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On theoretical modeling of multiple-domain processes

The temporal behavior of multiple-domain systems, such as internal combustion en-

gines, drivetrains and auxiliary units, can be described with the help of system theory

according to uniform methods. For this, however, mathematical models have to exist

for the static and dynamic behavior of the system components or the processes.

The derivation of mathematical models can take place in a theoretical (physical)

or experimental way. Therefore, it is called theoretical modeling or experimental

modeling or identification.

For combustion engines, mathematical models for different physical areas have

to be set up and combined, e.g. for mechanics, combustion, thermodynamics, and

electricity. The procedure during theoretical modeling is in principle known for the

individual areas, and there also exist analogies for models between different areas.

However, a basic, generally applicable methodology for theoretical modeling with

an interdisciplinary view has several advantages, especially for applying computer-

aided modeling. Therefore, a unified representation for modeling in different physi-

cal domains is briefly summarized in this chapter.

2.1 Theoretical and experimental modeling

The derivation of mathematical models of processes can be performed in a theoret-

ical or experimental way. For engines and also vehicles mathematical models for

different physical domains have to be set up and combined. This holds especially for

mechatronic components and engines in the drivetrain. Therefore, this chapter gives

an introduction into a systematic way to model multi-domain systems, also as a basis

for computer-aided modeling.

The principles of theoretical modeling can follow a basic methodology, see

Karnopp et al (1990), Gawthrop and Smith (1996), Isermann (2005). Fundamental

equations are:

1. Balance equations for stored masses, energies, and momentum

2. Constitutive equations of special elements
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3. Phenomenological equations, if irreversible processes take place

4. Entropy balance equations, if several irreversible processes are involved

5. Connection equations.

In stating these equations one has to distinguish between processes with distributed

and lumped parameters. For distributed parameters the dependency on space and

time has to be considered. This usually leads to partial differential equations. If the

space dependency is negligible, the process can be considered with lumped parame-
ters which leads to ordinary differential equations as a function of time. For combus-

tion engines or drivetrains both types appear. However, one can frequently operate

with lumped parameters.

By summarizing the basic equations of all process elements, one receives a the-
oretical or physical process model with a certain structure and certain parameters

if it can be solved explicitly. Frequently, this model is extensive and complicated,

so it must be simplified for further applications. The simplifications are made by

linearization, reduction of the model order or approximation of systems with dis-

tributed parameters by lumped parameters when limiting on fixed locations. But also

if the set of equations cannot be solved explicitly, the individual equations supply

important hints for the model structure. So, e.g. balance equations are always lin-

ear and some phenomenological equations are linear in wide areas. The constitutive

equations often introduce nonlinear relations.

During experimental modeling, which is also called process identification, one

obtains the mathematical model of a process from measurements. Here, one always

proceeds from a priori knowledge, which was gained, e.g. from the theoretical anal-

ysis or from preceding measurements. Then, input and output signals are measured

and evaluated by means of identification methods in such a way that the relation be-

tween the input and output signal is expressed in a mathematical model. The result

of the identification then is an experimental model, see Chap. 3.

Theoretical and experimental modeling mutually complete themselves. The the-

oretical model contains the functional description between the physical data of the

process and its parameters. Therefore, one will use this model, e.g. if the process

is to be favorably designed with regard to the dynamical behavior or if the process

behavior has to be simulated before construction. The experimental model, on the

other hand, contains parameters as numerical values whose functional relation with

the physical basic data of the process remains unknown. In many cases, the real dy-

namic behavior can be described more exactly or it can be determined at smaller

expenditure by experimentally obtained models which, e.g. is better suited for con-

trol design, the prediction of signals or for fault detection.

The following methodology for theoretical (physical) modeling is a strongly

shorted version of Chap. 2 in Isermann (2005), which can be applied generally for

technical systems and thus holds also for engines and vehicles. This is treated first

because then the modeling of parts of the engines can be based on these general laws

of modeling.
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2.2 Process elements from different domains

In the following, the terms energy, matter, and information are called quantity. If one

considers processes with lumped parameters, then the elements of technical pro-

cesses can be classified according to the following idealized types, see Karnopp

et al (1990), MacFarlane (1967), MacFarlane (1970), Isermann (2005), compare

Fig. 2.2.1:

• sources: deliver an output quantity from a large supply, without or with losses

• storages: take up a quantity and deliver it in the same form

• transformers: take up a quantity and deliver it in the same form, without storing

it

• converters: take up a quantity in certain form and deliver it after conversion into

another form, without storing it

• sinks: take up an input quantity and consume it in the same or another form. Since

mainly losses occur they are dissipative processes.

The first four elements are ideal if no losses are generated. However, real elements

have losses. In the case of real sinks the input quantity is not always completely

consumed.

The connecting lines in Fig. 2.2.1 represent the flows between the elements in

the form of [quantity/time]. The arrows indicate the direction of the flows.

A further distinction of the process elements can be made with regard to their

controllability with an additional auxiliary energy.

• passive elements: the transferred quantity is not controllable by an additional

auxiliary energy. Examples are passive storages, e.g. capacitances, passive trans-

formers as, e.g. fixed gear transmissions, or passive converters, e.g. fans with

constant speed

• active elements: a quantity is controlled by an actuator. Thereby, an electrical

or mechanical auxiliary energy usually has to supply the actuator. Examples

are controllable sources as, e.g. controllable transformers as, e.g. tank with fuel

pump, automatic transmissions, combustion chamber with variable valve train

and EGR valves.

Active process elements are represented in Fig. 2.2.2. The storages basically show a

dynamic, usually an integral, behavior. Sources, transformers, converters, and sinks

can have both a mainly static transfer behavior as well as a distinct dynamic transfer

behavior.

For processes with distributed parameters, process elements such as storages,

transformers, converters, and sinks are distributed over space. By partitioning into

infinitesimally small elements, one can determine process elements with lumped pa-

rameters, whose state variables are location-dependent from element to element.

Figure 2.2.3 depicts a simplified representation of a combustion engine using the

introduced process elements and symbols. The inputs are a fuel mass flow and an air

mass flow. A first converter generates by combustion a net heat release flow, which
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generates displacement power by a thermodynamic operation cycle. A second con-

verter converts it to mechanical rotational power. A part of the combustion heat flow

is delivered through the cylinder walls to the cooling system and by heat exchange

to the environment. The exhaust gas components generated during the combustion

pass the exhaust after treatment (catalysts, filter) and then vanish to the environment.

Main storages with regard to control are the intake system, the turbocharger (not

included in Fig. 2.2.3), the crank shaft rotational mass, and the cooling circuit.

b)a)

d) e)

V

c)

Fig. 2.2.1. Symbols of passive process elements. a source. b storage. c transformer. d con-

verter. e sink (V: losses):

→ energy, matter or information flow.

U

AE AEAE

U U

b)a) c)

Fig. 2.2.2. Symbols of active process elements (the process element is controlled by an actua-

tor, which is supplied by an auxiliary energy. AE: auxiliary energy; U: manipulated variable).

a source with auxiliary energy. b transformer with auxiliary energy. c converter with auxiliary

energy.
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2.3 Basic equations

After the definition of suitable cuts, the process is divided into elements such as

sources, storages, transformers, converters, and sinks for energies and matters in or-

der to set up the basic equations. These basic equations are for lumped parameter

processes:

• balance equations (general storages, junction points)

• constitutive equations or physical state equations (sources, transformers, con-

verters, special storages)

• phenomenological equations (sinks, dissipative elements).

This grouping of basic equations then applies both to processes with energy flows

and matter flows.

2.3.1 Balance equations

Since the laws for conservation of mass, energy, and momentum are fundamental,

they are regarded as the first type of equations. The balance equations, which are

derived from these conservation laws, basically apply independently of the construc-

tion of the processes. They describe the global behavior. The mass balance applies

to processes with moved matter, the energy balance to processes with all types of

energy and the momentum balance to processes with moved masses.

If Qν describes a mass mν or energy Eν , the principle of the conservation of

mass or energy applied to a bounded area, where no mass or energy leaves, leads to

n∑
ν=1

Qν = const. (2.3.1)

compare Fig. 2.3.1a). If a mass or energy ΔQi(t) enters through the boundaries of an

arbitrary control area and a mass or energy ΔQo(t) escapes through the boundaries

in a time Δt, it holds with the conservation laws

ΔQi(t)−ΔQo(t) = ΔQs(t) (2.3.2)

where ΔQs(t) is the stored quantity. If (2.3.2) is divided by Δt

lim
Δt→0

ΔQ/Δt = dQ/dt

a generalized balance equation for flows follows

Q̇i(t) − Q̇o = d
dtQs(t)

inflow outflow stored flow
(2.3.3)

see also Fig. 2.3.1b). Its signal flow is depicted in Fig. 2.3.2.

Balance equations for mass and energy stores thus lead to a linear integrating

transfer element and cause a dynamically delayed behavior. Balance equations have

to be set up for each storage. They are always linear.

The balance equations also describe the flows at the interconnection points of

process elements if the storage capacity is set to zero. Balance equations are also

called continuity equations.
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Q = const.
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Fig. 2.3.1. General balance for a storage of energy and mass. a bounded area. b storage.
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Fig. 2.3.2. Block diagram of an energy or mass storage (balance equation).

2.3.2 Constitutive equations

The coherence between input and output variables of the process elements in the

form of sources, transformers, converters, sinks and also storage elements can be

expressed by special physical laws in analytical form or by characteristic curves from

experiments. The equations mentioned are called constitutive equations or physical
state equations.

Many different physical laws that apply to the individual process elements exist.

However, regarding the input/output behavior, several similarities exist.

a) Processes with energy flows

For technical processes which primarily transfer energy at their interconnections, it

follows from the energy balance equation (2.3.3) without storage that the transferred

energy per time interval or the power

P (t) =
dE(t)

dt
(2.3.4)

is always equal at the interconnections between the process elements. Therefore, it

is appropriate to determine the state variables in such a way that at the interfaces

between process elements or subprocesses they describe a power. If one determines

the interfaces in analogy to electrical transfer elements as a terminal pair, then the

different process elements can be described as one-port systems (two-pole systems),

two-port systems (four-pole systems) or generally multi-port systems (multi-pole

systems), see Fig. 2.3.3. One can always distinguish two variables for a terminal

pair at the transfer elements, Karnopp and Rosenberg (1975), Karnopp et al (1990),

Takahashi et al (1972):

1. potential difference e(t): variables such as electrical voltage, force, pressure dif-

ference appear as a difference between two terminals. They are called “effort”
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2. flow f(t): variables such as electrical current, velocity, volume flow enter in one

of the terminals. They are called “flow”.

The product of both terms is the transferred power

P (t) = f(t) e(t).
power flow potential

difference

(2.3.5)

Here, f(t) and e(t) are assigned covariables, which are also called generalized power
variables. These variables are discussed for important technical systems with energy

flows in Isermann (2005). The formulation of constitutive equations with potentials

and flows is especially advantageous for mechanical and hydraulic components in

connection with electrical ones, i.e. for mechatronic systems.

flow f

e

e

a)

c)

b)

d)

f

f

f

f

e

e

f

f

e

e

potential
difference

e

e

f f

e

1

1 2

2

1

1

1

1

2

2

2

2

Fig. 2.3.3. Representation of one-port and two-port systems for process elements with power

variables. a one-port system in terminal representation. b two-port system in terminal repre-

sentation. c one-port system with input and output signals. d two-port system with input and

output signals (2 of 4 possibilities).

b) Processes with different flows

The previous reflections were limited to processes that transfer exclusively energy

flows. For matter flows (solids, liquids, steams, gases), it is practical to use the mass

flow as flow f(t), since the mass balance equation is a substantial basic equation. If

one uses the usual variables for the potential difference e(t), the product e(t)f(t) is

not always power P (t) according to (2.3.5).

At the interconnection points between process elements, power P (t) (energy

flows), as well as the mass flows

ṁ(t) =
dm(t)

dt
(2.3.6)
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have to be equal between the process elements at any time. Therefore, one uses the

mass flow as a further state variable at the interfaces. For incompressible matter one

can also take the volume flow rate

V̇ (t) =
1

ρ
ṁ(t) (2.3.7)

since the density ρ is constant.

For heat flows which are transferred by convection and therefore are coupled to a

mass with heat capacity, the product according to Table 2.3.1 is power (in the case of

convection by fluids it has to be multiplied by the specific heat). This does not apply

to thermal conduction in matter if one selects the heat flow as flow f , since the heat

flow itself represents power, see Table 2.3.1, last row.

For powers, it has to be determined if it is the power needed for the transportation

of a mass flow, e.g. hydraulic power or the power that is transported by the mass flow,

e.g. thermal energy flow.

Table 2.3.1. Variables for flow and potential difference for matter flows and heat flows

System Flow f Potential difference e ef Power

hydraulic mass flow ṁ kg
s

pressure difference p ṁp 1
ρ
ṁp

thermal

- convection through mass flow ṁ kg
s

temperature difference T K ṁT ṁcpT
liquids

- convection through mass flow ṁ kg
s

enthalpy difference h J
kg

ṁh ṁh

gas, steam

chemical mass flow ṁi
kg
s

concentration ci
mol
kg

ṁici −−
thermal

- heat conduction heat flow q̇ W temperature difference T K q̇T q̇

These constitutive equations are required for modeling many parts of combustion
engines because of the energy flows for chemical energy through combustion, ther-

modynamic energy, mechanical energy and thermal energy. Additionally, liquid and

gas flows have to be modeled which transport air, fuel or oil or transport combustion

and thermodynamic energy.

2.3.3 Phenomenological equations

In the case of sinks and losses in some transformers and converters, the internal pro-

cess runs only in one direction and is not reversible (without additional energy sup-

ply). Examples are thermal conduction, diffusion or chemical reaction. The appropri-

ate processes are characterized by irreversible equalization processes with increasing

entropy. The reasons for the entropy increase are the dissipation of mechanical and

electrical power, the exchange of mass and heat and chemical reactions, Ahrendts

(1989). Thus, dissipative systems can be represented as sinks. The irreversible tran-

sients are described by phenomenological equations. One example is:
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a) Fourier’s law of heat conduction

q̇z = −λ
∂T

∂z
= −λ gradzT (2.3.8)

(q̇z heat flow density, λ thermal conductivity, T temperature, z space coordinate).

Other examples are Fick’s law of diffusion and Ohm’s law of electrical current.

These laws can be represented in a general form

flow density = − 1

specific resistance
potential gradient (2.3.9)

and are linear in a wide range.

Another type of phenomenological equation is the

b) Chemical reaction law

A first-order reaction Ai → Bi with cAi and cBi for the concentrations yields

rz = −kcAi

[
kmol

m3s

]
(2.3.10)

k = k∞e−
E
RT Arrhenius law (2.3.11)

(rz reaction rate, k reaction rate coefficient, cAi concentration of component Ai, E
activation energy, k∞ frequency factor).

c) General sinks, dissipative converters

Phenomenological equations show partially linear behavior, e.g. in the case of vis-

cous friction or Ohm’s resistances, and partially strong nonlinear behavior as in the

case of throttles or friction. In the linear case, when using the one-port representation,

e.g. the resistance equation applies

f1 =
1

R
e1 (2.3.12)

where R is the resistance coefficient (The negative sign in (2.3.9) is necessary be-

cause the gradient is used with regard to the location).

Dry friction has a direction-dependent discontinuous characteristic curve

F = FG0 ż > 0
F = −FG0 ż < 0.

(2.3.13)

This leads to force-displacement characteristics in the form of rectangular hysteresis

characteristics, whose range depends on the amplitude z0, Isermann (2005).

In the case of combustion engines, the considered examples of phenomenolog-

ical equations are required for modeling, for example, heat transfer to the cooling
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system, combustion, mass flows through the intake and exhaust system and all kind

of frictions in the mechanical parts.

This section described the basic balance equations and constitutive equations in a

general form and some phenomenological equations. The balance equations resulted

from the conservation laws of physics and have, in principle, the form of (2.3.3).

However, the statement of the energy balance equations for mechanical and thermo-

dynamic processes require the consideration of some special features as treated in

related textbooks and also in Karnopp et al (1990) and Isermann (2005).

2.3.4 Summary

By following the approach indicated briefly in this chapter a consistent procedure for

the modeling of processes with energy and mass flows from different physical do-

mains results. Using all particular equations, an equation system for the considered

process or process part follows. From this, a signal flow diagram may be systemati-

cally composed and the state space equations as well as the differential equations for

the input and output variables may be derived. If desired, a linearization around the

operating point may be carried out.

The treated systematic approach and unified procedure allows not only the recog-

nition of many similarities but is also a prerequisite for computer-aided modeling

with modern software tools. It can also be applied to modeling of processes with

distributed parameters with finite elements.

2.4 Time-dependent and rotation-angle-dependent models

The behavior of internal combustion engines is dominated by the reciprocating work-

ing cycle and therefore dependent on the rotation angles of the crankshaft and the

camshaft. As the camshaft rotates usually with half of the speed of the crankshaft,

if suffices to consider the crankshaft speed only, assuming four-stroke engines. The

models considered in this book are oriented to the design of control functions in

the ECU and should therefore, if possible, be applicable for real-time computations.

Therefore, one has to make simplifying assumptions and only the dominant dynamic

effects can be taken into account with regard to important variables of the engine, for

example, the manifold pressure, torque, exhaust gas pressure and temperature, fuel

consumption and emissions. Engine part processes which directly influence the sin-

gle combustion like combustion pressure and temperature, air charge, fuel injection,

ignition, valve phasing have usually to be described by crank-angle-dependent mod-
els f(ϕ) (also called discrete-event models, Guzzella and Onder (2010)), Fig. 2.4.1.

On the other side some engine part processes outside of the cylinders can be de-

scribed by time-dependent models f(t). The crank-angle-dependent behavior can be

neglected frequently as the reciprocating behavior of the cylinder is damped because

of gas or thermal storages, especially for multi-cylinder engines. Examples are the air

flow, manifold pressure, turbo charger torque and speed, and emissions. If the work-

ing stroke induced fluctuations are neglected, the resulting models are mean-value
models.
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Fig. 2.4.1. Scaling of the crank angle for four-stroke engines. a absolute scaling: 0◦CS after

expansion. b relative scaling: 0◦CS at top dead center (TDC).

The crank angle and the time are related by the engine speed

ϕ(t) = ωeng(t)t (2.4.1)

and for infinitesimal small elements by

dϕ = ωengdt+ tdωeng. (2.4.2)

For constant engine speed this simplifies to

ϕ(t) = ωengt (2.4.3)

dϕ = ωengdt.

As the mean value of the crankshaft speed during one cycle does not vary signif-

icantly, one can assume a constant engine speed for some crank-angle-dependent

models.

a) Continuous models

As known from system and control theory the treatment of dynamic systems with

Laplace transformation has many advantages. The Laplace transform of a continuous-

time function x(t) is

x(s) =

∫ ∞

0

x(t)e−stdt (2.4.4)

with the Laplace variable

s = δ + iω [1/s]. (2.4.5)

The functions or signals x(t) have to fulfill certain conditions as x(t) = 0 for t < 0
and must lead to a convergence of x(s) (integrability). A continuous-time Laplace

transformation for the input signal u(t) and output signal y(t) leads to a transfer-

function
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G(s) =
y(s)

u(s)
(2.4.6)

and the frequency response for s = iω

G(iω) = lim
s→iω

G(s). (2.4.7)

Correspondingly, a continuous angle function x(ϕ) can be Laplace-transformed,

Schmitt (1995)

x(σ) =

∫ ∞

0

x(ϕ)e−σϕdϕ (2.4.8)

with the Laplace variable

σ = Δ+ iΩ [1/deg]. (2.4.9)

Hence, an angle-dependent damping Δ[1/deg] with the angle frequency Ω[1/deg]
can be defined. The function x(ϕ) also has to fulfill certain convergence conditions,

like x(ϕ) = 0 for ϕ < 0 and integrability.

Example 2.1 (Continuous models).
A continuous-time first-order process with dead time Tt follows the differential equa-

tion in time
dy(t)

dt
+ ay(t) = bu(t− Tt)

and the s-transfer function becomes

G(s) =
y(s)

u(s)
=

b

s+ a
e−Tts =

K

1 + Ts
e−Tts

with K = b/a, T = 1/a. A continuous angle first-order process with dead angle ϕt

is described by a differential equation in angle

dy(ϕ)

dϕ
+ a′y(ϕ) = b′u(ϕ− ϕt)

and the σ-transfer function is

G(σ) =
y(σ)

u(σ)
=

b′

σ + a′
e−ϕtσ.

If the dead time Tt results from a certain dead angle ϕt, then it follows for a rotation

with constant speed ωeng

ϕt = ωengTt

Tt =
1

ωeng
ϕt.

Under the assumption of a constant dead angle ϕt the dead time changes inversely

proportional to the speed and the transfer function G(s) has to consider this variable

dead time Tt(ωeng). This is not the case for G(σ), as the dead angle is independent

of the speed.

�
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b) Discrete models

As the ECU samples the continuous-time sensor signal with a sampling time T0 the

theory of sampled-data systems can be used leading to discrete-time models see, for

example Isermann (1989).

An expansion of the Laplace transform by approximation of the sampled (trape-

zoidal) pulses by δ-impulses results in the z-transfer function of the sampled function

x(kT0) with the discrete time k = t/T0 = 0, 1, 2, ...

x(z) =
∞∑
k=0

x(kT0)z
−k (2.4.10)

z = eT0s. (2.4.11)

A discrete-time transfer function is then

G(z) =
y(z)

u(z)
. (2.4.12)

If the crank-angle-dependent function x(ϕ) is sampled with the sampling angle ϕ0

resulting in the discrete angle κ = ϕ/ϕ0 = 0, 1, 2, ..., this leads, corresponding to

(2.4.10), to the ζ-transform.

x(ζ) =

∞∑
k=0

x(κϕ0) ζ
−k (2.4.13)

ζ = eϕ0σ. (2.4.14)

A discrete-angle transfer function follows

G(ζ) =
y(ζ)

u(ζ)
. (2.4.15)

For this ζ-transformation the same rules can be applied as for the z-transformation.

For example, to avoid side band effects in sampling a continuous-time function with

angular frequency ωmax the sampling frequency ω0 or sampling time T0 has to be

chosen according to Shannon’s sampling theorem

ω0 =
2π

T0
> 2ωmax or T0 < π/ωmax. (2.4.16)

This corresponds to a continuous angle function with angle frequency Ωmax to

Ωmax =
2π

ϕ0
> 2ωmax or ϕ0 < π/Ωmax. (2.4.17)
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Example 2.2 (Discrete models).
The continuous-time first-order process with dead time of Example 2.1 leads with a

zero-order hold to the z-transfer function

HG(z) =
y(z)

u(z)
=

b1z
−1

1− a1z−1
z−d

a1 = e−aT0

b1 =
1

a
(1− a1)

d = Tt/T0 = 0, 1, 2, . . .

and with the shifting theorem to the difference equation

y(k)− a1y(k − 1) = b1u(k − 1− d).

Corresponding to this procedure one obtains for the discrete-angle first-order process

with dead angle and a zero-order hold

HG(ζ) =
y(ζ)

u(ζ)
=

b′1 ζ−1

1− a′1 ζ−1
ζ−d

a′1 = e−a′ϕ0

b′1 =
1

a′
(1− a′1)

d′ = ϕt/ϕ0 = 0, 1, 2, . . .

and the difference equation for angles follows

y(κ)− a′1y(κ− 1) = b′1u(κ− 1− d′).

It describes the crank-angle-dependent variable y(κ) for a crank-angle-dependent

input variable u(κ). Also here for a constant dead angle ϕt and different speeds ωeng

the angle shift d′ does not change, contrast to the discrete dead time d.

�

The application of this crank-angle-dependent modeling was developed and ap-

plied in Schmidt (1995) to the torque models of a 4-cylinder diesel engine. Sampling

angle was selected such that the second harmonic of the ignition angle frequency

could be taken into account, resulting in ϕ0 = 30 deg. Then, e.g. the development

of the combustion pressure and the resulting torque can be described for each sam-

pled crank angle ϕ(κϕ0). For constant speed this corresponds to the discrete times

tκ = ϕ(κϕ0)/ωeng.

Figure 2.4.1 depicts the scaling of the crank angle as mostly used in this book.
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2.5 Semi-physical models

In general theoretical end experimental modeling complement each other. The theo-

retical model contains the functional description between the physical/chemical vari-

ables and includes their parameters. A considerable advantage is that the dependency

of the parameters on construction data is usually explicitly known. Therefore this

model is preferred for simulation before construction.

The experimental model on the other hand contains parameters as numerical

values where functional relationships with physical basic process data remains un-

known. However, the real stationary and dynamic behavior may be described more

exactly or it can be determined at smaller expenditure by identification methods,

which is, e.g. better suited for the calibration of control systems or fault detection

methods.

Theoretical models are also called “white-box models” and experimental models

“black-box models”. In many practical applications one has to use a suitable combi-

nation of both ways, compare Fig. 2.5.1.

theoretical
modeling

- physical laws
known

- parameters
known

white-box
models

linear/nonlinear
differential equations

- physical
laws
known

- para-
meters
unknown

light-grey-box
models

differential equations
w. parameter estimation

- physical
rules
known

- model
structure
unknown

- parameters
unkown

dark-grey-box
models

fuzzy models with
parameter estimation

experimental
modeling

- input/output
signals measurable

- assumption of a
model structure

black-box
models

- impulse response
- neuronal networks

- signals
measur-
able

- signals
measur-
able

Fig. 2.5.1. Different kinds of mathematical process models.

If the physical laws are known, but the parameters not at all or not precisely

enough, the parameters have to be determined experimentally, e.g. by parameter es-

timation methods. The resulting models can be called “light-gray models”. If only

physical oriented if-then-rules are known, the model structure and the parameters

have to be determined by experiments, leading to “dark-gray models”, for example

by fuzzy if-then-rules and parameter adjustment. Both gray models can also be called

semi-physical models.
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These type of combined theoretical and experimental models are frequently the

result in modeling combustion engines. For example the cylinder pressure is approx-

imated by a special function, the Vibe function, and the parameters are estimated

based on pressure measurements. In the case of exhaust gas emission formation only

some rules are known and purely experimental approximations are mainly used.
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