV

with

V = −m2
∑
i<j

ln |zi − zj | − m
∑

i

ln |zi − ξ | + m

4

∑
i

|zi |2 (31)

Now, the one-body potential term −m ln |z− ξ |+ m
4 |z|2 is produced by background

charge density: ρφ = − 1
2π

+δ(ξ). The “charge” neutral condition mρξ (z)+ρφ(z) ≈
0 allows us to show that ρξ (z) has a shape as in Fig. 5 and satisfies Eq. (30) with
Q = 1/m.

3.3 The Concept of Quasiparticle Type

We would like to point out that the wave function Ψ
quasi-hole
ξ (z1, . . . , zN) ∝ ∏

i (ξ −
zi)

∏
i<j (zi − zj )

me−∑ |zi |2/4 just describes a particular kind of quasiparticle exci-
tation. More general quasiparticle excitations can be constructed as

Ψ
quasi-hole-k
ξ (z1, . . . , zN) ∝

∏
i

(ξ − zi)
k
∏
i<j

(zi − zj )
me−∑ |zi |2/4 (32)
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which can be viewed as a bound state of k charge-1/m quasi-holes. So it appears
that different types of quasiparticles are labeled by integer k.

Here we would like to introduce a concept of quasiparticle type: two quasipar-
ticles belong to the same type if they only differ by a number of bosons that form
the FQH state. Since the quasiparticle labeled by k = m correspond to a boson,
so the different types of quasiparticles in the ν = 1/m Laughlin state are labeled
by k mod m. There are m types of quasiparticles in the ν = 1/m Laughlin state
(including the trivial type labeled by k = 0).

There is an amazing relation between the number of quasiparticle type and the
ground state degeneracy of the FQH state on torus: the number of quasiparticle type
always equal to the ground state degeneracy on torus, in the N → ∞ limit.

3.4 Fractional Statistics in Laughlin States

We note that the normalized state with a quasi-hole at ξ is described by an N -boson
wave function parameterized by ξ :

Ψ
quasi-hole
ξ = [

N
(
ξ, ξ∗)]−1/2 ∏

i

(ξ − zi)
∏
i<j

(zi − zj )
2e−∑ |zi |2/4 (33)

where N(ξ, ξ∗) is the normalization factor. The normalized two quasi-hole wave
function is given by

Ψ
quasi-hole
ξ,ξ ′ = [

N
(
ξ, ξ∗, ξ ′, ξ ′∗)]−1/2

×
∏
i

(ξ − zi)
∏
i

(
ξ ′ − zi

)∏
i<j

(zi − zj )
2e−∑ |zi |2/4 (34)

We conjecture that the above two normalization factors are given by

N
(
ξ, ξ∗) = e(1/(2m))|ξ |2 × Const. (35)

and

N
(
ξ, ξ∗, ξ ′, ξ ′∗) = e(1/(2m))(|ξ |2+|ξ ′|2)+(1/m) ln |ξ−ξ ′|2 × Const. (36)

in the N → ∞ limit, where ξ and ξ ′ are hold fixed in the limit.
The quasi-holes in the Laughlin states also have fractional statistics [38–41]. We

can calculate the fractional statistics by calculating the Berry phase [42] of moving
the quasi-holes. It turns out that the Berry phase of moving the quasi-holes can
be calculated from the above normalization factors. Let us first calculate the Berry
phase for one quasi-hole and the normalization factor N(ξ, ξ∗). The Berry’s phase
�ϕ induced by moving ξ is defined as ei�ϕ = 〈Ψ quasi-hole

ξ |Ψ quasi-hole
ξ+dξ 〉. It is given by

�ϕ = aξdξ + aξ∗dξ∗, aξ = −i〈Ψξ | ∂

∂ξ
|Ψξ 〉, aξ∗ = −i〈Ψξ | ∂

∂ξ∗ |Ψξ 〉, (37)
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where aξ and aξ∗ are Berry connections. Since the unnormalized state
∏

i (ξ −
zi)

∏
i<j (zi − zj )

2e−∑ |zi |2/4 has a special property that it only depends only on
ξ (holomorphic), the Berry connection (aξ , aξ∗) can be calculated from the normal-
ization N(ξ, ξ∗) of the holomorphic state:

aξ = − i

2

∂

∂ξ
ln

[
N

(
ξ, ξ∗)], aξ∗ = i

2

∂

∂ξ∗ ln
[
N

(
ξ, ξ∗)]. (38)

Now let us calculate N(ξ, ξ∗). Let us guess that N(ξ, ξ∗) is given by Eq. (35).
To show the guess to be right, we need to show that the norm of |Ψ quasi-hole

ξ 〉 does

not depend on ξ . We note that |Ψ quasi-hole
ξ |2 = e−βVξ with

Vξ (z1, . . . , zN) = −m2
∑
i<j

ln |zi − zj | − m
∑

i

ln |zi − ξ |

+ 1

4
|ξ |2 + m

4

∑
i

|zi |2. (39)

Here Vξ can be viewed as the total energy of a plasma of N ‘charge’-m particles at
zi and one ‘charge’-1 particle hold fixed at ξ . Both particles interact with the same
background charge. Note that the norm 〈Ψ quasi-hole

ξ |Ψ quasi-hole
ξ 〉 is given by

〈
Ψ

quasi-hole
ξ

∣∣Ψ quasi-hole
ξ

〉 =
∫ ∏

d2zie
−βVξ (40)

Due to the screening of the plasma, we argue that
∫ ∏

d2zie−βVξ does not depend

on ξ in N → ∞ limit, which implies that 〈Ψ quasi-hole
ξ |Ψ quasi-hole

ξ 〉 does not depend
on ξ . Thus N(ξ, ξ∗) is indeed given by Eq. (35).

This allows us to find

aξ = −i
1

4m
ξ∗, aξ∗ = i

1

4m
ξ (41)

Using such a Berry connection, let us calculate the Berry’s phase for moving ξ

around a circle C of radius r center at z = 0:

�ϕ =
∮

C

(
aξdξ + aξ∗dξ∗)

= 2π
r2

4m
× 2 = 2π

Area enclosed by C

2πm

= 2π × number of enclosed bosons by C. (42)

We see that the Berry connection describes a uniform ‘magnetic’ field. The above
result can also be understood directly from the wave function

∏
i (ξ − zi)

∏
i<j (zi −

zj )
2e−∑ |zi |2/4.
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Similarly, we can calculate the Berry connection for two quasi-holes. Let us guess
that N(ξ, ξ∗, ξ ′, ξ ′∗) is given by Eq. (36). For such a normalization factor, we find
that |Ψ quasi-hole

ξ,ξ ′ |2 = e−βVξ,ξ ′ with

Vξ,ξ ′(z1, . . . , zN) = −m
∑

i

[
ln |zi − ξ | + ln

∣∣zi − ξ ′∣∣]

+ 1

4

[|ξ |2 + ∣∣ξ ′∣∣2] − ln
∣∣ξ − ξ ′∣∣

− m2
∑
i<j

ln |zi − zj | + m

4

∑
i

|zi |2 (43)

Such a Vξ,ξ ′ can be viewed as the total energy of a plasma of N ‘charge’-m
particles at zi and two ‘charge’-1 particles at ξ and ξ ′. Due to the screening,∫ ∏

d2zie
−βVξ,ξ ′ does not depend on ξ and ξ ′ in N → ∞ limit, which implies that

〈Ψ quasi-hole
ξ,ξ ′ |Ψ quasi-hole

ξ,ξ ′ 〉 does not depend on ξ and ξ ′. So our guess is correct. Using
the normalization factor (36), we find the Berry connection to be

aξ = −i
1

4m
ξ∗ + i

2m

1

ξ − ξ ′ , aξ∗ = i
1

4m
ξ − i

2m

1

ξ∗ − ξ ′∗ (44)

Using such a Berry connection, we can calculate the fractional statistics of the
quasi-holes in the ν = 1/m Laughlin state. Moving a quasi-hole around another, we
find the Berry phase to be �ϕ = enclosed area

m
− 2π

m
(see Eq. (42) for comparison). If

we only look at the sub-leading term −2π/m, we find that exchanging two quasi-
holes give rise to phase θ = −π/m, since exchanging two quasi-holes correspond
to moving a quasi-hole half way around another and we get the half of −2π/m.
We find that quasi-holes in the ν = 1/m Laughlin state have a fractional statistics
described by the phase factor e−iπ/m [40, 41].

The term enclosed area
m

implies that the quasi-holes sees a uniform magnetic field.
So the quasi-holes in the ν = 1/m Laughlin state are anyons in magnetic field.

3.5 Quasi-holes in the ν = 1 Pfaffian State

3.5.1 Charge-1 and Charge-1/2 Quasi-holes

Ground state wave function for the ν = 1 Pfaffian state is given by

ΨPf = A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN

)
Ψ1 = Pf

(
1

zi − zj

)
Ψ1 (45)

where Ψ1 is given by
∏

i<j (zi −zj )e−(1/4)
∑

i |zi |2 . A simple quasi-hole state is given
by
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Ψ
charge-1
ξ =

∏
(ξ − zi)ΨPf

= A
(

(ξ − z1)(ξ − z2)

z1 − z2

(ξ − z3)(ξ − z4)

z3 − z4
· · ·

)
Ψ1

= Pf

(
(ξ − zi)(ξ − zj )

zi − zj

)
Ψ1 (46)

which is created by multiplying the factor
∏

(ξ − zi) to the ground state wave func-
tion. Such a quasi-hole has a charge 1. The above quasi-hole can be splitted into
two fractionalized quasi-holes. A state with two fractionalized quasi-holes at ξ and
ξ ′ is given by

Ψ
charge-1/2
ξ,ξ ′ = A

(
(ξ − z1)(ξ

′ − z2) + (1 ↔ 2)

z1 − z2

(ξ − z3)(ξ
′ − z4) + (3 ↔ 4)

z3 − z4
· · ·

)
Ψ1

= Pf

(
(ξ − zi)(ξ

′ − zj ) + (ξ − zj )(ξ
′ − zi)

zi − zj

)
Ψ1 (47)

Such a fractionalized quasi-hole has a charge 1/2. We note that combining two
charge-1/2 quasi-holes gives us one charge-1 quasi-hole: Ψ

charge-1/2
ξ,ξ ∝ Ψ

charge-1
ξ .

3.5.2 How Many States with Four Charge-1/2 Quasi-holes?

One of the state with four charge-1/2 quasi-holes at ξ1, ξ2, ξ3, and ξ4 is given by

P(12)(34) = Pf

(
(ξ1 − zi)(ξ2 − zi)(ξ3 − zj )(ξ4 − zj ) + (i ↔ j)

zi − zj

)
Ψ1

= Pf

( [12,34]zizj

zi − zj

)
Ψ1 (48)

The other two are P(13)(14), P(14)(23). But only two of them are linearly independent
[43]. Using the relation

[12,34]zizj
− [13,24]zizj

= (zi − zj )
2(ξ1 − ξ4)(ξ2 − ξ3) = z2

ij ξ14ξ23 (49)

we find (with z12 = z1 − z2, ξ12 = ξ1 − ξ2, etc.)

P(13)(24) = A
( [12,34]z1z2 − z2

12ξ14ξ23

z12

[12,34]z3z4 − z2
34ξ14ξ23

z34
· · ·

)
Ψ1

= P(12)(34) − NpairA
(

z12ξ14ξ23
[12,34]z3z4

z34
· · ·

)
Ψ1 (50)

So

P(12)(34) − P(13)(24) = Npairξ14ξ23A
(

z12
[12,34]z3z4

z34
· · ·

)
Ψ1 (51)
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Similarly

P(12)(34) − P(14)(23) = Npairξ13ξ24A
(

z12
[12,34]z3z4

z34
· · ·

)
Ψ1 (52)

Thus

P(12)(34) − P(13)(24)

ξ14ξ23
= P(12)(34) − P(14)(23)

ξ13ξ24
(53)

We find that there are two states for four charge-1/2 quasi-holes, even if we fixed
their positions. The two states are topologically degenerate (have the same energy
in N → ∞ limit) [43]. The appearance of the topological degeneracy even with
fixed quasi-hole positions is a defining property of the non-Abelian statistics. In
the presence of the topological degeneracy, as we exchange quasi-holes, we will
generate non-Abelian Berry phases which also describe non-Abelian statistics.

More generally we find that there are Dn = 1
2 (

√
2)n topologically degenerate

states for n charge-1/2 quasi-holes, even if we fixed their positions [43]. We see
that there are

√
2 states per charge-1/2 quasi-hole! The

√
2 is called the quantum

dimension for the charge-1/2 quasi-hole. We see that the charge-1/2 quasi-hole has
a non-Abelian statistics, since for Abelian anyons, the quantum dimension is al-
ways 1.

3.6 Edge Excitations and Conformal Field Theory

Under the z → eiθ z transformation, the N -particle ν = 1/2 Laughlin wave function
Ψ1/2 = P1/2(z1, . . . , zN)e−∑ |zi |2/4 = ∏

1≤i<j≤N(zi −zj )
2e−∑ |zi |2/4 transforms as

Ψ1/2 → eiSNθΨ1/2, with SN = N(N − 1). We call SN the angular momentum of the
Laughlin wave function (which is also the total power of zi ’s of the polynomial
P1/2(z1, . . . , zN). For interaction V1/2 = ∑

δ(zi − zj ), the ν = 1/2 Laughlin wave
function is the only zero energy state with angular momentum N(N − 1) since
Ψ1/2(z1, . . . , zN) vanishes as zi → zj . There are no zero energy states with angular
momentum less than SN . In fact, we believe that, for wave functions Ψ with angular
momentum less then SN ,

〈V1/2〉 =
∫ ∏

d2ziV1/2|Ψ (z1, . . . , zN)|2∫ ∏
d2zi |Ψ (z1, . . . , zN)|2 ≥ � (54)

for a positive � and any N . The maximal � is called the energy gap for the inter-
action V1/2.

On the other hand, there are many zero energy states (〈V1/2〉 = 0) with angular
momentum bigger than SN . We call those zero energy states edge states, and denote
them as Ψedge. We can introduce a sequence of integers D

edge
L to denote the number
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of zero energy states with angular momentum SN + L. We will call D
edge
L the edge

spectrum.
To obtain the edge spectrum for the ν = 1/2 Laughlin state with interaction V1/2,

we note that the zero-energy edge states can be obtained by multiplying the Laughlin
wave function by a symmetric polynomial which does not reduce the order of zeros:

Ψedge = Psym
({zi}

)
Ψ1/2. (55)

Since the number of the symmetric polynomials with the total power of zi ’s equal
to L is given by the partition number pL, we find D

edge
L = pL. Such an argument

applies to any Laughlin states. So we believe that for ν = 1/m Laughlin the edge
spectrum is given by the partition numbers: D

edge
L = pL [44]:

L 0 1 2 3 4 5 6

D
edge
L 1 1 2 3 5 7 11

Psym 1
∑

zi (
∑

zi)
2 · · · · · · · · · · · ·∑

z2
i · · · · · · · · · · · ·

(56)

In large L limit, D
edge
L ≈ 1

4
√

3L
eπ

√
2L/3 ≈ eπ

√
2L/3.

For the ν = 1 Pfaffian state with the ideal Hamiltonian S[v0δ(z1 − z2)δ(z2 −
z3) − v1δ(z1 − z2)∂z∗

3
δ(z2 − z3)∂z3 ], ΨPf = A( 1

z1−z2

1
z3−z4

· · · )∏
i<j (zi − zj ), is the

zero-energy state with the minimal total angular momentum SN . Other zero-energy
states with higher angular momenta are given by

Ψedge = A
(

Pany
({zi}

) 1

z1 − z2

1

z3 − z4
· · ·

)
Ψ1, (57)

where Pany is any polynomial. Now the counting is much more difficult, since lin-
early independent Pany’s may generate linearly dependent wave functions. We find,
for large even total boson number N , the edge spectrum is given by [45]

L 0 1 2 3 4 5 6

D
edge
L 1 1 3 5 10 16 28

(58)

We believe that, for the ν = 1 Pfaffian state, the edge spectrum in large L limit is
given by D

edge
L ≈ eπ

√
2L/3

√
c with c = 3/2, if N → ∞ and L � N .

It turns out that the edge spectrum for ν = 1/m Laughlin state can be produced
by a central charge c = 1 CFT and the edge spectrum for ν = 1 Pfaffian state can be
produced by a central charge c = 3/2 CFT [44, 45]. This allows us to connect the
edge excitations of a FQH state to a CFT.

Using the quasi-hole wave function Ψ
quasi-hole
ξ (z1, . . . , zN ) that describes a quasi-

hole at ξ , we can even calculate the correlation function of the quasi-hole operator.
We know that the circular quantum Hall droplet has a radius R = √

2N/ν. The
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quasi-hole correlation function on the edge of the droplet is given by

Gquasi-hole(θ ′ − θ
)

∝
∫ ∏

d2zi

[
Ψ

quasi-hole
ξ ′ (z1, . . . , zN)

]∗

× Ψ
quasi-hole
ξ (z1, . . . , zN)

∣∣∣∣
ξ=Reiθ ;ξ ′=Reiθ ′

. (59)

We find that Gquasi-hole(θ − θ ′) has a form

Gquasi-hole(θ) ∝ eiQν−1Nθ

(
1

1 − e−iθ

)2h

(60)

where Q is the quasi-hole charge and h is a rational number. We will call h the
scaling dimension of the quasi-hole. For the ν = 1/m Laughlin state, we find that
h = 1

2m
for the charge Q = 1/m quasi-hole. For the ν = 1 Pfaffian state, we find

that h = 1
2 for the charge-1 quasi-hole, and h = 3

16 for the charge-1/2 quasi-hole,
all in N → ∞ limit [45, 46].

4 Pattern-of-Zeros Approach to FQH States and Symmetric
Polynomials

Using P1/2, P1/4, and PPf as examples, we have seen that symmetric polynomials
with infinite variables can have some amazing universal properties, once we defined
the norm of the infinite-variable polynomials to be

〈P |P 〉 =
∫ ∏

d2zi |P |2e−(1/2)
∑ |zi |2 . (61)

This suggests that it may be possible to come up with a definition of “infinite-
variable symmetric polynomials”. Such properly defined infinite-variable symmet-
ric polynomials should have those amazing universal properties. The proper defi-
nition also allow us to classify infinite-variable symmetric polynomials, which will
lead to a classification of FQH phases.

In this section, we will first discuss an attempt to define infinite-variable symmet-
ric polynomials through pattern of zeros. Then, we will try to provide a classification
of patterns of zeros. After that, we will use the patterns of zeros to calculate the uni-
versal properties of the corresponding infinite-variable symmetric polynomials.

4.1 What Is Infinite-Variable Symmetric Polynomial

The main difficulty to define symmetric polynomial with infinite variables is that the
number of the variables is not fixed. To overcome this difficulty, we will characterize
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the symmetric polynomials through their “local properties” that do not depend on
the number of the variables. One such “local property” is pattern of zeros.

4.1.1 What Is Pattern of Zeros?

We have seen that the different short-range interactions V (zi − zj ) in Hamiltonian

H =
N∑

i=1

−
(

∂zi
− B

4
zi

∗
)(

∂zi
∗ + B

4
zi

)
+

∑
i<j

V(zi − zj ) (62)

leads to different FQH states P(z1, . . . , zN)e−(1/4)
∑N

i=1 |zi |2 , which in turn leads to
different symmetric polynomials P(z1, . . . , zN).

One of the resulting polynomial P1/2 = ∏
i<j (zi − zj )

2 has a property that as

z1 ≈ z2, it has a second-order zero P1/2 ∝ (z1 − z2)
2. Another resulting polynomial

P1/4 = ∏
i<j (zi − zj )

4 has a property that as z1 ≈ z2, it has a fourth-order zero

P1/4 ∝ (z1 − z2)
4. The third resulting polynomial

PPf = A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN

)∏
i<j

(zi − zj ) (63)

has a property that as z1 ≈ z2, PPf has no zero, while as z1 ≈ z2 ≈ z3, PPf has a
second-order zero. We see that different polynomials can be characterized by differ-
ent patterns of zeros.

The above examples suggest the following general definition of pattern of zeros
for a symmetric polynomial P({zi}). Let zi = ληi + z(a), i = 1,2, . . . , a. In the
small λ limit, we have

P
({zi}

) = λSaP
(
η1, . . . , ηa; z(a), za+1, za+2, . . .

) + O
(
λSa+1) (64)

The sequence of integers {Sa} characterizes the symmetric polynomial P({zi}) and
is called the pattern of zeros of P . We note that SN happen to be the total power of
zi (or the total angular momentum) of P if the polynomial has N variables.

4.1.2 The Unique Fusion Condition

If the above induced P({ηi}; z(a), za+1, za+2, . . .), does not depend on the “shape”
{ηi}

P
({ηi}; z(a), za+1, za+2, . . .

) ∝ P
(
z(a), za+1, za+2, . . .

)
, (65)

we then say that the symmetric polynomial P({zi}) satisfy the unique fusion condi-
tion.
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4.1.3 Different Encodings of Pattern of Zeros Sa

There are many different ways to encode the sequence of integers Sa . For example,
we may use

la = Sa − Sa−1, a = 1,2,3, . . . (66)

to encode Sa , a = 1,2,3, . . .:

Sa =
a∑

i=1

li . (67)

Here we have assumed that S0 = 0. It turns out that li ≥ 0 and li ≤ li+1.
We may also use nl , l = 0,1,2, . . . to encode Sa . Here nl is the number of times

that the value l appears in the sequence li :

nl =
∞∑
i=1

δl,li . (68)

Let us list the pattern of zeros for some simple polynomials. For the ν = 1 integer
quantum Hall state P1 = ∏

i<j (zi − zj ), the pattern of zeros is given by

S1, S2, . . . : 0,1,3,6,10,15, . . .

l1, l2, . . . : 0,1,2,3,4,5, . . . (69)

n0n1n2 · · · : 11111111 · · ·

We see that we can view l in nl as the label for the orbital zle−(1/4)|z|2 , and nl as the
occupation number on the lth orbital (see Sect. 3.1.1 and Fig. 4b).

The pattern of zeros of ν = 1/2 Laughlin state P1/2 is described by

S1, S2, . . . : 0,2,6,12,20,30, . . .

l1, l2, . . . : 0,2,4,6,8,10, . . . (70)

n0n1n2 · · · : 1010101010101010 · · ·
We see that nl has a periodic structure. Each unit cell (each cluster) has 1 particle
and 2 orbitals.

The pattern of zeros of ν = 1/4 Laughlin state P1/4 is described by

S1, S2, . . . : 0,4,12,24,40,60,84, . . .

l1, l2, . . . : 0,4,8,12,16,20, . . . (71)

n0n1n2 · · · : 100010001000100010001 · · ·
Again, nl has a periodic structure. Each unit cell (each cluster) has 1 particle and 4
orbitals.
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For the ν = 1 Pfaffian state PPf = A( 1
z1−z2

1
z3−z4

· · · )∏
i<j (zi − zj ), the pattern

of zeros is given by

S1, S2, . . . : 0,0,2,4,8,12,18,24, . . .

l1, l2, . . . : 0,0,2,2,4,4,6,6, . . . (72)

n0n1n2 · · · : 2020202020202020202 · · ·
Now a cluster (unit cell) has 2 particles and 2 orbitals.

4.1.4 The Cluster Condition

Motivated by the above examples, here we would like to introduce a cluster condi-
tion for symmetric polynomials: an symmetric polynomial satisfies a cluster condi-
tion if nl is periodic. Let each unit cell contains n particles and m orbitals. In this
case, Sa has a form

Sa+kn = Sa + kSn + k(k − 1)nm

2
+ kma (73)

Since S1 = 0, we see that we can use a finite sequence (m
n
;S2, . . . , Sn) to describe

the pattern of zeros for symmetric polynomial satisfying the cluster condition.
We note that the filling fraction ν is given by the average number of particles per

orbital. Thus ν = n/m. We also call the cluster condition with n particles per unit
cell an n-cluster condition.

4.1.5 A Definition of Infinite-Variable Symmetric Polynomial

Now, we are ready to define the infinite-variable symmetric polynomial as a sym-
metric polynomial of infinite variables that satisfy the unique fusion condition and
the cluster condition. The cluster condition makes the N → ∞ limit possible. [Or
more precisely, the infinite-variable symmetric polynomial is a sequence of sym-
metric polynomials of N variables (with N → ∞), and those N -variable symmetric
polynomials each has the minimal total power of the variables that satisfy the unique
fusion condition and the cluster condition. We will loosely refer such a sequence of
N -variable symmetric polynomials as an infinite-variable symmetric polynomial.]

From the above discussions, we see that an infinite-variable symmetric poly-
nomial can be described by a finite amount of data (m

n
;S2, . . . , Sn). The ν = 1/2

Laughlin state, P1/2, satisfies the unique fusion condition and cluster condition. So
P1/2 is an infinite-variable symmetric polynomial described by a pattern of zero:
(m

n
;S2, . . . , Sn) = ( 2

1 ; ). Once we define the norm of those infinite-variable sym-
metric polynomials as Eq. (61), infinite-variable symmetric polynomials may have
some very interesting universal properties discussed in Sect. 3. We like to mention



Pattern-of-Zeros Approach to Fractional Quantum Hall States 53

that the infinite-variable symmetric polynomials (also referred as symmetric func-
tions) are studied in mathematics in various contexts, such as representation theory,
combinatorics and algebraic topology [47, 48]. It is not clear if there is a relation
between our pattern-of-zeros point of view and those previous studies. But we like
to point out in our pattern-of-zeros approach, we only interested in symmetric poly-
nomials of N → ∞ variables, and with the total power of the variables of order
O(N2). We are not interested in the infinite-variable symmetric polynomials with
all possible total power of the variables.

4.2 A Classification of Infinite-Variable Symmetric Polynomials

We have seen that each infinite-variable symmetric polynomial P({zi}) has a se-
quence of integers {Sa}—a pattern of zeros. But each sequence of integers {Sa} may
not correspond to an infinite-variable symmetric polynomial P({zi}). In this subsec-
tion, we will try to find all the conditions that a sequence {Sa} must satisfy, such that
{Sa} describes a infinite-variable symmetric polynomial. This may lead to a classi-
fication of infinite-variable symmetric polynomials (or FQH states) through pattern
of zeros.

4.2.1 Derived Polynomials

To find the conditions on {Sa}, it is very helpful to introduce the derived polynomi-
als. Let z1, . . . , za → z(a) in an infinite-variable symmetric polynomial P({zi}) and
use the unique fusion condition:

P
({zi}

) → λSaPderived
(
z(a), za+1, za+2, . . .

) + O
(
λSa+1), (74)

we obtain a derived polynomial Pderived(z
(a), za+1, za+2, . . .) from the original poly-

nomial P . Repeating the process on other variables, we get a more general derived
polynomial Pderived(z

(a), z(b), z(c), . . .), where z(a), z(b), etc. are fusions of a vari-
ables, b variables, etc.

The zeros in derived polynomials are described by Da,b:

Pderived
(
z(a), z(b), z(c), . . .

) ∼ (
z(a) − z(b)

)Da,bP ′
derived

(
z(a+b) . . .

) + · · · (75)

where z(a+b) = (z(a) + z(b))/2. Da,b = Db,a also characterize the pattern of zeros.
In effect, Da,b and Sa encode the same information:

Da,b = Sa+b − Sa − Sb, Sa =
a−1∑
b=1

Db,1. (76)
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Fig. 6 Wa,bc obtained by moving z(a) along a large loop around z(b) and z(c) counts the total
numbers of zeros of f (z(a)) in the loop. The crosses mark the off-particle zeros of f (z(a)) not at
z(b) and z(c)

4.2.2 The Concave Conditions on Pattern of Zeros

Since Da,b ≥ 0, we obtain the first concave condition:

�2(a, b) ≡ Sa+b − Sa − Sb ≥ 0. (77)

Such a condition comes from the fusion of two clusters. We also have a second
concave condition:

�3(a, b, c) ≡ Sa+b+c − Sa+b − Sb+c − Sa+c + Sa + Sb + Sc ≥ 0 (78)

from the fusion of three clusters.
To derive the second concave condition, let us fix all variables z(b), z(c), . . .

except z(a) in the derived polynomial Pderived(z
(a), z(b), z(c), . . .). Then the de-

rived polynomial Pderived(z
(a), z(b), z(c), . . .) can be viewed as a complex function

f (z(a)), which has isolated on-particle zeros at z(b), z(c), . . . , and possibly some
other off-particle zeros.

Let us move z(a) around both points z(b) and z(c). The phase of the complex
function f (z(a)) will change by 2πWa,bc where Wa,bc is an integer (see Fig. 6).
Since f (z(a)) has an order Dab zero at z(b) and an order Dac zero at z(c), the integer
Wa,bc satisfy

Wa,bc ≥ Dab + Dac

because f (z(a)) may also have off-particle zeros. Now let z(b) → z(c) to fuse into
z(b+c). In this limit Wa,bc becomes the order of zeros between z(a) and z(b+c):
Wa,bc = Da,b+c . Thus we obtain the following condition on Dab: Da,b+c ≥ Dab +
Dac, which gives us the second concave condition (78).

We like to point out that the n-cluster condition has a very simple meaning in the
derived polynomial: f (z(a)) has no off-particle zeros if a = 0 mod n. So Da+b,n =
Da,n + Db,n which leads to the cluster condition (73).

4.2.3 Some Additional Conditions

The two concave conditions are the main conditions on {Sa}. We also have another
condition

�2(a, a) = even (79)
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since the polynomial is a symmetric polynomial. It turns out that we need yet an-
other a condition

�3(a, b, c) = even. (80)

It is hard to prove this mysterious condition using elementary methods. Using the
connection between the symmetry polynomial and CFT (or vertex algebra), we
find that the condition �3(a, b, c) = even is directly related to the requirement that
the fermionic operators have half-integer scaling dimensions and bosonic operators
have integer scaling dimensions [35].

We conjecture that the patterns of zeros (m
n
;S2, . . . , Sn) that satisfy the above

conditions describe infinite-variable symmetric polynomials [25]. Those (m
n
;S2,

. . . , Sn) “classify” infinite-variable symmetric polynomials and FQH states with fill-
ing fraction ν = n/m.

4.2.4 Primitive Solutions for Pattern of Zeros

Let us list some patterns of zeros, (m
n
;S2, . . . , Sn), that satisfy the above conditions.

We note that the conditions are semi-linear in (m
n
;S2, . . . , Sn). So, if (m

n
;S2, . . . , Sn)

and (m′
n′ ;S′

2, . . . , S
′
n) are solutions, then (m′′

n′′ ;S′′
2 , . . . , S′′

n) = (m
n
;S2, . . . , Sn) +

(m′
n′ ;S′

2, . . . , S
′
n) is also a solution. Such a result has the following meaning: Let

P({zi}), P ′({zi}), and P ′′({zi}) are three symmetric polynomials described by pat-

tern of zeros (m
n
;S2, . . . , Sn), (m′

n′ ;S′
2, . . . , S

′
n), and (m′′

n′′ ;S′′
2 , . . . , S′′

n) respectively,
we then have P ′′({zi}) = P({zi})P ′({zi}). Such a property allow us to introduce the
notion of primitive pattern of zeros as the patterns of zeros that cannot to written as
the sum of two other patterns of zeros. In this section, we will only list the primitive
patterns of zeros.

1-cluster state: ν = 1/k Laughlin state

P1/k :
(

m

n
;
)

=
(

k

1
;
)

,

(n0, . . . , nk−1) = (1,0, . . . ,0).

(81)

2-cluster state: Pfaffian state (Z2 parafermion state)

P2/2;Z2 :
(

m

n
;S2

)
=

(
2

2
;0

)
,

(n0, . . . , nm−1) = (2,0)

(82)

3-cluster state: Z3 parafermion state

P3/2;Z3 :
(

m

n
;S2, S3

)
=

(
2

3
;0,0

)
,

(n0, . . . , nm−1) = (3,0)

(83)
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4-cluster state: Z4 parafermion state

P4/2;Z4 :
(

m

n
;S2, . . . , S4

)
=

(
2

4
;0,0,0

)
,

(n0, . . . , nm−1) = (4,0),

(84)

5-cluster states (we have two of them): Z5 (generalized) parafermion states

P5/2;Z5 :
(

m

n
;S2, . . . , S5

)
=

(
2

5
;0,0,0,0

)
,

(n0, . . . , nm−1) = (5,0)

(85)

P
5/8;Z(2)

5
:
(

m

n
;S2, . . . , S5

)
=

(
8

5
;0,2,6,10

)
,

(n0, . . . , nm−1) = (2,0,1,0,2,0,0,0)

(86)

6-cluster state:

P6/2;Z6 :
(

m

n
;S2, . . . , S6

)
=

(
2

6
;0,0,0,0,0

)
,

(n0, . . . , nm−1) = (6,0)

(87)

7-cluster states (we have four of them):

P7/2;Z7 :
(

m

n
;S2, . . . , S7

)
=

(
2

7
;0,0,0,0,0,0

)
,

(n0, . . . , nm−1) = (7,0)

(88)

P
7/8;Z(2)

7
:
(

m

n
;S2, . . . , S7

)
=

(
8

7
;0,0,2,6,10,14

)
,

(n0, . . . , nm−1) = (3,0,1,0,3,0,0,0)

(89)

P
7/18;Z(3)

7
:
(

m

n
;S2, . . . , S7

)
=

(
18

7
;0,4,10,18,30,42

)
,

(n0, . . . , nm−1) = (2,0,0,0,0,1,0,0,0,2,0,0,0,0,0)

(90)

P7/14;C7 :
(

m

n
;S2, . . . , S7

)
=

(
14

7
;0,2,6,12,20,28

)
,

(n0, . . . , nm−1) = (2,0,1,0,1,0,1,0,2,0,0,0,0,0)

(91)

4.2.5 How Good Is the Pattern-of-Zeros Classification?

How good is the pattern-of-zeros classification? Not so good, and not so bad.



Pattern-of-Zeros Approach to Fractional Quantum Hall States 57

Clearly, every symmetric polynomial P corresponds to a unique pattern of zeros
{Sa}. But only some patterns of zeros correspond to a unique symmetric polynomial.
So the pattern-of-zeros classification is not so good. It appears that all the primitive
pattern of zeros correspond to a unique a unique symmetric polynomial. Therefore,
the pattern-of-zeros classification is not so bad.

We also know that some composite patterns of zeros correspond a unique sym-
metric polynomial, while other composite patterns of zeros do not correspond a
unique symmetric polynomial. Let Pni

be a symmetric polynomial described by a
primitive pattern of zeros with an ni -cluster. It appear that P = ∏

i Pni
will have

a pattern of zeros that corresponds a unique symmetric polynomial if ni ’s has no
common factor.

So only for certain patterns of zeros, the data {m
n
;S2, . . . , Sn} contain all the in-

formation to fix the symmetric polynomials. In general, we need more information
than {m

n
;S2, . . . , Sn} to fully characterize symmetry polynomials of infinite vari-

ables.

4.3 Topological Properties from Pattern of Zeros

For those patterns of zeros that uniquely characterize the symmetry polynomials of
infinite variables (or FQH wave functions), we should be able to calculate the uni-
versal properties of the FQH states from the data (m

n
;S2, . . . , Sn). Those universal

properties include:

• The filling fraction ν.
• Topological degeneracy on torus and other Riemann surfaces
• Number of quasiparticle types
• Quasiparticle charges
• Quasiparticle scaling dimensions
• Quasiparticle fusion algebra
• Quasiparticle statistics (Abelian and non-Abelian)
• The counting of edge excitations (central charge c and spectrum)

At moment, we can calculate many of the above universal properties from the
pattern-of-zeros data (m

n
;S2, . . . , Sn). For example, the filling fraction ν is given by

ν = n/m. But we still do not know how to calculate scaling dimensions and statistics
for some of the quasiparticles.

In this subsection, we develop a pattern-of-zeros description of the quasiparticle
excitations in FQH states. This will allow us to calculate many universal properties
from the pattern of zeros.

4.3.1 Pattern of Zeros of Quasiparticle Excitations

A quasiparticle is a defect in the ground state wave function P({zi}). It is a place
where we have more power of zeros. For example, the ground state wave function
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Fig. 7 The graphic picture of
the pattern of zeros for a
quasiparticle

of ν = 1/2 Laughlin state is given by
∏

i<j (zi − zj )
2. The state with a quasiparticle

at ξ is given by
∏

i (zi − ξ)
∏

i<j (zi − zj )
2 (see Sect. 3.2). As we bring several zi ’s

to ξ ,
∏

i (zi − ξ)
∏

i<j (zi − zj )
2 vanishes according to a pattern of zeros. In general,

each quasiparticle labeled by γ in a FQH state can be quantitatively characterized
by distinct pattern of zeros (see Fig. 7).

Let Pγ (ξ ; {zi}) be the wave function with a quasiparticle γ at z = ξ . To describe
the structure of the zeros as we bring bosons to the quasiparticle, we set zi = ληi +ξ ,
i = 1,2, . . . , a and let λ → 0:

Pγ

(
ξ ; {zi}

) = λSγ ;a P̃γ

(
z(a) = ξ, za+1, za+2, . . .

) + O
(
λSa+1) (92)

Sγ ;a is the order of zeros of Pγ (ξ ; zi) when we bring a bosons to ξ . The sequence of
integers {Sγ ;a} is the quasiparticle pattern of zeros that characterizes the quasipar-
ticle γ . We note that the ground-state pattern of zeros {Sa} correspond to the trivial
quasiparticle γ = 0: {S0;a} = {Sa}.

To find the allowed quasiparticles, we simply need to find (i) the conditions that
Sγ ;a must satisfy and (ii) all the Sγ ;a that satisfy those conditions.

4.3.2 Conditions on Quasiparticle Pattern of Zeros Sγ ;a

The quasiparticle pattern of zeros also satisfy two concave conditions

Sγ ;a+b − Sγ ;a − Sb ≥ 0, (93)

Sγ ;a+b+c − Sγ ;a+b − Sγ ;a+c − Sb+c + Sγ ;a + Sb + Sc ≥ 0 (94)

and a cluster condition

Sγ ;a+kn = Sγ ;a + k(Sγ ;n + ma) + mn
k(k − 1)

2
(95)

The cluster condition implies that a finite sequence (Sγ ;1, . . . , Sγ ;n) determines the
infinity sequence {Sγ ;a}.

We can also use the sequence lγ ;a = Sγ,a − Sγ,a−1 or nγ ;l = ∑
i=1 δl,lγ ;i to de-

scribe the quasiparticle sequence Sγ ;a . The nγ ;l description is simpler and reveals
physical picture more clearly than Sγ ;a .

4.3.3 The Solutions for the Quasiparticle Patterns of Zeros

We can find all (Sγ ;1, . . . , Sγ ;n) that satisfy the above concave and cluster conditions
through numerical calculations. This allow us to obtain all the quasiparticles.
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For the ν = 1 Pfaffian state (n = 2 and m = 2) described by

S1, S2, . . . : 0,0,2,4,8,12,18,24, . . .

n0n1n2 · · · : 2020202020202020202 · · · ,
(96)

we find that the quasiparticle patterns of zeros are given by (expressed in terms of
nγ,l)

nγ ;0nγ ;1nγ ;2 · · · : 2020202020202020202 · · · Qγ = 0

nγ ;0nγ ;1nγ ;2 · · · : 0202020202020202020 · · · Qγ = 1

nγ ;0nγ ;1nγ ;2 · · · : 1111111111111111111 · · · Qγ = 1/2

(97)

The above three pattern of zeros are not all the solutions of the quasiparticle
conditions. However, all other quasiparticle solutions can be obtained from the
above three by removing some bosons. Those quasiparticle solutions are equiva-
lent to one of the above three solutions. For example nγ ;0nγ ;1 · · · = 102020202 · · · ,
nγ ;0nγ ;1 · · · = 002020202 · · · , etc. are also quasiparticle solutions which are equiv-
alent to nγ ;0nγ ;1 · · · = 202020202 · · · . Therefore, we find that the ν = 1 Pfaffian
state has three types of quasiparticles.

We note that the ground state degeneracy on torus is equal to the number of
quasiparticle types. So the ν = 1 Pfaffian state has a three-fold degeneracy on a
torus. The charge of quasiparticles can be also calculated from the quasiparticle
pattern of zeros:

Qγ = 1

m

n∑
a=1

(lγ ;a − la) = 1

m
(Sγ ;n − Sn). (98)

Let us list the number of quasiparticle types calculated from pattern of zeros for
various FQH states. For the parafermion states Pν=n/2;Zn

(m = 2),

P2/2;Z2 P3/2;Z3 P4/2;Z4 P5/2;Z5 P6/2;Z6 P7/2;Z7 P8/2;Z8 P9/2;Z9 P10/2;Z10

3 4 5 6 7 8 9 10 11

For the parafermion states Pν=n/(2+2n);Zn
(m = 2 + 2n)

P2/6;Z2 P3/8;Z3 P4/10;Z4 P5/12;Z5 P6/14;Z6 P7/16;Z7 P8/18;Z8 P9/20;Z9 P10/22;Z10

9 16 25 36 49 64 81 100 121

For the generalized parafermion states P
ν=n/m;Z(k)

n

P
5/8;Z(2)

5
P

5/18;Z(2)
5

P
7/8;Z(2)

7
P

7/22;Z(2)
7

P
7/18;Z(3)

7
P

7/32;Z(3)
7

P
8/18;Z(3)

8
P

9/8;Z(2)
9

24 54 32 88 72 128 81 40

where k and n are co-prime.
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For the composite parafermion states P
n1/m1;Z(k2)

n1
P

n2/m2;Z(k2)
n2

obtained as prod-

ucts of two parafermion wave functions

P2/2;Z2P3/2;Z3 P3/2;Z3P4/2;Z4 P2/2;Z2P5/2;Z5 P2/2;Z2P5/8;Z(2)
5

30 70 63 117

where n1 and n2 are co-prime. The inverse filling fractions of the above composite
states are 1

ν
= 1

ν1
+ 1

ν2
= m1

n1
+ m2

n2
. More results can be found in [26].

All those results from the pattern of zeros agree with the results from parafermion
CFT [27]:

# of quasiparticles = 1

ν

∏
i

ni(ni + 1)

2
(99)

for the generalized composite parafermion state

P =
∏
i

P
ni/mi ;Z(ki )

ni

, {ni} co-prime, (ki, ni) co-prime. (100)

The filling fraction for such generalized composite parafermion state is given by
ν = (

∑
i

mi

ni
)−1.

4.3.4 Quasiparticle Fusion Algebra: γ1γ2 = ∑
γ3

N
γ3
γ1γ2γ3

When we fuse quasiparticles γ1 and γ2 together, we can get a third quasiparticle
γ3. However, for non-Abelian quasiparticles, the fusion can be more complicated.
Fusing γ1 and γ2 may produce several kind of quasiparticles. Such kind of fusion is
described by quasiparticle fusion algebra (see Fig. 8): γ1γ2 = ∑

γ3
N

γ3
γ1γ2γ3, where

N
γ3
γ1γ2 are non-negative integers.
To calculate the fusion coefficients N

γ3
γ1γ2 from the pattern of zeros, let us put the

quasiparticle γ1 at z = 0. Far away from z = 0, such a quasiparticle has a pattern of
zeros nγ1;l (in the occupation representation). We then insert a quasiparticle γ2 at
z = R for a large R. At z = r � R, the occupation becomes the occupation of the
quasiparticle γ3: nγ3;l . We see that the fusion of γ2 changes the occupation pattern
from nγ1;l to nγ3;l :

(101)

So the quasiparticle γ2 becomes a “domain wall” between the γ1 occupation pattern
and the γ3 occupation pattern [49].

From the above domain wall structure, we can see only nγ1;l and nγ3;l , but we
cannot see nγ2;l . But this is enough for us. We are able to find a condition on nγ2;l
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Fig. 8 The graphic picture of the fusion of two quasiparticles. Each box represent a many-boson
wave function. In the left box, we have quasiparticle γ1 and γ2 described by patterns of zeros Sγ1;a
and Sγ2;a . Far away from the two quasiparticles, the wave function may contain several different
patterns of zeros Sγ3;a that correspond to several different quasiparticle types γ3. So we say that γ1
and γ2 may fuse into several different types of quasiparticles labeled by γ3

so that it can induce a domain wall between nγ1;l and nγ3;l [27]:

b∑
j=1

(
lsc
γ1;j+a + lsc

γ2;j+c

) ≤
b∑

j=1

(
lsc
γ3;j+a+c + lsc

j

)
(102)

for any a, b, c ∈ Z+, where lsc
γ ;a = lγ ;a − m(Qγ +a−1)

n
.

Solving the above equation allows us to determine when N
γ3
γ1γ2 can be non-zero.

If we further assume that N
γ3
γ1γ2 = 0,1, then the fusion algebra can be determined.

Knowing N
γ3
γ1γ2 allows us to determine the ground state degeneracies of FQH state

on any closed Riemann surfaces.
We like to mention that for the generalized composite parafermion states which

have a CFT description, the pattern-of-zeros approach and the CFT approach give
rise to the same fusion algebra. However, the pattern-of-zeros approach applies to
other FQH states whose CFT may not be known.

5 The Vertex-Algebra + Pattern-of-Zeros Approach

5.1 Z-Graded Vertex Algebra

The symmetric polynomial P({zi}) and the corresponding derived polynomial
Pderived({z(ai )

i }) can be expressed as correlation functions in a vertex algebra:

P
({zi}

) =
〈∏

i

V (zi)

〉
, Pderived

({
z
(a)
i

}) =
〈∏

i,a

Va

(
z
(a)
i

)〉

Va(z) = V a, VaVb = Va+b.

(103)

The vertex algebra is generated by vertex operator V (z) and is described by the
following operator product expansion:

Va(z)Vb(w) = Cab

(z − w)ha+hb−ha+b
Va+b(w) + · · · (104)
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where ha is the scaling dimension of Va and Cab the structure constant of the vertex
algebra. Such a vertex algebra is a Z-graded vertex algebra.

The pattern of zeros Sa discuss before is directly related to ha :

ha+b − ha − hb = Da,b = Sa+b − Sa − Sb (105)

The n-cluster condition implies that ha ∝ a2 if a = 0 mod n. This allows us to ob-
tain

ha = Sa − aSn

n
+ am

2
(106)

We see that the pattern of zeros Sa only describe the scaling dimensions of the
vertex operators. It does not describe the structure constants Ca,b . So a more com-
plete characterization of FQH wave functions (symmetric polynomials) is given by
(m

n
;Sa;Cab, . . .). But (m

n
;Sa;Cab, . . .) may be an overkill. We like to find out what

is the minimal set of date that can completely characterize the FQH wave functions
(or the symmetric polynomials).

5.2 Zn-Vertex Algebra

If the above Z-graded vertex algebra satisfies the n-cluster condition, then it can be
viewed a Zn-vertex algebra ⊗ a U(1) current algebra:

Va(z) = ψa(z)e
iaφ(z)

√
m/n (107)

where j = ∂φ generates the U(1) current algebra and ψa generates the Zn-vertex
algebra:

ψa(z)ψb(w) = Cab

(z − w)h
sc
a +hsc

b −hsc
a+b

ψa+b(w) + · · · (108)

where ψn = 1 as the result of the n-cluster condition. The scaling dimension of
ψa(z) is

hsc
a = ha − a2m

2n
= Sa − aSn

n
+ am

2
− a2m

2n
, hsc

a = hsc
a+n (109)

The two sets of data (m
n
;S2, . . . , Sn) and (m

n
;hsc

1 , . . . , hsc
n−1) completely determine

each other:

Sa = hsc
a − ahsc

1 + a(a − 1)m

2n
. (110)

So we can also use (m
n
;hsc

1 , . . . , hsc
n−1) to describe the pattern of zeros.
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From the pattern-of-zeros consideration, we find that hsc
a must satisfy

Sa = hsc
a − ahsc

1 + a(a − 1)m

2n
= integer ≥ 0

hsc
a+b − hsc

a − hsc
b + abm

n
= Dab = integer ≥ 0 (111)

hsc
a+b+c − hsc

a+b − hsc
b+c − hsc

a+c + hsc
a + hsc

b + hsc
c

= �3(a, b, c) = even integer ≥ 0 (112)

But the above conditions are only on hsc
a . To get the conditions on Cab , we can

use the generalized Jacobi identity [50] to obtain a set a non-linear equations for
(hsc

a ,Cab, . . .) [35]. Those conditions may be sufficient and necessary which may
lead to a classification of Zn-vertex algebra.

For some simple pattern of zeros hsc
a , we are able to build a closed set of non-

linear equations for (hsc
a ,Cab, . . .), which lead to a well defined Zn-vertex algebra.

This allows us to calculate quasiparticle scaling dimensions, quasiparticle statistics,
central charge (edge spectrum) [35], . . . We would like to point out that in [32] and
[34], a very interesting approach based the pattern of zeros and modular transforma-
tion of torus is proposed, that allows us to calculate the fractional statistics of some
quasiparticles directly from the pattern-of-zeros data. We also like to point out that
finding valid (hsc

a ,Cab, . . .) corresponds to finding a well defined Zn vertex algebra.
Finding the quasiparticle patterns of zeros corresponds to finding the representations
of the Zn vertex algebra.

But at moment, we cannot handle more general pattern of zeros hsc
a , in the sense

that we have some difficulties to obtain a closed set of non-linear algebraic equations
for (hsc

a ,Cab, . . .). We hope that, after some further research, the pattern-of-zeros
approach may lead to a classification of Zn-vertex algebra, which in turn lead to a
classification of symmetric polynomials and FQH states.

6 Summary

Although still incomplete, the pattern-of-zeros approach provides quite a power-
ful way to study symmetric polynomials with infinite variables and FQH states. It
connects several very different fields, such as strongly correlated electron systems,
topological quantum field theory, CFT (for the edge states), modular tensor category
theory (for the quasiparticle statistics), and maybe a new field of infinite-variable
symmetric polynomial. This article only reviews the first step in this very exciting
direction. More exciting results are yet to come.
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