
Chapter 1
Introduction

What are models and how do we obtain and assess them? How do abstract models
turn into tangible simulation results? What are the ever increasing number of
“simulators” doing exactly, what constraints apply to their activities and how can
their results be validated? These and other questions are discussed in the first
chapter of our book. It is designed to be a general introduction as well as a separate
introduction to each of the four subsequent parts. The first section of this chapter
provides the general terms and definitions that apply to simulation and introduces
the so-called simulation pipeline. In sections two and three we provide the basic
foundations of modeling and simulation, respectively.

1.1 The Simulation Pipeline

The notion of simulation is quite ambiguous and requires clarification. In the context
of this book, two of its interpretations are of particular relevance. In a broader sense,
simulation is the complete process of the forecasting or replication of a certain
scenario. Since such simulations are nowadays performed almost exclusively
computer-based, we will not—as it is oftentimes seen elsewhere—refer to it as
computer simulation. In a tighter sense (and in the title of this book), simulation
only refers to the central part of this process, i.e., the actual computation—a classical
case of a “pars pro toto”. In the following, we will make use of both interpretations
and only provide explicit clarification if the respective interpretation is not given
implicitly.

In a broader scope, therefore, simulations are nothing other than “virtual experi-
ments” on the computer. This remains unchanged by the fact that in most application
areas served by simulation (for example, physics, chemistry or mechanics), the
respective representatives of the “computational guild” are typically allocated to
the theoreticians.
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The attractiveness of these virtual experiments is obvious. For a multitude of
cases, “real” experiments are simply impossible due to the underlying time and
spatial scales, for example. To illustrate, one needs only to consider astrophysics: no
matter how hard-working, it is impossible for any physicist to devote the necessary
billions of years at the telescope to study the life cycle of a galaxy; or geophysics—it
may be possible to create experimental earthquakes, i.e., artificial earthquakes in a
James Bond production, but those are not practical in real life. Moreover, not all
that is possible in principle is actually desirable—one only needs to consider the
testing of nuclear weapons, animal experiments, or genetic engineering. The former
took their leave just at the time when the respective nations reached the ability
to execute them in a completely virtual manner on the computer. The ethical
component—nuclear bombs do not become friendlier if they are “brought to
perfection” through simulations—must not be left out here, but as well will not
be discussed further. And even in the remaining set of the feasible and justifiable,
the effort is often the limiting factor: The static of buildings, the vulnerability of the
HIV virus, the evacuation of a fully filled soccer stadium, economical or military
strategies, etc. etc.–all these are not tested quickly, not even in the lab; not to mention
the effort that fundamental experiments require in modern physics in the context
of the Large Hadron Collider. Thus, there is no way to go without simulation and
it is therefore worthwhile to take a closer look at its methodology. However, it is
indisputable: Simulations complement theoretical analyses and experiments, they
do not replace them.

The goals pursued by a simulation can be very diverse. Oftentimes, one wants to
reconstruct a scenario which is well-known in principle in order to better understand
it. This applies for example to catastrophies of a technical or natural kind. Why
has an earthquake developed, why at this particular place, why at this particular
instant in time? Why did one of the large traffic bridges across the Mississippi River
in the US state of Minnesota collapse in August 2007? How could the tsunami in
south-east Asia in late December 2004 develop such a devastating effect? The goal
to predict unknown scenarios is also knowledge driven, but in general even more
challenging. This applies not only to the catastrophies mentioned above (and for
possible repetitions, resp.) as well as to urgent questions concerning climate change
or the propagation of the world population, but also to many technical questions
(properties of new alloys or composite materials). Besides discovery, another goal
pertains to improvement, i.e., the optimization of a known scenario. Prominent
examples include the (route) scheduling of airlines, the efficiency factor of chemical
reactors and the efficiency of heat exchangers or the data throughput in a computer
network.

Here, a simulation in the broader sense is not an intergral act, but rather a highly
complex process consisting of a sequence of several steps which are traversed
several times in various feedback loops.

To this end, the picture of a “simulation pipeline” has been established (see
Fig. 1.1). We summarize the essential steps:
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Fig. 1.1 The “simulation pipeline”

• The Modeling: At the very beginning we need a model, i.e., a simplified formal
description of a suitable extract from the item of interest, which will then serve
as the basis for the subsequent computations.

• The computation or simulation in the tighter sense, resp.: The model will be
preprocessed (e.g., discretized) so that it is compatible with a computer platform.
The solution of this preprocessed model requires the identification of efficient
algorithms.

• The implementation (or more generally the software-development): The compu-
tational algorithms previously determined must be implemented efficiently (with
respect to computational time and storage complexities, parallelization issues,
etc.) on the target architecture or architectures. Currently, this step significantly
exceeds the implementation in the classical sense: It is no longer sufficient to
produce runnable code, but software must be designed and developed on a big
scale and by every trick in the book.

• The visualisation (or more generally the data exploration): The data resulting
from a simulation run must be interpreted. In some cases—e.g., for scalar
quantities such as the drag coefficient in aero dynamics—this will be easy, in
others—e.g., for highdimensional data sets—extracting the relevant information
from the flood of numbers is a science of its own.

• The validation: Very important—how reliable are the results? Sources for errors
lurk in the model, in the algorithm, in the code or in the interpretation of
the results. Therefore, it is important to compare different models, different
algorithms, and different codes, resp., as well as simulation results with inkind
experiments. Depending on the source of the error, the process has to be restarted
at the respective step and the pipeline has to be traversed once more starting from
this point.

• The embedding: Simulations take place in a context—e.g., a development
or production process—and should be integrated accordingly. This requires
the definition of interfaces, a reasonable software engineering, simple testing
environments, etc.

Let us take a look at a descriptive example—a little preview of part IV of
this book. The subject of our interest is the automobile in a wind tunnel—or,
better, the virtual automobile in the virtual wind tunnel. We want to figure out
the wind resistance of the vehicle that, in technical terms, is denoted by the drag
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coefficient cw. For subsonic aerodynamics, the suitable physical or mathematical
model, resp., is given by the Navier–Stokes equations, a system of nonlinear partial
differential equations. Their discretization in space and time can, for example,
be carried out through finite elements or finite volumes. The resulting large
and sparse linear systems of equations can be solved efficiently using multigrid
methods. In view of the method’s large computational time requirement, the method
typically must be implemented on a parallel computer. The visualization of the
three-dimensional velocity field will require techniques that exceed the well-known
two-dimensional pictures using arrows, and the drag coefficient must be computed
in a suitable way from the millions of computed discrete velocity and pressure
values. The validation will rely on comparative calculations with other programs
as well as experiments using prototypes in a wind tunnel.

The proper way to convey the results of an aerodynamics simulation to the design
department (e.g., suggestions pertaining to details involving change in the shape of
fenders) is an exciting task of embedding. Or said differently: How can simulation
results be directly integrated into the CAD-model without causing the very time
intensive design process to be restarted?

It is clearly illustrated through this example: The comprehensive solution of a
simulation problem requires far more than “a little bit of computation”—all six
steps pose an abundance of challenges to the different fields of science. In order
to avoid an immediate misunderstanding: The figure depicting the pipeline should
illustrate the diversity and sequential flow of the intermediate tasks, but it should on
no account suggest that the individual steps can be worked separately by entirely
different experts in a manner much like an assemply line production. In fact,
everything is closely interwoven. For example, beginning early on in the design
of numerical algorithms, one must keep an eye on an efficient implementation - this
typically takes the target hardware into account one way or another.

The first two steps of the simulation pipeline—modeling and simulation in the
tighter sense—are certainly of central importance. For this reason, and since they
are absolutely necessary for an introduction to the topic, they will be covered in this
book.

1.2 Introduction to Modeling

We will direct our attention to the first step of the simulation pipeline, the
(mathematical) modeling, by discussing in sequence the following questions: What
is actually a model, and what is its purpose? How does one obtain a suitable model?
How can mathematical models be assessed? What is the difference between
models, and how can they be classified? And finally—does there exist “the correct
model”?



1.2 Introduction to Modeling 5

1.2.1 General Prerequisites

In general, a model is a (simplified) image of a (partial) reality. In this context,
the models are always meant to be abstract, i.e., formal descriptions given mostly
(but not always) through the methodological apparatus provided by mathematics
or computer science. In the following, when talking about models, we will almost
always think of mathematics or computer science models.

Mathematical modeling denotes the process of the formal derivation and analysis
of a mathematical model for an effect, a phenomenon, or a technical system. The
starting point is in general an informal description of the respective subject of
modeling, for example in prose. This is typically converted next into a semiformal
description, the model of the science application, using the tools of the application
discipline. Finally, an additional step is required to derive a strictly formal model
(i. e, unambiguous, consistent)—the mathematical model.

A simple example to illustrate this is the management of a timetable and the room
scheduling of a school: To start, we have the textual description of the problem.
This leads to the classical arrangement of index cards on the wall of the teachers’
room which helps to avoid double bookings of rooms, but is limited in its ability to
recognize possibilities for optimization. This situation changes when the problem
is “mathematized”, for instance being formulated as a graph-based scheduling
problem. Once such an abstraction is performed, one can now apply appropriate
methods for the problem’s analysis and optimization.

The extent that mathematical modeling is suggestive and established differs
greatly in various areas of science. It has a very long tradition in the exact
natural sciences. Several formulations of theoretical physics, for example, are per
se mathematically rooted and in many areas recognized as such. This holds in
particular where they have been validated through experimental data (as, e.g.,
in classical continuum mechanics). A completely different situation prevails for
national economic policy. In view of the substantial impact the psychology of
the moment contributes, the extent that mathematical models are supportable is
questionable. And even if there is consensus, the choice of the “right” model
is by no means obvious. Further, depending on the choice of model, one can
derive economic-political rules of action that are diametrically opposite. As an
example, one may think of the perpetual argument between the “monetarists”, who
call for strict budgetary discipline even in times of recession, in contrast to the
“Keynesians”, who hold in high esteem the “deficit spending” of their idol John
Maynard Keynes and therefore demand national investment programs in times of
recession. Needless to say, both camps refer to models!

But even among scientists, consensus does not necessarily exist or, at best, it is
an arduous process. This is exemplified by the on-going discussion about climate
change and global warming.

Game theory, which we will cover in more detail later, is another example
that illustrates the difficulty in finding the right model. John von Neumann’s
models for 2-person zero-sum games which embrace conservative min-max
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strategies—in short: always play so that the worst case loss is minimized assuming
optimal performance by the opponent—may be an appropriate model to use for the
head of a family on his one-time meander to the casino. Without doubt, however,
these strategies do not suffice for the serious gambler.

Where do we model nowadays? A few important applications have already
been mentioned, but no list can altogether be complete. However, one should be
aware how commonplace the use of models, and thus modelling, have nowadays
become:

• In astrophysics, one works to explain the origin and evolution of the universe as
well as the life cycles of stars and galaxies.

• In geophysics, researchers want to understand processes which eventually lead to
earthquakes.

• A central topic in plasma physics is fusion.
• The analysis of the spatial structure and therefore the funtionality of proteins is a

focus in protein research.
• Theoretical chemistry investigates the causes for certain material behavior on the

atomic level.
• Drug design is concerned with the systematic design of agents having an exactly

specified functionality.
• Also medicine increasingly utilizes models, e.g., in the research of aneurysms or

the optimization of implants.
• The discussions in climate research, which are driven by models, have had a high

audience appeal—ranging from global warming, holes in the ozone layer or the
future of the gulf stream.

• On a shorter term, but no less current, is weather forecasting, which relies on a
mix of computations and measurements.

• The automobile industry yields a whole wealth of examples: Whether one con-
siders crash tests (structural mechanics), deep drawing (structure optimization),
aerodynamics or air conditioning (fluid dynamics), sound emission (aeroa-
coustics), fuel injection (combustion), vehicle dynamics (optimal control) or
sensor and actuator technologies (coupled systems, micro-electro-mechanical
systems)—models are always involved.

• Also the semiconductor industry depends completely on models and
simulations—examples are given by device simulation (transistors etc.), process
simulation (production of highly purified crystals), circuit simulation as well as
questions regarding the optimization of chip layout.

• Furthermore, several models have been and are being developed in
economics—for the business cycle, for the economic and fiscal policy and for
pricing mechanisms. The fact that the experts in the government’s advisory
boards are not necessarily always of one opinion, illustrates how far one is still
from a consensus model.

• For banks and insurance companies, models are highly important for the
assessment (i.e., pricing) of financial derivates such as options.
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• Traffic technology requires quite diverse models—for example for the formation,
dissolution and avoidance of traffic congestion, for the long term planning of
traffic routes and for evacuation scenarios.

• Providers such as energy companies require load models in order to design their
networks as fail-safe as possible.

• Shipping companies rely on model-based fleet management.
• Population models are used by city planners, governments (thinking of China’s

“one-child-policy”) as well as by epidemiologists (how do famines spread?).
• Without models, the statements of pollsters would ressemble the prophecies of

fortune tellers.
• And finally, what would computer games and computer movies be without

illumination or animation models?

One sees: There are quite diverse application areas for modeling that exist with
both “hard” (i.e., mathematical-formula heavy) and “soft” (i.e., more descriptive)
models. And by now one suspects that these require a corresponding wide range
of tools from mathematics and computer science. As a result, the following central
questions arise in the context of modeling:

1. How does one obtain a suitable model?
2. Which descriptive tools will be used?
3. How does one subsequently assess the quality of the derived models?

We will now direct our attention to these questions.

1.2.2 Derivation of Models

We will begin with the task of deriving a model—which often appears to be a
miracle to the newcomer. This derivation typically occurs in several steps.

At first, one has to determine what exactly should be modeled and thereafter
simulated. Whoever is inclined to answer “well, the weather”, is not thinking on a
grand enough scale: the weather in what time frame, the weather in what region and
in what spatial resolution, resp., the weather in what precision? Several additional
examples may serve as illustrations: Is one interested in a rough estimate of the
efficiency of a car catalyst or rather in the detailed interior reaction processes, i.e.,
does the domain have to be resolved or not? Is one interested in the population
growth in Kairo, in Egypt, or in all of Africa? Which resolution is therefore
suitable or adequate? Should the throughput of a computer network or the average
throughput time of a packet of data be determined by simulation, i.e., should data
sets be considered separately as discrete entities, or is it sufficient to take averaged
data flow quantities?

Next, one needs to determine which quantities play a qualitative role and how
significant is their quantitative impact. We will illustrate this with a few examples:
The optimal trajectory of the space shuttle is influenced by the gavitation of the
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moon, the gravitation of Pluto and the gravitation of this book, but not all of these
are relevant for the computation of the trajectory. The development of the Dow
Jones index may depend on statements of the director of the American central bank,
statements of the authors of this book as well as the bankruptcy of the Sultanate
of Brunei. However, investors do not have to consider these statements on an equal
footing. One sees that we can sometimes grasp causality and relevance intuitively,
but in general (in particular for highly complex systems) these are all but obvious.
Oftentimes, there are—despite the relevant expertise and ample material data—only
hypotheses. And typically these early decisions significantly influence the later
simulation results.

Once the set of relevant quantities has been determined, we have to direct our
attention to the network of relationships among the model parameters that have
been deemed to be important. Once again there is the qualitative aspect (logical
dependencies of the type “if, then” or signs of derivatives) and the quantitative
aspect (particular factors, magnitudes of derivatives). Typically, these networks of
relationships are complex and multi-layered: In general, the CPU performance of
a computer has a strong influence on the computational time of a job; however, in
the case of strong thrashing or a low cache hit rate, it only plays a minor role. Such
fluctuating dependencies have to be incorporated into the model as well.

Now, what is a suitable instrument to best formalize the interactions and
dependencies previously identified? Mathematics and computer science provide a
wealth of descriptive tools and instruments:

• algebraic equalities or inequalities to describe laws (E D mc2) or constraints
(wT x);

• systems of ordinary differential equations (differential equations with only a
single independent variable, typically the time t), for example for the description
of growth behavior ( Py.t/ D y.t/);

• systems of partial differential equations (i.e., differential equations with several
independent variables, such as different spatial directions or space and time), for
example for the description of deformation of a clamped diaphragm under load
(�u D f ) or for the description of wave propagation (ut D uxx);

• automata and state transition diagrams, for example for the modeling of queues
(filling levels as states, arrival and service end as transitions, resp.), of text
recognition (previous text structures as the states and the new symbols as the
transitions) or of growth processes with cellular automata (overall occupancy
situation as the states with rule-based transitions);

• graphs, for example for the modeling of round trip problems (problem of the
traveling salesman with places as vertices and paths as edges), of ordering
problems (partial jobs as the vertices, dependencies in time through the edges), of
computing systems (components as the vertices, connecting paths as the edges)
or of processes (data flows, workflows);

• probability distributions, to describe arrival processes in a queue, error terms
as well as white noise or the approval of the government’s policy on the
unemployment rate;
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• rule-based systems or fuzzy logic for the modeling of control problems;
• neural networks for modeling learning;
• languange concepts such as UML, in order to model complex software systems;
• algebraic structures, for example groups in quantum mechanics or finite fields in

cryptology.

In this book we will on occasion see that finding a “best description” is quite a lofty
goal, and that most cases do not require the model but rather a suitable model.

Finally, a perceptively trivial question whose answer is nevertheless important for
goal-oriented modeling and simulation:: What is the concrete task? Shall we find an
arbitrary solution of the model; shall we find the only solution of the model; shall
we find a particular solution (which is optimal with respect to a certain criterion
or which satisfies certain boundary conditions or constraints, respectively); shall we
find a critical region (e.g., a bottleneck); or shall we show that at least one or even
several solutions exist?

Once a model has been identified, it needs to be assessed. This will be the topic
of the following section.

1.2.3 Analysis of Models

The analysis and assessment of models deals with the derivation of statements in
terms of their manageability and usefulness, resp.

Here, the question of solvability takes center stage: Does a certain model have
one or several solutions, or none?

In population dynamics, for example, one is interested in whether or not a certain
model has a stationary limit state and whether or not it actually attains its limit value.
In ordering problems, i.e., when, for example, a set of tasks has to be completed
on a set of machines, the question arises whether or not the precedence graph,
which describes possible constraints in the ordering of tasks, contains any cycles.
In minimization problems, it is crucial to determine whether the target function
actually assumes a minimum, or possibly only contains saddle points (minimal
with respect to a subset of directions while maximal with respect to the remaining
directions).

In the case of solvability, the subsequent question concerns the uniqueness of
solutions: Is there exactly one solution, is there exactly one global minimum? Is
there a stable limit state or rather oscillations, as we will later see in predator–prey-
scenarios in population dynamics, or different pseudo-stable states, among which
the solution jumps back and forth (such as in the form of spatial configurations or
convolutions in proteins)? In the case of several solutions, are these all of equal
weighting, or are there preferred solutions?

A third aspect is likely to be less obvious: Does the solution depend continuously
on the input data (initial values, boundary values, material parameters, constraints,
etc.), or could rather small changes in the input lead to a completely different
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behavior in the solution? The idea of continuous dependency corresponds to a notion
of the sensitivity or conditioning of a problem, resp.

In 1923, Hadamard chose the following three aspects as a launching point
for his definition of a well-posed problem: A problem is therefore called well-
posed if a solution exists, is unique, and furthermore depends continuously on
all input data. However, Tikhonov and John have subsequently shown that this
definition is quite restrictive—unfortunately, problems are mostly ill-posed. Prime
examples for ill-posed problems which illustrate this notion are the so-called inverse
problems. With an inverse problem, the result is essentially given and one is looking
for the initial configuration: How should a pressing tool be configured so that
a metal sheet is worked to produce the desired result? How much does carbon
dioxide emission have to be reduced in the next ten years in order to avoid certain
undesirable developments? In politics, what must be done today in order to reduce
the percentage of unemployed persons below 10 % within three years? How do the
components of a computer network have to be configured in order to guarantee
a certain minimum throughput? Even if the corresponding forward problem is
continuous (a marginal change in the corporate tax rate will hardly lead to a big jump
in unemployment), the continuity typically no longer holds in the opposite direction:
It cannot be expected that a slightly smaller unemployment rate can simply be
obtained through a slightly reduced tax rate—even if one would like to believe this!

As one may already anticipate, such inverse problems are no rarity in
practice—oftentimes a goal to be reached is given, and one is looking for a suitable
way to do so. Even if this is an ill-posed problem, there are possible ways to
“rescue” the model. A first option is the (meaningful) trial and adjustment, i.e., the
solution of a sequence of forward problems. Here, the skill consists of reaching
convergence quickly. An alternative approach is the so-called regularization. Here,
one solves a related, well-posed (regularized) problem instead of the original
problem. A generally helpful trick: If the problem is unpleasant, change it slightly!

We still have to discuss a fourth aspect of model assessment—one that is
in fact often neglected by the pure modelers or at best treated as a distant
relative: How difficult will it be to continue the processing of the model (i.e.,
the simulation)? In fact, the modeling is not done as an end in itself but rather
as a means to perform simulations. This raises a couple of additional questions:
Is the availability and quality of the required input data sufficient? In the end,
what is the purpose of an ever so elegant model if I do not have access to the
input data? For the solution of the model, do algorithms exist, and if so, what are
their computational and storage complexities? Given this, is a solution realistic, in
particular when keeping in mind the real-time requirements? After all, tomorrow’s
weather forecast must be completed before tomorrow. Do we have to anticipate or
expect fundamental problems during the solution process (ill-conditioning, chaotic
behavior)? Is the model competitive, or do there exist models with possibly a better
price-performance ratio? And finally, how involved is the expected implementation
effort? These all are questions that by far exceed the pure modeling effort but must
nonetheless be considered at this stage.
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If all these questions could be addressed satisfactorily, one could then approach
the simulation stage. Before doing this, however, we will attempt to bring some
structure in the midst of the flood of existing and conceivable models.

1.2.4 Classification of Models

From the multitude of possibilities for classification we will take a closer look at
two: discrete vs. continuous models as well as deterministic vs. stochastic models.

In modeling, discrete models exploit discrete or combinatorial descriptions
(binary or integer quantities, state transitions in graphs or automata), while in
contrast continuous models are based on real-valued or continuous descriptions
(real numbers, physical quantities, algebraic equations, differential equations).
Obviously, discrete models are naturally used to model discrete phenomena,
whereas continuous models are employed for continuous phenomena. However, this
is by no means mandatory as demonstrated by the example of traffic simulation
which will also be studied later in this book. Here, the traffic flow through a city
can be modeled discretely (single cars as entities which wait at lights, etc.) as well
as continuously (densities, flows through channels). The approach deemed more
suitable depends on the actual problem setting.

Examples of deterministic models include systems of classical differential equa-
tions which manage without random components. Ever more frequently, however,
the systems contain probabilistic components—whether to integrate error terms
(noise), or to account for uncertainties, or to explicitly build in randomness (stochas-
tic processes). Once again, there is no mandatory correlation between the character
of the process being modeled and the instrument employed. Non-deterministic
experiments such as the roll of a die represent a probabilistic reality and are modeled
as such; Crashtests are strictly causal-deterministic and are generally modeled
deterministically. The weather forecast becomes more interesting: In a sense, every-
thing happens strictly deterministically, obeying the laws of thermodynamics and
fluid dynamics. However, several turbulence models contain stochastic components.
Finally, the (hopefully) deterministic incoming order of jobs for a printer is mostly
modeled via stochastic processes—from the point of view of the printer, the jobs
arrive randomly, and furthermore, at least for system design, one is rather interested
in average quantities (means) and not in the individual fates of printing jobs.

1.2.5 Scales

One idea should be quickly dismissed, namely the one involving the “correct”
model. Modeling is rather a question of consideration of complexity, or cost and
accuracy. The more details and single effects one integrates in a model, the higher
the precision one naturally expects for the attainable results—however, at the
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expense of increasing simulation cost. Phenomena always take place on certain
scales—spatial (from nanometer up to the light year) and temporal (from the
femtosecond up to billions of years), and models and simulations themselves are
always based on certain scales. In principle, each molecule in the air makes a
contribution to the weather—at the same time it would be crazy to consider all
molecules individually when forecasting the weather. But one cannot neglect spatial
resolution completely: A statement of the kind “tomorrow will be nice in Europe” is
usually not very helpful. Thus the question pertaining to the level of detail (spatial
or temporal) or resolution arises, i.e., which scales are appropriate—first in view of
the desired accuracy of the result and second in view of the required solution cost.

A few examples may illustrate this. Let us begin with true high-technology.
The heating of water in a cylindrically formed pot on a stove can be modeled and
simulated in one spatial dimension (temperature as a function of time and height in
the pot—after all, the pot is cylindrical and its content—water—is homogenous), in
two spatial dimensions (temperature as a function of time, the height in the pot and
the radial distance to the middle of the pot—after all, the room air is cooling the
pot from the outside) or even in three spatial dimensions (additional dependence of
the temperature on the circular angle—after all, no stove heats in perfect rotational
symmetry); what is the appropriate approach? Or in population dynamics: Typically,
the development of a species is described as a purely time-dependent process.
However, this could not yield a reasonable description of the development of a
population such as in the USA in the middle of the nineteenth century when the
strong “go west!” drive prevailed for the migration of settlers.

The simulation of circuits provides another example. For many years, this
simulation was performed as purely time-dependent (system simulators based upon
Kirchhoff’s circuit laws). The increase in integration density leads to a growing
occurrence of parasitic effects (current through a conductor induces current through
a nearby other conductor) which are local phenomena and require a spatial model
component. Finally the catalytic converter in our cars: Do I really need to resolve
in detail the geometry of the catalytic converter for the computation of macroscopic
quantities such as the degree of efficiency?

The previous question leads us to another aspect, the interplay of scales. Often,
we have to deal with a so-called “multiscale property”. In this case, the scales
cannot be separated without an unacceptable loss of accuracy because of shared
interdependency. A classical example is given by turbulent flows. Phenomenolog-
ical to turbulent flows, one has to deal with strong, erratic vortices of varying
magnitudes—from tiny to very large. The flow is unsteady and inherently three-
dimensional. Here, a strong energy transport takes place in all directions and
between the scales. Depending on the viscosity of the fluid, one needs to compute
the tiniest vortices even in larger domains in order to avoid incorrect results.
The dilemma, therefore, is that for reasons of efficiency, one cannot resolve all
that is needed to be resolved for reasons of accuracy. A remedy is found in
turbulence models: They try to pack the fine-scale influence into suitable parameters
of the large scale—through averaging (with respect to space or time) or through
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Table 1.1 A hierarchy of possible simulations on different scales

Problem setting Level of consideration Possible model

Population increase globally Countries/regions Population dynamics
Population increase locally Individuals Population dynamics
Human physiology Circuits/organs System simulator
Blood circulation Pump/canals/valves Network simulator
Blood stream in the heart Blood cells Continuum mechanics
Cellular transport processes Macromolecules Continuum mechanics
Function of macromolecules Atoms Molecular dynamics
Atomic processes Electrons, . . . Quantum mechanics

homogenization. Naturally, such multiscale phenomena set particular requirements
to the models and simulations.

In view of the wide spectrum of relevant scales, one often encounters entire
model hierarchies. As an illustration, we consider such a hierarchy centered around
humans: Each level can represent certain things, but not others, and the models and
simulation techniques differ from level to level (Table 1.1).

1.3 Introduction to Simulation

1.3.1 General Remarks

Our aim is not to derive and employ models just for the description of a circum-
stance, but for the subsequent simulation based on these models. To this end, the
models have to be solved in concrete scenarios—for example differential equations
plus initial and boundary conditions. This can be done through various methods.

An analytic solution not only includes existence and uniqueness proofs, but also
the formal analytic construction of the solution—using “paper and pencil”, as it
is referred to in mathematics. This is insofar the preferred case since no further
simplifications or approximations are required. However, this approach works
almost exclusively only in very simple (and thus mostly hopelessly unrealistic)
special cases. For example, one can directly write down the solution y D c et of
the simplistic growth law Py.t/ D y.t/ without any magic. A little less obvious, but
still no trick, is the direct solution of the one-dimensional heat equation uxx.x; t/ D
ut .x; t/; here, a so-called separation approach yields u.x; t/ D sin.cx/e�c2t . Finally,
in mini-graphs, one can detect a shortest path through a simple exhaustive search.
But what alternatives exist when an analytical solution is not feasible? Irrelevant
here is whether this is due to fundamental reasons or due to the limited capabilities
of the person working the problem.

The heuristic solution approach offers a first alternative in which, beginning
with plausibility arguments, one uses certain strategies to get closer to the unknown
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solution. Such heuristics are wide-spread primarily for problems in combinatorical
or discrete simulation and optimization (e.g., greedy heuristics which always choose
the best local alternative). In the knapsack problem, for example, one packs the item
with the respective best weight-value-relation into the knapsack until nothing else
fits. This does not necessarily lead to the best solution, and even if it does, it may
take excessively long. But such a procedure, however, is still good as a heuristic.

In the direct-numerical approach, a numerical algorithm provides the exact
solution modulo round-off error. The simplex algorithm for problems in linear
optimization of the kind “solve maxx cT x under the constraint Ax � b” is an
example of this approach. For the approximate-numerical approach, however, one
refers to an approximation method in order to approximate the solution of the model
as accurately as possible. This task splits into two parts: first, the discretization of
the continuous problem, and second, the solution of the discrete problem. Both parts
are concerned with the question of convergence. The discretization should be of
the type such that an increase in effort (i.e., an increase in resolution) will lead to
asymptotically better approximations, and the (mostly iterative) solution technique
for the discretized problem should first of all converge as well as converge rapidly
to its solution.

The approximate-numerical approach is certainly the most important one for
problems in numerical simulation; we will encounter it repeatedly in the following
chapters.

1.3.2 Assessment

Of central significance in a simulation is the assessment of the computed results.
The goal of validation is to determine whether we have used the correct (or rather, a
suitable) model (“Do we solve relevant equations?”). By contrast, verification, takes
a look at the algorithm and software program with the purpose to determine whether
the given model has been solved correctly (“Do we solve the given equations
correctly?”). Even in the case of two affirmative “Yes!” answers, the examination
of aspects concerning the accuracy of the result as well as the invested effort is still
remaining.

There are several possibilities for validating the computed simulation results.
The classical procedure is the comparison with experimental tests—whether these
are 1:1-experiments, as for example in crash tests, or scaled laboratory experiments,
for example tests in a wind tunnel with downsized prototypes. Sometimes, however,
this approach is prohibited for feasibility reasons or the required effort. But even
when experiments can be performed one should use caution: First of all, it is easy
for small differences to arise between the simulated and the experimental scenarios;
secondly, one has to be very cautious with respect to the scaling of quantities (it
is possible that certain effects do not appear on small scales); and thirdly, there
may occur sporadic and systematic mistakes in measuring—computers and their
operators do not have a monopoly on bugs!
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A-posteriori observations provide an additional (and in general very inexpensive)
possibility for validation—true to the motto that “one is always smarter afterwards”.
Reality tests compare the predicted with the actual result; one may think of the
weather, the stock market or military scenarios. Satisfaction tests determine whether
the desired result has materialized to a sufficient degree. Examples for applications
are systems for traffic control as well as illumination and animation models in
computer graphics.

In contrast, the plausibility tests remain on a purely theoretical level, as fre-
quently encountered in physics. Here, one checks whether the simulation results
are in contradiction to other, previously verified theories. Naturally, one must not be
too conservative—possibly, the common doctrine errs and the simulator is correct!

Finally, there exists the option to perform a model comparison, i.e., to compare
the results of simulations which are based on different models.

No matter how one proceeds—one needs to use caution before one draws
conclusions from validations. There are various sources for errors; pears literally
wait to be compared to apples, and Muenchhausen has been known to pull himself
out of the swamp by his own hair . . .

The topic of verification leads to convergence proofs, etc. for the employed
algorithms on one hand and to correctness proofs for the designed programs on
the other hand. While the former are well established and are known to be a favorite
pasttime for numerical analysts, the later are still in their infancy. It is not so much
the case that computer science has not achieved anything in this respect. It is rather
the case that the simulation business—quite opposite to other software-intensive
fields—is positioned extremely shirt-sleeved (not systematic in its approach): Here,
one usually programs but hardly ever develops software. The pain threshhold seems
to have been reached only recently, and requests for a formal framework (and thus
for better possibilities for verification) become louder.

Even the aspect of accuracy is more complex than it appears at first sight.
The first coming to mind is accuracy with respect to the quality of input data.
If the input data is available in the form of measured data with an accuracy of
three decimal places, then one cannot expect the result to be accurate to eight
decimal places. In addition, one needs to keep an eye on the accuracy in relation
to the problem—which can at times be problematic. In many cases, a model which
produces errors below one per cent is considered completely sufficient. But in an
election poll, for example, being half a percent off the mark can turn everything
upside down—and thus render the modeling and simulation completely useless!
Another factor is the need for security: Can one live with statements that reflect
averaged values, or is it necessary to reflect a guaranteed worst-case-bound?

And finally the cost question—what effort (wrt. time for implementation,
memory, computation or response time) was invested to reach the simulation result?
In this context, it is important to neither consider the obtained benefit (e.g., the
accuracy of the result) nor the invested effort individually, but rather in relation to
each other. Basically, it is neither the best nor the cheapest car that one wants to buy,
but rather the one with the best price-performance ratio.
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