
Chapter 4
Interpolation

Interpolation by polynomials is a field in which stability issues have been addressed
quite early. Section 4.5 will list a number of classical results.

4.1 Interpolation Problem

The usual linear 1 interpolation problem is characterised by a subspace Vn of the
Banach space C([0, 1]) (with norm ‖·‖∞; cf. §3.4.7.1) and a set

{xi,n ∈ [0, 1] : 0 ≤ i ≤ n}

of n + 1 different2 interpolation points, also called nodal points. Given a tuple
{yi : 0 ≤ i ≤ n} of ‘function values’, an interpolant Φ ∈ Vn with the property

Φ(xi,n) = yi (0 ≤ i ≤ n) (4.1)

has to be determined.

Exercise 4.1. (a) The interpolation problem is solvable for all tuple {yi : 0≤ i≤n},
if and only if the linear space

Vn :=
{

(Φ(xi,n))
n
i=0 ∈ Rn+1 : Φ ∈ Vn

}
has dimension n+ 1.
(b) If dimVn = n+ 1, the interpolation problem is uniquely solvable.

The interpolation problem (4.1) can be reduced to a system of n+ 1 linear equa-
tions. As is well known, there are two alternatives for linear systems:

1 The term ‘linear’ refers to the underlying linear space Vn, not to linear functions.
2 In the case of the more general Hermite interpolation, a p-fold interpolation point ξ corresponds
to prescribed values of the derivatives f(m)(ξ) for 0 ≤ m ≤ p− 1.
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48 4 Interpolation

(a) either the interpolation problem is uniquely solvable for arbitrary values yi or
(b) the interpolant either does not exist for certain yi or is not unique.

The polynomial interpolation is characterised by

Vn = {polynomials of degree ≤ n}

and is always solvable. In the case of general vector spaces Vn, we always assume
that the interpolation problem is uniquely solvable.

For the special values yi = δij (j fixed, δij Kronecker symbol), one obtains an
interpolant Φj,n ∈ Vn, which we call the j-th Lagrange function (analogous to the
Lagrange polynomials in the special case of polynomial interpolation).

Exercise 4.2. (a) The interpolant for arbitrary yi (0 ≤ i ≤ n) is given by

Φ =

n∑
i=0

yiΦi,n ∈ Vn. (4.2)

(b) In the case of polynomial interpolation, the Lagrange polynomial is defined by

Li,n(x) := Φi,n(x) :=
∏

j∈{0,...n}\{i}

x− xj
xi − xj

. (4.3)

For continuous functions f we define

In(f) :=

n∑
i=0

f(xi,n)Φi,n (4.4)

as interpolant of yi = f(xi,n). Hence

In : C([0, 1])→ C([0, 1])

is a linear mapping from the continuous functions into itself.

Exercise 4.3. (a) The interpolation In : X = C([0, 1]) → C([0, 1]) is continuous
and linear; i.e., In ∈ L(X,X).
(b) In is a projection; i.e., InIn = In.

The terms ‘convergence’, ‘consistency’ and ‘stability’ of the previous chapter
can easily be adapted to the interpolation problem. Note that we have not only one
interpolation In, but a family {In : n ∈ N0} of interpolations.

The interval [0, 1] is chosen without loss of generality. The following results
can immediately be transferred to a general interval [a, b] by means of the affine
mapping φ(t) = (t− a)/(b− a). The Lagrange functions Φi,n ∈ C([0, 1]) become
Φ̂i,n := Φi,n ◦ φ ∈ C([a, b]). Note that in the case of polynomials, Φi,n and Φ̂i,n
have the same polynomial degree n. The norms ‖In‖ and the stability constantCstab

from §4.3 do not change! Also the error estimate (4.8) remains valid.
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Another subject are interpolations on higher-dimensional domains D ⊂ Rd. The
general concept is still true, but the concrete one-dimensional interpolation methods
do not necessarily have a counterpart in d dimensions. An exception are domains
which are Cartesian products. Then one can apply the tensor product interpolation
discussed in §4.7.

4.2 Convergence and Consistency

Definition 4.4 (convergence). A family {In : n ∈ N0} of interpolations is called
convergent if

lim
n→∞

In(f) exists for all f ∈ C([0, 1]).

Of course, we intend that In(f) → f , but here convergence can be defined
without fixing the limit, since lim In(f) = f will come for free due to consistency.

Concerning consistency, we follow the model of (3.27).

Definition 4.5 (consistency). A family {In : n ∈ N0} of interpolations is called
consistent if there is a dense subset X0 ⊂ C([0, 1]) such that

In(g)→ g for all g ∈ X0.

Exercise 4.6. Let {In} be the interpolation by polynomials of degree ≤ n. Show
that a possible choice of the dense set in Definition 4.5 is X0 := {polynomials}.

4.3 Stability

First, we characterise the operator norm ‖In‖ (cf. (3.23)).

Lemma 4.7. ‖In‖ = ‖
∑n
i=0 |Φi,n(·)|‖∞ holds with Φi,n from (4.4).

Proof. (i) Set Cn := ‖
∑n
i=0 |Φi,n(·)|‖∞. For arbitrary f ∈ C([0, 1]) we conclude

that

|In(f)(x)| =

∣∣∣∣∣
n∑
i=0

f(xi,n)Φi,n(x)

∣∣∣∣∣ ≤
n∑
i=0

|f(xi,n)|︸ ︷︷ ︸
≤‖f‖∞

|Φi,n(x)| ≤ ‖f‖∞
n∑
i=0

|Φi,n(x)|

≤ ‖f‖∞ Cn.

Since this estimate holds for all x ∈ [0, 1], it follows that ‖In(f)‖ ≤ Cn ‖f‖∞.
Because f is arbitrary, ‖In‖ ≤ Cn is proved.

(ii) Let the function
∑n
i=0 |Φi,n(·)| be maximal at x0:

∑n
i=0 |Φi,n(x0)| = Cn.

Choose f ∈ C([0, 1]) with ‖f‖∞ = 1 and f(xi,n) = sign(Φi,n(x0)). Then
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|In(f)(x0)| =

∣∣∣∣∣
n∑
i=0

f(xi,n)Φi,n(x0)

∣∣∣∣∣ =
n∑
i=0

|Φi,n(x0)| = Cn = Cn ‖f‖∞

holds; i.e., ‖In(f)‖∞ = Cn ‖f‖∞ for this f . Hence the operator norm

‖In‖ = sup {‖In(f)‖∞ / ‖f‖∞ : f ∈ C([0, 1])\{0}}

is bounded from below by ‖In‖ ≥ Cn. Together with (i), the equality ‖In‖ = Cn is
proved. ut

Again, stability expresses the boundedness of the sequence of norms ‖In‖.

Definition 4.8 (stability). A family {In : n∈N0} of interpolations is called stable if

Cstab := sup
n∈N0

‖In‖ <∞ for ‖In‖ =

∥∥∥∥∥
n∑
i=0

|Φi,n(·)|

∥∥∥∥∥
∞

. (4.5)

In the context of interpolation, the stability constant Cstab is called Lebesgue
constant.

Polynomial interpolation is a particular way to approximate a continuous func-
tion by a polynomial. Note that the more general approximation due to Weierstrass
is convergent. The relation between the best possible polynomial approximation and
the polynomial interpolation is considered next.

Remark 4.9. Given f ∈ C([0, 1]), let p∗n be the best approximation to f by a poly-
nomial 3 of degree ≤ n, while pn is its interpolant. Then the following estimate
holds:

‖f − pn‖ ≤ (1 + Cn) ‖f − p∗n‖ with Cn = ‖In‖ . (4.6)

Proof. Any polynomial of degree ≤ n is reproduced by interpolation, in particular,
Inp
∗
n = p∗n. Hence,

f − pn = f − Inf = f − [In(f − p∗n) + Inp
∗
n] = f − p∗n + In(f − p∗n)

can be estimated as claimed above. ut

Note that by the Weierstrass approximation theorem 3.28,

‖f − p∗n‖ → 0

holds. An obvious conclusion from (4.6) is the following: If stability would hold
(i.e., Cn ≤ Cstab), also ‖f − pn‖ → 0 follows. Instead, we shall show instabil-
ity, and the asymptotic behaviour on the right-hand side in (4.6) depends on which
process is faster: ‖f − p∗n‖ → 0 or Cn →∞.

3 The space of polynomials can be replaced by any other interpolation subspace Vn.
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4.4 Equivalence Theorem

Following the scheme (3.22), we obtain the next statement.

Theorem 4.10 (convergence theorem). Assume that the family {In : n ∈ N0} of
interpolations is consistent and stable. Then it is also convergent, and furthermore,
In(f)→ f holds.

Proof. Let f ∈ C([0, 1]) and ε > 0 be given. There is some g ∈ X0 with

‖f − g‖∞ ≤
ε

2 (1 + Cstab)
,

whereCstab is the stability constant. According to Definition 4.5, there is an n0 such
that ‖In(g)− g‖∞ ≤

ε
2 for all n ≥ n0. The triangle inequality yields the desired

estimate:

‖In(f)− f‖∞ ≤ ‖In(f)− In(g)‖∞ + ‖In(g)− g‖∞ + ‖g − f‖∞
≤ Cstab ‖f − g‖∞ +

ε

2
+ ‖f − g‖∞ ≤

‖f−g‖∞≤ε/[2(1+Cstab)]
ε. ut

Again, the stability condition turns out to be necessary.

Lemma 4.11. A convergent family {In : n ∈ N0} of interpolations is stable.

Proof. Since {In(f)} converges, the In are uniformly bounded. Apply Corollary
3.39 with X = Y = C([0, 1]) and Tn := In ∈ L(X;Y ). ut

Theorem 4.10 and Lemma 4.11 yield the following equivalence theorem.

Theorem 4.12. Let the family {In : n ∈ N0} of interpolations be consistent. Then
convergence and stability are equivalent.

4.5 Instability of Polynomial Interpolation

We choose the equidistant interpolation points xi,n = i/n and restrict ourselves
to even n. The Lagrange polynomial Ln

2 ,n
is particularly large in the subinterval

(0, 1/n). In its midpoint we observe the value

∣∣Ln
2 ,n

(
1

2n

)∣∣ =

∣∣∣∣ n∏
j=0
j 6=n

2

1
2n −

j
n

1
2 −

j
n

∣∣∣∣ =

∣∣∣∣ n∏
j=0
j 6=n

2

1
2 − j
n
2 − j

∣∣∣∣
=

1
2 ×

1
2 ×

3
2 × . . .×

(
n
2 −

3
2

)
×
(
n
2 + 1

2

)
× . . .×

(
n− 1

2

)[(
n
2

)
!
]2 .

Exercise 4.13. Show that the expression from above diverges exponentially.
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Because of Cn = ‖
∑n
i=0 |Li,n(·)|‖∞ ≥ ‖Ln

2 ,n
‖∞ ≥

∣∣Ln
2 ,n

( 1
2n )
∣∣, interpolation

(at equidistant interpolation points) cannot be stable. The true behaviour of Cn has
first4 been described by Turetskii [21]:

Cn ≈
2n+1

en log n
.

The asymptotic is improved by Schönhage [18, Satz 2] to5

Cn ≈ 2n+1/[en (γ + log n)],

where γ is Euler’s constant.6 Even more asymptotic terms are determined in [11].
One may ask whether the situation improves for another choice of interpolation

points. In fact, an asymptotically optimal choice are the so-called Chebyshev points:

xi,n =
1

2

(
1 + cos

(
i+1/2
n+1 π

))
(these are the zeros of the Chebyshev polynomial7 Tn+1 ◦φ, where φ(ξ) = 2ξ+1 is
the affine transformation from [0, 1] onto [−1, 1]). In this case, one can prove that8

‖In‖ ≤ 1 +
2

π
log(n+ 1) (4.7)

(cf. Rivlin [17, Theorem 1.2]), which is asymptotically the best bound, as the next
result shows.

Theorem 4.14. There is some c > 0 such that

‖In‖ >
2

π
log(n+ 1)− c

holds for any choice of interpolation points.

In 1914, Faber [6] proved

‖In‖ >
1

12
log(n+ 1),

while, in 1931, Bernstein [1] showed the asymptotic estimate

4 For historical comments see [20].
5 The function ϕ =

∑n
i=0 |Li,n(·)| attains its maximum Cn in the first and last interval. As

pointed out by Schönhage [18, §4], ϕ is of similar size as in (4.7) for the middle interval.
6 The value γ = 0.5772 . . . is already given in Euler’s first article [5]. Later, Euler computed 15
exact decimals places of γ.
7 The Chebyshev polynomial Tn(x) := cos(n arccos(x)), n ∈ N0, satisfies the three-term
recursion Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1), starting from T0(x) = 1 and T1(x) = x.
8 A lower bound is ‖In‖ > 2

π
log(n + 1) + 2

π

(
γ + log 8

π

)
= limn→∞ ‖In‖ , where

2
π

(
γ + log 8

π

)
= 0.962 52 . . .
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‖In‖ >
2− ε
π

log(n+ 1) for all ε > 0.

The estimate of Theorem 4.14 originates from Erdös [4]. The bound

‖In‖ >
1

8
√
π

log(n+ 1)

can be found in Natanson [12, p. 370f].
The idea of the proof is as follows. Given xi,n ∈ [0, 1], 0 ≤ i ≤ n, construct

a polynomial P of degree ≤ n (concrete construction, e.g., in [12, p. 370f], [13])
such that |P (xi,n)| ≤ 1, but P (ξ) > Mn for at least one point ξ ∈ [0, 1]. Since the
interpolation of P is exact, i.e., In(P ) = P , the evaluation at ξ yields

‖In‖ =

∥∥∥∥∥
n∑
i=0

|Li,n(·)|

∥∥∥∥∥
∞

≥
n∑
i=0

|Li,n(ξ)|

≥
n∑
i=0

|P (xi,n)Li,n(ξ)| ≥

∣∣∣∣∣
n∑
i=0

P (xi,n)Li,n(ξ)

∣∣∣∣∣ = |P (ξ)| > Mn,

proving ‖In‖ > Mn.
We conclude that any sequence of polynomial interpolations In is unstable.

4.6 Is Stability Important for Practical Computations?

Does the instability of polynomial interpolation mean that one should avoid polyno-
mial interpolation altogether? Practically, one may be interested in an interpolation
In∗ for a fixed n∗. In this case, the theoretically correct answer is: the property of
In∗ has nothing to do with convergence and stability of {In}n∈N. The reason is that
convergence and stability are asymptotic properties of the sequence {In}n∈N and
are in no way related to the properties of a particular member In∗ of the sequence.
One can construct two different sequences {I ′n}n∈N and {I ′′n}n∈N—one stable, the
other unstable—such that I ′n∗ = I ′′n∗ belongs to both sequences. This argument also
holds for the quadrature discussed in the previous chapter.

On the other hand, we may expect that instability expressed by Cn → ∞ may
lead to large values of Cn, unless n is very small. We return to this aspect later.

The convergence statement from Definition 4.4 is, in practice, of no help. The
reason is that the convergence from Definition 4.4 can be arbitrarily slow, so that
for a fixed n, it yields no hint concerning the error In(f) − f . Reasonable error
estimates can only be given if f has a certain smoothness, e.g., f ∈ Cn+1([0, 1]).
Then the standard error estimate of polynomial interpolation states that

‖f − In(f)‖∞ ≤
1

(n+ 1)!
Cω(In)

∥∥∥f (n+1)
∥∥∥
∞
, (4.8)
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where

Cω(In) := ‖ω‖∞ for ω(x) :=

n∏
i=0

(x− xi,n)

(cf. [14, §1.5], [19], [15, §8.1.1], [8, §B.3]). The quantity Cω(In) depends on the
location of the interpolation points. It is minimal for the Chebyshev points, where

Cω(In) = 4−(n+1).

In spite of the instability of polynomial interpolation, we conclude from estimate
(4.8) that convergence holds, provided that ‖f (n+1)‖∞ does not grow too much
as n → ∞ (of course, this requires that f be analytic). However, in this analysis
we have overlooked the numerical rounding errors of the input data.9 When we
evaluate the function values f(xi,n), a perturbed result f(xi,n) + δi,n is returned
with an error |δi,n| ≤ η ‖f‖∞. Therefore, the true interpolant is In(f) + δIn with
δIn =

∑n
i=0 δi,nΦi,n. An estimate of δIn is given by η‖In‖ ‖f‖∞. This yields the

error estimate

‖f − In(f)− δIn‖∞ ≤ ε
int
n + εper

n with

εint
n =

1

(n+ 1)!
Cω(In)‖f (n+1)‖∞ and εper

n = η ‖In‖ ‖f‖∞ .

Since η is small (maybe of the size of machine precision), the contribution εint
n is

not seen in the beginning. However, with increasing n, the part εint
n is assumed to

tend to zero, while εper
n increases to infinity because of the instability of In.

We illustrate this situation in two different scenarios. In both cases we assume
that the analytic function f is such that the exact interpolation error (4.8) decays
like εint

n = e−n.
(1) Assume a perturbation error εper

n = ηen due to an exponential increase of
‖In‖. The resulting error is

e−n + ηen.

Regarding n as a real variable, we find a minimum at n = 1
2 log 1

η with the value
2
√
η. Hence, we cannot achieve better accuracy than half the mantissa length.
(2) According to (4.7), we assume that εint

n = η(1 + 2
π log(n + 1)), so that the

sum
e−n + η(1 +

2

π
log(n+ 1))

is the total error. Here, minimising n is the solution to the fixed-point equation
n = log(n + 1) − log(2η/π). For η = 10−16 the minimal value 3.4η of the total
error is taken at the integer value n = 41. The precision corresponds to almost the
full mantissa length. Hence, in this case the instability ‖In‖ → ∞ is completely
harmless.10

9 There are further rounding errors, which we ignore to simplify the analysis.
10 To construct an example, where even for (4.7) the instability becomes obvious, one has to assume
that the interpolation error decreases very slowly like εintn = 1/ log(n).
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4.7 Tensor Product Interpolation

Finally, we give an example where the norm ‖In‖ is required for the analysis of
the interpolation error, even if we ignore input errors and rounding errors. Consider
the function f(x, y) in two variables (x, y) ∈ [0, 1] × [0, 1]. The two-dimensional
polynomial interpolation can easily be constructed from the previous In. The tensor
product11 I2

n := In ⊗ In can be applied as follows. First, we apply the interpolation
with respect to x. For any y ∈ [0, 1] we have

F (x, y) := In(f(·, y))(x) =

n∑
i=0

f(xi,n, y)Φi,n(x).

In a second step, we apply In with respect to y:

I2
n(f)(x, y) = In (F (x, ·)) (y) =

n∑
i=0

n∑
j=0

f(xi,n, xj,n)Φi,n(x)Φj,n(y).

Inequality (4.8) yields a first error12

|f(x, y)− F (x, y)| ≤ 1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂xn+1
f

∥∥∥∥
∞

for all x, y ∈ [0, 1].

The second one is

F (x, y)− I2
n(f)(x, y) =

n∑
i=0

|f(xi,n, y)− In(f(xi,n, ·)(y)|Φi,n(x).

Again

|f(xi,n, y)− In(f(xi,n, ·)(y)| ≤ 1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂yn+1
f

∥∥∥∥
∞

holds and leads us to the estimate∥∥F − I2
n(f)

∥∥
∞ ≤ ‖In‖

1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂yn+1
f

∥∥∥∥
∞
.

The previous estimates and the triangle inequality yield the final estimate

∥∥f − I2
n(f)

∥∥
∞ ≤

1

(n+ 1)!
Cω(In)

[
‖In‖ ‖

∂n+1

∂yn+1
f‖∞ + ‖ ∂

n+1

∂xn+1
f‖∞

]
.

Note that the divergence of ‖In‖ can be compensated by 1
(n+1)! .

11 Concerning the tensor notation see [9].
12 Here, ‖·‖∞ is the maximum norm over [0, 1]2.
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4.8 Stability of Piecewise Polynomial Interpolation

One possibility to obtain stable interpolations is by constructing a piecewise poly-
nomial interpolation. Here, the degree of the piecewise polynomials is fixed, while
the size of the subintervals approaches zero as n → ∞. Let J = [0, 1] be the
underlying interval. The subdivision is defined by ∆n := {x0, x1, . . . , xn} ⊂ J
containing points satisfying

0 = x0 < x1 < . . . < xn−1 < xn = 1.

This defines the subintervals Jk := [xk−1, xk] of length hk := xk − xk−1 and
δn := max1≤k≤n hk. In principle, all quantities xk, Jk, hk should carry an
additional index n, since each subdivision of the sequence (∆n)n∈N has different
xk = x

(n)
k . For the sake of simplicity we omit this index, except for the grid size

δn, which has to satisfy δn → 0.
Among the class of piecewise polynomial interpolations, we can distinguish two

types depending on the support13 of the Lagrange functions Φj,n. In case of Type I,
Φj,n has a local support, whereas supp(Φj,n) = J for Type II. The precise definition
of a local support is: there are α, β ∈ N0 independent of n such that

supp(Φj,n) ⊂
min{n,j+β}⋃

k=max{1,j−α}

Jk. (4.9)

4.8.1 Case of Local Support

The simplest example is the linear interpolation where In(f)(xk) = f(xk) and f |Jk
(i.e., f restricted to Jk) is a linear polynomial. The corresponding Lagrange function
Φj,n is called the hat function and has the support14 supp(Φj,n) = Jj ∪ Jj+1.

We may fix another polynomial degree d and fix points 0 = ξ0 < ξ1 < . . . <
ξd = 1. In each subinterval Jk = [xk−1, xk] we define interpolation nodes ζ` :=
xk−1 + (xk − xk−1) ξ`. Interpolating f by a polynomial of degree d at these nodes,
we obtain In(f)|Jk . Altogether, In(f) is a continuous15 and piecewise polynomial
function on J. Again, supp(Φj,n) = Jj ∪ Jj+1 holds.

A larger but still local support occurs in the following construction of piecewise
cubic functions. Define In(f)|Jk by cubic interpolation at the nodes14 xk−2, xk−1,
xk, xk+1. Then the support supp(Φj,n) = Jj−1 ∪ Jj ∪ Jj+1 ∪ Jj+2 is larger than
before.

13 The support of a function f defined on I is the closed set supp(f) := {x ∈ I : f(x) 6= 0}.
14 The expression has to be modified for the indices 1 and n at the end points.
15 If In(f) ∈ C1(I) is desired, one may use Hermite interpolation; i.e., also dIn(f)/dx = f ′ at
x = xk−1 and x = xk. This requires a degree d ≥ 3.
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The error estimates can be performed for each subinterval separately. Transfor-
mation of inequality (4.8) to Jk yields ‖In(f)− f‖∞,Jk ≤ Ch

−(d+1)
k ‖f (d+1)‖∞,

where d is the (fixed) degree of the local interpolation polynomial. The overall
estimate is

‖In(f)− f‖∞ ≤ Cδ
−(d+1)
n ‖f (d+1)‖∞ → 0, (4.10)

where we use the condition δn → 0.
Stability is controlled by the maximum norm of Φn :=

∑n
i=1 |Φi,n(·)|. For

the examples from above it is easy to verify that ‖Φi,n‖ ≤ K independently
of i and n. Fix an argument x ∈ I . The local support property (4.9) implies
that Φi,n(x) 6= 0 holds for at most α + β + 1 indices i. Hence

∑n
i=1 |Φi,n(x)|

≤ Cstab := (α+ β + 1)K holds and implies supn ‖In‖ ≤ Cstab (cf. (4.5)).

4.8.2 Spline Interpolation as an Example for Global Support

The space Vn of the natural cubic splines is defined by

Vn =
{
f ∈ C2(I) : f ′′(0) = f ′′(1) = 0, f |Jk cubic polynomial for 1 ≤ k ≤ n

}
.

The interpolating spline function S ∈ Vn has to satisfy S(xk)=f(xk) for 0≤k≤n.
We remark that S is also the minimiser of

min

{∫
J

|g′′(x)|2 dx: g ∈ C2(J) : S(xk) = f(xk) for 0 ≤ k ≤ n
}
.

In this case the support of a Lagrange function Φj,n, which now is called a cardinal
spline, has global support:16 supp(Φj,n) = J . Interestingly, there is another basis
of Vn consisting of so-called B-splines Bj , whose support is local:14 supp(Bj) =
Jj−1 ∪ Jj ∪ Jj+1 ∪ Jj+2. Furthermore, they are non-negative and sum up to

n∑
j=0

Bj = 1. (4.11)

We choose an equidistant17 grid; i.e., Ji = [(i − 1)h, ih] with h := 1/n. The
stability estimate ‖In‖ = ‖

∑n
i=0 |Φi,n(·)|‖∞ ≤ Cstab (cf. (4.5)) is equivalent to

‖S‖∞ ≤ Cstab ‖y‖∞ , where S =

n∑
i=0

yiΦi,n ∈ Vn

is the spline function interpolating yi = S(xi). In the following, we make use of the

16 Φj,n is non-negative in Jj ∪ Jj+1 and has oscillating signs in neighbouring intervals. One
can prove that the maxima of Φj,n in Jk are exponentially decreasing with |j − k|. This fact can
already be used for a stability proof.
17 For the general case compare [14, §2], [15, §8.7], [19, §2.4].
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B-splines, which easily can be described for the equidistant case.18 The evaluation
at the grid points yields

B0(0) = Bn(1) = 1, B0(h) = Bn(1− h) = 1/6,
B1(0) = Bn−1(1) = 0,
B1(h) = Bn−1(1− h) = 2/3, B1(2h) = Bn−1(1− 2h) = 1/6,
Bj(xj) = 2/3, Bj(xj±1) = 1/6 for 2 ≤ j ≤ n− 2.

(4.12)

One verifies that yj :=
∑n
j=0Bj(xj) = 1. Since the constant function S = 1 ∈ Vn

is interpolating, the unique solvability of the spline interpolation proves (4.11).
Now we return to a general spline function S =

∑n
i=0 yiΦi,n. A representation

by B-splines reads S =
∑n
j=0 bjBj . Note that yi = S(xi) =

∑n
j=0 bjBj(xi).

Inserting the values from (4.12), we obtain

y = Ab with A =
1

6


6
1 4 1

. . . . . . . . .
1 4 1

6

 b

for the vectors y = (yi)
n
i=0 and b = (bi)

n
i=0. A can be written as A = 2

3 [I + 1
2C]

with ‖C‖∞ = 1; i.e., A is strongly diagonal dominant and the inverse satisfies∥∥A−1
∥∥
∞ ≤ 3 because of

A−1 =
3

2
[I +

1

2
C]−1 =

3

2

∞∑
ν=0

2−νCν .

Using b = A−1y, we derive from S =
∑n
j=0 bjBj that

|S(x)| =

∣∣∣∣∣∣
n∑
j=0

bjBj(x)

∣∣∣∣∣∣ ≤Bj≥0

n∑
j=0

|bj |Bj(x) ≤ ‖b‖∞
n∑
j=0

Bj(x) =
(4.11)

‖b‖∞

for all x ∈ J , so that the stability estimate ‖S‖∞ ≤ Cstab ‖y‖∞ is proved with
Cstab := 3.

18 The explicit polynomials are

Bj =
1

6h3


ξ3, ξ = x− xj−2, x ∈ Jj−1

h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = x− xj−1, x ∈ Jj ,
h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = xj+1 − x, x ∈ Jj+1,
ξ3, ξ = xj+2 − x, x ∈ Jj+2,

 for 2≤j≤n− 2,

B1 =
1

6h3

 6h2x− 2x3, x ∈ J1,
h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = 2h− x, x ∈ J2,
ξ3, ξ = 3h− x, x ∈ J3,

 , Bn−1(x) = B1(1− x),

B0 =
1

6h3

{
h3 + 3h2ξ + 3hξ2 − ξ3, ξ = h− x, x ∈ J1,
ξ3, ξ = 2h− x, x ∈ J2,

}
, Bn(x) = B0(1− x).
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Remark 4.15. The previous results show that consistency is in conflict with stability.
Polynomial interpolation has an increasing order of consistency, but suffers from in-
stability (cf. Theorem 4.14). On the other hand, piecewise polynomial interpolation
of bounded order is stable.

4.9 From Point-wise Convergence to Operator-Norm
Convergence

As already mentioned in §3.5 in the context of quadrature, only point-wise conver-
gence In(f) → f (f ∈ X) can be expected, but not operator-norm convergence
‖In − id‖ → 0. However, there are situations in which point-wise convergence can
be converted into operator-norm convergence.

An operator K : X → Y is called compact if the image B := {Kf : ‖f‖X≤1}
is precompact (cf. page 44). The following theorem is formulated for an arbitrary,
point-wise convergent sequence of operators An : Y → Z.

Theorem 4.16. Let X,Y, Z be Banach spaces, and A,An ∈ L(Y,Z). Suppose
that point-wise convergence Any → Ay holds for all y ∈ Y . Furthermore, let
K : X→Y be compact. Then the products Pn := AnK converge with respect to
the operator norm to P := AK; i.e., ‖Pn − P‖ → 0.

Proof. M := {Kx : ‖x‖X ≤ 1} ⊂ Y is precompact because of the compactness
of K, so that we can apply Lemma 3.49:

‖Pn − P‖ = sup{‖Pnx− Px‖Z : x ∈ X, ‖x‖ ≤ 1}
= sup{‖An (Kx)−A (Kx)‖Z : x ∈ X, ‖x‖ ≤ 1}
= sup{‖Any −Ay‖Z : y ∈M} →

(3.29)
0. ut

A typical example of a compact operator is the embedding

E :
(
Cλ([0, 1]), ‖·‖Cλ([0,1])

)
→ (C([0, 1]), ‖·‖∞) .

For integer λ ∈ N, Cλ([0, 1]) is the space of λ-times continuously differentiable
functions, where the norm ‖·‖Cλ([0,1]) is the maximum of all derivatives up to order
λ. For 0 < λ < 1, Cλ([0, 1]) are the Hölder continuous functions with ‖·‖Cλ([0,1])

explained in Footnote 9 on page 44. The embedding is the identity mapping:
E(f) = f ; however, the argument f and the image E(f) are associated with differ-
ent norms. As mentioned in the proof of Theorem 3.50,E ∈ L(Cλ([0, 1]), C([0, 1]))
is compact.

In the case of λ=4, estimate (4.10) already yields the operator-norm convergence
‖In − id‖C([0,1])←Cλ([0,1]) ≤ C/n4 → 0. To show a similar operator-norm con-
vergence for 0 < λ < 1, interpret In−id as (In−id)E : Cλ([0, 1])→ C([0, 1]).
Applying Theorem 4.16 with A = id, An = In, and K = E, we obtain

‖In − id‖C([0,1])←Cλ([0,1]) → 0.
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4.10 Approximation

Often, interpolation is used as a simple tool to obtain an approximation; i.e., the
interpolation condition (4.1) is not essential. Instead, we can directly ask for a best
approximation Φn ∈ Vn of f ∈ B, where Vn ⊂ B is an (n + 1)-dimensional
subspace of a Banach space B with norm ‖·‖:

‖f − Φn‖ = inf {‖f − g‖ : g ∈ Vn} . (4.13)

Using compactness arguments one obtains the existence of a minimiser Φ. If the
space B is strictly convex,19 the minimiser is unique (cf. [10]).

A prominent choice of Vn are the polynomials of degree ≤ n, while B =
C([a, b]) is equipped with the maximum norm. Polynomials satisfy the following
Haar condition: any 0 6= f ∈ Vn has at most n zeros (cf. Haar [7]). As a con-
sequence, also in this case, the best approximation problem (4.13) has a unique
solution. For the numerical solution of the best approximation the following equi-
oscillation property is essential (cf. Chebyshev [2]):

Theorem 4.17. Let ε := f − Φn be the error of the best approximation in (4.13).
Then there are n+ 2 points xµ with a ≤ x0 < x1 < . . . < xn+1 ≤ b such that

|ε(xµ)| = ‖f − Φn‖ and ε(xµ) = −ε(xµ+1) for 0 ≤ µ ≤ n. (4.14)

The second part of (4.14) describes n+ 1 = dim(Vn) equations, which are used
by the Remez algorithm to determine Φn ∈ Vn (cf. Remez [16]).

From (4.14) one concludes that there are n zeros ξ1 < . . . < ξn of ε = f − Φn;
i.e., Φn can be regarded as an interpolation polynomial with these interpolation
points. However note that the ξµ depend on the function f.

The mapping f 7→ Φn is in general nonlinear. Below, when we consider Hilbert
spaces, it will become a linear projection.

Since the set of polynomials is dense in C([a, b]) (cf. Theorem 3.28), the condi-
tion

V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ Vn+1 ⊂ . . . and
⋃
n∈N0

Vn = C([a, b]) (4.15)

is satisfied. Condition (4.15) implies

‖f − Φn‖ ↘ 0 as n→∞ for Φn from (4.13). (4.16)

Stability issues do not appear in this setting. One may consider the sequence
{‖Φn‖ : n ∈ N0} , but (4.16) proves convergence ‖Φn‖ → ‖f‖; i.e., the sequence
must be uniformly bounded.

The approximation is simpler if B is a Hilbert space with scalar product 〈·, ·〉 .
Then the best approximation from (4.13) is obtained by means of the orthogonal

19 B is strictly convex if ‖f‖ = ‖g‖ = 1 and f 6= g imply ‖f + g‖ < 2.
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projection20 Πn ∈ L(B,B) onto Vn:

Φn = Πnf.

Given any orthonormal basis {φµ : 0 ≤ µ ≤ n} of Vn, the solution has the explicit
representation

Φn =

n∑
µ=0

〈f, φµ〉φµ. (4.17)

The standard example is the Fourier approximation of 2π periodic real func-
tions in [−π, π]. The L2 scalar product is 〈f, g〉 =

∫ π
−π fgdx. Let n be even. Vn is

spanned by the orthonormal basis functions{
1√
2π
,

cos(mx)√
π

,
sin(mx)√

π
: 1 ≤ m ≤ n/2

}
.

At first glance there is no stability problem to be discussed, since the operator norm
of orthogonal projections equals one: ‖Πn‖L2←L2 = 1. However, if we consider
the operator norm ‖Πn‖B←B for another Banach space, (in)stability comes into
play.

Let Πn be the Fourier projection from above and choose the Banach space
B = C2π := {f ∈ C([−π, π]) : f(−π) = f(π)} equipped with the maximum
norm ‖·‖∞. We ask for the behaviour of ‖Πn‖∞, where now ‖·‖∞ = ‖·‖C2π←C2π

denotes the operator norm. The mapping (4.17) can be reformulated by means of
the Dirichlet kernel,

(Φnf) (x) =
1

π

∫ π

0

sin(2n+ 1)y

sin(y)
[f(x+ 2y) + f(x− 2y)]dy.

From this representation we infer that

‖Πn‖∞ =
1

π

∫ π

0

∣∣∣∣ sin(2n+ 1)y

sin(y)

∣∣∣∣dy.
Lower and upper bounds of this integral are

4

π2
log(n+ 1) ≤ ‖Πn‖∞ ≤ 1 + log(2n+ 1).

This shows that the Fourier projection is unstable with respect to the maximum
norm. The negation of the uniform boundedness theorem 3.38 together with
‖Πn‖∞ → ∞ implies the well-known fact that uniform convergence Πnf → f
cannot hold for any f ∈ C2π .

The orthogonal Fourier projection Πn is the best choice for the Hilbert space
L2([−π, π]). For C2π one may choose another projection Pn from C2π onto Vn.

20 That means (i) ΠnΠn = Πn (projection property) and (ii) Πn is selfadjoint: 〈Πnf, g〉 =
〈f,Πng〉 for all f, g ∈ B.
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This, however, can only lead to larger norms ‖Pn‖∞ due to the following result of
Cheney et al. [3].

Theorem 4.18. The Fourier projection Πn is the unique minimiser of

min{‖Pn‖∞ : Pn ∈ L(C2π, C2π) projection onto Vn}.
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